广州大学地表水水质监测方案

合集下载

水质监测实施方案

水质监测实施方案

水质监测实施方案一、背景随着工业化和城市化的发展,水资源的污染问题日益严重。

为了保障人民群众的饮用水安全,保护水生态环境,加强水质监测工作显得尤为重要。

水质监测是指对水体中的物理、化学、生物学等指标进行定期监测,以评估水质状况、发现污染源和预测水质变化趋势的工作。

二、水质监测实施方案1. 监测目标根据监测对象的不同,水质监测可以分为地表水监测、地下水监测和饮用水监测。

地表水监测主要针对河流、湖泊、水库等水体,地下水监测主要针对地下水源,饮用水监测主要针对自来水厂的出厂水和管网水。

监测目标包括水质指标、污染物浓度、微生物数量等。

2. 监测频次根据监测对象的特点和水质变化的情况,确定监测频次。

一般来说,地表水监测每月至少监测一次,地下水监测每季度至少监测一次,饮用水监测每日至少监测一次。

3. 监测指标水质监测的指标包括物理指标(如水温、浊度、颜色)、化学指标(如pH值、溶解氧、氨氮、总磷、总氮、重金属)、生物学指标(如叶绿素、藻类数量、细菌数量)等。

根据监测对象的不同,确定监测指标的具体内容。

4. 监测方法水质监测方法包括现场监测和实验室监测两种。

现场监测主要用于监测物理指标和部分化学指标,实验室监测主要用于监测化学指标和生物学指标。

监测方法应符合国家标准和相关规定,确保监测数据的准确性和可靠性。

5. 监测设备水质监测设备包括水质分析仪、水质采样器、PH计、溶解氧仪等。

监测设备应定期维护保养,确保设备的正常使用和准确监测。

6. 监测人员水质监测工作需要专业的监测人员参与。

监测人员应具备相关专业知识和技能,熟悉监测方法和操作流程,严格遵守监测规程,确保监测数据的真实性和可靠性。

7. 数据处理监测数据应及时录入、整理和分析。

监测数据的处理应符合相关标准和规定,生成监测报告并及时上报相关部门。

8. 质量控制水质监测工作应建立健全的质量控制体系,包括质量控制标准、质量控制程序、质量控制记录等。

监测过程中应进行内部质量控制和外部质量评价,确保监测数据的准确性和可靠性。

地表水监测方案

地表水监测方案

地表水监测方案一、引言地表水是人类生产生活的重要水源,它的质量直接影响着人们的健康和生活环境。

因此,建立科学有效的地表水监测方案对于保护水资源、预防水污染具有重要意义。

二、监测目标本方案的主要监测目标是掌握地表水体系的状况、及时发现异常情况,以便采取相应措施。

具体包括以下几个方面:1. 水质监测:监测地表水中常见污染物质的含量,包括有机物、重金属、营养盐等;2. 水量监测:监测地表水的流量、水位等参数,以了解水资源的利用状况;3. 水生态监测:监测地表水的生物多样性、水生态系统的健康状况。

三、监测方法为了保证监测结果的准确性和可比性,我们将采用以下方法进行地表水监测:1. 采样方法:根据地表水体系的特点,选择代表性的监测点位进行采样。

每个监测点位每季度至少进行一次采样,保证样本的全面性和时效性;2. 分析方法:使用标准的水质检测设备和方法,对采样的地表水样品进行综合分析,包括物理、化学和生物指标的测定;3. 数据处理:将监测数据进行统计和分析,制定科学合理的数据处理方法,并与历史数据进行对比,以发现潜在的趋势和异常情况;4. 结果报告:定期生成监测报告,将监测结果和分析结论提供给相关部门和公众,以便及时采取有效的措施。

四、监测频率和监测区域本方案将根据地表水体系的复杂程度和资源情况,制定不同的监测频率和监测区域划分方案。

一般来说,我们将重点监测以下区域和频率:1. 水库和河流:重点监测重要水库和河流的入口和出口位置,每季度进行一次采样和监测;2. 地下水和湖泊:根据地下水水源地和湖泊的规模和重要性,每年至少进行两次采样和监测;3. 海洋与海湾:关注海岸线附近的海洋和海湾区域,每年进行一次采样和监测。

五、应急响应机制为了应对突发事件和异常状况,我们将建立快速响应机制。

一旦发现水质异常或水体面临污染威胁,我们将立即启动应急响应措施,包括但不限于以下方面:1. 启动预警系统:利用先进的水质监测设备和网络系统,监测地表水的实时数据,一旦发现异常情况,及时发出预警信息;2. 协调相关部门:将监测结果及时通报给环境保护、水务管理等相关部门,协调各方力量,共同应对水质问题;3. 制定处置方案:根据具体情况制定相应的处置方案,包括水质修复、事件调查等;4. 宣传教育:加强对公众的宣传教育,提高水资源保护意识和环境意识。

校园水环境质量监测方案

校园水环境质量监测方案

第一部分校园水环境质量监测方案一、污染源的调查1、校园水污染源主要包括食堂水、实验室废水、生活污水等。

2、食堂水包括洗碗水、洗菜水以及其它污水,洗碗水主要含有N、P等营养物质和油脂,洗菜水含有的沙粒等较少的污染物,其它污水含有较多有机污染物。

主要排入下水道和校园内小水沟。

3、实验室废水主要排入下水道,排水量不大。

生活污水的排水量占主要部分。

二、校园区域划分校园功能分区按宿舍区、教学楼区、行政区、生活区进行划分,校园空气质量执行GB3838-88三类区标准。

水样采样连续两天,对于校园内小沟直接在沟中心采样,取两个采样点(食堂小水沟,俊秀小水沟),每天每个采样点采集1次样。

三、监测项目及方法(一)氨氮的测定(纳氏试剂比色法)一、原理碘化汞和碘化钾的碱性溶液与氨反应生成淡黄棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。

本法最低检出浓度为0.025mg /L(光度法),测定上限为2mg/L。

二、仪器1、具20mm比色皿。

2.50mL具塞比色管。

(7个)3.分光光度计。

4.氨氮蒸馏装置:由500mL凯式烧瓶、氮球、直形冷凝管和导管组成,冷凝管末端可连接一段适当长度的滴管,使出口尖端浸入吸收液液面下。

三、试剂配制试剂用水均应为无氨水。

1.无氨水:可用一般纯水通过强酸性阳离子交换树脂或加硫酸和高锰酸钾后,重蒸馏得到。

2.25%氢氧化钠溶液和10%硫酸锌溶液。

3.纳氏试剂:称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。

另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中。

用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。

4.酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL。

5.铵标准贮备溶液:称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000mL 容量瓶中,稀释至标线。

地表水监测方案

地表水监测方案

地表水监测方案一、背景介绍地表水是指地球表面上的河流、湖泊、水库等自然水体及其汇集后形成的江河湖海等水系。

随着人口的增加和工业发展的加快,地表水的质量受到了日益严重的威胁。

为了保障公众的健康和生态环境的可持续发展,制定一套科学、高效的地表水监测方案势在必行。

二、监测目标与指标地表水监测的主要目标是对水体中的污染物进行及时、准确的检测,以评估水质的安全性和污染程度。

根据国家标准和环保法规,我们将监测以下指标:1. pH值:评估水体的酸碱度,判断是否符合水环境的生态要求;2. 溶解氧:反映水中的氧气含量,对水生态系统的生物生存至关重要;3. 化学需氧量(COD):用于检测水中有机物的含量,作为衡量水体污染的指标之一;4. 总氮和总磷:反映水体中营养盐的含量,对水生态环境的影响较大;5. 氨氮和硝酸盐氮:用于评估水体中的氨氮和硝酸盐含量,判断是否存在污染来源。

三、监测方法与频次为了确保监测结果的准确性和可靠性,我们将采用以下方法进行地表水的监测:1. 采样方法:选择合适的采样点,经过充分搅拌后取样,避免污染源的干扰;2. 仪器设备:使用符合国家标准的仪器设备,如多参数水质分析仪、紫外可见分光光度计等;3. 实验室测试:将采样的水样送往具备资质的实验室进行测试,确保结果的准确性;4. 监测频次:根据监测计划,定期进行监测,包括日常监测、季度性监测以及突发事件后的应急监测。

四、数据分析与报告监测完成后,我们将对数据进行分析和评估,以判断地表水质量的状况。

同时,我们将向相关部门、企事业单位提供监测结果报告,促使他们采取相应的环保措施,确保水质安全。

五、质量保证与持续改进为确保监测方案的科学性和有效性,在实施过程中我们将采取以下措施:1. 建立质量保证体系:制定监测操作规范、实验室质量控制规程等,确保监测过程的准确性和可比性;2. 培训与实施:定期对监测人员进行专业培训,提高他们的技术水平和操作能力;3. 仪器设备维护:定期对仪器设备进行检修和校准,确保其正常运行和准确性;4. 数据分析和评估:建立科学的数据分析方法,不断完善监测评估体系;5. 监测方案的持续改进:根据监测结果和相关要求,及时更新监测方案,提高监测效率和可信度。

校园水质监测方案

校园水质监测方案

校园水质监测方案1. 引言随着人口的增加和工业的快速发展,水质污染问题日益突出。

特别是在校园环境中,水质安全对师生的健康至关重要。

为了保障校园水质的安全,本文提出了校园水质监测方案,旨在及时检测和预警水质问题,确保师生饮用水的健康与安全。

2. 监测设备为了监测校园水质,我们需要使用一些专业的监测设备。

以下是我们推荐的一些设备:2.1 pH值监测仪pH值是衡量水的酸碱度的重要指标之一,也是判断水质好坏的关键因素。

通过使用pH值监测仪,我们可以准确地测量水的pH值,并及时发现和解决酸碱度异常的问题。

2.2 溶解氧检测仪溶解氧是水中重要的营养物质之一,也是衡量水体生态环境质量的重要指标。

溶解氧检测仪可以测量水中存在的溶解氧量,帮助我们评估水质是否富含氧气,并指导我们进行相应的调整和处理。

2.3 浑浊度检测仪浑浊度是指水中微粒子的含量,也是衡量水体质量的重要指标之一。

浑浊度检测仪可以帮助我们测量水的浑浊度,并及时发现和解决悬浮物超标的问题,确保水质的清澈度。

2.4 电导率检测仪电导率是指液体中导电性的程度,也是水质监测中的一个重要参数。

通过使用电导率检测仪,我们可以测量水中的电导率,并判断水质是否受到了污染,从而采取相应的措施进行治理和预防。

3. 监测方案为了确保校园水质的安全和可靠,我们建议采取以下监测方案:3.1 定期监测定期监测是确保水质安全的关键步骤。

我们建议每月进行一次全面的校园水质监测,包括pH值、溶解氧、浑浊度和电导率等参数。

定期监测可以及时发现水质问题,并采取相应的纠正措施。

3.2 实时监测除了定期监测之外,我们还建议安装实时监测设备,对校园的重要水源进行实时监测。

这些设备可以将数据实时传输到中央监测系统,将水质数据直接反馈给相关人员,实现对水质的全程监控和预警。

3.3 数据分析与报告监测数据的分析和报告是保障水质安全的重要环节。

我们建议建立一个专门的数据分析与报告系统,对所收集到的监测数据进行实时分析和报告生成。

地表水环境监测方案

地表水环境监测方案

地表水水质监测方案——广州大学内水质监测一、监测目的(1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。

(2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。

(3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。

(4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。

二、基础资料的收集本次监测选取了校园网主场至生化实验楼区域水域进行监测。

根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下:1.地形地貌广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。

小岛总体地形是东北高、西南低。

东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m左右,坡度15°~35°。

广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,有着树枝状般的水系。

2.气象广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。

其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。

平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。

3.水文广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。

冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。

据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。

校园水环境监测方案

校园水环境监测方案

校园水环境监测方案第一篇:校园水环境监测方案校园水环境监测方案一、概况简介资料显示水域面积: 32亩平均水深:1.1m最深:1.5湖水来源:雨水、自来水二、监测目的及意义了解校园内水质状况,并判断水环境质量是否符合国家标准,巩固我们所学知识培养我们团结协作精神和实践操作技能、综合分析问题的能力。

三、具体的取样方案1.布点与采样静态水域无分区网格法设监测垂线,每处设一采样点,共设4个采样点,在水面下0.3m-0.5m处采样,不便现场测定项目也应尽快监测,如需保存否则,应在采样后把样品保持在0~4℃,并在采样后6小时之内进行测定。

四、监测项目及使用的检测方法(每项指标应至少做两次平行样,部分须做空白样)(一)、物理指标的监测.1、水质色度、稀释倍数法,水样稀释倍数表示2、水质水温的测定温度计测定(现场测定,至少三分钟)3、电导率的测定电导仪测定(二):化学指标的监测1、水质PH值的测定Ph试纸测定(现场测定,天然水质PH约6-9)2、水中溶解氧(DO)的测定碘量法(现场加药固定,单独取样)3、水中COD的测定重铬酸钾法4、水中铬的测定比色法五、原始数据与数据处理六、结果分析评价第二篇:水环境监测规范小结《水环境监测规范》(SL219-2013)宣贯培训小结随着最严格的水资源管理制度、“三条红线”的确定:水环境检测技术快速发展,许多老一起设备和部分化学分析方法已不再使用,新的检测技术不断得到应用;水环境监测技术的进步和方式多元化发展,促进了自动监测、移动监测、应急监测等监测形式的出现。

为了和最严格的水资源管理制度及先进方法仪器相适应,对原规范进行了修订和大幅度的内容扩展。

2014年6月下旬,我有幸参加水利部水文局主办、在宁夏银川举办的《水环境监测规范》宣贯培训班。

本次培训班全国各省份、各大流域委水环境监测中心管理人员及监测人员参加培训,参会人员200余人,相关领导亲临会场并做了重要讲话,充分体现了新规范对全国水环境监测工作的重要性。

地表水监测方案编制

地表水监测方案编制

地表水监测方案编制一、引言地表水是人类生活和生产活动中不可或缺的重要资源,其质量状况直接关系到生态环境的平衡和人类的健康。

为了准确掌握地表水的水质状况,及时发现潜在的污染问题,科学合理地编制地表水监测方案至关重要。

二、监测目的地表水监测的主要目的包括以下几个方面:1、评估地表水的水质状况,确定其是否符合相关的环境质量标准和用水要求。

2、追踪和识别地表水污染的来源和迁移路径,为污染治理提供依据。

3、监测地表水水质的变化趋势,为环境保护和水资源管理提供决策支持。

三、监测范围和断面设置(一)监测范围根据监测目的和实际需求,确定监测的地表水体范围。

这可能包括河流、湖泊、水库等。

(二)断面设置1、对照断面:设置在河流进入监测区域之前,未受本区域污染源影响的地方,用于对比和评估监测区域内的水质变化。

2、控制断面:设置在污染源排放口下游,能反映污染对水体水质影响的位置。

3、消减断面:设置在污染物经治理或自然净化后浓度降低的位置,用于评估治理效果。

在设置断面时,要充分考虑水体的水文特征、污染源分布、功能区划分等因素,确保断面具有代表性和科学性。

四、监测项目(一)常规监测项目包括水温、pH 值、溶解氧、化学需氧量(COD)、五日生化需氧量(BOD5)、氨氮、总磷、总氮等。

(二)特征污染物监测项目根据监测区域内的污染源类型和潜在的污染风险,确定特征污染物监测项目。

例如,如果周边有化工企业,可能需要监测重金属、有机污染物等。

五、监测频率监测频率应根据地表水体的重要性、水质变化情况和管理需求来确定。

一般来说,对于重要的地表水体和水质容易变化的区域,监测频率应较高;对于水质相对稳定的区域,监测频率可以适当降低。

例如,对于主要河流的控制断面,每月监测一次;对于一般河流的控制断面,每季度监测一次。

在特殊情况下,如发生突发环境污染事件、雨季等,应增加监测频率。

六、监测方法选择合适的监测方法是确保监测数据准确可靠的关键。

监测方法应符合国家和行业的相关标准和规范。

地表水水质监测标准

地表水水质监测标准

地表水水质监测标准地表水是指地表流动的水体,包括江河湖泊、沟渠、水库等。

地表水的水质直接关系到人类的生活和健康,因此对地表水的水质进行监测是非常重要的。

地表水水质监测标准是对地表水水质进行评价和监测的依据,是保障地表水水质安全的重要手段。

一、监测项目。

地表水水质监测标准应包括对地表水中各种污染物质的监测项目,如有机物、重金属、细菌、氮、磷等。

这些项目是评价地表水水质的重要指标,监测这些项目可以全面了解地表水的水质状况。

二、监测方法。

地表水水质监测标准应规定监测方法和技术标准,确保监测结果的准确性和可比性。

监测方法应包括取样方法、样品处理方法、分析检测方法等,这些方法应科学合理,能够真实反映地表水的水质状况。

三、监测频次。

地表水水质监测标准应规定监测的频次和时段,以确保对地表水水质的全面监测。

监测频次应根据地表水的使用情况和水质状况确定,一般来说,地表水水质监测应定期进行,以及在重大污染事件发生后进行应急监测。

四、监测标准。

地表水水质监测标准应规定地表水水质的评价标准,包括各项监测项目的限值和评价方法。

这些标准应符合国家相关法律法规的要求,能够科学客观地评价地表水的水质状况。

五、监测报告。

地表水水质监测标准应规定监测结果的报告要求,监测报告应真实反映监测结果,包括监测项目、监测方法、监测频次、监测标准等内容。

监测报告应及时提交相关部门,并向社会公开,以保障公众知情权。

六、监测责任。

地表水水质监测标准应规定监测的责任主体和责任分工,明确相关部门和单位的监测职责和义务。

监测责任主体应按照标准要求进行监测,并对监测结果负责,确保地表水水质的安全。

七、监测管理。

地表水水质监测标准应规定监测管理的要求,包括监测设备的管理、监测人员的培训和管理、监测数据的管理等。

监测管理是保障地表水水质监测工作正常进行的基础。

结语。

地表水水质监测标准是保障地表水水质安全的重要保障,只有建立科学合理的监测标准,才能及时准确地了解地表水的水质状况,保护地表水资源,保障人民群众的饮用水安全。

地表水监测方案

地表水监测方案

地表水监测方案一、监测目的地表水监测的主要目的是及时、准确地掌握地表水环境质量状况及其变化趋势,为环境保护决策、水资源管理、水污染防治等提供科学依据。

通过对地表水的监测,可以了解水体中污染物的种类、浓度和分布情况,评估水体的生态健康状况,发现潜在的环境问题,并采取相应的措施加以解决,以保护水资源、维护生态平衡和保障公众健康。

二、监测范围监测范围应包括本地区主要河流、湖泊、水库等地表水体。

具体的监测断面应根据水体的功能、水文特征、污染源分布等因素进行合理设置。

对于河流,应在干流和主要支流的上、中、下游分别设置监测断面;对于湖泊和水库,应在入湖(库)口、湖心、出湖(库)口等位置设置监测断面。

同时,还应在重要的饮用水水源地、水功能区等敏感区域增加监测点位,以确保水质安全。

三、监测项目(一)必测项目1、水温、pH 值、溶解氧、电导率、浊度等物理指标。

2、化学需氧量(COD)、高锰酸盐指数、五日生化需氧量(BOD5)、氨氮、总磷、总氮等常规污染物指标。

3、重金属指标,如汞、镉、铅、铬、砷等。

(二)选测项目1、挥发酚、氰化物、石油类、阴离子表面活性剂等。

2、特定有机物,如多环芳烃、农药残留等。

3、水生生物指标,如藻类、浮游动物等。

监测项目的选择应根据水体的污染特征、环境管理需求以及监测能力等因素综合确定。

四、监测频次(一)河流1、对于国控、省控断面,每月监测一次。

2、对于市控断面,每季度监测一次。

3、对于重点河流或污染较重的河流,可根据实际情况增加监测频次,如每月监测两次或每周监测一次。

(二)湖泊、水库1、大中型湖泊、水库,每月监测一次。

2、小型湖泊、水库,每季度监测一次。

(三)饮用水水源地1、地表水饮用水水源地,每月监测一次常规项目,每年进行一次全分析监测(包括所有必测和选测项目)。

2、应急监测:在发生突发水污染事件或水质异常时,应立即启动应急监测,根据事件的严重程度和发展态势,确定监测频次和项目。

五、监测方法监测方法应采用国家或行业标准规定的方法,确保监测数据的准确性和可比性。

地表水监测方案

地表水监测方案

地表水监测方案地表水是指地球表面的水体,包括河流、湖泊、湿地和地下水体,对地表水进行监测是非常重要的,可以了解水体的质量、水文情况和生态系统的健康状况,为环境保护和水资源管理提供科学依据。

以下是一个地表水监测方案的设计。

一、目的和背景地表水监测旨在收集有关水体的重要数据,评估水体的状态,检测水质污染及时采取措施,提供保护生态系统的参考依据。

本方案将定期监测地表水的水质和水量情况,分析水资源的可持续使用性,为环境管理与决策提供科学依据。

二、监测内容1.水质分析:监测水体中的溶解氧、氨氮、总磷、总氮、COD 和BOD等指标,了解水体的富营养化程度、有机物污染和其他污染物的程度。

2.水量监测:定期测量水体的流量,包括流速、流态、输沙量等,了解水资源的供应和运动情况。

3.生态监测:通过采集水体的生物样本,了解水体中的生态环境和生物多样性情况,评估水体的健康状况。

三、监测方式和频率1.定点监测:选择具有代表性的监测点,对水质、水量和生态进行定期监测,以确保监测结果的代表性。

2.活动监测:在特定的事件或情况发生时,如雨季、污染事件等,加大对地表水的监测和分析。

3.实时监测:利用现代化的监测设备和技术,对水质和水量进行实时、自动化监测,提高监测数据的及时性和准确性。

四、数据收集和分析1.数据收集:建立数据库,收集监测数据和样本,包括水质数据、水量数据和生态数据等,确保监测数据的准确性和可靠性。

2.数据分析:对收集到的数据进行整理和分析,利用统计方法和模型评估水质状况、水资源使用效益和生态系统健康状况,形成监测报告,为环境管理和决策提供科学依据。

五、结果应用和保护措施1.监测结果应用:将监测结果与相关环境标准进行比较和评估,及时发现和预警水质异常情况,根据监测结果调整环境保护措施和管理措施。

2.保护措施:根据监测结果制定相应的保护措施,如加强污染源的治理,提高水体的净化和保护能力,维护生态系统的完整性。

六、预算和人力资源1.预算:编制监测项目的预算,在设备购置、样本分析和数据处理等方面进行合理配置,确保监测工作的顺利进行。

地表水环境质量标准的监测与评价方法

地表水环境质量标准的监测与评价方法

地表水环境质量标准的监测与评价方法地表水环境质量的监测与评价是保护水资源,维护水环境健康的重要手段。

只有通过科学准确的监测方法和有效的评价标准,才能及时发现水环境中的问题,并采取相应的治理措施。

本文将重点探讨地表水环境质量标准的监测与评价方法。

一、地表水环境质量的监测方法地表水环境质量的监测方法主要包括采样和分析。

采样是获取水样的过程,分析是对水样中各种指标进行检测和分析。

1. 采样方法地表水的采样需要选择代表性的采样点,并按照一定的时间间隔进行采样。

为确保采样的准确性和可靠性,需要注意以下几个方面:(1)选择采样点:采样点的选择应充分考虑水体的特点,包括河流的流速、水深、水质变化等因素。

同时,还应考虑到排污口、工业企业等因素对水体的影响。

(2)采样容器:采样容器需要选择干净、无杂质的容器,常用的有玻璃瓶、聚乙烯瓶等。

采样容器应提前清洗并用纯水漂洗。

(3)采样方法:采样时要注意避让船只、人群等干扰因素,确保采样的准确性。

采样时应尽量将容器浸入水中,避免采集到水表面的杂质。

2. 分析方法地表水的分析方法是评价水环境质量的重要手段。

目前,地表水质量的评价主要依靠指标检测和定量分析。

常用的分析方法包括物理化学分析、生物学分析和环境监测技术。

(1)物理化学分析:包括pH值、溶解氧、化学需氧量(COD)、氨氮、总磷、总氮等指标的检测和分析。

这些指标可以反映水体的酸碱性、氧含量、有机物和无机物的含量等。

(2)生物学分析:通过对水生生物的观察和计数,了解水生生物群落的结构和生态状况。

例如,鱼类、浮游动物、底栖动物等的出现和数量变化可以间接反映水体的质量状况。

(3)环境监测技术:随着科技的发展,各种先进的仪器设备被应用于水质监测中。

例如,多参数水质监测器可以同时测量多个指标,实时反映水体的变化情况。

二、地表水环境质量的评价方法地表水环境质量的评价方法主要包括水质评价和污染评价。

1. 水质评价方法水质评价是通过对水样中各种指标进行定量分析,并参照相应的水质标准进行评估。

地表水监测方案

地表水监测方案

地表水监测方案一、监测目的地表水监测的主要目的是为了及时、准确地掌握地表水体的水质状况,为水资源保护、水污染防治、水环境管理以及生态环境保护等提供科学依据和技术支持。

通过对地表水的监测,可以了解水体中污染物的种类、浓度、时空分布特征,评估水体的污染程度和生态健康状况,为制定合理的环境保护政策和措施提供决策依据。

二、监测范围监测范围应涵盖区域内的主要河流、湖泊、水库等地表水体。

根据当地的水系分布、污染源分布以及环境保护的重点区域,确定具体的监测断面和监测点位。

对于河流,应在干流和主要支流的上、中、下游设置监测断面,包括出入境断面、城市河段断面、重要功能区断面等。

对于湖泊和水库,应在主要入湖(库)口、湖心、出湖(库)口等位置设置监测点位。

三、监测项目1、物理指标水温、色度、浊度、透明度、电导率等。

2、化学指标pH 值、溶解氧(DO)、化学需氧量(COD)、生化需氧量(BOD)、氨氮(NH₃N)、总磷(TP)、总氮(TN)、重金属(如汞、镉、铅、铬等)、石油类、挥发酚等。

3、生物指标叶绿素 a、浮游生物、底栖生物等。

4、其他指标流量、流速等水文参数。

四、监测频次1、河流对于重点河流的出入境断面、城市河段断面等,每月监测不少于 1 次;对于一般河流的监测断面,每季度监测不少于 1 次。

在丰水期、平水期和枯水期应适当增加监测频次。

2、湖泊、水库对于重要的湖泊和水库,每月监测不少于 1 次;对于一般的湖泊和水库,每季度监测不少于 1 次。

在水体水质变化较大或发生突发环境事件时,应及时进行加密监测。

五、监测方法1、水样采集按照相关标准和规范要求,选择合适的采样器具和采样方法。

采样时应注意避免搅动水底沉积物,保证水样的代表性。

对于不同的监测项目,可能需要采集不同类型的水样,如瞬时水样、混合水样、综合水样等。

2、现场测定对于一些能够在现场测定的物理指标和化学指标,如水温、pH 值、溶解氧等,应在采样现场进行测定,并记录测定结果。

地表水水质监测方案

地表水水质监测方案

地表水水质监测方案地表水是指地表自然水体中的水,包括江河湖泊、水库、运河等。

地表水水质监测是为了保护和管理地表水资源,保障人民群众的饮用水安全,维护生态环境的重要手段。

因此,建立科学合理的地表水水质监测方案至关重要。

一、监测目标。

地表水水质监测的首要目标是保障人民群众的饮用水安全。

其次,还包括保护水生态环境,维护水资源的可持续利用。

监测目标的明确性是制定监测方案的基础。

二、监测内容。

地表水水质监测内容主要包括水体的理化指标和生物学指标。

理化指标包括水质的透明度、浊度、PH值、溶解氧、化学需氧量等。

生物学指标包括水中微生物、浮游生物和底栖生物的种类和数量。

三、监测频次。

地表水水质监测的频次应根据监测目标和监测内容确定。

一般来说,对于重点保护水域,监测频次应该较高,而对于一般水域,监测频次可以适当降低。

监测频次的确定需要考虑到监测成本、监测数据的时效性等因素。

四、监测方法。

地表水水质监测方法包括野外采样和实验室分析两个环节。

野外采样要求采样点的选择具有代表性,采样方法应当规范,避免外界因素的干扰。

实验室分析要求分析方法准确可靠,分析设备和仪器的维护保养要到位。

五、监测数据处理与评价。

监测数据的处理应当科学规范,要进行数据质量控制和质量评价。

监测数据的评价应当结合当地的水质标准和相关法律法规,对水质状况进行科学客观的评价。

六、监测结果应用。

地表水水质监测结果应当及时向社会公开,为政府决策和公众参与提供科学依据。

同时,监测结果还应当用于水资源管理和环境保护工作中,为改善水质状况提供技术支撑。

七、监测方案的完善与改进。

地表水水质监测方案应当不断完善和改进,结合实际情况进行调整和优化。

同时,应当加强监测技术和方法的研究,提高监测数据的准确性和可靠性。

总结:地表水水质监测是保障人民群众饮用水安全和维护生态环境的重要手段,建立科学合理的监测方案对于实现这一目标至关重要。

监测方案的制定需要明确监测目标和内容,确定监测频次和方法,科学处理和评价监测数据,充分应用监测结果,并不断完善和改进监测方案。

水质监测方案完整版

水质监测方案完整版

水质监测方案完整版一、背景概述水质监测是对水体中各种物理、化学和生物指标进行定期监测和评估的过程,旨在保障水体的健康和可持续利用。

本方案旨在完整介绍水质监测的目的、方法、指标及频次。

二、目的1.对水体进行全面、准确的监测,了解其物理、化学和生物特征。

2.评估水体是否符合相关水质标准和环境要求。

3.及时发现水质异常变化,采取相应措施防止和修复水体污染。

4.提供科学依据和数据支持,指导水资源管理和保护。

三、监测方法1.采样方法采样应在每个监测站点代表性位置进行,避免人为干扰。

应使用专业采样器具,避免任何外部污染。

每次采样应收集足够数量的样品,确保能够进行多次检测和重复验证。

2.检测方法根据监测的目的和指标要求,选择适当的检测方法。

常见的水质监测指标包括水温、pH值、溶解氧、化学需氧量、总悬浮物、溶解性无机物和微生物浓度等。

应根据实际需要选择合适的设备和试剂进行检测。

3.数据分析方法采集到的监测数据应进行统计和分析。

常见的方法包括均值计算、趋势分析、相关性分析等。

根据监测结果,判断水体的健康状况和趋势变化。

同时,还可以利用地理信息系统(GIS)等技术手段对监测数据进行空间分析,以进一步理解和解释水质变化的原因。

四、监测指标及频次1.水温监测水温是衡量水体热量状态的重要指标,对水生态系统和生物群落具有重要影响。

应定期监测水温,观察其日变化和季节变化趋势。

频次:每日监测。

2.pH值监测pH值是衡量水体酸碱性的指标,可用于评估水体的酸碱程度和水质状况。

应定期监测水体的pH值,了解其酸碱度变化情况。

频次:每周监测。

3.溶解氧监测溶解氧是水体中溶解的氧气量,是衡量水体中生物呼吸和生态系统健康状态的重要指标。

应定期监测水体中溶解氧的浓度,评估水体的氧气供应状况。

频次:每月监测。

4.化学需氧量监测化学需氧量是衡量水体中有机物氧化分解能力的指标,可以反映水体中有机物的含量和分解程度。

应定期监测水体中的化学需氧量,评估水体的有机污染程度。

地表水环境质量现状调查及评价方案

地表水环境质量现状调查及评价方案

地表水环境质量现状调查及评价方案1地表水监测点位、监测单位及监测时间监测点位: 监测单位: 监测时间:2监测项目和分析方法监测项目:PH 值、水温、溶解氧、悬浮物、化学需氧量、高锌酸盐指数、氨氮、五日生化需氧量、阴离子表面活性剂、总磷、氟化物、挥发酚、硫化物、六价馅、石油类、铅、汞、碑、氟化物、色度共20项。

分析方法:采样及分析方法依照国家环保局《环境水质监测质量保证手册》和《水和废水监测分析方法》的规定进行。

3评价标准本次地表水环境现状评价采用《地表水环境质量标准》(GB3838-2002)中 III 类标准。

4评价方法采用单因子污染指数法对地表水现状进行评价 DO 的标准指数计算表达式为:DO im-9碇D oL D a )式中:Szx )J-DO 的单因子指数,无量纲;DS 一所测断面溶解氧浓度,mg/L ;°/一饱和溶解氧浓度,mg/L ; °°∕=468/(31.6+T ),T 为水温,C ;5 a 。

/ DO r -DO ij———(力O,>DQ )°Q-溶解氧的地面水水质标准,mg/L。

PH值单值质量指数模式为:=7.0-pH,PHL7.0-PHT pH j≤7.0_/也-7.0 p H j>7.0W产/:7.6其他评价因子单项指数式为:SiJ=(Cim-Ci)/CC im-C si)式中:Sij-某污染物的污染指数;Cij—某污染物的实际浓度(mg/L);CSi-某污染物的评价标准(mg/L);SpHj-PH标准指数;pH j-j点实测pH值;ρH s d—标准中PH值的下限值:PHSU—标准中PH值的上限值。

CL理论上或实际上的最大值。

5监测、评价结果地表水水质监测数据以及评价结果见表1。

由表1监测结果对照标准可以看出,评价区地表水水质监测指标除化学需氧量、生化需氧量超标外,其他监测指标均满足《地表水环境质量标准》(GB3838-2002)中的III类标准。

地表水监测方案

地表水监测方案

地表水监测方案一、监测目的地表水监测的主要目的是及时、准确地掌握地表水环境质量状况及其变化趋势,为水资源保护、水污染防治和水环境管理提供科学依据。

通过监测,可以了解地表水的物理、化学和生物特性,评估水体的污染程度,确定主要污染物及其来源,预测水体质量的发展趋势,为制定合理的环境保护政策和措施提供支持。

二、监测范围本次地表水监测范围包括_____地区内的主要河流、湖泊、水库等水体。

具体监测点位将根据水体的功能、规模、水流特征以及周边污染源分布等因素进行合理布设。

三、监测项目(一)物理指标1、水温:使用水温计或热敏电阻传感器进行测量,了解水体的热状况。

2、色度:通过目视比色法或分光光度法测定,反映水体的颜色程度。

3、浊度:采用浊度仪测量,表征水体中悬浮物质的含量。

(二)化学指标1、 pH 值:使用 pH 计直接测量,反映水体的酸碱性。

2、溶解氧(DO):采用碘量法或溶解氧测定仪测定,是评估水体自净能力和水生生物生存状况的重要指标。

3、化学需氧量(COD):常用重铬酸钾法或快速消解分光光度法测定,反映水体中有机物的污染程度。

4、生化需氧量(BOD):通过稀释与接种法测量,用于评估水体中可生物降解有机物的含量。

5、氨氮:采用纳氏试剂分光光度法或水杨酸次氯酸盐分光光度法测定,是反映水体受氮污染的重要指标。

6、总磷:使用钼酸铵分光光度法测量,表征水体中磷元素的含量。

7、总氮:通过碱性过硫酸钾消解紫外分光光度法测定,反映水体中氮元素的总量。

8、重金属:包括铜、锌、铅、镉、汞、铬等,采用原子吸收分光光度法、原子荧光光谱法或电感耦合等离子体质谱法进行检测。

(三)生物指标1、浮游植物:通过显微镜观察和计数,了解水体中藻类的种类和数量。

2、浮游动物:同样通过显微镜观察和分类计数,评估水生生态系统的结构和功能。

四、监测频率根据水体的类型和功能,以及污染状况的不同,确定相应的监测频率。

1、对于主要河流,每月监测一次。

2、重点湖泊和水库,每季度监测一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五·结果表达、质量保证及实施计划
• 1.结果表达 • 水质监测所测得的众多化学、物理以及生物学的监测数据,是描述和评价
水环境质量,进行环境管理的基本依据,必须进行科学地计算和处理,并按 照要求的形式在监测报告中表达出来。并于该河涌历史水质监测资料对照, 得出河涌污染是否增加,采取相应的管制实验室排放污水措施或者实施对实 验污水适度的预处理,再排放到河涌里。 • 2.质量保证 • 质量保证概括了保证水质监测数据正确可靠的全部活动和措施。质量保证贯 穿监测工作的全过程。保证取样的准确性,全面性,保证检测水样各物质含 量的仪器的精确性,避免系统误差。 • 3.实施计划 • 实施计划是实施监测方案的具体安排,要切实可行,使各个环节工作有序、 协调地进行。按原定计划,在各采样点采样,抓紧时间检测样品的各指标含 量,以免不够及时而导致样品浓度受影响。确定哪一种指标用什么方法测定, 力求测精测准。 •
组员
• 黎秋云、黎嘉雯、庄倩萍、梁健、 姚林杰
二·监测断面和采样点的设置
• 1. 监测断面和采样点的选取和设置原则
• ①. 监测断面的设置原则 • 应在水质、水量发生变化及水体不同用途的功
能区处设置监测断面 • (1)大量废水排入河流的居民区、工业区上
下游; • (2)湖泊、水库的主要出入口; • (3)饮用水源区、水资源区域等功能区; • (4)入海河流的河口处、较大支流汇合口上
目录
• 一·基础资料的收集 • 二·监测断面和采样点的设置 • 三·采样时间和采样频率的确定 • 四·采样及监测技术的选择 • 五·结果表达、质量保证及实施计划
一·基础资料的收集
• (1)水体的水文、气候、地质和地貌资料。 • 地理位置: • 广州大学城(Guangzhou Higher Education Mega Center)位于广州
市番禺区新造镇小谷围岛及其南岸地区,位于广州市东南部,选址番 禺小谷围岛及其南岸地区,西邻洛溪岛、北邻生物岛、东邻长洲岛。 与琶洲岛举目相望。 • 气象: • 属于亚热带季风气候,年日光照时间比广州其他地区均少,大约有 480-775小时之间,夏季多为东南风和偏南风,冬季多为北风和偏北 风,极高气温37.4摄氏度。 • 河流水文: • 该河涌补给为:降水补给以及珠江补给。由于河涌地势较平缓,流速 较慢,但受气候以及风向影响而改变,冲刷河床力度较弱,所以两岸 草地土壤较结实。河涌两岸筑有硬石砖保护植被。 • 植被: • 河涌周围种植草、柳树、观赏性花等植被。
三·采样时间和采样频率的确定
• 1.采样原则:对于较大水系干流和中、小河流, 全年采样监测次数不少于6次。采样时间为丰水期、 枯水期和平水期,每期采样两次。流经城市或工 业区,污染较重的河流,游览水域,全年采样监 测不少于12次。采样时间为每月一次或视具体情 况选定。底质每年枯水期采样监测一次。受潮汐 影响的监测断面分别在大潮期,小潮期进行采样 监测。每次采集涨潮,退潮水样分别监测。涨潮 水样应在断面处水面涨平时收集,退潮水样应在 水面退平时采集。
• 2.实际采样时间和采样:由于采样地点的污 染源稳定,水流量较为稳定,实际采样地 点将根据水质决定,采样时间决定于实践 时间。
• 采样时间:丰水期:7-9月,枯水期:12-2 月,平水期:其他月份。每个期测两次
• 采样频率:各时期相隔3个月,每个不同时 期的两次采样相隔1.5-2个月,一年监测6次
游和汇合后与干流混合处; • (5)尽可能与水文测量断面重合。
• ②. 监测断面和采样点的设置
• 为评价完整江河水系的水质,需要设置背 景断面、对照断面或过境)三种断面。
• ③. 采样点位的设置
• 设置监测断面后,应根据水面的宽度确定 断面上的采样垂线,再根据采样垂线处水 深确定采样点的数目和位置
• (2)水体沿岸城市分布、工业布局、污染 源:水体沿岸半部分是教学区,污染源主 要是生化楼以及工程实验北楼的废水污水 排放,含有各种有机物以及氮、氨、磷等 无机物。
• (3)水体沿岸的资源现状和水资源的用途、 水体流域土地功能及近期使用计划:广州 大学水体主要为自然景观和灌溉花木。
• (4)相关的历年水质监测资料。
• 采样地点:广州大学生化楼下河段
四·采样及监测技术的选择
• 1.基本原则: • 要根据监测对象的性质、含量范围及测定要求等因素选择适宜的采样、
监测方法和技术. • 2. 地表水监测项目 • 水温、pH值、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧
量、氨氮、总氮(湖、库)、总磷、铜、锌、硒、砷、汞、镉、铅、 铬(六价)、氟化物、氰化物、硫化物、挥发酚、石油类、阴离子表 面活性剂、粪大肠菌群。 • 3. 监测方法 • (1)采样(含样品保存)执行《地表水和污水监测技术规范》 (HJ/T91-2002)。 • 详见《地表水和污水监测技术规范》文件。 • (2)分析方法执行《地表水环境质量标准》(GB3838-2002)的 Ⅳ类标准。
• 2.实际监测断面和采样点的选取和设置
• (1)监测断面(详见地图)
• (2)采样点位的确定:该河涌水面宽 <50m,只设一条中弘垂线。水深0.5~5m 时,在水面下0.5m处设一个采样点.
• 注意:不要搅入湖底的沉积物。
• :水流方向; :排污口;实验楼:污染源; • A:对照断面;B,C,D:控制断面;E:削减断面
相关文档
最新文档