炉膛负压控制

合集下载

乙烯装置中裂解炉工艺控制方案分析

乙烯装置中裂解炉工艺控制方案分析

乙烯装置中裂解炉工艺控制方案分析摘要:乙烯装置所生产出来的产品主要有乙烯和丙烯两种物质,而在乙烯装置中最为重要的设备就是裂解炉,该设备直接影响到乙烯产品的生产能力和装置的稳定性。

通过裂解炉工艺控制可以确保乙烯收率,但由于其下游装置对乙烯和丙烯有着不同的需求量,所以,这就需要对乙烯、丙烯在一定范围内实施有效调节,不断提升乙烯装置的收率,促进产品生产和企业效益的提高。

本文从多个角度对乙烯裂解炉工艺控制方案展开了详细、认真的剖析与探讨,以供参考。

关键词:裂解炉;控制方案;出口温度;COT;装置当前国内乙烯装置数量不断增多,使得乙烯产能得到了大幅提升,而裂解炉作为其中一项重要设备,发挥着关键的作用,其主要是对不同原料进行加热气化获得裂解气,随后采取精馏、加氢等措施来为下游设备提供原料。

由此可知,想要切实有效提升乙烯生产效率与质量,则需要工作人员能够科学制定乙烯裂解炉工艺控制方案,确保其运用的稳定与高效。

一、乙烯裂解炉工艺控制方案分析(一)原料流量与COT工艺控制(1)原料流量控制从乙烯裂解炉工艺设计上来看,其稳定操作时原料总流量是保持不变的,其变化主要在各组原料流量的不均匀性上有所体现。

如果各组原料流量波动偏差较大,那么它们之间的裂解炉COT差值也会加大,然而C0T值不同对裂解反应的深度也有着不同的影响,并最终会对裂解产品收率造成影响。

在裂解炉工艺控制方案中设置原料控制主要是为了有效解决各组炉管间C0T温差过大的情况,具体措施有两种:1)在设计时需确保进料对称,也就是说需要以裂解炉规模和有关控制要求为依据对原料进料系统进行科学设置。

2)将问题控制方案融入到原料控制方案中,换句话说就是设置总流量调节器,通过对各组运管进料调节器设定点进行调整,以实现对总进料流量进行控制。

其主要是为了确保当原料总量需求发生改变的时候可以通过控制系统并结合实际操作情况对各组裂解炉的流量进行配置,从而有效降低总流量变化对C0T所造成的影响。

燃料与炉膛负压控制

燃料与炉膛负压控制

课程实验总结报告实验名称:炉膛负压与氧量校正控制课程名称:专业综合实践:大型火电机组热控系统设计及实现(3)1 引言 (2)1.1 炉膛负压概述 (2)2 控制逻辑 (2)2.1 炉膛压力控制 (2)2.1.1 相关图纸 (2)2.1.2 控制原理 (2)2.1.3 控制逻辑 (3)2.2 氧量校正 (3)2.2.1 相关图纸 (3)2.2.2 控制原理 (3)2.2.3 控制结构 (4)2.2.4 氧量校正控制逻辑 (4)2.2.5 二次风控制逻辑 (5)3 被控对象特性 (6)3.1 静态特性 (6)3.2 动态特性 (8)3.2.1 炉膛压力 (8)3.2.2 含氧量 (8)4 PID整定 (9)4.1 炉膛负压控制器 (9)4.2 氧量校正 (11)5 总结 (12)1 引言1.1 炉膛负压概述炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,即指炉膛顶部的烟气压力。

炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。

炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。

当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。

因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。

炉膛负压的大小受引风量、鼓风量与压力三者的影响。

锅炉正常运行时,炉膛通常保持负压 -40 ~ -60Pa 。

炉膛负压太小,炉膛向外喷火和外泄漏高炉煤气,危及设备与运行人员的安全。

负压太大,炉膛漏风量增加,排烟损失增加,引风机电耗增加。

2 控制逻辑2.1 炉膛压力控制2.1.1 相关图纸SPCS-3000 控制策略管理5号站132~133页。

2.1.2 控制原理炉膛压力调节系统通过调节两台引风机的静叶来调节炉膛压力。

当引风机入口静叶开度开大,引风作用加强,炉膛压力减小;开度减小,引风作用减弱,炉膛压力增大。

炉膛负压讲义

炉膛负压讲义

炉膛负压讲义当锅炉运行,机组负荷发生改变时,锅炉进入炉膛的总燃料量和一次风量、二次风量将相应发生改变,那么燃料在炉膛中燃烧产生的烟气也将随之改变。

为了保证锅炉炉膛内的正常负压,必须对引风量进行相应的调节。

因为当炉膛内负压过低,势必使炉膛、烟道系统的漏风量进一步加大,不仅燃烧损失增加,而且可能造成燃烧不稳、燃烧恶化而使锅炉灭火,还有可能引起过热器温度升高、增加受热面及引风机叶面的磨损;如果炉膛内负压过高,炉膛内的火焰和高温烟气就会向外喷泄,影响锅炉的安全运行。

所以锅炉炉膛负压调节系统就是维持炉膛压力在一定允许范围内,保证锅炉燃料能稳定燃烧。

定电公司的炉膛负压调节控制采用调整引风机入口动叶的位置,从而使引风量和送风量相适应,以维持炉膛负压等于设定值。

该机及炉膛负压控制系统为前馈一反馈调节系统,工作原理如图所示。

炉膛负压偏差信号的形成炉膛负压测量直径通过OM操作窗口,由运行人员设定。

炉膛负压测量值径由模块M2、M3、M4和M5组成的滤波后与炉膛负压给定值比较得到其偏差信号。

这里炉膛负压测量取三个测点,选中值作为实测值,如果一个信号故障,则取其它一值或平均值;若两个信号故障则取唯一的一个好信号;如三个信号故障则系统切手动。

1号炉是三个单独得高二值、三个单独得低二值压力开关,高低三值开关各一个,保护由压力开关3取2实现,2号炉由于压力开关不可靠等原因,目前由三个炉膛负压变送器判断高低值开关量3取2实现炉膛压力保护。

炉膛压力高二值2000Pa,高三值2500Pa,炉膛压力低二值-1500Pa,低三值-2000Pa,二值动作锅炉MFT,三值动作连跳引风机。

前馈信号为了在变负荷过程中,避免炉膛压力的大幅度波动,本系统引入了总风量信号的微分(M13模块)径大值和小值限幅后的前馈信号。

这样就可以在送风量信号变化时,及时调整引凤量,使炉膛压力不变或尽量少变。

当发生MFT (即主燃料跳闸)时,可通过对微分器M13的设定来取消总风量信号对控制回路的前馈调节作用。

防止锅炉超温超压及连续正压运行

防止锅炉超温超压及连续正压运行

防止锅炉超温超压措施1、锅炉启动过程中,投入烟温探针,严格控制炉膛出口烟温不超过750℃;2、锅炉启动时,在旁路系统投入前,可开启过热器排大气门进行升压,旁路系统投入后关闭排大气门,控制焚烧室烟气的温升速度为30℃~40℃/h,最高不超过50℃/h;3、汽机跳闸,旁路系统不能及时投入,应及时开启点火排空门,控制锅炉汽包不超压;4、锅炉水压试验时,应做好安全措施,派专人就地观察汽包压力并随时联系汇报负责控制升压的值班人员,发现就地压力与DCS监视压力不符应立即停止升压,查明原因消除后方可再升压,如压力失控应立即开启过热器疏水门或事故放水进行泄压;5、安全门整定试验,应制定专项安全技术措施,配备好通讯工具随时对照上下压力表指示准确,控制好升压速度,配合高、低旁调整压力,操作应谨慎,缓慢,防止汽压失控;6、锅炉正常运行中,应投入汽温自动,自动失灵,应及时切换为手动调整,并联系热工及时处理;7、锅炉安全门应良好备用,如安全门故障失灵不能正常启座,应按此安全门额定排汽量,降低锅炉最大运行负荷,停炉大小修后,应进行汽包及过热器安全门活动试验;8、加强调整推料器、炉排速度,精心调整燃烧,必要时可增减机组负荷进行配合调整,防止汽压、汽温大幅变化;9、在汽温调整中,应根据汽温变化趋势及工况变化及时调节减水量,严禁大开、大关减温水门,防止汽温大幅变化;10、锅炉运行中,应注意监视各受热面烟温不超规定值,检查两侧烟温偏差,偏差大时应及时调整燃烧,减小炉膛出口烟温差;11、机组甩负荷时,应根据甩负荷情况立即减弱燃烧,必要时联系汽机投入旁路系统,如锅炉压力超过安全门动作值而安全门不动作,且旁路系统不能投入时,应紧急停炉;12、按规定进行锅炉各部位振打清灰、脉冲吹灰,保持受热面清洁,避免受热面大面积积灰或结渣;13、发现受热面有泄漏时,应申请停炉,以免扩大事故;14、发现受热面即要超温超压时,应尽快采取措施,如采取措施无效时且保护拒动,应紧急停炉。

锅炉的负压控制措施

锅炉的负压控制措施

锅炉的负压燃烧控制措施一、锅炉正压燃烧产生的原因锅炉正压燃烧有多种原因造成,主要有以下几种情况:1、一次、引风机的风量配比调节不当,造成锅炉正压燃烧。

在燃烧过程中,若排烟量小于燃料产生的烟气量,势必引起炉内正压。

当热负荷增大时,应首先增大引风机的风量,即开大调风门(或增加引风机频率),然后再适当增加给料量和一次风量;反之当负荷减少时,应先减少给料量和一次风量,然后再减少引风量。

2、烟道堵塞。

烟道堵塞一般是由于烟道内的积灰或耐火材料脱落造成的。

3、锅炉漏风。

锅炉漏风主要是指锅炉后部的一些观察门、清灰门、烟道、除尘器。

引风机等腐蚀磨损穿孔损坏造成大量冷空气的进入,使引风机超负荷而正压燃烧,引风机风量、风压不足。

由引风机风量、风压不足造成锅炉的正压燃烧有两种情况,一种是由于对锅炉除尘的差压增大时烟气的阻力增大造成风压不足;另一种是由于引风机多年的使用造成引风机的叶片腐蚀磨损,使引风机风量、风压降低。

4、受热面吹灰。

5、如遇不明原因炉膛突然产生正压,应先检查水冷壁、省煤器受热面是否破损,防止事态扩大。

二、锅炉正压燃烧对锅炉造成的危害主要表现在如下几个方面1、诱发事故,降低锅炉热效率。

锅炉正压燃烧,炉膛内高温烟气就会沿炉墙进入锅的保温层将保温层烧坏,从而使锅炉下降管等不可受热的承压部件受热,破坏了锅炉的水循环,诱发锅炉水冷壁爆管等事故的发生。

2、破坏垃圾锅炉的正常燃烧。

锅炉正压燃烧,就会使高温烟气沿炉排前行,使着火点前移进而引燃垃圾溜槽中的垃圾,甚至造成垃圾溜槽烧坏变形。

3、操作环境恶化。

锅炉正压燃烧,就会使高温烟气从观火门、观察门等缝隙中钻出进入锅炉房,使操作人员受到烟气中的尘、毒、高温的侵害,恶化了操作坏境。

4、浪费电能。

由于锅炉的漏风使大量的冷空气混入烟气中,增加了烟气量,降低了烟气温度。

造成引风机超负荷,严重时会因此而烧毁引风电机。

因而造成用电量的增加,使电能浪费。

三、根据本厂实际情况制定以下措施控制锅炉负压:1、炉膛设定负压最低为-30pa。

脱硫增压风机与炉膛负压控制不匹配故障分析

脱硫增压风机与炉膛负压控制不匹配故障分析

S篇电力安全技术第10卷(2008年第9期)脱t il—lt l l:l l压风机与炉膛负压控制不匹配故障分析靖长财(北京国华电力技术研究中心有限公司,河北三河065201)新投产机组都安装有脱硫系统,脱硫系统必须与锅炉烟气系统协调配合,其投运对防止发生锅炉灭火故障提出了新的要求。

通过对某典型故障的分析,找出原因并进行了相应的改进。

实际试验表明,改进达到了预期的效果。

l事故经过2006-03—05,某发电厂2号机组负荷为295M w,2A,2B,2D,2E磨煤机运行,2C磨煤机检修,脱硫系统投运,协调控制投入。

2B引风机因油压低跳闸,联跳对应的2B送风机;运行的2A引风机开度达100%;脱硫增压风机调节导叶关小,但幅度仅为10%左右;延时10S,R B动作,相继切除2D,2E 磨煤机,并投入2A,2B磨油枪;在上述过程中,炉膛压力一直走低,最终未能避免锅炉炉膛压力低保护动作引起M FT动作,2号机组解列。

2事故原因3改进措施机组基建调试时的R B试验是在脱硫系统还未投运的情况下进行的。

为保证在脱硫系统投入的情况下,当机组发生风机R B时,不发生因炉膛压力异常引起的M FT动作,对控制逻辑做如下改进:(1)发生风机R B时,立即快开脱硫烟气旁路档板,起到烟气再循环作用,使增压风机进口处的压力不发生大的变化,(2)立即关/b(3S指令超前状态)脱硫增压风机进口导叶开度至原来开度的60%,3S后脱硫增压风机进口导叶保持自动状态参与调节;(3)D C S系统信号由送、引风机和一次风机R B 及引风机跳闸合成后送入脱硫系统,以快开脱硫烟气旁路档板及超前关增压风机导叶。

一台引风机跳闸后,对另一台引风机的叠加信号加以限制,即引风机的主控输出在发生送、引风机R B时设50%的限值,消除运行引风机指令的饱和延迟时间,使引风机的动叶能够及时调节炉膛负当l台引风机跳闸时,减少了增压风机进口流压。

发生送、引风机R B时,由原来跳2台磨煤机量的供给,使其进口的压力值下降,进而影响炉膛改为跳1台。

炉膛负压控制逻辑与B引风机跳闸原因分析

炉膛负压控制逻辑与B引风机跳闸原因分析

控制方式
炉膛压力控制是用调节两台引风机 的导叶开度.来满足炉膛压力略低于外
正常情况下 .炉膛压力按传统的前 馈一反馈控制方案进行控制。 根据炉膛压力测量值和炉膛压力设 定值的偏差.调节器给 出两台引风机导 叶的公共控制指令 . 被调量为 炉膛压力.调节变量为引风机 导叶开度 . 炉膛负压调节器起 校正作用. 在手动方式下. 运行 人员在引风机 M A站上可手动 / 改变两台引风机导叶的开度 . 炉膛压力调节器则跟踪两台引 风机导Dt 令之和的平均值 。 tl
当一台引风机 M A操作站先投 自 /
动 .则炉膛 负压调节器就 处于 自动方
度信号变坏点或超量程。
由于三期六大风机选用的执行机构
都是带断信号保位功能的进1 SP S 3 I 5 O
执行机构 .从自动调节的角度出发 ,开
式 ,这时偏置值跟踪 ,自动调整调节器
的输出与另一台还处于手动方式的引风
机未运行 ,允许开所有引风机导叶 .当
炉膛压力不是太高时 ,如果所有引风机
度信号变坏 ,不会使挡板动作 .而是保
持原位:从保护的角度出发 ,由于易损 部件碳膜 电位器暂时性的故障跳风机 , 损失代价太大。
机输出之间的偏差 .保证另一台引风机
投 自动时能实现无扰切换。
未运行 ,延时 6 ,允许开所有送风机 0 S

炉膛负压控制除设计有完善的调节控制 系统外 .还加入了一些安全保护措施。
菏泽电厂 …期工程I ,控制系统硬 AS 件设备先进 .软件功能丰富.在锅炉炉 膛压力控制的设计 中,与常规的前馈一
反馈控制方案相比,增加了一些防止锅 炉内爆发生的防范措施。
二次 风外 ,还包括燃烧 时产 生的

炉膛负压

炉膛负压

炉膛负压是反映燃烧工况稳定与否的重要参数,波动大小说明燃烧稳定程度。

炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。

炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。

当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。

因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。

大多数锅炉采用平衡通风方式,使炉内烟气压力地与外界大气压力,即炉内烟气负压,炉膛内烟气压力最高的部位是炉堂顶部。

所谓炉膛负压:即指炉膛顶部的烟气压力。

当炉负压过大时,漏风量增大,吸风机电耗,不完全燃烧损失、排烟热损失均增大。

甚至使燃烧不稳定甚至灭火炉负压小甚至变为正压,火焰及飞灰将炉膛不严处冒出,恶化工作燃烧造成危及人身及设备安全。

故应保持炉膛负压在正常范围内。

运行中引起炉膛负压波动的重要原因为燃烧工况的变化,在吸、送风机保持不变的情况,由于燃烧工况的变化总有小量的变化,故炉膛负压总是波动的,当燃烧不稳定时炉膛压力将产生强烈波动,炉膛负压即相应作出大幅度的剧烈的波动。

当炉膛压力发生剧烈脉动时,往往是灭火的前兆,这时必须加强监视和检查炉内燃烧工况、分析原因,并及时运行调整和处理。

同时,烟气流经各对流受热面时,要克服流动阻力,故沿烟气流程烟道各点的负压是逐渐增大的。

在不同负荷时,由于烟气量变化,烟道各点负压也相应变化,如负荷升高,烟道各点负压相应增大;反之,相应减小。

在正常运行中,烟道各点负压与负荷保持一定的变化规律,当某段受热面发生结渣,积灰和局部堵灰时,由于烟气流通断面减小,烟气流速升高,阻力增大,于是其出入口的压差及出口负压值相应增大,故通过监视烟道各点负压即烟气温度的变化,可及时发现各段受热面的积灰、堵灰、漏泄等缺陷或发生二次燃烧的事故。

所以,在正常情况下,炉膛负压和各烟道的负压都有大致相同的变化范围。

锅炉炉膛负压异常原因及处理

锅炉炉膛负压异常原因及处理

. -炉膛压力异常分析和调整对于负压燃烧锅炉,如果炉膛正压运行,则炉烟往外冒出,既浪费能源又影响设备和工作人员的安全;反之,如果炉膛负压太大,又会使大量的冷空气漏入炉膛,降低炉膛温度,增大了引风机负荷和排烟带走的热量损失。

所以保持炉膛压力在合适围运行是非常重要的,引起炉膛压力波动的原因很多,下面进行详细分析。

1、锅炉脱硫系统故障,脱硫烟气挡板脱落造成炉膛正压。

处理:1)如果炉膛负压自动调节跟踪不好,应解除送引风机自动,手动调节。

2)如果经调整后,炉膛正压仍上升迅速并达到保护动作值,锅炉灭火保护应动作,如果没有正确动作应手动MFT,防止炉膛正压损坏设备。

3)如果炉膛正压未达到保护动作值,应立即解除锅炉燃料自动停运一台磨煤机,此时机组会在机跟炉方式运行,随锅炉燃料量的减少机组负荷将相应下降,视汽包水位及炉膛压力上升情况投入油枪后可每隔10秒停运一台磨煤机,直至炉膛负压达到微负压为止,期间注意调整一次风压,防止一次风机喘振。

4)在停运磨煤机降负荷时,注意监视汽包水位自动跟踪情况,如果水位变化较大,降负荷速度就要缓慢,防止汽包水位高- 可修编-低保护动作5)如果在此期间发生引风机喘振,应解除引风机自动逐渐关小引风机静叶直到引风机喘振消失6)机组降负荷的过程中,机组长根据负荷情况及时将锅炉给水调节切旁路调节,以维持其前后压差满足减温水要求,防止造成主、再热汽温度异常7)待炉膛负压恢复后,立即对锅炉本体进行全面检查,特别注意对锅炉各油层及炉底水封进行详细检查,防止因高温烟气造成着火,如果已造成着火的立即进行紧急灭火并通知消防队。

2、锅炉冷态点火爆燃造成炉膛压力突然变正。

预防措施:1)下层磨煤机尽量上好煤,保证高挥发分。

2)等离子拉弧正常。

3)等离子磨煤机暖风器运行正常。

4)保证空预器出口热一二次风温大于150-200度。

5)等离子磨煤机无油点火启动后180秒没有火检,且就地看火燃烧状况不良,立即停运等离子磨煤机,投入油枪点火,待条件满足后重新启动等离子磨煤机。

炉膛负压控制策略知识讲解

炉膛负压控制策略知识讲解

炉膛负压控制的目的是什么?当锅炉运行时,机组负荷改变,会使燃料量、一次风量、送风量发生相应的改变,燃料燃烧后产生的烟气也发生改变,这些变化都会造成炉膛压力的改变。

如果炉膛压力过低,会造成炉膛和烟道的漏风加剧,燃烧恶化,燃烧损失增大,甚至燃烧不稳直至灭火。

如果炉膛压力过高,则会造成炉内火焰和高温烟气外泄,严重影响人员和设备安全。

以上原因,便是要将炉膛负压控制在合理范围的目的。

炉膛负压的控制策略是什么呢?炉膛负压的控制采用P I D控制,具体来说就是前馈-反馈控制和串级控制。

整体来说,可以看成是一个串级控制系统。

如图:图中红框即代表串级控制的两个P I D控制器,主调P I D1为对炉膛压力的偏差调节,副调P I D2是对引风机指令偏差的调节。

其中主调为P I调节,副调为I调节,是为了消除静态偏差。

说了半天串级调节,那么什么是串级调节呢?我们先对其结构有一个认识:顾名思义,串级调节系统是在自动控制系统中,用两套调节器串接起来,主调节器的输出作为副调节器的给定值,由副调节去操纵执行机构(这里是引风机动叶执行器)的调节系统。

串级调节系统的结构简图如下:串级调节系统的特点:串级调节系统从主环上看,是一个闭环负反馈系统,从副环看,是主环内的一个负反馈系统。

两个调节器串接在一起,无论干扰从哪个地方进入系统,都具有良好的可控性。

在干扰因数未能使主调节发生作用前,很可能就被副调节以“先调”、“快调”、“粗调”所克服。

剩余的干扰作用,再由主调、慢调、细调来克服。

由于引入了一个副回路,能及早克服进入副回路的干扰对主参数的影响,又能保证被调的主参数在其它干扰作用下及时被调节,因此能大大提高调节系统的质量,以满足生产的要求。

该系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。

回到正题,继续介绍我们的炉膛负压控制。

我们对炉膛负压的串级控制作具体说明,便于大家的理解。

炉膛负压控制的副调P I D2对引风机动叶的扰动进行调节,保证引风机总指令的动态平衡。

1000MW机组锅炉炉膛负压波动大原因分析及治理

1000MW机组锅炉炉膛负压波动大原因分析及治理

1000MW机组锅炉炉膛负压波动大原因分析及治理发表时间:2019-07-22T11:53:33.263Z 来源:《当代电力文化》2019年第5期作者:王云鹏[导读] 近几年以来,投产的机组除小部分供热、能源综合利用工程外,投产和在建机组大部分都是1000MW及以上容量机组,如在山东省内,近年内投产或在建1000MW级别机组达30台以上。

神华国华寿光发电有限责任公司,山东寿光 262714摘要:随着电力建设的迅速进步,新建机组普通向高参数,大容量发展,近几年以来,投产的机组除小部分供热、能源综合利用工程外,投产和在建机组大部分都是1000MW及以上容量机组,如在山东省内,近年内投产或在建1000MW级别机组达30台以上。

设计参数以超临界、超超临界为主。

关键词:1000MW机组;锅炉炉膛;负压波动;原因分析1 概述由于电除尘出口非金属膨胀节可能本身存在强度问题,施工单位也未完全按照设计图纸施工,过大的负压导致该膨胀节被撕开,炉膛负压完全不随引风调节变化,大量保温材料及铁皮进入风机,导致风机叶片严重受损,不得不全部更换。

针对这种状况,为了减小MFT动作后炉膛负压波动,采取了MFT动作后超驰减小引风机动叶开度的方法。

之前,为了探明直接大幅度减小动叶开度对炉膛负压的影响,做了相应模拟性试验。

其试验内容主要有:在平衡通风条件下,试验送风机、引风机动叶开度的对应关系。

在平衡通风条件下,试验引风机调节对炉膛负压的影响。

在保证炉底水封的条件下,测试引风机入口压力所允许的最大值。

1)试验方法A.在平衡通风条件下,送风机、引风机动叶开度的对应关系保持锅炉平衡通风,将送风机动叶分别置于0%、25%、50%、75%的开度,调节引风机、维持锅炉炉膛负压-50Pa左右,记录送、引风机开度、电流、出入口风压等参数。

B.在平衡通风条件下,引风机调节对炉膛负压的影响调节锅炉风量至2000T/H,炉膛负压-50Pa左右,记录炉膛负压、送引风机动叶开度、电流、出入口风压等参数,然后维持送风机动叶开度不变,缓慢关闭引风机动叶,记录炉膛负压、送风机电流、出口风压,引风机动叶开度、电流、出入口风压等参数的变化,当引风机动叶开度减小20%后,维持工况不变,记录各参数。

锅炉试题

锅炉试题
5、锅炉定期排污前,应适当保持低水位,且不可两点同时排放,以防低水位事故。(×)
6、随着蒸汽压力的增高,蒸汽携带水分的能力也增强。(√)
7、在排烟过剩空气系数不变的情况下,炉膛漏风与烟道漏风对锅炉效率的影响对锅炉效率的影响相同(×)。
8、在正常情况下,送风量过大会使过热蒸汽温度上升,送风量过小会使过热蒸汽温度降低。(√)
A36B24C12D 50
5、在锅炉房中长时间工作要留意( B )。
A高噪声B高温中暑C饮食问题D三者都是
6、可能导致锅炉爆炸的主要原因是什么? ( B )
A.24小时不停地使用锅炉
B.炉水长期处理不当
C.炉渣过多
D.三者都不是
7、给水加氨的目的是(D)。
A防止铜腐蚀
B防止给水系统结垢
C调节给水PH值到碱性
2、对阴离子交换树脂产生污染的铁化合物可能来源于(C)。
(A)阳床漏铁(B)管道腐蚀(C)再生液(D)生水。
3、连续排污扩容器的作用是(A)。
(A)使排污水汽化,部分回收(B)降低压力,便于排污
(C)除去排污水中的溶解气体(D)贮存排污水
4、甲基橙指示剂变色范围为(A)。
(A)3.1~4.4(B)4.4~6.2(C)8.0~10.0(D)6.8~8.0
15、锅炉负荷低于某一限度,长时间运行时,对水循环(B)。
(A)不安全(B)仍安全(C)没影响(D)不一定
16、影响汽包水位变化的主要因素是(B)。
(A)锅炉负荷(B)锅炉负荷、燃烧工况、给水压力
(C)锅炉负荷、汽包压力(D)汽包水容积。
17、事故停炉是指(A)。
(A)因锅炉设备故障,无法维持运行或威胁设备和人身安全时的停炉
(A)省煤器(B)空气预热器(C)炉子(D)过热器

锅炉负压调整

锅炉负压调整

引风控制系统是带有送风前馈的单回路调节系统,设定值由操作员直接给定。

根据炉膛负压设定值与测量值的偏差,同时引入送风机入口动叶位置作为前馈信号,通过调节引风机入口静叶维持炉膛负压在给定值;3.3.4.1 操作员通过CRT控制画面,可分别对两台引风机进行手自动投切,当两台风机均在自动方式时,操作员可通过改变偏置值同时对两侧的风机控制指令进行增减,以保持两台风机出力的平衡。

在手动方式下,操作员可直接通过操作端手动改变引风机的入口静叶开度。

3.3.4.2 为减少系统的扰动量,在投自动时,两侧风机的开度应尽量一致。

下列情况下引风机入口静叶控制强制手动:RB未发生且炉膛负压设定值与实际值偏差超过(+/-)500Pa;引风机停止;炉膛压力故障;顺控来关引风机静叶。

当锅炉炉膛负压达到-600Pa闭锁引风机增加,当锅炉炉膛正压达到+600Pa闭锁引风机减少。

B风机运行且A风机停止,则关A静叶;A风机运行且B风机停止,则关B静叶。

RB发生时,若风机在自动,则运行风机导叶超迟开跳闸风机开度,若风机在手动,则超迟开到80%。

7.4.7.1RB种类1)引风机RB:锅炉主控输出大于46%(212t/h),RB功能投入,二台引风机运行,一台引风机运行中跳闸,触发RB。

2)送风机RB:锅炉主控输出大于46%(212t/h),RB功能投入,二台送风机运行,一台送风机运行中跳闸,触发RB。

3)一次风机RB:锅炉主控输出大于43%(198t/h),RB功能投入,二台一次风机运行,一台一次风机运行中跳闸,触发RB。

4)汽动给水泵RB:锅炉主控输出大于43%(198t/h),RB功能投入,二台汽泵运行,发生一台汽泵跳闸,触发RB。

5)燃料RB:a.单台磨跳闸RB发生条件:1、负荷大于95%;2、燃料主控在自动;3、未发生50%RB;4、任意磨跳闸且煤量指令大于24t/h;5、运行磨台数大于5台。

b.2台磨跳闸RB发生条件:1、负荷大于85%;2、燃料主控在自动;3、未发生50%RB;4、任意磨跳闸且煤量指令大于24t/h;5、运行磨台数大于4台。

一种掉焦工况下炉膛负压调节优化方法

一种掉焦工况下炉膛负压调节优化方法

一种掉焦工况下炉膛负压调节优化方法摘要:针对锅炉配煤掺烧后结焦严重,频繁掉焦导致灭火的情况,根据锅炉燃烧特点,结合目前炉膛负压调节逻辑,提出一种掉焦工况下炉膛负压调节优化方法,有效地稳定了锅炉燃烧,减少了锅炉掉焦灭火事件的发生。

关键词:炉膛负压调节,掉焦灭火,水冷壁振动测点一背景某厂锅炉掉焦时炉膛负压大幅波动,先负后正,极端情况下会触发炉膛负压高II值动作引起锅炉灭火。

通过查阅历史曲线,对历次锅炉掉焦灭火事件进行分析:掉焦后负压基本呈微负压后立即变正,以冒正压为主[1]。

这是因为焦块偏疏松,掉落后立即变为粉末状,在极短的时间内对水封槽内的水进行放热和汽化。

一般炉膛维持负压状态的时间在4s~5s,随后炉膛压力快速升高至正压状态,且维持的时间较长。

此过程存在的风险是当掉焦后炉膛压力先微负向变化,引风机动叶逐渐关小,随后由于水蒸汽短时集中释放炉膛压力迅速升高,但引风机动叶调节相对迟缓,未能及时开大从而易触发高Ⅱ值导致锅炉灭火。

[2]目前锅炉水冷壁底部四个角的膨胀记录仪上装设有振动测点,以记录掉焦时的水冷壁底部振动值。

通过不同位置的振动值的大小区别,来判断掉焦部位。

通过一年来的观察,水冷壁振动测点能够准确的反应出锅炉掉焦的情况。

主要呈现两个特点:1、锅炉除了发生掉焦情况外,其它扰动基本不会引起振动测点的变化;2、当锅炉真实的掉焦后,总是振动测点先有变化,随后炉膛压力变负,延时约4~5s,负压测点才会快速变正,达到最高值。

二原负压闭环调节回路介绍1.该厂炉膛负压调节回路为单回路调节系统,分别由负压信号惯性回路、微分回路、大偏差回路以及送风前馈回路、超驰回路、平衡回路等环节组成。

2.三个炉膛负压测量信号三取平均后,经惯性滤波(消除负压频繁反复小幅波动),微分前馈(提高负压快速变化时的调节品质)作为实测值。

3.负压设定值与实测值偏差经动态补偿后形成主偏差信号。

4.送风量信号经微分、死区、增益、限幅后叠加到主偏差信号,使引风机动叶在送风量变化时提前调节,提高动态响应速度。

加热炉知识培训

加热炉知识培训

加热炉开停工
(4)吹扫炉膛
用蒸汽或启动风机供风吹扫炉膛,进行至少5倍的体积置换,需要大约 15到20分钟,或者在烟囱顶部出现蒸汽为止。建议不要吹入过多的蒸汽, 长时间接触蒸汽和凝液将导致耐火衬里的损坏。
在吹扫过程中,检查负压表状态,确保负压表可以读出炉膛内的负压值。
联系检验车间,进行炉膛可燃气体测爆分析,准备点长明灯。 (5)点燃长明灯
操作过程中,应该尽可能的使用一次风,减少二次风的使用量,这是 因为一次风与燃气的混合要比二次风好的多,时间短,并且火焰集。 这样的火焰让炉管受热均匀,减少火焰冲击炉管的可能性。只有少量 的过剩空气来冷却燃烧室,因此火焰集中可以节能。
加热炉内部检查
加热炉内部检查内容应包括火焰状态、炉管、耐火衬里、炉管支撑的 顔色、火盆的状态和空气渗漏状态。
过剩空气系数
目标炉膛负压和目标过剩氧含量的设定,使操作员能够提高加热炉操 作效率。在一个自然通风加热炉中,调节烟道挡板和火嘴的风门可控 制炉膛负压和氧含量。关小烟道挡板会使炉膛负压下降,氧含量下降; 开大烟道挡板,会使炉膛负压上升,氧含量上升;关小火嘴的风门会 使氧含量下降,炉膛负压上升;开大火嘴的风门会使氧含量上 升,炉膛下降。
工艺加热炉的操作要求
炼油第一联合车间
炉膛负压值
炉膛负压值控制的是加热炉内烟气压力最高点—炉膛拱顶部位 的压力。控制负压是为了保证提供火嘴足够的压力差,使之得 到足够的空气,而进入加热炉的过剩空气量最小,这有助于提 高加热炉的热效率。炉膛负压过大,过剩空气系数大,热量损 失大,火焰不稳定,产生一氧化碳。抽力过小,炉膛出现正压, 燃烧器回火,炉内高温烟气会从不密封处向外泄漏,导致能耗 增加,甚至造成炉壳、炉管损坏,威胁安全生产。
加热炉内火焰应有相同的顔色、形状和稳定性,任何不稳定的火焰, 不均匀的火焰形状,火焰舔炉管的情况都需要调整。

炉膛负压是如何调节的

炉膛负压是如何调节的

锅炉侧一、炉膛负压是如何调节的?炉膛负压调节系统就是引风控制系统,它的任务是调节引风机入口静叶,使引风量与送风量相适应,从而维持炉膛内的压力在允许范围内,确保锅炉安全运行。

引风控制系统是整个燃烧过程投入自动的基础,可以说是锅炉侧首个投入自动的控制系统。

1. 炉膛负压的测点有多个,主要就是为了防止因变送器故障或信号管路堵塞而影响测量值的可靠性,从而影响自动调节的可靠性。

在操作员站画面上,每一幅画面的上部主要参数栏中就有一项是炉膛负压,点名为9PT ,它就是9PT2710、9PT2711、9PT2712三个炉膛负压信号经三选一模块后出来的信号,供给引风控制系统用作被调量。

这三个信号只有在炉膛烟压及烟温探针画面全部有显示,若有一个或两个信号有堵塞或故障可以在此及早发现。

另有一个炉膛负压测点点名为9PT2713,这个不是用作自动调节用的,但也是我们监视的重要参数,因为前述三个点用作自动调节,所以相应地需要较高的精确度,量程范围也比较小,为-400Pa~+400Pa,一旦炉膛负压有大幅度波动到400以外,那只有通过9PT2713来监视了,它的量程范围是3000Pa。

2. 上面说了炉膛负压的被调量,那么要把它调节到与什么值吻合呢?那就是炉膛负压设定值,非常简单,就是我们操作员直接设定的一个数值。

这个值就是引风机A静叶的操作面板上标有S的那个数,输入也只能在该面板上输入(即使A引风机停运也是如此);而P就是上述炉膛负压9PT ,两者的差值经PID运算处理,输出一个指令(就是面板中的O)去控制两台引风机。

3. 引风机静叶一定要等到炉膛负压或设定值变化才调节吗?并不是这样的,在引风指令中其实加入了送风机动叶平均开度的前馈,如果送风机动叶开大,会预先增大引风指令,而不是等炉膛负压下降了再开引风机静叶。

因为当送风量改变时,如果引风量单纯以炉膛负压的变化进行调节,必然会使炉膛负压的动态偏差较大。

以送风机动叶开度作为前馈,使引风量能及时随送风量的改变而改变,这样可以减小动态偏差,提高控制效果。

关于炉膛负压波动较大的原因分析和炉膛负压保护定值进行修改的建议

关于炉膛负压波动较大的原因分析和炉膛负压保护定值进行修改的建议

关于炉膛负压波动异常的原因分析和炉膛负压保护定值进行修改的建议一、锅炉炉膛正负压保护的意义炉膛正、负压保护是防止机组在运行过程中,发生异常情况,导致炉膛“内爆”、“外爆”现象,而保护锅炉安全的一个重要保护。

外爆是由于炉膛内正压过大,超过锅炉水冷壁或烟风道结构强度,造成炉膛或烟风道撕裂、外鼓损坏的事故;内爆是由于炉膛负压过大,造成炉膛或烟风道被大气压力压瘪的损坏事故锅炉正压大是炉膛爆燃的前馈信号,锅炉负压大是锅炉灭火的前馈信号,因此正确判断炉膛内部的压力变化,并作出相应的、超前的保护联锁动作,使机组安全地停运,对避免造成炉膛损坏事故起着积极重要的作用。

因此我们必须认真分析炉膛负压波动异常的原因,并正确、合理的设定炉膛正、负压保护定值。

二、炉膛负压增大的原因分析㈠、炉膛负压向负的方向增大的原因主要有以下几方面:1、断煤或入炉煤质变差,燃烧强度减弱;2、炉膛局部或整体灭火,炉膛内负压增大;3、引风机风量增大或送风机﹙一、二次风机﹚风量减少;4、循环流化床返料瞬间中断;5、风机调速指令与液偶现场实际不一致;6、风机液偶调速或风门执行机构故障,未发指令而瞬时现场自行调整开度;7、压力变送器零点漂移、受潮、进水或其他故障;8、循环流化床炉床结焦。

㈡、炉膛负压向正的方向增大的原因主要有以下几方面:1、锅炉灭火未能及时发现,仍有燃料送入炉膛而造成爆燃,俗称“放炮”;2、发生炉膛灭火,用“爆燃法”点燃;3、锅炉虽未灭火,但燃烧不稳,投入油枪助燃而造成较大正压波动;4、引风机故障或挡板关闭,送风机仍在运行,造成炉膛产生较大的正压;5、大块掉焦,造成较大的正压;6、尾部受热面积灰严重;7、锅炉发生泄露、爆管;8、压力变送器零点漂移、或冬季保温不良,冻结。

㈢、我公司炉膛负压波动情况分析:1、炉膛负压波动异常时间:7月30日、8月10日和8月15日,其中8月10日和15日均下雨,应考虑气温、气压、雷电、湿度等因素影响。

2、炉膛负压异常波动的特点:①、炉膛压力左和炉膛压力中波动较大,波动幅度接近或超过保护定值,而炉膛压力右未见明显变化;②、炉膛压力左和炉膛压力中随风量的调整未见有明显变化,而炉膛压力右随风量的调整而有变化明显;③、锅炉烟气含氧量、排烟温度未随负压升高而升高,而在正常范围内波动;④、炉膛负压有较大波动时锅炉给煤、风量未做调整,床温、床压、主汽压力、主汽温度均属正常范围,未见明显波动;⑤、返料风量和高压风机电流、返料温度均稳定、正常;⑥、8月17日雷雨天气#1炉膛负压未见异常波动。

加热炉炉膛负压标准

加热炉炉膛负压标准

加热炉炉膛负压标准加热炉是工业中常用的设备之一,其篷膛负压是影响炉子正常运行的重要因素之一。

因此,在使用加热炉时,必须要遵循炉膛负压标准,以确保炉子的正常运行和生产效率。

接下来,我将详细介绍加热炉炉膛负压标准的内容和具体操作步骤。

1. 什么是炉膛负压?炉膛负压是指在加热炉使用过程中,炉膛内的气体压力与周围环境相比较低的状态。

一般来说,炉膛负压的数值越小,加热效果越好,但同时也会增加炉膛的耗损和运行成本。

2. 炉膛负压标准是多少?根据《工业窑炉烟气污染物排放标准》(GB13271-2014)的规定,钢铁、有色金属、建材等行业的加热炉炉膛负压标准应该在-5至-15Pa 之间,并要求实时监测记录。

3. 如何调节炉膛负压?为了达到规定的炉膛负压标准,我们需要在操作加热炉时,注意以下几个方面的调节:(1)炉膛出口固定风压:根据设备设计要求,定期调整炉膛出口的风压,保证出口风速稳定在规定范围内。

(2)排烟量调节:通过调节烟气管的开启大小,控制炉子的排烟量和炉膛的负压状态。

(3)控制风量:根据实际操作需要,控制风量大小,保证炉内温度的稳定和加热效率的提高。

(4)检查焚烧器通气孔:检查通气孔的封堵情况,是否存在堵塞影响炉子正常运行。

4. 炉膛负压标准的实时监测和记录:在使用加热炉时,还需要使用专门的监测设备,对炉膛负压状态进行实时监测。

同时,应该建立科学的记录方法,对监测结果进行数据分析和处理,以便及时发现和解决问题,保障设备的正常运行和生产效率。

综上所述,加热炉炉膛负压标准是保障设备正常运行和生产效率的重要要素之一,我们必须认真调节好炉膛负压,并建立科学的监测记录体系,以确保加热炉的稳定高效运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 3 4
天山电力奇台热电2×350MW机组 10CBB06-MCS 炉膛负压控制 MCS_10FLKZ01
8
日期
5
修改说明
6
编写
审核
编号
7
-60.65
D
-61.51
10FP_SP 炉膛负压设定
I A
SMOOTH
10HLB21AA101XQ01 A送风机入口动叶位置反馈
AIP
10HLB23AA101XQ01 B送风机入口动叶位置反馈
AIP
-93.59
AIH
10.61 -96.38
SEL220.36-80.00炉膛负压 10HBK02CP
15.48
C
比例:0.04 积分:50 作用:正作用 死区:25 范围:(0,160)
AIH
K d dt
15.48
C
57.66 0x0
DOP
BALANCER
28.18 29.47
10HNC10AA101XQ01 A引风机入口动叶位置反馈
AIP
10HNC20AA101XQ01 B引风机入口动叶位置反馈
AIP
27.21
B I A T
28.36
I A T
B
DIP
0x0
0x440 28.18 10HNC10AA101_MA A引风机入口动叶控制
DOP AOP
DIP
0x0
0x440 29.47 10HNC20AA101_MA B引风机入口动叶控制
DOP AOP
A
A
上海自动化仪表股份有限公司 上海自动化仪表股份有限公司 项目 系统 标题 版本
1
2
10HBK01CP101 炉膛右侧烟气压力1
AIP
3
4
5
10HBK01CP102 炉膛右侧烟气压力2
AIP
10HBK02CP101 炉膛左侧烟气压力1
AIP
6
10HBK02CP102 炉膛左侧烟气压力2
AIP
7
8
-73.24
SEL2 D
-51.50
-70.95
SEL2
-50.35
-62.37
SEL2
相关文档
最新文档