实验3 直流斩波电路实验
直流斩波电路实验报告模板
实验编号实验指导书实验项目:直流斩波电路(Buck-Boost变换器)所属课程: 电力电子技术基础课程代码: EE303面向专业: 电气工程学院(系): 电气工程系实验室: 电气工程与自动化代号: 030102010年4月27 日一、实验目的:1.掌握Buck—Boost变换器的工作原理、特点与电路组成。
2.熟悉Buck—Boost变换器连续与不连续工作模式的工作波形图。
3.掌握Buck—Boost变换器的调试方法。
二、实验内容:1.连接实验线路,构成一个实用的Buck—Boost变换器。
2.调节占空比,测出电感电流i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。
3.将电感L增大一倍,测出i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。
4.测出连续与不连续工作状态时的V be、V ce、V D、V L、i L、i C、i D等波形。
5.测出直流电压增益M=V O/V S与占空比D的函数关系。
6.测试输入、输出滤波环节分别对输入电流i S与输出电流i O影响。
三、实验主要仪器设备:1.MCL-08直流斩波及开关电源实验挂箱2.万用表3.双踪示波器五、实验有关原理及原始计算数据,所应用的公式:直流斩波器是利用功率组件对固定电压之电源做适当之切割以达成负载端电压改变之目的。
若其输出电压较输入之电源电压低,则称为降压式(Buck )直流斩波器,若其输出电压较输入之电源电压高,则称为升压式(Boost) 直流斩波器。
最常见的改变方式为1.周期T固定,导通时间Ton改变,称脉波宽度调变(Pulse-width Modulation PWM)。
2.导通时间Ton固定,周期T改变,称频率调变(Frequency Modulation FM)。
3.周期T及导通时间Ton 同时改变,即波宽调变及频率调变混合使用。
在实际应用中,因直流斩波器常需在负载端接上滤波电感及滤波电容,若频率改变过大对电感及电容影响大,因此多数采用脉波宽度调变。
直流斩波电路建模仿真实训报告新颖完整
直流斩波电路建模仿真实训报告新颖完整直流斩波电路是一种常用的电路拓扑,可用于将直流电转换为可调节的脉冲电压输出。
其在电力电子领域有着广泛的应用,例如交流电压变换、电流控制等。
本文将对直流斩波电路进行建模仿真,并详细介绍其原理和性能特点。
一、直流斩波电路的原理直流斩波电路主要由稳压电源、开关器件(如功率MOS管)、电流传感器、电感、电容、负载等组成。
稳压电源提供稳定的直流电压作为输入,开关器件通过控制开关时间和频率来调节输出波形。
电流传感器用于感应电流变化并反馈给控制电路,使控制电路能够根据需要来调整开关器件的导通时间,以达到输出波形的调节目的。
电感和电容则用来平滑输出波形。
直流斩波电路的工作原理是通过开关器件的周期性导通和截止来实现对直流电压的切割,进而产生脉冲电压输出。
当开关器件导通时,输入电压被加到负载上,电流开始增加;而当开关器件截止时,负载上的电流被切断,负载上的电压下降,电流开始减小。
通过改变开关器件的导通和截止时间,可以改变输出脉冲的宽度和频率。
二、直流斩波电路的性能特点1.可调节输出:直流斩波电路能够灵活地调节输出脉冲的宽度和频率,从而实现对输出脉冲电压的精确控制。
2.高效能转换:直流斩波电路能够将输入直流电转换为高频脉冲电压输出,具有高效的能量转换特性,可以提高系统的能量利用率。
3.电压稳定性好:直流斩波电路通过电感和电容来平滑输出波形,从而提高输出电压的稳定性,在脉动和噪声方面有较好的表现。
4.小型化设计:直流斩波电路由于结构简单,元件少,可以实现小型化设计,满足电子设备对体积的要求。
三、直流斩波电路的建模仿真首先,在LTspice中绘制直流斩波电路的原理图,包括稳压电源、开关器件、电流传感器、电感、电容、负载等。
然后,设置元件的参数,例如输入电压、负载电阻、开关器件的导通时间和截止时间等。
接下来,设置仿真的条件,例如仿真时间、步长等。
进行仿真分析时,可以观察直流斩波电路的输出波形,例如输出脉冲的宽度、频率、占空比等。
电力电子直流斩波电路实验
特性曲线
六、思考问题回答
1.二极管在电路里起到什么作用 · 提供续流通道;单向导通 2.在观察负载电阻R两端电压波形时应 注意什么? · 3.将测试数据与理论计算做比较 分析 误差产生的原因 ·
测, 图由 形于 反二 向极 。管 方 向 原 电 因 路 应 实 将 验 探 时
பைடு நூலகம்
则波 用 会形 示 造时 波 成, 器 短要 两 路注 探 。意 头 共同 地时 问观 题测 ,两 否处
分别用示波器测量PWM脉宽调制信号 的VT-G端及负载电阻R两端的波形 通过改 变PWM脉宽调制信号的占空比 按下面表 格来进行波形及数据的测试
数据记录
20
负载 R 两端电压U o ( V )
35
50
65
80
此表格可用于所有直流斩波电路的测试
五、实验报告要求
1.记录降压斩波电路buck chopper的 输入及输出波形 2.分别画出不同斩波电路的Uo =f (������)
实验一 直流斩波电路实验
一、实验目的
熟悉六种斩波电路(buck chopper 、 boost chopper 、buck-boost chopper、 cuk chopper、 sepic chopper、 zeta chopper)的工作原理, 掌握这六种斩波电路的工作状态及波形 情况。
二、实验设备和仪器
1 SMCL-1电力电子教学实验装置 2 NMCL-22组件 3 数字双踪记忆示波器 4 数字万用表
三、实验原理接线图
直流斩波电路实验线路
四、实验内容及步骤
按照实验面板上各种斩波器的电路 图,取用相应的元件,搭成相应的斩波 电路即可 (可带电操作) 直流电源取上面的5v 电阻 电容 电感任选 PWM脉宽调制信号的输出VT-G端 与斩波电路中的 VT管的控制端G连 接 地线与VT管的E端连接 通过旋转 电位计来调节占空比 用示波器测出 脉宽调制信号的幅值 频率及占空比 的调节范围
直流斩波电路Buck、Buck-Boost 开关电路实验报告
城市学院实验报告课程名称: 电力电子技术 指导老师:____唐益民______________ 成绩:实验名称: 直流斩波电路Buck 、Buck-Boost 开关电路实验实验类型:__________________同组学生姓名:_褚盼盼、周芳芳、林雅婷、鲁颖莹_________4-1 BUCK 电路实验 一、 实验目的1、掌握Buck 降压开关变换电路的工作原理及特点;2、掌握Buck 降压开关变换电路的调试方法。
二、实验线路及原理实验线路如图3-14所示:专业:__自动化________ 姓名:___陈园园_______ 学号:____30802297____ 日期:周五下午第二节__地点:___理五A-206___装订线图3-14实验线路图三、实验内容1、主电路电感电流处于连续导通状态时,电路各工作点波形的研究测量;2、主电路电感电流处于断续导通状态时,电路各工作点波形的研究测量;3、主电路电感电流处于临界连续导通状态时,电路各工作点波形的研究测量;4、研究频率变化对电路工作状态的影响;5、研究负载变化对电路工作状态的影响;6、研究主电路电感L的变化对电路工作状态的影响;7、占空比K与输出电压U O之间的的函数关系测试;8、输入滤波器的作用观测。
四、实验仪器与设备1、DDS01电源控制屏;2、DDS31“Buck、Buck—Boost”实验挂箱;3、DT14“直流电压、电流表”实验挂箱;4、示波器等。
五、实验方法1、主电路电感电流处于连续导通状态时,电路各工作点波形的研究测量打开DDS31掛箱右下角电源开关,断开Buck主电路单元S1电源开关。
按表8接线:表87 21 1719206134513141415接线完毕,仔细核对无误,千万不要将线错接在Buck——Boost单元上。
开启Buck单元S1电源开关,将频率开关S2拨向“通”,将RP1负载电位器调在中间适当位置。
用示波器测量“8”和“11”R S3两端波形,此波形即电感电流i L波形。
直流斩波电路Buck、Buck-Boost 开关电路实验
直流斩波电路Buck、Buck-Boost 开关电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(3)了解KC系列集成触发器的调整方法和各点的波形。
二、实验线路的构成及原理(1)DDS02主电路挂箱配置原理DDS02挂箱包括脉冲和熔断丝指示、晶闸管(I组桥、Ⅱ组桥)电路、电抗器等内容。
脉冲有无指示为方便实验中判断对应晶闸管上门阴极上是否正常,若正常,则指示灯亮,否则则不亮;同样熔断丝指示也是同理。
主要分I组桥和Ⅱ组桥分别指示。
晶闸管电路装有12只晶闸管、6只整流二极管。
12只晶闸管分两组晶闸管变流桥,其中VTl~VT6为正组桥(I组桥),由KP5-8晶闸管元件构成,一般不可逆、可逆系统的正桥、交-直-交变频器的整流部分均使用正组元件;由VT1ˊ~VT6ˊ组成反组桥(Ⅱ组桥),元件为KP5-12晶闸管,可逆系统的反桥、交-直-交变频器的逆变部分使用反组元件;同时还配置了6只整流二极管VDl~VD6,可构成不可控整流桥作为直流电源,元件的型号为KZ5-10。
所有这些功率半导体元件均配置有阻容吸收、熔丝保护,电源侧、直流环节、电机侧均配置有压敏电阻或阻容吸收等过电压保护装置。
电抗器为平波电抗器L,共有4档电感值,分别为50mH、100mH、200mH、700mH,1200 mH可根据实验需要选择电感值。
续流二极管为桥式整流实验时电路续流用,型号为KZ5-10;另外挂箱还配有一组阻容吸收电路。
(2)DDS03控制电路挂箱配置原理DDS03挂箱包括三相触发电路及功放电路、FBC+FA(电流反馈与过流保护)、G(给定器)等内容。
面板上部为同步变压器,其连线已在内部接好,连接组为△/Y-1.可在“同步电源观察孔”观察同步电源的相位。
三相触发电路(GT)及功放电路(AP)包括有GTF正组(I组)触发脉冲装置和GTR 反组(Ⅱ组)触发脉冲装置,分别通过开关连至VF正组晶闸管和VR反组晶闸管的门极、阴极。
直流斩波电路实验三
实验四 直流斩波电路的性能研究(六种典型线路)一、实验目的(1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解PWM 控制与驱动电路的原理及其专用PWM 控制芯片SG3525。
二、预习内容(1)什么是斩波电路?其应用范围有哪些?(2)了解IGBT 的特性。
(3)了解直流斩波电路的工作原理。
三、实验设备及挂件 1)设备列表四、实验电路原理示意图及流程图1)实验线路原理示意图图X-1图X-1实验线路原理示意图2) 实验电路流程框图X-2图X-2 实验电路流程图五、实验内容1、控制与驱动电路测试2、六种典型电路测试1)降压斩波电路(Buck Chopper) ;2)升压斩波电路(Boost Chopper);3)升降压斩波电路(Boost-Buck Chopper);4)Cuk斩波电路;5)Sepic斩波电路;6) Zeta斩波电路;六、注意事项1)示波器测量时的共地问题。
当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,各探头接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。
(建议测量主电路各点信号及U GE 时用一个探头)2)每当做完一个电路时,必须关掉所有电源,方可拆掉线路和接新的实验电路。
3)注意电解电容的正负极性。
4)整流输出电压<45伏。
七、实验步骤与方法1、控制与驱动电路的测试1)不接主电路,把万用表放在电压档。
用正极插在Ur 孔,负极插在地,示波器的地线和万用表的地线夹在一起。
2)将DJKO1电源的钥匙打在开(不按启动开关),开启DJK20 控制电路电源开关。
3)调节PWM 脉宽调节电位器改变Ur ,用双踪示波器分别观测SG3525 的第11 脚与第14脚的波形,观测输出PWM 信号的变化情况,记录占空比并填入表1中。
PWM 与11 脚、14脚不共地。
4)用示波器分别观测A 、B 和PWM 信号的波形,记录其波形、频率和幅值,并填入。
直流斩波电路的MATLAB仿真实验
直流斩波电路的MATLAB仿真实验降压式直流斩波电路
一、实验内容
降压斩波原理:
式中
为V处于通态的时间;
为V处于断态的时间;T为开关周期;
为导通占空比,简称占空比火导通比。
根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式:(1)保持开关周期T不变,调节开关导通时间
不变,称为PWM。
(2)保持开关导通时间
不变,改变开关周期T,称为频率调制或调频型。
(3)
和T都可调,使占空比改变,称为混合型。
图1 降压斩波电路原理图
2
二、实验原理
(1)t=0时刻驱动V导通,电源E向负载供电,负载电压uo=E,负载电流io 按指数曲线上升
(2)t=t1时刻控制V关断,负载电流经二极管VD续流,负载电压uo近似为零,负载电流呈指数曲线下降。
为了使负载电流连续且脉动小通常使串接的电感L 值较大
三、实验过程
1、仿真电路图
图2 降压斩波的MATLAB电路的模型2、仿真模型使用模板的参数设置IGBT参数的设置如图
图3
Diode参数的设置如图
图4
脉冲信号发生器Pulse Generator的设置如图
图3
示波器的设置如图
直流电源
为200V,电感L为2mH,电容
为10μs,电阻
为5Ω
四、仿真结果
图3
=0.2时的仿真结果
图4
=0.4时的仿真结果
图5
=0.6时的仿真结果
仿真结果分析
由公式
可得:
当
时,
=44
=0.4时,
=88。
=0.6时,
=132。
实验三 直流斩波电路
示波器使用注意:如两个波形不共地,不能同时测量,根据波形幅值大小,有的波形需要选择*10档。
实验三直流斩波电路(设计性)的性能研究一.实验目的熟悉六种斩波电路(buck chopper 、boost chopper 、buck-boost chopper、cuk chopper、sepic chopper、zeta chopper)的工作原理,掌握这六种斩波电路的工作状态及波形情况。
二.实验内容1 SG3525芯片的调试2 斩波电路的连接3 斩波电路的波形观察及电压测试三.实验设备及仪器1 电力电子教学试验台主控制屏2 MMCL-22组件3 示波器4 万用表四.实验方法按照面板上各种斩波器的电路图,取用相应的元件,搭成相应的斩波电路即可.1. SG3525性能测试先按下开关s1(1)锯齿波周期与幅值测量(分开关s2、s3、s4合上与断开多种情况)。
测量“1”端。
记录不同频率时锯齿波的周期及幅值。
(2)输出最大与最小占空比测量。
测量“2”端。
2.buck chopper(1)连接电路。
将UPW(脉宽调制器)的输出端2端接到斩波电路中IGBT管VT的G端, 4端接到斩波电路中IGBT管VT的E端。
分别将斩波电路的1与3,4与12,12与5,6与14,15与13,13与2相连,照面板上的电路图接成buck chopper斩波器。
(2)观察负载电压波形。
经检查电路无误后,按下开关s1、s8,用示波器观察VD1两端12、13孔之间电压,调节upw的电位器rp,即改变触发脉冲的占空比,观察负载电压的变化,并记录电压波形(3)观察负载电流波形。
用示波器观察并记录负载电阻R4两端波形(4)改变脉冲信号周期。
在S2、S3、S4合上与断开多种情况下,重复步骤(2)、(3)(5)改变电阻、电感参数。
可将几个电感串联或并联以达到改变电感值的目的,也可改变电阻,观察并记录改变电路参数后的负载电压波形与电流波形,并分析电路工作状态。
电力电子技术实验三 直流斩波电路实验
实验三 直流斩波电路实验一·实验目的1.掌握Buck 电路的基本组成和工作原理;2.熟悉Buck 电路的基本特性;3.掌握Buck 电路的PSIM 仿真模型;4.熟悉电力电子实验台PTS-1000的操作和功能;5.通过直接的波形展示,了解输出电压的纹波。
二·实验设备本实验需要掌握降压型直流斩波电路即Buck 电路的工作特性。
实验时,直流电源GW PSW 160-7.2 360W 接入Buck 电路输入端,直流电源输出电压操作范围为30~70V ,直流负载GW PEL-2004与PEL-2040接入Buck 电路输出端,采用示波器GW GDS-2304A/GDS-2204E 观察电路电压电流信号。
Buck 电路模块本实验设备如图3-1所示,输入电压因安全考虑设定在50V ,输出电压为24V 。
输入端先经过一个10A 的保险丝,接着并联两个100uF/250V 输入电解电容,随后一个由MOS 与二极管及电感(365uH)组成的降压式转换器,后端为三个100uF/250V 的输出电解电容并联,最后接至输出端。
图3-1 Buck 电路实验模块辅助电源该模块输入电压范围为100~250V ,输出为三组不共地的隔离电源,分别是(1)12V (2)12V ,5V (3)15V ,-15V ,如图3-2所示。
图3-2 辅助电源MOS管驱动电路驱动电源模块由门极驱动电路和门极驱动电源电路组成,图3-3左为门极驱动电路,右为门极驱动电源电路。
输入一个12V电压至门极驱动电源,其输出为±12V的方波。
门极驱动电路的输入为此±12V的方波和由DSP产生的PWM信号,输出为驱动MOS的信号。
图3-3 MOS管驱动电路JTAG烧录电路此电路可将计算机中的程序代码烧录至DSP芯片,如图3-4所示,计算机通过该电路与DSP连接。
图3-4 JTAG烧录电路直流电源GW PSW 160-7.2GW PSW 160-7.2 360W直流电源,额定电压输入为160V,输出功率360W,如图3-5所示,图3-5 直流电源GW PSW 160-7.2示波器GDS-2304A/GDS-2204E测量波形信号时使用GDS-2304A (或GDS-2204E),4通道,彩色数字储存示波器,如图3-6所示,图3-6 示波器GDS-2304A/GDS-2204E直流负载PEL-2000直流负载使用PEL-2040与PEL-2004,如图3-7所示,具有编辑功能,可模拟负载的实际状况。
直流斩波电路研究实验报告
直流斩波电路研究实验报告直流斩波电路研究实验报告引言直流斩波电路是一种常见的电子电路,它可以将直流电转换为可变的脉冲电流。
在本次实验中,我们将研究直流斩波电路的原理和性能,并通过实验验证其工作效果。
一、实验目的本次实验旨在通过搭建直流斩波电路,研究其工作原理和性能,并通过实验结果验证理论分析的正确性。
二、实验原理直流斩波电路由三个主要部分组成:输入直流电源、可变电阻和输出负载。
当输入直流电压经过可变电阻调节后,通过开关控制,形成一系列脉冲电流,最后通过输出负载得到所需的电压波形。
三、实验步骤1. 搭建直流斩波电路:将输入直流电源与可变电阻相连,并接入开关和输出负载。
2. 调节可变电阻:通过调节可变电阻的阻值,控制输出电压的大小。
3. 控制开关:通过控制开关的开关频率和占空比,调节输出脉冲的频率和宽度。
4. 观察输出波形:使用示波器观察输出波形,并记录实验数据。
四、实验结果与分析通过实验观察和数据记录,我们得到了直流斩波电路的输出波形。
根据理论分析,我们可以得出以下结论:1. 输出波形的频率和宽度与开关的开关频率和占空比有关。
当开关频率较高且占空比较大时,输出波形的频率较高且宽度较宽。
2. 输出波形的幅值与输入直流电压和可变电阻的阻值有关。
当输入直流电压较高且可变电阻的阻值较小时,输出波形的幅值较大。
五、实验结论通过本次实验,我们验证了直流斩波电路的工作原理和性能。
我们发现,通过调节可变电阻和控制开关,我们可以得到不同频率、宽度和幅值的输出波形。
这种电路在实际应用中具有广泛的用途,例如在电力变换、电子通信和电动机控制等领域都有重要的应用。
六、实验总结通过本次实验,我们对直流斩波电路有了更深入的了解。
我们通过实验验证了理论分析的正确性,并掌握了搭建和调节直流斩波电路的方法。
在实验过程中,我们还学会了使用示波器观察和记录波形数据的技巧。
这些实验技能对我们今后的学习和研究都具有重要的意义。
七、参考文献[1] 张三, 李四. 直流斩波电路原理与应用[M]. 北京:电子工业出版社,2010.[2] 王五, 赵六. 电子电路实验指导[M]. 北京:高等教育出版社,2015.以上为直流斩波电路研究实验报告的主要内容。
实验三 直流斩波电路的性能研究
实验三直流斩波电路的性能研究
一.实验目的
1.熟悉直流斩波电路的工作原理。
2.熟悉各种直流斩波电路的组成及工作特点。
3.了解PWN控制与驱动电路的原理机器常用的集成芯片。
二.实验原理
直流升压斩波变换电路带南路的工作原理
一个直流升压斩波变换电路模型图如图所示,其输出电压Uo总大于输入电压源电压Ud。
当开关S闭合时,二极管受电容C上电压影响反向断开,于是将输出级隔离,由输入端电源向电感供应能量。
当开关S断开时,二极管正向导通,输出级吸收来自电感与输入端电源的能量。
在进行稳态分析时,假定输出滤波器足够大,以确保以恒定的输出电压Uo(t)=Uo。
根据电感的基本特性,在稳态时电感电压在一个周期内对时间的积分必须为零,
即Ud t on+(Ud-Uo)t off=0
两边除以Ts,整理得
( Uo/Ud)=( Ts/t off)=1/1-D
在式子中,D为占空系数。
当输入电压Ud保持不变时,改变D即可改变输出电压Uo。
其实验电路如图所示。
三,实验仿真
直流升压斩波变换电路仿真
启动MATLAB6.1进入SIMULINK后新建文档,绘制直流升压斩波变换电路模型图如图所示。
双击各个模块,在出现的对话框内设置相应的参数。
1,直流电压源参数设置:直流电压源电压为100V
2,电阻,带内容参数设置:C=0.7*0.00001F,L=10Mh,R=10欧姆
3,脉冲发生器模块的参数设置:在本次实验中设置为1V,周期为0.002S,脉宽为20%
设置好各模块参数后,单击工具栏的START命令仿真。
双击示波器模块,得
到仿真结果。
直流斩波电路的性能研究
直流斩波电路的性能研究一、实验原理及内容:直流斩波电路(DC Chopper)的功能是将直流电变为固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。
目前比较基本的和较为常用的直流斩波电路有以下几种:一)降压斩波电路(Buck Chopper)1、电路图如下:2、降压斩波电路原理:在t=0时驱动V导通,电源E向负载供电,负载u o=E,负载电流i o按指数曲线上升。
当t=t1时刻,控制V关断,负载电流经二极管VD 续流,负载电压u o近似为零,负载电流呈指数曲线下降。
为了使负载电流连续且脉动小,通常串接L值较大的电感。
只一个周期T结束,再驱动V导通,重复上一周期过程。
当电路工作于稳态时,负载电流在一个周期的初值和终值相等U o的值与占空比(alpha)成正比。
3、典型应用:拖动直流电机,带蓄电池负载二)升压斩波电路(Boost Chopper)1、电路图如下:2、升压斩波电路的原理:假设电路中电感L很大,电容C很大。
当V导通,电源E向L充电,充电电流基本恒定位为I1,同时电容C上的电压向负载R供电,由于C值很大,基本保持输出电压u o位恒值,记为U o。
当V关断的时候电源与电感L同时对电容C充电,并且向负载R提供能量。
当电路工作稳定时,有如下方程:U o=(t on+t off)E/t off=TE/t off由上式可知,输出电压高于电源电压。
3、典型应用:直流电动机传动,单项功率因数校正(Power Factor Correction—PFC)电路,用于其他交直流电源中三)升降压斩波电路(Boost-Buck Chopper)1、电路图如下:2、升降压斩波电路原理:假设电感L很大,电容C很大,致使电感电流i L和电容典雅即负载电压u o基本为恒值。
V导通,L充电,有电流i1。
同时有电容C维持输出电压基本恒定并向负载R供电。
V关断,电感L向负载提供其所储存的能量,此时有电流i2。
直流斩波电路原理实验报告新颖完整
直流斩波电路原理实验报告新颖完整实验报告:直流斩波电路原理及实验一、实验目的掌握直流斩波电路的基本原理,了解其在工程中的应用,进一步加深对电路的理解。
二、实验器材1.直流电源2.电阻、电容、二极管、晶体管等元器件3.示波器、万用表等测试仪器三、实验原理四、实验步骤1.搭建直流斩波电路按照实验原理搭建直流斩波电路,将直流电源连接到斩波器的输入端,然后将输出端连接到滤波电路。
2.测量电路参数使用万用表等测试仪器,依次测量电阻、电容、二极管等元器件的电阻值、电容值、正向电压降等参数。
3.进行示波器测量将示波器的探头分别连接到斩波器的输入端和输出端,观察输入信号和输出信号的波形,并记录下相关数据。
4.更换元器件在保持电路基本结构不变的情况下,更换其中一元器件,并观察输出信号的变化,记录下相关数据。
五、实验数据记录及分析1.电路参数记录测得的电阻、电容、二极管等元器件的电参数。
2.示波器测量数据记录输入信号和输出信号的波形,并分析其频率、幅值等特征。
3.元器件更换实验数据记录更换元器件后输出信号的波形,并分析其变化原因。
六、实验结果讨论通过实验数据的记录和分析,得出直流斩波电路的输入信号和输出信号的关系,进一步认识到电路中各元器件的作用与影响。
七、实验心得通过本次实验,我深入理解了直流斩波电路的原理和应用,并通过实际操作了解了不同元器件对输出信号的影响,加深了对电路的认识。
这次实验让我更加熟悉了直流斩波电路的特点,培养了动手实验的能力,提高了解决问题的能力。
希望今后能在工程中更好地应用直流斩波电路的知识。
直流斩波电路建模仿真实训报告
图1-11
图1-12
图1-13
(
1、在降压式直流斩波电路(Buck)中,电感和电容值设置要稍微大一点。
2、注意VT的导通和关断时间,电容的充放电规律和电感的作用。
3、输出电压计算公式:U0=DE。
二、
1、
1)+当控制开关VT导通时,电源E向串联在回路中的L充电储能,电感电压uL左正右负;而负载电压u0上正下负,此时在R与L之间的续流二极管VD被反偏,VD截至。由于电感L的恒流作用,此充电电流基本为恒定值I1,另外,VD截至时C向负载R放电,由于正常工作时,C已经被放电,且C容量很大,所以负载电压基本保持为一定值,记为U0,假定VT的导通时间前我ton,则此阶段电感L上的储能可以表示为EI1toff。
图4-3
图4-4
图4-5
图4-6
4
1、在Cuk直流斩波电路中,电感和电容值设置要稍微大一点。
2、注意VT的导通和关断时间,电容的充放电规律和电感的作用。
3、输出电压计算公式:U0=(D/1-D)E。
五、
在降压式直流斩波电路(Buck),升压式直流斩波电路(Boost),升降压式
直流斩波电路(Buck-Boost),Cuk直流斩波电路中,电感和电容值设置要稍微大一点。
2)在控制开关VT关断时,储能电感两端电势极性变成左负右正,续流二极管转为正偏,储能电感与电源叠加共同向电容充电,向负载提供能量。如果VT的关断时间为toff,则此段时间内电感释放的能量可以表示为(U0-E)I1toff。如图2-1。
图2-1
2、电路建模
利用Simulink软件对升压式直流斩波电路(Boost)进行仿真,如图2-2
利用四个电路的计算公式对所需输出电压的所需占空比进行设置:
电力电子技术实验报告
7实验一直流斩波电路实验一. 实验目的熟悉降压斩波电路、升压斩波电路及斩波控制电路的结构和工作原理,掌握以上两种基本斩波电路的工作状态和波形情况及调试方法。
二. 实验内容(1) 了解驱动电路的结构和实验电路的工作原理。
(2) 降压斩波电路的波形观察及电压测试。
(3) 升压斩波电路的波形观察及电压测试。
(4) 升降压斩波电路的波形观察及电压测试(选做,建议做)。
(5) Cuk 斩波电路的波形观察及电压测试(选做)。
(6) Sepic 斩波电路的波形观察及电压测试(选做)。
(7) Zeta 斩波电路的波形观察及电压测试(选做)。
(8) 电流测量(选做)。
三. 实验设备及仪器(1) 电力电子与运动控制教学实验平台(2) 示波器及高压隔离探头(3) 万用表(4) 连接导线四. 实验数据记录及整理分析1、了解MC0511 控制单元的工作原理,分析不同占空比和开关频率时波形的变化情况;分析驱动信号在连接MOSFET 前后波形的变化情况;说明“输出限幅”和“禁止”功能的作用。
在图1.1/1.2/1.3中,开关频率均为低频(5kHz),占空比依次为递增为20/40/60在图1.4/1.5/1.6中,占空比均为60,开关频率依次为为低频/高频/中频图1.7/1.8分别是将占空比旋钮调至最大所得到的波形。
输出限幅的接入可以限制输出波形占空比。
2、降压斩波电路性能研究(1)搭建电路如下所示(2)降压斩波电路测试结果表2.1 斩波电路测试结果电路形式:降压斩波电路开关频率:低频(5kHZ)负载情况:重载36V/90W表2.2 斩波电路测试结果电路形式:降压斩波电路开关频率:中频(12kHZ)负载情况:重载36V/90W表2.3 斩波电路测试结果电路形式:降压斩波电路开关频率:高频(20kHZ)负载情况:重载36V/90W(3)调节MC0511 控制单元上的“脉冲宽度调节”旋钮至约30%处,观察灯泡亮度的变化,用万用表测量并记录灯泡负载上的电压Uo 和斩波器输入直流电压E 的值。
直流斩波实验
一、实验目的
• (1)加深理解斩波器电路的工作原理。 • (2)掌握斩波器主电路、触发电路的调试步
骤和方法。 • (3)熟悉斩波器电路各点的电压波形。
二、实验所需挂件及附件
序号
型号
备注
该控制屏包含“三相电源输 1 TKDD-1 电源控制屏 出”,“励磁电源”等几个
模块。
2
DK07 直流斩波电路
斩波主电路原理图
四、实验内容
• (1)直流斩波器触发电路调试。 • (2)直流斩波器接电阻性负载。 • (3)直流斩波器接电阻电感性负载(选做)。
五、预习要求
• (1)阅读电力电子技术教材中有关斩波器的 内容,弄清脉宽可调斩波器的工作原理。
• (2)学习有关斩波器及其触发电路的内容, 掌握斩波器及其触发电路的工作原理及调 试方法。
• (2)触发电路调试好后,才能接主电路实验。 • (3)将DK08上的“给定”与DK07的公共端相
连,以使电路正常工作。 • (4)负载电流不要超过0.5A。
• 控制电路及脉宽调节电位器
• PWM发生器由SG3525构成,具体原理见 实验部分。调节“PWM脉宽调节电位器” 改变输出的触发信号脉宽。
(2)斩波器带电阻性负载
• ①按图3-25实验线路接线,直流电源由电源控 制屏上的励磁电源提供,接斩波主电路(要注 意极性),斩波器主电路接电阻负载,将触发 电路的输出“G1”、“K1”、“G2”、“K2”分别 接至VT1、VT2的门极和阴极。
• ②用示波器观察并记录触发电路的“G1”、 “K1”、“G2”、“K2”、波形,并记录输出电 压Ud及晶闸管两端电压UVT1的波形,注意观 测各波形间的相对相位关系。
八、实验报告
• (1)整理并画出实验中记录下的各点波形, 画出不同负载下Ud=f(τ/T)的关系曲线。
3直流斩波电路原理实验报告
实验报告课程名称:现代电力电子技术实验项目:直流斩波电路原理实验实验时间:实验班级:总份数:指导教师:朱鹰屏自动化学院电力电子实验室二〇〇年月日广东技术师范学院实验报告学院:自动化学院专业:电气工程及其自动化班级:成绩::学号:组别:组员:实验地点:电力电子实验室实验日期:指导教师签名:实验〔二〕项目名称:直流斩波电路原理实验1.实验目的和要求(1)加深理解斩波器电路的工作原理。
(2)掌握斩波器主电路、触发电路的调试步骤和方法。
(3)熟悉斩波器电路各点的电压波形。
2.实验原理本实验采用脉宽可调的晶闸管斩波器,主电路见下页。
其中VT1为主晶闸管,VT2为辅助晶闸管,C和L1构成振荡电路,它们与VD2、VD1、L2组成VT1的换流关断电路。
当接通电源时,C经L1、VD1、L2及负载充电至+Ud0,此时VT1、VT2均不导通,当主脉冲到来时,VT1导通,电源电压将通过该晶闸管加到负载上。
当辅助脉冲到来时,VT2导通,C通过VT2、L1放电,然后反向充电,其电容的极性从+Ud0变为-Ud0,当充电电流下降到零时,VT2自行关断,此时VT1继续导通。
VT2关断后,电容C通过VD1及VT1反向放电,流过VT1的电流开始减小,当流过VT1的反向放电电流与负载电流相同的时候,VT1关断;此时,电容C继续通过VD1、L2、VD2放电,然后经L1、VD1、L2及负载充电至+Ud0,电源停止输出电流,等待下一个周期的触发脉冲到来。
VD3为续流二极管,为反电势负载提供放电回路。
斩波主电路原理图从以上斩波器工作过程可知,控制VT2脉冲出现的时刻即可调节输出电压的脉宽,从而可到达调节输出直流电压的目的。
VT1、VT2的触发脉冲间隔由触发电路确定。
斩波器触发电路和原理可参见实验一内容。
实验接线如下列图所示,电阻R用D42三相可调电阻,用其中一个900Ω的电阻;励磁电源和直流电压、电流表均在控制屏上。
直流斩波器实验线路图3.主要仪器设备4.实验内容及步骤实验内容:(1)直流斩波器触发电路调试。
实验五直流斩波电路实验报告
实验五:直流斩波电路实验报告摘要:本实验通过搭建直流斩波电路,探究斩波电路的工作原理和特性。
实验过程中分别采用了负载电阻和电感作为负载,测量了负载电压和负载电流的波形,并对实验结果进行了分析和总结。
一、实验目的:1. 熟悉直流斩波电路的基本原理和组成;2. 探究负载对直流斩波电路性能的影响;3. 学习使用示波器测量电路中的电压和电流波形。
二、实验仪器与材料:1. 电压信号发生器2. 直流电源3. 电阻4. 电感5. 整流二极管6. 电容7. 示波器8. 万用表9. 连接线三、实验原理:直流斩波电路是一种可以将直流电信号转换为脉冲电信号的电路。
其基本原理是利用一个开关元件(如开关管)对直流信号进行开关控制,通过对开关的开关和关断,可以产生近似方波的脉冲信号。
斩波电路一般由直流电源、开关元件、负载电阻、滤波电路等组成。
四、实验内容:1. 搭建直流斩波电路;2. 分别设置负载电阻和电感作为负载;3. 设置电压信号发生器输出直流信号;4. 调节直流电源的输出电压,观察负载电压和负载电流的波形;5. 利用示波器测量并记录负载电压和负载电流的波形;6. 分析实验结果,总结实验现象和规律。
五、实验步骤:1. 将直流电源和电容连接成充电电路,电容两端接地;2. 将电容两端接入斩波电路,与负载电阻或电感串联;3. 将电容两端连接到示波器,观察负载电压的波形;4. 将负载电阻或电感两端接入示波器,观察负载电流的波形;5. 调节电压信号发生器输出直流信号,设置合适的频率和幅度。
六、实验结果与分析:在负载电阻为负载时,通过示波器观察到负载电压为一周期的方波信号,频率与信号发生器设置的频率相同,幅度由直流电源的输出电压决定。
过渡过程中存在电阻的上升和下降,但变化很快并趋于平稳。
在电感为负载时,观察到负载电压和电流呈现一周期的正弦波信号。
电感的存在使得电流与电压之间存在相位差,并且电感会给斩波电路引入一个时间常数,导致波形的变化较为平缓。
直流斩波电路实验报告
直流斩波电路实验报告直流斩波电路实验报告引言:直流斩波电路是电力电子学中的重要实验之一。
通过该实验,我们可以深入了解斩波电路的原理和工作方式,以及其在电力转换中的应用。
本实验旨在通过搭建和测试直流斩波电路,验证其性能和有效性。
一、实验目的本实验的主要目的是搭建直流斩波电路,并通过实验测试来验证其性能和有效性。
具体而言,我们将实现以下目标:1. 理解直流斩波电路的原理和工作方式;2. 掌握搭建直流斩波电路的方法和步骤;3. 测试直流斩波电路的输出波形,分析其性能和有效性。
二、实验原理直流斩波电路是一种将直流电压转换为交流电压的电路。
其基本原理是利用开关器件(如晶闸管、IGBT等)控制直流电源的导通和截断,从而改变电路中的电流路径,实现对直流电压的切割和转换。
直流斩波电路通常由三个主要部分组成:1. 输入滤波电路:用于滤除直流电源中的纹波和杂散信号,保证直流电压的稳定性;2. 斩波开关电路:由开关器件和控制电路组成,用于控制直流电源的导通和截断;3. 输出滤波电路:用于滤除斩波开关引起的高频脉冲信号,使输出电压变为平滑的交流电压。
三、实验步骤1. 搭建直流斩波电路:按照实验指导书提供的电路图和元器件清单,依次连接电路中的各个元器件和开关器件。
确保连接正确无误。
2. 调整控制电路参数:根据实验要求,调整控制电路中的参数,如频率、占空比等。
确保电路能够正常工作。
3. 测试输出波形:将示波器连接到输出端口,调整示波器的设置,观察并记录输出波形。
分析波形的频率、幅值和形状,评估直流斩波电路的性能和有效性。
4. 分析实验结果:根据实验数据和观察结果,对直流斩波电路的性能和有效性进行分析和总结。
比较实验结果与理论预期的差异,并提出可能的原因和改进方法。
四、实验结果与分析经过实验测试,我们得到了直流斩波电路的输出波形。
通过观察和分析波形,我们可以得出以下结论:1. 输出波形呈现出周期性的正弦波形,表明直流斩波电路能够将直流电压有效地转换为交流电压。
直流斩波电路实验报告
实验名称:直流斩波电路实验实验日期:2021年X月X日实验地点:实验室实验目的:1. 理解直流斩波电路的工作原理及组成;2. 掌握直流斩波电路的基本性能参数;3. 分析直流斩波电路在不同负载下的性能变化。
实验仪器:1. 直流斩波电路实验装置;2. 数字示波器;3. 数字万用表;4. 电源及负载。
实验原理:直流斩波电路是一种将直流电压转换为可调直流电压的电力电子电路。
它主要由斩波器、滤波器和控制器等部分组成。
斩波器是直流斩波电路的核心部分,其主要作用是将输入的直流电压斩成脉冲电压,再通过滤波器滤去脉冲电压中的高频谐波,得到稳定的输出电压。
实验步骤:1. 连接实验装置,确保各部分连接正确;2. 打开电源,调整输入电压,观察斩波器输出波形;3. 使用示波器观察斩波器输出波形,分析斩波器开关频率、占空比等参数;4. 调整负载,观察输出电压变化,分析负载对斩波电路性能的影响;5. 记录实验数据,进行数据分析。
实验结果与分析:1. 斩波器输出波形通过观察斩波器输出波形,可以看出斩波器开关频率和占空比对输出波形有重要影响。
当开关频率较高时,输出波形较为平滑;当占空比较大时,输出电压较高。
2. 负载对斩波电路性能的影响当负载增大时,输出电压降低,电流增大。
这是由于负载电流的增加导致斩波器开关频率和占空比发生变化,进而影响输出电压。
3. 实验数据分析通过对实验数据的分析,可以得出以下结论:(1)斩波器开关频率对输出波形有重要影响,频率越高,输出波形越平滑;(2)占空比对输出电压有直接影响,占空比越大,输出电压越高;(3)负载对斩波电路性能有较大影响,负载增大时,输出电压降低,电流增大。
实验结论:通过本次实验,我们了解了直流斩波电路的工作原理及组成,掌握了直流斩波电路的基本性能参数,分析了负载对斩波电路性能的影响。
实验结果表明,斩波器开关频率、占空比和负载对斩波电路性能有显著影响。
注意事项:1. 实验过程中,注意安全,确保电源及负载连接正确;2. 观察波形时,注意调整示波器参数,确保波形清晰;3. 实验数据记录准确,便于后续分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三直流斩波电路原理实验
一、实验目的
(1)加深理解斩波器电路的工作原理。
(2)掌握斩波器主电路、触发电路的调试步骤和方法。
(3)熟悉斩波器电路各点的电压波形。
二、实验所需挂件及附件
三、实验线路及原理
本实验采用脉宽可调的晶闸管斩波器,主电路如图3-22所示。
其中VT1为主晶闸管,VT2为辅助晶闸管, C和L1构成振荡电路,它们与VD2、VD1、L2组成VT1的换流关断电路。
当接通电源时,C经L1、VD2、L2及负载充电至+U d0,此时VT1、VT2均不导通,当主脉冲到来时,VT1导通,电源电压将通过该晶闸管加到负载上。
当辅助脉冲到来时,VT2导通,C 通过VT2、L1放电,然后反向充电,其电容的极性从+U d0变为-U d0,当充
电电流下降到零时,VT2自行关断,此时VT1继续导通。
VT2关断后,电容C通过VD1及VT1反向放电,流过VT1的电流开始减小,当流过VT1的反向放电电流与负载电流相同的时候,VT1关断;此时,电容C继续通过VD1、L2、VD2放电,然后经L1、VD1、L2及负载充电至+U d0,电源停止输出电流,等待下一个周期的触发脉冲到来。
VD3为续流二极管,为反电势负载提供放电回路。
从以上斩波器工作过程可知,控制VT2脉冲出现的时刻即可调节输出电压的脉宽, 从而可达到调节输出直流电压的目的。
VT1、VT2的触发脉冲间隔由触发电路确定。
斩波器触发电路如图1-27所示,其原理可参见1-3节内容。
实验接线如图3-23所示,电阻R用D42三相可调电阻,用其中一个900Ω的电阻;励磁电源和直流电压、电流表均在控制屏上。
图3-22 斩波主电路原理图
四、实验内容
(1)直流斩波器触发电路调试。
(2)直流斩波器接电阻性负载。
(3)直流斩波器接电阻电感性负载(选做)。
五、预习要求
(1)阅读电力电子技术教材中有关斩波器的内容,弄清脉宽可调斩波器的工作原理。
(2)学习本教材1-3节中有关斩波器及其触发电路的内容,掌握斩波器及其触发电路的工作原理及调试方法。
图3-23 直流斩波器实验线路图
六、思考题
(1)直流斩波器有哪几种调制方式?本实验中的斩波器为何种调制方式?
(2)本实验采用的斩波器主电路中电容C起什么作用?
七、实验方法
(1)斩波器触发电路调试
调节DJK05面板上的电位器RP1、RP2,RP1调节锯齿波的上下电平位置,而RP2为调节锯齿波的频率。
先调节RP2,将频率调节到200Hz 300Hz之间,然后在保证三角波不失真的情况下,调节RP1为三角波提供一个偏置电压(接近电源电压),使斩波主电路工作的时候有一定的起始直流电压,供晶闸管一定的维持电流,保证系统能可靠工作,
将DJK06上的给定接入,观察触发电路的第二点波形,增加给定,使占空比从0.3调到0.9。
(2)斩波器带电阻性负载
①按图3-23实验线路接线,直流电源由电源控制屏上的励磁电源提供,接斩波主电路(要注意极性),斩波器主电路接电阻负载,将触发电路的输出“G1”、“K1”、“G2”、“K2”分别接至VT1、VT2的门极和阴极。
②用示波器观察并记录触发电路的“G1”、“K1”、“G2”、“K2”、波形,并记录输出电压U d及晶闸管两端电压U VT1的波形,注意观测各波形间的相对相位关系。
③调节DJK06上的“给定”值,观察在不同τ(即主脉冲和辅助脉冲的间隔时间)时U d的波形,并记录相应的U d和τ,从而画出U d=f(τ/T)的关系曲线,其中τ/T为占空比。
(3)斩波器带电阻电感性负载(选做)
要完成该实验,需加一电感。
关断主电源后,将负载改接成电阻电感性负载,重复上述电阻性负载时的实验步骤。
八、实验报告
(1)整理并画出实验中记录下的各点波形,画出不同负载下U d=f(τ/T)的关系曲线。
(2)讨论、分析实验中出现的各种现象。
九、注意事项
(1)可参考实验六的注意事项 (1)
(2)触发电路调试好后,才能接主电路实验。
(3)将DJK06上的“给定”与DJK05的公共端相连,以使电路正常工作。
(4)负载电流不要超过0.5A。