晶体管和场效应管工作原理详解
场效应管工作原理 1

场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
[讲解]场效应管工作原理
![[讲解]场效应管工作原理](https://img.taocdn.com/s3/m/ac839259a88271fe910ef12d2af90242a895abea.png)
[讲解]场效应管工作原理场效应管工作原理MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field EffectTransistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的为增强型MOS场效应管,其内部结构见图5。
它可分为NPN型PNP型。
NPN 型通常称为N沟道型,PNP型也叫P沟道型。
由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。
如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
1/11页对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。
当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。
场效应管的工作原理及应用

场效应管的工作原理及应用一、场效应管的基本原理场效应管(FET)是一种基于电场效应的半导体器件,它主要由三个区域组成:栅极(Gate)、漏极(Source)和源极(Drain)。
场效应管的工作原理是通过在栅极施加电压来控制漏极和源极之间的电流。
实际上,场效应管的工作原理与双极型晶体管(BJT)有很大的不同。
BJT是通过调节基极电流来控制集电极电流,而FET则是通过控制栅极电压来控制漏极和源极之间的电流。
这种控制电压的方式使得场效应管具有以下优点:•输入电阻高:场效应管的输入电阻非常高,这意味着输入信号对于场效应管来说几乎没有损耗。
•输出阻抗低:场效应管的输出电阻非常低,可以提供较大的输出功率。
•可靠性好:场效应管的制造工艺相对简单,因此具有较高的可靠性。
二、场效应管的种类及特点场效应管分为三种,分别是MOSFET、JFET和IGFET。
它们各自具有以下特点:1. MOSFET(金属氧化物半导体场效应管)•结构复杂:MOSFET由金属栅极、绝缘层和半导体材料组成,结构较为复杂。
•低功耗:MOSFET的功耗较低,适用于集成电路和低功耗应用。
•可控性强:MOSFET的栅极电压可通过改变电压来控制漏极和源极之间的电流。
2. JFET(结型场效应管)•结构简单:JFET由两个半导体材料构成,结构较为简单。
•低噪声:JFET具有低噪声、高增益和大动态范围的特点,适用于音频放大器等应用。
•可控性弱:JFET的控制电压较低,控制灵敏度相对较弱。
3. IGFET(绝缘栅极场效应管)•高速开关:IGFET具有较高的开关速度和低损耗,适用于高频功率放大器等应用。
•可控性中等:IGFET的栅极电压对电流的控制相对较强,但仍不及MOSFET。
三、场效应管的应用场效应管广泛应用于各种电子设备和系统中,包括但不限于以下领域:1.放大器:由于场效应管具有高输入电阻和低输出阻抗的特点,因此可以用作信号放大器。
在音频放大器、射频放大器、视频放大器等设备中,场效应管常被用来放大弱信号。
晶体管和场效应管

晶体管和场效应管晶体管和场效应管是现代电子技术中使用广泛的两种重要元件。
它们在电路中发挥着非常重要的作用,促进了电子设备的不断发展和进步。
本文将对晶体管和场效应管进行详细介绍,包括它们的结构、工作原理以及应用领域。
一、晶体管晶体管是一种半导体器件,由三个不同掺杂的层级组成,分别是基底、发射区和集电区。
晶体管的结构决定了它具有放大和开关两种基本功能。
1. 结构晶体管由两种材料构成,一种是N型半导体,另一种是P型半导体。
晶体管的三个层级——发射区、集电区和基底分别对应着NPN和PNP的结构。
发射区和集电区之间夹着一个非掺杂的绝缘材料,称为垫片。
2. 工作原理当在发射区施加一个正向电压时,由于PN结的压降,使得PN接触的区域形成开路。
而一旦发射区施加的电压大于某一阈值,PN接触区域就会呈现导电状态,电子可以从发射区跨过PN结,流入集电区。
这样一来,晶体管就可以实现电流放大的功能。
晶体管的工作过程可以分为三个阶段:放大阶段、切换阶段和截断阶段。
在放大阶段,晶体管的发射区电流和集电区电流的比值决定了信号的放大倍数;在切换阶段,发射区电流不足以跨过PN结的电压并形成导电状态,导致晶体管切换到关断状态;在截断阶段,晶体管实际上是一个开关,完全截断了电流的流动。
3. 应用领域晶体管的广泛应用领域包括电子通讯、计算机、音频和视频设备等。
晶体管的小体积、低功耗以及可靠性等优点使得它成为现代电子产品中的关键元件。
二、场效应管场效应管是另一种重要的半导体器件,通过电场控制电载流子的通道,从而实现对电流的控制。
与晶体管相比,场效应管具有更高的输入阻抗和更低的功耗。
1. 结构场效应管由多层不同掺杂的半导体材料构成。
通常包括掺杂浓度较高的汇集区、控制区和栅极。
2. 工作原理场效应管的工作原理是基于阻挡层控制电流的流动。
通过施加栅极电压,可以改变阻挡层的电场,从而调节通道中的载流子数量。
当栅极电压为0时,阻挡层完全堵塞了载流子的通道,电流无法通过;而当栅极电压发生变化时,阻挡层会减弱或消失,允许电流通过。
晶体三极管与场效应管详解演示文稿

U11==64-V5.3,VV,U,2U=U222==V-21,V.8U,V3,=U23U=.37=5VV-,1.5V
第13页,共43页。
共射极NPN放大电路
进入基区少数电子和空穴复
结论:I =I +I 合,以及进入发射区的空穴
与电集子电复区合少而数载形E流成子电B流IBNC和
IC =ICN+集IC电BO结反发,偏射发结射正区偏多
UCE VCC IC RC 15 0.716103 5000 11.42(V )
③如果VBB=5V;RB=300kΩ,β=300 解答:
IB
VBB U BE RB
5 0.7 300000
0.01
IC IB 300 0.0143 4.29(mA)
I里IIBPEB了,空IC--?B那穴O。么形扩复其成散漂它合移多运运电数流电动动子形去形哪成成的的电电C流流 IC-漂移运IB动ICB形O 成的电流JC
ICN
数载流子电 子不断向基 区扩散,形 成扩散电流
IEN。
基区多数载
流子空穴不断 向基区扩散, 形成扩散电流
IEP。
B
RB IEP
VBB
IBP JE
集电极C
Collector
基极B 发射极E
Base Emitter
金属层
发射区:发射载流子 集电区:收集载流子
基区:传送和控制载流子
P
N+
N-Si
N型硅片
(衬底)
第5页,共43页。
强化练习1
NPN型三极管
C
B E
基极 B
电符路号符号 集电区的作用:
收集载流子
基区的作用: 传送、控制载流子
场效应晶体管的工作原理

由于栅极与P 区相连,所以,两个PN结都加上了反向电压,只有极微小电流流出栅极。由于漏极和源极都和N区相连,漏、源极之间加正向电压之后,在栅极电压负值不大时,源极之间有漏极电流,D流过,它是由N区中多数载流子(电子)形成的。
当PN结施加反向电压时(P接负极,N接正极),耗尽区就会向半导体内部扩展,使耗尽变宽,使耗尽区里的空间电荷增多。这种扩展,如果N区杂质浓度高于P区,主要在P区进行晶体管的工作原理如图73所示。它是在一块低掺杂的N型区两边扩散两个高掺杂的P型区,形成两个PN结,一般情况下N区比较薄。N区两端的两个电极分别叫做漏极(用字母D表示)和源极(用字母S表示),P 区引出的电极叫做栅极(用字母G表示)。
场效应晶体管的工作原理
场效应晶体管是受电场控制的半导体器件,而普通晶体管的工作是受电流控制的。场效应晶体管主要有结型场效应晶体管和金属氧化物半导体场效应晶体管(通常称MOS型)两种类型。两种管子工作原理不同,但特性相似。
1.结型场效应晶体管的工作原理
与普通结型晶体管一样,结型场效应晶体管的基本结构也是PN结。N型半导体与P型半导体形成PN结时,N区电子很多,空穴很少,而P区空穴很多,电子很少,因此在PN结交界处,N区电子跑向P区,P区空穴跑向N区。这样,在N区留下的是带正电的施主离子,在P区留下的是带负电的受主离子。这一区域内再也没有自由电子或空穴了,故称为“耗尽区”或“耗尽层”,又称空间电荷区
更多电子元件资料
由于P N结的耗尽区大部分在N区,当加上反向电压时,耗尽区主要向N区扩展。电压愈高,两个耗尽区之间电流可以通过的通道(常称为沟道)就愈窄,所以加在栅极与源极之间的负电压越大,两个耗尽区变得越厚,夹在中间的沟道就越薄,从而使沟道的电阻增大,漏电流ID减小;反之ID增大。漏极电流ID的大小会随栅、源之间的电压UGS大小而变,也就是说,栅、源电压US能控制漏电流ID,这就是结型场效晶体管的工作原理。需要着重指出的是,它是用电压来控制管子工作的。前面讲的是两个P 区夹着一个薄的N区形成的结型场效应晶体管,称为N沟道结型场效应晶体管。同样,用两个矿区夹着一个薄的P区就形成P沟道结型场效应晶体管,但是它的正常电压与N区沟道管子相反。
场效应管(MOS管)和晶体管(三极管)小知识

场效应管(MOS管)和晶体管(三极管)小知识场效应管(MOS 管)场效应管英文缩写:FET(Field-effect transistor)场效应管分类:结型场效应管和绝缘栅型场效应管 , 场效应管电路符号:场效应管的三个引脚分别表示为:G(栅极),D(漏极),S(源极)绝缘栅型场效应管场效应管属于电压控制型元件,又利用多电子导电故称单极型元件,且具有输入电阻高,噪声小,功耗低,无二次击穿现象等优点。
具有较高输入电阻、输入电流低于零,几乎不要向信号源吸取电流,在G注入电流的大小,直接影响D电流的大小,利用输出电流控制输出电源的半导体。
场效应管与晶体管的比较(1)场效应管是电压控制元件,而晶体管是电流控制元件。
在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。
(2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。
被称之为双极型器件。
(3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。
(4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上.场效应管好坏与极性判别:将针式万用表的量程选择在 RX1K 档,用黑表笔接 D 极,红表笔接 S 极,用手同时触及一下 G,D 极,场效应管应呈瞬时导通状态,即表针摆向阻值较小的位置,再用手触及一下 G,S 极, 场效应管应无反应,即表针回零位置不动.此时应可判断出场效应管为好管.将万用表的量程选择在RX1K 档,分别测量场效应管三个管脚之间的电阻阻值,若某脚与其他两脚之间的电阻值均为无穷大时,并且再交换表笔后仍为无穷大时,则此脚为 G 极,其它两脚为 S 极和 D 极.然后再用万用表测量 S 极和 D 极之间的电阻值一次,交换表笔后再测量一次, 其中阻值较小的一次,黑表笔接的是 S 极,红表笔接的是 D 极.(有些场效应管D-S极带保护二极管测量应留意).半导体三极管半导体三极管在电路中常用'Q'加数字表示,如:Q17 表示编号为17 的三极管。
场效应晶体管工作原理

场效应晶体管工作原理场效应晶体管(Field Effect Transistor,简称FET)是一种主要由三个区域组成的半导体器件,包括源极(Source)、栅极(Gate)和漏极(Drain)。
其工作原理基于栅极电场对导电层的控制作用。
当电源电压施加到源极和漏极之间时,形成了源漏电流路径。
栅极和源极之间的电场会控制漏极-源极电流的大小。
栅极与源极之间电压变化会改变栅极与漏极之间的场强,进而控制漏极-源极电流的大小。
场效应晶体管具有高输入阻抗、低输出阻抗以及较高的电流放大倍数等特点。
在N沟道MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)中,栅极被绝缘层(通常是二氧化硅)所包围,栅极电压通过场效应控制沟道的电导。
沟道中的载流子类型根据FET的构造来确定,例如N沟道MOSFET中沟道是由N型材料形成的,而P沟道MOSFET则是由P型材料形成的。
在P沟道MOSFET中,当栅极电压低于经过正常工作所需的阈值电压时,几乎没有电流通过栅极,沟道阻断,FET处于关闭状态。
当栅极电压高于阈值电压时,正负载流子从源极注入沟道,形成源漏电流,FET处于开启状态。
栅极电压越高,源漏电流越大。
在N沟道MOSFET中,工作原理与P沟道MOSFET相反。
当栅极电压高于阈值电压时,FET关闭,沟道阻断。
当栅极电压低于阈值电压时,正负载流子从源极注入沟道,形成源漏电流,FET处于开启状态。
栅极电压越低,源漏电流越大。
通过控制栅极电压,可以实现对FET的开关功能以及电流放大功能。
场效应晶体管广泛应用于放大电路、数字逻辑电路和功率放大器等领域。
有机场效应晶体管工作原理

有机场效应晶体管工作原理
有机场效应晶体管(MOSFET)是常用于现代电子和数码电路的一
种半导体器件,它的工作原理是利用金属-氧化物-半导体结构来控制
电流的通断。
在MOSFET中,有一个被氧化物(通常是二氧化硅)分隔开的金属
栅极,固定在半导体表面。
当金属栅极被加入正电压时,它会在表面
形成一个强电场,这个电场会在半导体中形成一个可控制的电阻,从
而控制电荷的流动。
当有电压被加到晶体管的栅极处,栅极与晶体管的沟道之间会形
成一条导电通道,这条通道中的载流子(电荷)会受到栅极电势的控制,从而改变电阻率或导电性。
只有当栅极电压高于一个特定电位时,导
电通道开启,电子就从源极流向漏极,这个阈值电压也被称作MOSFET
的开启电压。
晶体管的强电性质和小的空间占用使得它们成为数字和模拟电子
器件中不可缺少的构件,应用极为广泛。
MOSFET器件独特的优势包括
低功耗、高速、简单的驱动电路和在尺寸缩小的同时性能持续提升的
特点。
因此,MOSFET已成为电子和计算机领域的重要元件,支持了我
们这个数字化时代中各种广泛的应用。
晶体管和场效应管工作原理详解

IC
RC UCE USC
晶体管的静态工作点Q位
于哪个区?
RB
USB
USB =2V时:
U SB U BE 2 0.7 IB 0.019mA RB 70 I C I B 50 0.019mA 0.95mA
IC< ICmax (=2mA) , Q位于放大区。
1放大区 e结为正偏,c结为反偏的工作区域为放大区。在 放大区有以下两个特点: (1)基极电流iB对集电极电流iC有很强的控制作用, 即iB有很小的变化量ΔIB时, iC 就会有很大的变 化量ΔIC。为此,用共发射极交流电流放大系数β 来表示这种控制能力。β定义为 I C u CE 常数 I B 反映在特性曲线上,为两条不同IB曲线的间隔。
由于 , 都是反映晶体管基区扩散与 复合的比例关系,只是选取的参考量不同,所以 两者之间必有内在联系。由 , 的定义可 得
I CN I CN IE IB I E I CN IE IE 1 I CN I CN I BN IE I BN I CN I BN I BN 1
2.集-基极反向截止电流ICBO ICBO是集 电结反偏 由少子的 漂移形成 的反向电 流,受温 度的变化 影响。
ICBO A
3. 集-射极反向截止电流ICEO
集电结反 偏有ICBO C
ICEO= IBE+ICBO ICEO受温度影响
很大,当温度上 升时,ICEO增加 很快,所以IC也 相应增加。三极 管的温度特性较 差。
IC I B I E (1 ) I B
为了反映扩散到集电区的电流ICN与射极注入电流IEN的比 例关系,定义共基极直流电流放大系数 为
场效应管的工作原理

场效应管的工作原理场效应管(Field Effect Transistor,简称FET)是一种半导体器件,它具有高输入阻抗、低噪声、低功耗等特点,在电子电路中有着广泛的应用。
它的工作原理主要是通过控制栅极电场来调节源极和漏极之间的电流,从而实现信号放大、开关控制等功能。
本文将从场效应管的结构、工作原理和特点等方面进行介绍。
1. 结构。
场效应管由栅极、源极和漏极组成。
栅极与源极之间的电场可以控制源极和漏极之间的电流,因此栅极相当于晶体管的控制极,而源极和漏极则相当于晶体管的发射极和集电极。
根据不同的结构和工作原理,场效应管可以分为MOSFET(金属-氧化物-半导体场效应管)和JFET(结型场效应管)两种类型。
2. 工作原理。
MOSFET的工作原理是基于金属-氧化物-半导体结构。
当栅极施加正电压时,在栅极和氧化物之间形成一个电场,这个电场会影响半导体中的载流子密度,从而控制源极和漏极之间的电流。
而JFET的工作原理是基于PN结的结型场效应。
当栅极施加正电压时,栅极与源极之间形成一个反型电场,这个电场会影响沟道中的载流子密度,从而控制源极和漏极之间的电流。
3. 特点。
场效应管具有许多优点,如高输入阻抗、低噪声、低功耗、频率响应好等。
由于栅极与源极之间的电场可以控制电流,因此场效应管的输入阻抗非常高,可以减小输入信号源对电路的影响。
同时,场效应管的噪声水平较低,适合用于放大弱信号。
此外,由于场效应管的控制电压较低,因此功耗也较小。
另外,场效应管的频率响应也很好,适合用于高频电路。
4. 应用。
场效应管在电子电路中有着广泛的应用,如放大器、开关、振荡器等。
在放大器中,场效应管可以用作信号放大器、运算放大器等;在开关电路中,场效应管可以用作数字开关、模拟开关等;在振荡器中,场效应管可以用作正弦波振荡器、方波振荡器等。
此外,场效应管还可以用于集成电路、功率放大器、射频电路等领域。
总结。
场效应管是一种重要的半导体器件,它具有高输入阻抗、低噪声、低功耗等特点,在电子电路中有着广泛的应用。
场效应晶体管工作原理

场效应管工作原理MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的为增强型MOS场效应管,其内部结构见图5。
它可分为NPN型PNP型。
NPN型通常称为N沟道型,PNP型也叫P沟道型。
由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。
如图6所示,我们知道在二极管加上正向电压(P 端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因为在P 型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。
当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。
我们也可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。
第4讲晶体三极管及场效应管

2. 绝缘栅型场效应管
增强型管
大到一定 值才开启
高掺杂 耗尽层 空穴
衬底 SiO2绝缘层
反型层
uGS增大,反型层(导电沟道)将变厚变长。当 反型层将两个N区相接时,形成导电沟道。
动画演示
增强型MOS管uDS对iD的影响
刚出现夹断
iD随uDS的增 大而增大,可
uGD=UGS(th), 预夹断
变电阻区
夹断 电压
在恒流区iD时 ID, O(UuGGSS(th)1)2 式中 IDO为uGS2UGS(t时 h) 的 iD
3. 场效应管的分类 工作在恒流区时g-s、d-s间的电压极性
结型PN沟 沟道 道((uuGGS> S<00, ,uuDDS< S>00)) 场效应管 绝缘栅型 耗 增尽 强型 型 PPN N沟 沟 沟 沟道 道 道 道((((uuuuG GG GSS< 极 SS> 极00, 性 , 性uu任 D任 DS< S> 意 意 00)u)u, , DDS< S>00))
区
区
低频跨导:
夹断区(截止区)
iD几乎仅决 定于uGS
击 穿 区
夹断电压
gm
iD uGS
UDS常量
不同型号的管子UGS(off)、IDSS 将不同。
动画演示Байду номын сангаас
(1)可变电阻区
i
是uDS较小,管子尚未预夹断时
的工作区域。虚线为不同uGS是预夹
断点的轨迹,故虚线上各点
uGD=UGS(off),则虚线上各点对应的 uDS=uGS-UGS(off)。
uDS的增大几乎全部用 来克服夹断区的电阻
iD几乎仅仅 受控于uGS,恒 流区
用场效应管组成放大电路时应使之工作在恒流区。N 沟道增强型MOS管工作在恒流区的条件是什么?
场效应管结合晶体管前置放大电路_概述及解释说明

场效应管结合晶体管前置放大电路概述及解释说明1. 引言1.1 概述场效应管和晶体管是电子学中常用的两种器件,它们在现代电路设计中起着重要的作用。
场效应管通过调控栅极电压来控制源极与漏极之间的导通状态,而晶体管则利用控制基极-发射极电压来控制集电极-发射极之间的导通状态。
这两种器件有着不同的工作原理和特性,但都可以被用来实现放大功能。
1.2 文章结构本文将围绕场效应管结合晶体管前置放大电路展开讨论。
首先,我们会介绍场效应管和晶体管的基本原理,包括它们的工作原理、特点和应用领域。
接下来,我们会概述前置放大电路的定义、用途以及常见分类及特点。
最后,我们会详细解析场效应管结合晶体管前置放大电路,包括其结合原理与优势、电路示意图及元件选型说明以及工作过程和信号增益分析。
1.3 目的本文旨在介绍场效应管结合晶体管前置放大电路,并对其原理和特点进行详细说明。
通过阅读本文,读者将能够了解场效应管和晶体管的基本原理、前置放大电路的概述,以及如何设计和分析场效应管结合晶体管前置放大电路。
同时,我们也希望能够展望该技术在未来的发展方向,为读者提供对电子学领域中这一重要电路的深入理解和应用的启示。
2. 场效应管和晶体管的基本原理:2.1 场效应管的工作原理:场效应管,也称为晶体管场效应管(FET),是一种三极电子器件。
它由沟道、栅极和漏源组成。
在工作时,栅极施加的电压可以控制沟道中电子的浓度,从而改变漏源之间的电流流动情况。
场效应管有两种主要类型:增强型(n通道与p通道)和耗尽型(n通道与p通道)。
增强型FET的工作原理如下:当栅极电压低于临界值时,沟道中存在很少数量的载流子;而当栅极电压高于临界值时,会形成一个导电通路并产生大量的载流子。
因此,在增强型FET中,栅极电压对沟道中载流子浓度和导电性能起到关键影响。
2.2 晶体管的工作原理:晶体管是一种用于放大信号和控制电流流动的半导体器件。
它由三个区域组成:发射区(Emitter)、基区(Base)和集电区(Collector)。
晶体管和场效应管工作原理详解

晶体管和场效应管工作原理详解一、晶体管工作原理晶体管是一种由半导体材料制成的三极管,包含有一个发射极(Emitter)、一个基极(Base)和一个集电极(Collector)。
晶体管中的基极由一种特殊掺杂的半导体材料制成,称为P型材料;发射极和集电极由另一种特殊掺杂的半导体材料制成,称为N型材料。
当晶体管的基极接收到一个输入信号时,由于基极和发射极之间是pn结,当基极发生正向偏置时,使得pn结带来较宽的导电区域,基极电流会流过这个导电区域。
这个基极电流进一步影响了集电极电流的流动,通过集电极电流的变化,就可以实现对信号的放大。
晶体管工作的关键在于基极电流和集电极电流之间的放大效应。
晶体管的放大效应由pn结引入,当基极电流变化时,pn结的导电区域也会变化,从而影响到集电极电流。
这种影响是通过指数函数的方式来进行放大的,使得晶体管能够根据输入信号的微小变化,控制较大的输出信号。
因此,晶体管是一种具有放大功能的电子器件。
二、场效应管工作原理场效应管是一种基于场效应原理的电子器件,它由一个掺杂有杂质的半导体材料制成。
它由源极(Source)、栅极(Gate)和漏极(Drain)三个部分组成,其中栅极周围包覆着一个绝缘薄膜,以阻止栅极与其他部分直接接触。
场效应管的工作原理是通过改变栅极电场的强弱来控制源漏电源之间的电流流动。
当栅极电压为零时,场效应管处于截止状态,源漏间几乎没有电流流动。
当栅极电压大于零时,栅极电场会使得源漏之间产生一个导电通道,从而允许电流流动。
栅极电场的强弱由栅极电压控制,当栅极电压变化时,电场的强度也随之变化。
场效应管的导通与否取决于电场是否足够强以形成导电通道。
如果电场足够强,导电通道就会形成,电流会从漏极流向源极;如果电场不够强,导电通道就会断开,电流无法从漏极流向源极。
场效应管工作原理的优势在于,控制电流流动的是电场,而不是电流本身。
因此,场效应管的控制信号能够产生较小的功率损耗,从而提高了电子设备的效率。
MOS 场效应晶体管

工作原理
mosfet通过在金属-氧化物-半导 体结构上施加电压,控制电子流动, 实现信号放大和开关作用。
结构
mosfet由栅极、源极、漏极和半导 体层组成,具有对称的结构。
mos 场效应晶体管的应用
集成电路
mosfet是集成电路中的基本元件, 广泛应用于数字电路和模拟电路 中。
工作原理概述
电压控制
导电通道的形成与消失
mos场效应晶体管是一种电压控制器 件,通过在栅极施加电压来控制源极 和漏极之间的电流流动。
随着栅极电压的变化,导电通道的形 成与消失,从而控制源极和漏极之间 的电流流动。
反型层
当在栅极施加正电压时,会在半导体 表面产生一个反型层,使得源极和漏 极之间形成导电通道。
电压与电流特性
转移特性曲线
描述栅极电压与漏极电流之间关 系的曲线。随着栅极电压的增加, 漏极电流先增加后减小,呈现出
非线性特性。
跨导特性
描述源极电压与漏极电流之间关 系的曲线。跨导反映了mos场效
应晶体管的放大能力。
输出特性曲线
描述漏极电压与漏极电流之间关 系的曲线。在一定的栅极电压下, 漏极电流随着漏极电压的增加而
增加,呈现出线性特性。
Part
03
mos 场效应晶体管的类型与 特性
nmos 场效应晶体管
总结词
NMOS场效应晶体管是一种单极型晶体管,其导电沟道由负电荷主导。
详细描述
NMOS场效应晶体管通常由硅制成,其导电沟道由负电荷主导,因此被称为 NMOS。在NMOS中,电子是主要的载流子,其源极和漏极通常为n型,而衬 底为p型。
制造工艺中的挑战与解决方案
1 2 3