相似多边形的周长比和面积比
巧用相似多边形的性质
巧用相似多边形的性质相似多边形的周长比等于相似比,面积比等于相似比的平方,运用这两个性质解决实际问题时,一定要弄清他们的关系,并努力把实际问题与之联系,从而把实际问题简单化. 相似三角形的性质(1)回答了相似三角形中所有对应线段都构成比例的问题,这个性质为我们今后证明线段的比例式提供了极大的方便。
性质(2)、(3)揭示了相似三角形的周长、面积与相似比的关系,利用它可以解决相似三角形中有关周长和面积的问题,这里要注意这些性质的灵活运用。
如:两个相似三角形的相似比,等于它的周长比;也等于它们的面积比的算术平方根。
1、求边长例1 一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,其最短边长为6,则最长边长为 ( )A .12B .18C .24D .30思路与技巧 由相似多边形对应边成比例,设最长边为x.∴x662 ,∴2x=36,x=18. 答案 B点评 本题根据相似多边形的对应边成比例的性质,第一个多边形的最短边与第二个多边形的最短边,第一个多边形的最长边与第二个多边形的最长边分别是对应边,切记不可将对应关系弄错。
2、求面积例2 已知:如图,正方形ABCD 中,E 是AC 上一点,EF⊥AB 于F ,EG⊥AD 于G ,AB=6,AE∶EC=2∶1,求S 四边形AFEG 。
思路与技巧 (1)四边形AFEG 是什么图形?为什么?(2)AE∶EC 的值与哪两条线段的比相等?为什么?如何求出AF 的长?(3)任意的两个正方形都相似吗?为什么?所有的矩形都相似吗?所有的菱形都相似吗?解 ∵正方形ABCD ,EF⊥AB,EG⊥AD∴EF∥CB,EG∥DC∵∠1=∠2=45° ∴EF=AF∵∠FAG=90°,∴AFEG 是正方形,∴正方形ABCD∽正方形AFEG ,∴S 正ABCD ∶S 正AFEG =AB 2∶AF 2(相似多边形的面积比等于相似比的平方),在△ABC 中,EF∥CB ∴AE∶EC=AF∶FB=2∶1,又AB=6 ∴AF=4 ∴S 正ABCD ∶S 正AFEG =36∶16, ∴ .点评 本题中的正方形是特殊的多边形,但在一般的多边形中,一定要注意对应关系。
《相似》全章复习与巩固(知识讲解)九年级数学下册基础知识专项讲练(人教版)
专题27.43《相似》全章复习与巩固(知识讲解)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【要点梳理】【知识点一】成比例线段1、定义:四条线段,,,a b c d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段,,,a b c d 叫做成比例线段,简称比例线段。
2、性质:(1)基本性质:如果a cb d=,那么ad bc =;反之,若ad bc =(),,,0a b c d 都不等于,那么a c b d =(2)等比性质:如果()==0a c m b d n b d n =+++≠ ,那么a c m a b d n b +++=+++ (3)合比性质:如果a c b d =,那么a b c d b d ++=,a b c d b d --=【知识点二】平行线分线段成比例1、定理:两条直线被一组平行线所截,所得的对应线段成比例2、推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例【知识点三】相似多边形1、定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比2、性质:相似多边形的周长比等于相似比,面积比等于相似比的平方【知识点四】相似三角形1、定义:三角分别相等,三边成比例的两个三角形叫做相似三角形2、判定:(1)两角分别相等的两个三角形相似(2)两边成比例且夹角相等的两个三角形相似(3)三边成比例的两个三角形相似3、性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比(3)相似三角形的周长比等于相似比,面积比等于相似比的平方【知识点五】黄金分割点C 把线段AB 分成两条线段AC 和BC ()AC BC >,如果AC BC AB AC=,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,即:0.618:1AC AB ≈【知识点六】位似图形1、定义:一般的,如果两个相似多边形任意一组对应顶点P ,'P 所在的直线都经过同一点O ,且有'OP =()0k OP k ⋅≠,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心2、性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比3、画图步骤:(1)尺规作图法:①确定位似中心;②确定原图形中的关键点关于中心的对应点;③描出新图形(2)坐标法:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘于同一个数()0k k ≠,所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k【典型例题】类型一、成比例线段和平行线分线段成比例1.已知三条线段a b c ,,满足1324a b c +==,且17a b c ++=.(1)求a b c ,,的值;(2)若线段d 是线段a 和b 的比例中项,求d 的值.【点拨】本题考查了比例的性质,比例线段,利用“设k 法”用k 表示出a 、b 、c 可以使计算更加简便.【变式1】已知:2:3,:3:4a b b c ==,且26a b c +-=,求,,a b c 的值【答案】4a =,6b =,8c =.【分析】根据比的性质,可得a ,b ,c 用k 表示,根据解方程,可得k 的值,即可得答案.解:∵:2:3a b =,:3:4b c =,∴设2a k =,3b k =,4c k =,∴()22346k k k ⋅+-=,整理得:36k = ,解得:2k =,∴24a k ==,36b k ==,48c k ==.【点拨】本题考查了比例的性质,利用比例的性质得出2a k =,3b k =,4c k =是解题关键.【变式2】如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF PD=,以AF为边作正方形AMEF,点M在AD上.,的长;(1)求AM DM(2)点M是AD的黄金分割点吗?为什么?【点拨】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.2.如图,已知AD∥BE∥CF,它们以此交直线l1、l2于点A、B、C和D、E、F.若25DE EF =,AC=14,(1)求AB 的长.(2)如果AD=7,CF=14,求BE 的长.【点拨】本题考查平行线分线段成比例的知识,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例.【变式1】如图,已知AD//BE//CF,它们依次交直线1l、2l于点A、B、C和点D、E、F,且AB=6,BC=8.(1)求DEDF的值;(2)当AD=5,CF=19时,求BE的长.【点拨】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH 是解决问题的关键.【变式2】如图,在ABC ∆中,点D 是边AB 上的一点.(1)请用尺规作图法,在ABC ∆内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AE EC的值.【点拨】本题考查了作一个角等于已知角,平行线分线段成比例定理,熟练掌握利用尺规作一个角等于已知角的作图方法是解题的关键.类型二、相似三角形判定和性质3.如图,在ABC 中,90ACB ∠=︒,CD 是边AB 上的中线,EF 垂直平分CD ,分别交AC ,BC 于E ,F ,连接DE ,DF .(1)求证:OCE OFD ∽△△.(2)当7AE =,24BF =时,求线段EF 的长.【答案】(1)见分析(2)25EF =【分析】(1)如图(见分析),先根据线段垂直平分线的性质可得90EOC DOF ∠=∠=︒,ED EC =,FD FC =,再根据三角形全等的判定定理证出EDF ECF ≅ ,根据全等三角形的性质可得12∠=∠,从而可得421∠=∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),延长FD 至G ,使DG DF =,连接AG ,EG ,先根据线段垂直平分线的判定与性质可得EG EF =,再根据三角形全等的判定定理证出ADG BDF ≅△△,根据全等三角形的性质可得24AG BF ==,7B ∠=∠,然后根据平行线的判定与性质可得90EAG ∠=︒,最后在Rt AEG △中,利用勾股定理即可得.(1)证明:∵EF 垂直平分CD ,∴90EOC DOF ∠=∠=︒,ED EC =,FD FC =,在EDF 和ECF △中,ED EC FD FC EF EF =⎧⎪=⎨⎪=⎩,∴()EDF ECF SSS ≅ ,∴12∠=∠,∵90ACB ∠=︒,90EOC ∠=︒,∴233490∠+∠=∠+∠=︒,∴421∠=∠=∠,在OCE △和OFD △中,9014EOC DOF ∠=∠=︒⎧⎨∠=∠⎩,∴OCE OFD .(2)解:如图,延长FD 至G ,使DG DF =,连接AG ,EG .则ED 垂直平分FG ,【点拨】本题考查了相似三角形的判定、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,较难的是题(2),构造全等三角形和直角三角形是解题关键.【变式1】如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ;(2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.=.∴AF4【变式2】如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.【点拨】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.中,过点C作CD//AB,E是AC的中点,连接DE并延长,4.如图,在ABC交AB于点F,交CB的延长线于点G,连接AD,CF()1求证:四边形AFCD是平行四边形.()2若GB3=,BC6=,3BF=,求AB的长.2【变式1】已知:如图6,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为E,交AC于点F.求证:(1)△ABF∽△BED;(2)求证:AC BD BE DE=.【变式2】如图,已知▱ABCD.(1)用直尺和圆规在BC边上取一点E,使AB=AE,连结AE;(保留作图痕迹,不写作法)(2)在(1)的前提下,求证:AE=CD;∠EAD=∠D;(3)若点E为BC的中点,连接BD,交AE于F,直接写出EF:FA的值.【答案】(1)见分析(2)证明见分析(3)1:2分析:(1)以点A为圆心,AB为半径作圆,该圆与BC的交点即为所求的点E;(2)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(3)由四边形ABCD是平行四边形,可证得△BEF∽△AFD即可求得EF∶FA的值.解:(1)如图所示:;(2)证明:在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(3)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF ∽△AFD ,∴=,∵E 为BC 的中点,∴BE=BC=AD ,∴EF :FA=1:2.【点拨】此题考查了相似三角形的判定与性质与平行四边形的性质,熟练掌握平行四边形的性质是关键.5.如图,在ABC 中,点D 、点E 分别在AC 、AB 上,点P 是BD 上的一点,联结EP 并延长交AC 于点F ,且A EPB ECB ∠=∠=∠.(1)求证:BE BA BP BD ⋅=⋅;(2)若90ACB ∠=︒,求证:CP BD ⊥.【变式1】已知ADE C ∠=∠,AG 平分BAC ∠交DE 于F ,交BC 于G .(1)求证:ADF ∽ACG ;(2)连接DG ,若DG AC ∥,25AF AG =,6AD =,求CE 的长度.【点拨】本题考查了相似三角形的判定和性质、角平分线的性质、平行线的性质、等腰三角形的判定和性质,解决本题的关键是掌握以上的定理并熟练的运用.【变式2】如图,∠A=∠C=∠EDF,CF=4,CD=AD=6;(1)求AE的长.(2)求证:△ADE∽△DFE.【点拨】此题考查了相似三角形的判定和性质,掌握相似三角形的判定方法以及根据相似三角形性质列出比例式进行求解是解题的关键.类型三、相似三角形拓展与提升6.已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.(1)如图①,若PQ⊥BC,求t的值;(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?【点拨】此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.【变式1】已知,点E 、F 、G 、H 分别在正方形ABCD 的边AB 、BC 、CD 、AD 上.(1)如图1,当四边形EFGH 是正方形时,求证:AE AH AB +=;(2)如图2,已知AE AH =,CF CG =,当AE 、CF 的大小有_________关系时,四边形EFGH 是矩形;(3)如图3,AE DG =,EG 、FH 相交于点O ,:4:5OE OF =,已知正方形ABCD 的边长为16,FH 长为20,当OEH △的面积取最大值时,判断四边形EFGH 是怎样的四边形?证明你的结论.【答案】(1)见分析(2)AE CF =(3)平行四边形,证明见分析【分析】(1)利用平行四边形的性质证得BEF AHE ∠=∠,根据角角边证明AEH BFE △≌△.(2)当AE CF =,证得AEH FCG △≌△,EBF △是等腰直角三角形,∠HEF =∠EFG =90°,即可证得四边形EFGH 是矩形.(3)利用正方形的性质证得AEGD 为平行四边形,过点H 作HM BC ⊥,垂足为点M ,交EG 于点N ,由平行线分线段成比例,设4OE x =,5OF x =,HN h =,则可表示出HN ,从而把△OEH 的面积用x 的代数式表示出来,根据二次函数求出最大值,则可得OE =OG ,OF =OH ,即可证得平行四边形.解:(1)∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,∴90AEH AHE ∠+∠=°.∵四边形EFGH 为正方形,∴EH EF =,90HEF ∠=︒,∴90AEH BEF ∠+∠=︒,∴BEF AHE ∠=∠.在AEH △和BFE △中,∵90A B ∠=∠=︒,AHE BEF ∠=∠,EH FE =,∴AEH BFE △≌△.∴AH BE =.∴AE AH AE BE AB +=+=;(2)AE CF =;证明如下:∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,AB =BC =AD =CD ,∵AE =AH ,CF =CG ,AE =CF ,∴AH =CG ,∴AEH FCG △≌△,∴EH =FG .∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∴EBF △是等腰直角三角形,∴∠BEF =∠BFE =45°,∵AE =AH ,CF =CG ,∴∠AEH =∠CFG =45°,∴∠HEF =∠EFG =90°,∴EH ∥FG ,∴四边形EFGH 是矩形.(3)∵四边形ABCD 为正方形,∴AB CD ∥.【点拨】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.【变式2】已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.正方形AFEG 绕A 点逆时针方向旋转DAG CAE∴∠=∠12AG AD AE AC == GAD EAC ∴ ∽ 82AB =,22AG =82AD AB ∴==,AG =,,G E C 三点共线,Rt AGC △中,GC AC =由(2)知△ADG∽△【点拨】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.类型三、位似7.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)【点拨】此题主要考查了位似图形的画法以及勾股定理等知识,利用位似比得出对应点位置是解题关键.【变式一】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(5,2).(1)以点B为位似中心,在网格内画出△ABC的位似△A1BC1,使得△A1BC1与△ABC的位似比为2;(2)直接写出点A1的坐标和△A1BC1的面积.(2)如图所示1A :()3,7;11Δ116846222A BC S =⨯-⨯⨯-⨯【点拨】此题考查了位似变换和三角形面积求法,【变式二】如图,ABC 在平面直角坐标系内,三个顶点的坐标分别为()1,3A ,()2,1B ,()5,2C (正方形网格中,每个小正方形的边长为1),以点O 为位似中心,把ABC 按相似比2:1放大,得到对应A B C '''V .(1)请在第一象限内画出A B C '''V ;(2)若以点A 、B 、C 、D 为顶点的四边形是平行四边形,请直接写出满足条件的点D 的坐标.【答案】(1)见分析(2)()14,4D ;()26,0D ;()32,2D -【分析】(1)根据点O 为位似中心,()1,3A ,()2,1B ,()5,2C ,把ABC 按相似比2:1放大,得到对应A B C '''V ,求出点'A ,'B ,'C 的坐标,在网格中描点顺次连线即得;C(2)设D(x,y),∵平行四边形的对角线互相平分,且综上,()14,4D ;()26,0D ;()32,2D -.【点拨】本题主要考查了位似三角形,平行四边形,解决问题的关键是熟练掌握位似三角形的定义及画法,平行四边形对角线的性质和线段中点坐标公式.。
初二数学相似多边形的周长比和面积比试题
初二数学相似多边形的周长比和面积比试题1.△ABC∽△A′B′C′,相似比是2∶3,那么△A′B′C′与△ABC面积的比是 ( )A.4∶9B.9∶4C.2∶3D.3∶2【答案】B【解析】根据相似三角形的面积比等于相似比的平方即可得到结果.∵△ABC∽△A′B′C′,相似比是2∶3∴△A′B′C′与△ABC面积的比是9∶4故选B.【考点】相似三角形的性质点评:本题是相似三角形的性质的基础应用题,难度一般,学生只需熟练掌握三角形的面积比与相似比的关系即可轻松完成.2.将一个五边形改成与它相似的五边形,如果面积扩大为原来的9倍,那么周长扩大为原来的 ( )A.9倍B.3倍C.81倍D.18倍【答案】B【解析】根据面积扩大为原来的9倍可得边长扩大为原来的3倍,即可判断周长的变化.∵面积扩大为原来的9倍∴边长扩大为原来的3倍∴周长扩大为原来的3倍故选B.【考点】相似多边形的性质点评:本题是相似多边形的性质的基础应用题,难度一般,学生只需熟练掌握相似多边形的面积比与相似比的关系即可轻松完成.3.在△ABC中,DE∥BC,交AB于D,交AC于E,且AD∶DB=1∶2,则下列结论正确的是( )A.=B.=C.=D.=【答案】B【解析】由AD∶DB=1∶2可得AD∶AB=1∶3,由DE∥BC可证得△ADE∽△ABC,再根据相似三角形的性质依次分析各项即可判断.∵AD∶DB=1∶2∴AD∶AB=1∶3∵DE∥BC∴△ADE∽△ABC∴=,=,=故选B.【考点】相似三角形的判定和性质点评:本题是相似三角形的性质的基础应用题,难度一般,学生只需熟练掌握三角形的面积比与相似比的关系即可轻松完成.4. 如图,ABCD 中,AE ∶ED=1∶2,S △AEF ="6" cm 2,则S △CBF 等于( )A .12 cm 2B .24 cm 2C .54 cm 2D .15 cm 2【答案】C【解析】由AE ∶ED=1∶2可得AE ∶AD=1∶3,根据平行四边形的性质可得AD=BC ,AD ∥BC ,即可证得,再根据相似三角形的性质即可求得结果.∵AE ∶ED=1∶2 ∴AE ∶AD=1∶3 ∵四边形ABCD 是平行四边形 ∴AD=BC ,AD ∥BC ∴AE ∶BC=1∶3,△AEF ∽△CBF ∴S △AEF ∶S △CBF =1∶9∵S △AEF ="6" cm 2∴S △CBF ="54" cm 2故选C.【考点】平行四边形的性质,相似三角形的判定和性质点评:平行四边形的性质的应用是初中数学的重点,也是难点,是中考常见题,因而熟练掌握平行四边形的性质极为重要.5. △ABC ∽△A′B′C′,相似比是3∶4,△ABC 的周长是27 cm ,则△A′B′C′的周长为________.【答案】36 cm【解析】根据相似三角形的性质即可求得结果.∵△ABC ∽△A′B′C′,相似比是3∶4,△ABC 的周长是27 cm ∴△A′B′C′的周长为36 cm.【考点】相似三角形的性质点评:本题是相似三角形的性质的基础应用题,也是中考常见题,难度一般,学生只需熟练掌握三角形的周长比与相似比的关系即可轻松完成.6. 两个相似多边形对应边的比为3∶2,小多边形的面积为32 cm 2,那么大多边形的面积为________.【答案】72 cm 2【解析】先根据对应边的比为3∶2得到相似比,即可得到面积比,从而求得结果.∵两个相似多边形对应边的比为3∶2, ∴面积比等于9∶4, ∵小多边形的面积为32 cm 2,∴大多边形的面积为72 cm 2.【考点】相似多边形的性质点评:本题是相似多边形的性质的基础应用题,难度一般,学生只需熟练掌握相似多边形的面积比与相似比的关系即可轻松完成.7. 在矩形ABCD 中,E 、F 分别为AB 、CD 的中点,如果矩形ABCD ∽矩形BCFE ,那么AD ∶AB=________,相似比是________,面积比是________.【答案】∶2,∶1,2∶1【解析】根据相似多边形对应边的比等于相似比,设出原来矩形的长和宽,就可得到关于长宽的方程,从而可以求得结果.根据相似多边形对应边的成比例,可得设原矩形ABCD 的长AD=BC=x ,宽AB=y ,则则解得或(舍去) 则AD ∶AB=∶2,相似比是∶1,面积比是2∶1.【考点】相似多边形的性质点评:特殊平行四边形的性质的应用是初中数学的重点,也是难点,是中考常见题,因而熟练掌握特殊平行四边形的性质极为重要.8. 已知,如图,A′B′∥AB ,B′C′∥BC ,且OA′∶A′A=4∶3,则△ABC 与________是位似图形,位似比为________;△OAB 与________是位似图形,位似比为________.【答案】△A′B′C′,7∶4,△OA′B′,7∶4【解析】根据位似图形的定义得到△ABC 与△A′B′C′;△OAB 与△OA′B′是位似图形,再根据位似图形的性质即可得到结果.由题意得△ABC 与△A′B′C′是位似图形,位似比为7:4;△OAB 与△OA′B′是位似图形,位似比为7:4.【考点】位似图形的定义点评:本题是位似图形的性质的基础应用题,难度一般,主要考查学生对位似图形与相似图形的认识.9. 如图,梯形ABCD 中,AB ∥CD ,AC 、BD 交于E ,若S △DCE ∶S △DCB =1∶3,求S △DCE ∶S △ABD .【答案】1∶6【解析】已知△DCE 和△DCB 的面积比,可得DE :BE=CE :AE=1:2,由此可求出△CDE 和△ADE 的面积比,以及△DCE 和△ABE 的面积比.也就求出了△DCE 和△ABD 的面积比. ∵S △DCE :S △DCB =1:3,∴DE :BD=1:3,即DE :BE=1:2,∵CD ∥AB ,∴,∴S △DCE :S △AED =1:2,S △DCE :S △ABE =1:4,∴S △DCE :S △ABD =1:6.【考点】梯形及三角形的面积点评:三角形的面积公式是初中数学平面图形知识里的重点,是中考中的常见知识点,学生需熟练掌握并会灵活运用.10. 已知:△ABC ∽△A′B′C′,它们的周长之差为20,面积比为4∶1,求△ABC 和△A′B′C′的周长.【答案】40【解析】根据△ABC与△A′B′C′的面积比可得周长之比,再根据它们的周长之差为20即可求得结果.∵△ABC∽△A′B′C′,面积比为4:1,∴相似比为2:1,周长比为2:1.∵周长比相差1,而周长之差为20,∴每份周长为20,∴△ABC的周长是2×20=40,△A′B′C′的周长是1×20=20.【考点】相似三角形的性质点评:本题是相似三角形的性质的基础应用题,难度一般,学生只需熟练掌握三角形的面积比与相似比的关系即可轻松完成.。
北师版初三数学上册第四章相似图形知识点讲解
九年级(上)第四章图形的相像(1)形态一样的图形叫相像图形,在相像多边形中,最简洁的是相像三角形.(2) 相像多边形:假如两个边数一样的多边形的对应角相等,对应边成比例,这两个多边形叫做相像多 边形.相像多边形对应边长度的比叫做相像比.一.成比例线段(1)线段的比假如选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)成比例线段在四条线段d c b a ,,,中,假如b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有依次的,假如说a ,d c b ,,成比例,那么应得比例式为:b a =dc . ②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项,假如b=c ,即 a b bd =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
③推断给定的四条线段是否成比例的方法:第一排:现将四条线段的长度统一单位,再按大小依次排列好;第二算:分别算出前两条线的长度之比与后两条线段的长度之比;第三判:若两个比相等,则这四条线段是成比例线段,否则不是(3)比例的性质(留意性质立的条件:分母不能为0) 根本性质:① a:b=c:d 则有 ad=bc (两外项之积等于两内向之积);② ②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项(3)合、分比性质:a c abcd b d b d ±±=⇔=. (4)等比性质:假如)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以削减未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③ 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . (4)比例题常用的方法有:比例合分比法,比例等比法,设参法,连等设k 法,消元法二,平行线分线段成比例(1)平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等. 留意:是所截的线段成比例,而跟平行线无关,所以比例线段中不行能 有AD,BE,CF 的比例关系(2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即12AC BC AB AC == 简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。
分钟训练相似多边形的周长比和面积比
分钟训练相似多边形的周长比和面积比集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]§相似多边形的周长比和面积比班级:_______ 姓名:_______一、请你填一填(1)若△ABC∽△A′B′C′,AB=4,BC=5,AC=6,△A′B′C′的最大边长为15,那么它们的相似比是________,△A′B′C′的周长是________.图4—8—1(2)两个相似三角形的相似比为2∶3,它们周长的差是25,那么较大三角形的周长是________.1AB,延长CD到(3)如图4—8—1,在ABCD中,延长AB到E,使BE=2F,使DF=DC,EF交BC于G,交AD于H,则△BEG与△CFG的面积之比是________.1(4)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的2倍,那么边长应缩小到原来的________倍.二、认真选一选(1)如图4—8—2,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为()∶1 B.3∶1 C.2∶1∶1图4—8—2 图4—8—3(2)如图4—8—3,在△ABC 中,D 、E 分别是边AB 、AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1、S 2,那么21S S 的值为( ) A.21B.41C.31 D.32图4—8—4(3)如图4—8—4,在Rt △ABC 中,AD 为斜边BC 上的高,若S △CAD =3S △ABD ,则AB ∶AC 等于( )∶3∶4 ∶3 ∶2(4)顺次连结三角形三边的中点,所成的三角形与原三角形对应高的比是( )∶4∶3 ∶2∶2三、灵机一动!哇……某生活小区开辟了一块矩形绿草地,并画了甲、乙两张规划图,其比例尺分别为1∶200和1∶500,求这块矩形草地在甲、乙两张图纸上的面积比.四、用数学眼光看世界如图4—8—5,△ABC 是一块锐角三角形余料,其中BC =12 cm ,高AD =8 cm ,现在要把它裁剪成一个正方形材料备用,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,问这个正方形材料的边长是多少图4—8—5参 考 答 案一、(1)2∶5 (2)75 (3)1∶16 (4)22 二、(1)C (2)C (3)C (4)D三、解:设这块矩形绿地的面积为S ,在甲、乙两张规划图上的面积分别为S 1、S 2则S S 1=(2001)2,SS 2=(5001)2 ∴S 1=40000S ,S 2=250000S ∴S 1∶S 2=40000S ∶250000S =41∶251=25∶4即:这块草地在甲、乙两张图上的面积比为25∶4四、解:设这个正方形材料的边长为x cm 则△PAN 的边PN 上的高为(8-x ) cm∵由已知得:△APN ∽△ABC ∴BC PN =AD x -8,即12x =88x -解得:x = 答:这个正方形材料的边长为 cm.。
9.位似图形
A
B
C
山东省荣成市实验中学
3.下列四边形ABCD和四边形EFGD是位似图形, 它们的位似中心是点 A
B
F C
E
G
D
4.已知上图中,AE∶ED=3∶2 ,则四边形ABCD与 四边形EFGD的位似比为( ) A.3∶2 B.2∶3 C.5∶2 D.5∶3 提示:位似变换中放大和缩小的理论依据是什么?
山东省荣成市实验中学
各角对应相等 各边对应成比例
判定 概念
性质
概念 相似多边形
判定
相似三角形
性质
周长比等于相 似比; 面积比等于相 似比的平方.
a c b d a c b d
ad bc
a b c d 比例线段 b d
位似图形
a c m (b d n 0) b d n
山东省荣成市实验中学
自学课本123页,并思考: 1、怎样判断两个图形是否是位似图形? 2、位似图形与相似图形有什么关系?
A/
/
概念:如果两个相似多边形的每组对应点A, A’的连线都经过同一个点O,且 有O A’=K OA(K≠0),那么这样的两个多边形叫位似多边形. 点O叫做位似 中心,K就是这两个多边形的相似比,这时的相似比又叫位似比。 注意: 1、判断位似图形时要注意首先它们必须是相似形,其次每一对对应点所在直 线都经过同一点; 相似 位似 2、位似图形对应边平行或共线; 3、位似图形一定是相似图形,但相似图形不一定是位似图形.
山东省荣成市实验中学
操作实验: 要求:每位同学拿出自备的两个相似图形纸片, 位置任意摆放,连接对应点,观察对应点的连 线是否经过一点。 请三位同学上黑板前台选取不同类型的相似图 形(三角形,四边形,五边形)进行演示,供 同学们参考并猜想。 问:由上面操作猜想对应点所在的直线都经过 一点吗?你能将一个图形进行放大和缩小吗?
第四章 图形的相似(知识点)
第四章 图形的相似一.成比例线段1.线段的比※1.如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2.成比例线段及比例的性质: (1)成比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※注意点:①a:b=k,说明a 是b 的k 倍; ②由于线段a 、b 的长度都是正数,所以k 是正数; ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致.(2)比例的基本性质:若dc b a =, 则ad=bc ; 若ad=bc, 则d b c a d c b a ==或 ※合比性质:如果dc b a =,那么d d c b b a ±=±; ※等比性质:如果n m d c b a =⋅⋅⋅==(0≠+⋅⋅⋅++n d b ),那么n d b m c a +⋅⋅⋅+++⋅⋅⋅++=b a 注意:若没有“b+d+…+n ≠0”这个条件,需分类讨论.二.平行线分线段成比例※平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图1,1l //2l //3l ,则EFBC DE AB =.推广:过一点的一线束被平行线截得的对应线段成比例.定理推论:①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例.②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.三.黄金分割如图,点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比, 一条线段有两个黄金分割点.≈-=215AB AC :0.618:1;AB BC 253-=四.相似多边形一般地,形状相同的图形称为相似图形.1.概念:对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.2.性质:相似多边形的对应角相等、对应边成比例;周长等于相似比;面积比等于相似比的平方.(3)判定:对应角相等、对应边成比例的两个多边形相似.(两个条件缺一不可)五.三角形的相似(“∽”不需分类讨论,“相似”需分类讨论)1.探索三角形相似的条件※相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例. ①一个锐角对应相等;②两条边对应成比例;a. 两直角边对应成比例;b.斜边和一直角边对应成比例.2.相似三角形的判定定理的证明3.利用相似三角形测高(3种方法)(1)利用太阳光线平行运用方法1:可以把太阳光近似地看成平行光线,计算时还要用到观测者的身高.(2)利用标杆运用方法2:观测者的眼睛必须与标杆的顶端和旗杆的顶端“三点共线”,标杆与地面要垂直,在计算时还要用到观测者的眼睛离地面的高度.(3)利用反射运用方法3:光线的入射角等于反射角.4.相似三角形的性质 (1)对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.(2)全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.(3)性质:①相似三角形对应角相等,对应边成比例;②相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方.※5.图形的位似:→位似图形的概念:如果两个图形不仅相似,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这样的两个图形叫做位似图形,这个点叫做位似中心.这时两个相似图形的相似比又叫做它们的位似比.→位似图形的性质:(1)位似图形是相似图形,具备相似图形的所有性质;(2)位似图形上的任意一对对应点到位似中心的距离之比等于相似比;(3)位似图形中的对应线段平行(或在一条直线上).→位似图形的画法:(1)画出基本图形; (2)选取位似中心;(3)根据条件确定对应点,并描出对应点;(4)顺次连结各对应点,所成的图形就是所求的图形.例题:如图,已知△ABC 和点O.以O 为位似中心,求作△ABC 的位似图形,并把△ABC 的边长扩大到原来的两倍.注意:给出基本图形和位似中心,可以做两个图形与原图形位似,分别在位似中心同侧和异侧各有一个,在具体的题中需根据实际情况作图.→位似变换与坐标在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k.例如:点A(x,y)的对应点为A ´,则A ´点的坐标可以这样确定xA ´=xA ×k ,yA ´=yA ×k 即A ´(kx,ky )或xA ´=xA ×(-k),yA ´=yA ×(-k) 即A ´(-kx,-ky ) 例题:在平面直角坐标系中, 四边形ABCD 的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O 为位似中心,相似比为21的位似图形.题:△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,点A的对应点A′的坐标为____________总结:至此,我们学过的图形变换有:平移,轴对称,旋转,位似.(1)平移:上下移:横坐标不变,纵坐标随之平移左右移:纵坐标不变,横坐标随之平移(2)轴对称:关于x轴对称:横坐标不变,纵坐标互为相反数关于y轴对称:纵坐标不变,横坐标互为相反数(3)旋转:绕原点旋转180度(中心对称):横坐标、纵坐标都互为相反数(4)位似:以原点为位似中心,相似比为k的位似图形对应点的坐标的比等于k或-k.。
八年级数学暑假专题 图形的相似 北师大版
初二数学暑假专题 图形的相似北师大版【本讲教育信息】一.教学内容:暑假专题——图形的相似二.教学目标:1.了解线段的比、成比例线段、黄金分割.2.了解相似多边形的性质,掌握两个三角形相似的条件.3.了解图形的位似,能够利用作位似图形等方法将一个图形放大或缩小,利用图形的相似解决一些实际问题.三.知识要点分析: 1.线段的比(1)比例的性质:①a b =c d ⇔ad =bc ;②a b =c d ⇒b a =d c ;③a b =c d ⇒a ±b b =c ±d d ;④a b =cd=e f =…=mn (b +d +f +…+n ≠0)⇒a +c +e +…+m b +d +f +…+n =a b. (2)点C 把线段AB 分成AC 和BC 两条线段.如果AC AB =BCAC ,那么称线段AB 被点C黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 2.相似三角形的判定、性质(1)相似三角形的对应角相等,对应边成比例.(2)两个三角形相似的条件:①两角对应相等的两个三角形相似;②三边对应成比例的两个三角形相似;③两边对应成比例且夹角相等的两个三角形相似. 3.相似多边形的性质(1)相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比. (2)相似多边形的周长比等于相似比,面积比等于相似比的平方.4.位似图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点.位似图形上任意一对对应点到位似中心的距离之比等于位似比. 5.本讲内容结构如下:线段的比黄金分割形状相同的图形相似多边形的概念相似三角形及其判定条件的探索相似的综合应用,测量旗杆的高度相似多边形的性质图形的放大与缩小【典型例题】知识点1:线段的比例1.已知a 2=b 3=c 4=d5≠0,求a +b +c +d b +c的值.题意分析:本例考查比例的性质,从已知和所求来看不能直接利用比例的性质解题. 思路分析:根据已知比例式的特点,设一个参数表示出a 、b 、c 、d ,再代入所求代数式求解.或利用比例的性质把已知和所求变形,以寻求中间比. 解:∵a 2=b 3=c 4=d5≠0,∴a +b +c +d 2+3+4+5=a 2,b +c 3+4=b 3=a 2, ∴a +b +c +d 14=b +c 7,∴a +b +c +d b +c=147=2.解题后的思考:本例是等比性质与反比性质的综合运用.例2.已知线段AB =6,C 为AB 的黄金分割点,求AC -BC 的值.题意分析:黄金分割点把已知线段分成的较长线段与原线段的比是黄金比.思路分析:由黄金比和AB 的长度可求出AC 、BC 的长度,再求差即可.但应注意点C 的位置有两个.解:(1)若AC >BC ,如图所示:AB C∵点C 是线段AB 的黄金分割点,∴AC =5-12·AB =5-12×6=35-3,BC =AB -AC =6-(35-3)=9-35. ∴AC -BC =(35-3)-(9-35)=65-12. (2)若AC <BC ,如图所示:ABC则BC =5-12·AB =35-3. ∴AC =AB -BC =6-(35-3)=9-35, ∴AC -BC =(9-35)-(35-3)=12-65. 综上所述,AC -BC 的值为65-12或12-65.解题后的思考:本例极容易忽视一条线段上有两个黄金分割点,即AC 不一定是较长线段,应分情况计算.注意,本例两种情况下的结果可分析出是互为相反数,因此可先计算其中一种的结果,另一种取其相反数即可.小结:解决比例问题除了要熟练掌握比例的性质,还有一种重要方法,那就是引入比值k 的方法.利用这种方法可以很方便地推导出比例的性质、解决比例式求值问题.知识点2:相似图形例3.如图所示,△ABC ∽△DBA ,∠BAC =80°,∠C =70°,AB =5cm ,AC =3cm ,BC =6cm ,求∠BDA 、∠BAD 、∠DAC 、BD 、AD 、DC .BCD题意分析:本题根据相似三角形的性质求相似三角形的对应角的度数和对应边的长度. 思路分析:把已知的角、线段和所求的角、线段分类,化归到相应的相似三角形中,其中∠DAC 和DC 不能转化为相似三角形的角和边,应利用求差的方法来解.解:∵△ABC ∽△DBA ,∴∠BDA =∠BAC =80°,∠BAD =∠C =70°. ∴∠DAC =∠BAC -∠BAD =80°-70°=10°.∵△ABC ∽△DBA ,∴AB DB =BC BA =ACDA.即5BD =65=3AD ,解得BD =256,AD =52, ∴DC =BC -BD =6-256=116.解题后的思考:解决相似三角形的性质问题时,注意对应位置上的字母必须对应,这样才能保证其中的角、线段的对应关系.例4.如图所示,在矩形ABCD 中,E 在AD 上,EF ⊥BE ,交CD 于F ,连接BF ,则图中与△ABE 一定相似的三角形是( )A .△EFBB .△DEFC .△CFBD .△EFB 与△DEFAB CDEF题意分析:要判定两个三角形是否相似,只需看这两个三角形是否具备相似条件,另外还要注意矩形的四个角都是直角这一隐含条件.思路分析:由题中给的已知条件可知,∠EAB =∠FDE =90°,∠DEF +∠EFD =∠DEF +∠BEA =90°,故∠EFD =∠BEA ,所以△ABE 与△DEF 相似,选项A 、C 中均没有△DEF ,故可排除,而我们又无法找到△EFB 与△ABE 相似所具备的条件,因此选项B 是正确的.解:B解题后的思考:一般情况下,在判断两个三角形是否相似时,若不知道两个三角形各边长度关系时,应考虑两角是否对应相等.小结:判断两三角形相似的方法有三种,其中“两角对应相等,两三角形相似”最简单,也最常用.知识点3:相似图形的应用例5.有一块三角形形状的铁板,如图所示,其中,AB =90cm ,AC =60cm ,BC =45cm ,现要在AB 、AC 上确定两点D 、E ,然后沿DE 将上面部分剪去,使剩下的四边形部分BDEC 为梯形,且DE =15cm ,如何确定点D 和点E 的位置?B CDE题意分析:欲确定点D 、E 的位置,只要求出AD 、AE 的长即可.思路分析:由已知条件,较易推出△ADE ∽△ABC ,利用其对应边成比例,即可求出AD 、AE 的长.解:由四边形BDEC 为梯形,得DE ∥BC ,所以∠ADE =∠B ,∠AED =∠C ,△ADE ∽△ABC .所以DE BC =AD AB =AE AC ,即1545=AD 90=AE 60.因此AD =30(cm ),AE =20(cm ).即点D 应距顶点A30cm ,点E 应距顶点A20cm .解题后的思考:本题利用相似三角形的性质求出AD 、AE 的长,进而确定点D 和点E 的位置.题中要求“使剩下的四边形部分BDEC 为梯形”,如果将这一要求去掉,又该如何剪呢?例6.如图,电影胶片上每一个图片的规格为cm ×cm ,放映银幕的规格为2m ×2m ,若放映机的光源S 距胶片20cm 时,问银幕应在离镜头多远的地方才能使放映的图像刚好布满整个银幕?S题意分析:如图所示,可以看作一个正四棱锥.光源S 到胶片的距离正好是点S 到胶片中心的距离,光源S 到银幕的距离正好是点S 到银幕中心的距离.思路分析:设胶片和银幕两个正方形的中心(对角线交点)分别为O 2、O 1.则SO 1SO 2=SD 1SD 2=A 1D 1A 2D 2. B 1C 1D 1SA 1O 1O 2B 2A 2C 2D 2解:设银幕距镜头xcm ,根据题意,得2m =200cm . x 20=200,解得x =80007. 80007cm =807m . 答:银幕距镜头807m 时,放映的图像刚好布满整个银幕.解题后的思考:解决此类问题首先应建立数学模型,把实物立体图形转化为平面几何图形,从而构造出相似三角形.小结:图形相似与现实世界有着密切的联系,常见的应用问题有两类:一是阳光下测量物体的高度.二是从某一点观测物体.总结:学习本讲应注意两点:一是利用比例的性质、相似图形的性质解决一些计算类的题目;二是在判断三角形相似或说明角相等、线段之间的关系时逐步加强逻辑推理的力度,认识和把握更为复杂的图形,提高研究“空间与图形”的水平.【预习导学案】(暑假专题——证明)一.预习前知1.什么是定义、命题、定理、公理、推论、证明?2.平行线的性质有哪些?如何判定两直线平行?3.三角形内角和定理及其推论是什么?二.预习导学1.下列语句中不是命题的是()A.相等的角不是对顶角B.两直线平行,内错角相等C.两点之间线段最短D.过点O作线段MN的垂线2.地理老师在黑板上画了一幅世界五大洲的图形,并给每个洲都写上了代号,然后,他请5个同学每人认出2个洲来,5个同学的回答是:甲:3号是欧洲,2号是美洲乙:4号是亚洲,2号是大洋洲丙:1号是亚洲,5号是非洲丁:4号是非洲,3号是大洋洲戊:2号是欧洲,5号是美洲地理老师说:“你们每个人都认对了一半。
相似三角形的周长比与面积比
M
Q
P
E
D
C
B
A
解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。 ∵PN∥BC ∴△APN∽ △ABC ∴
AE
AD
=
PN
BC
因此 ,得 x=48(毫米)。答:----。
80–x
高线
角平分线
中线
想一想
相似三角形的相似比与对应边上高线比有什么关系?
例如: ΔABC∽ΔA/B/C/ ,AD BC于 D, A / D / B / C /于D / , 求证:
A
B
A /
①相似三角形的对应高线之比等于相似比。
A
B
C
D
A /
B /
C /
D /
②相似多边形面积的比等于相似比的平方.
知 识 归 纳
(1)相似三角形对应的 比等于相似比.
相似三角形(多边形)的性质:
(3)相似 面积的比等于相似比的平方.
多边形
多边形
(2)相似 周长的比等于相似比.
三角形
三角形
高线
角平分线
∴△DEF的周长为
×24=12
面积为
4
3
例2、如图,在△ABC中,D是AB的中点, DE∥BC则: S △ADE : S △ABC = S △ADE: S 梯形DBCE =
01
03
02
(1)相似三角形对应的 比等于相似比.
(3)相似 面积的比等于相似比的平方.
2:3
4:9
3:2
3: 2
3:2
2:3
例 题 讲 解
例1、如图在ΔABC 和ΔDEF中,AB=2DE,AC=2DF,∠A=∠D,ΔABC的周长是24,面积是 ,求ΔDEF的周长和面积。
相似知识点
《相似》章节知识点一、图形的相似 1. 线段的比1)如果选用一个长度单位量得两条线段a 、b 的长度分别为m 、n ,那么两条线段的比为a :b=m :n 或 其中a,b 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k ,那么ba =k2)在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.四条线段a,b,c,d 成比例,记作a ∶b=c ∶d.或 其中a,d 为比例外项;b,c 为比例内项d 称为a,b,c 的第四比例项.特殊情况:若作为比例内项的两条线段相同即a ∶b=b ∶c(或表示为b 2=ac),则线段b 叫a,c 的比例中项. 3)比例基本性质 合比性质:等比性质:4)黄金分割如图,点C 把线段AB 分成两条线段AC 和BC,如果 那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比 (或BC 与AC 的比 )称为黄金比.二、图形的相似 1.形状相同的图形①表象:形状相同.②实质:各对应角相等、各对应边成比例 2.相似多边形各对应角相等、各对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比(相似比与叙述的顺序有关). 3.相似多边形性质:①相似多边形的对应角相等,对应边成比例. ②相似多边形周长的比等于相似比.③相似多边形对应对角线的比等于相似比.④相似多边形对应三角形相似,且相似比等于相似多边形的相似比. ⑤相似多边形对应三角形面积比等于相似多边形的相似比的平方. ⑥相似多边形面积的比等于相似比的平方. 4.多边形与三角形n m b a =.dcb a =.bc ad d c b a ==那么如果.,dc b a bc ad ==那么如果.,d d c b b a d c b a +=+=那么如果,n m fe d c b a ==== 如果().0≠++++=++++++++nf d b b a n f d b m e c a 那么,AC BCAB AC =.618.0215≈-==AC BC AB AC 黄金比AC BC①三角形是边数最少的多边形.②相似三角形可类比相似多边形来学习. 5.相似三角形三个对应角相等、三条对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比叫做相似比(相似比与叙述的顺序有关). 6.相似三角形性质:①相似三角形的对应角相等,对应边成比例. ② 相似三角形对应中线的比,对应角平分线的比,对应高的比,对应周长的比都等于相似比.③相似三角形面积的比等于相似比的平方. 7.相似三角形与全等三角形的关系:相似比等于1的两个三角形全等.8.两个极具代表性的益智“模型”: “A ”型和“X ” 型相似三角形.若△ADE ∽△ABC,则∠DAE=∠BAC,∠ADE=∠ABC,∠AED=∠ACB. 三、相似三角形判定方法1.定理 两角对应相等的两个三角形相似.2.推论1 平行于三角形一边直线截其它两边(或其延长线),所截得的三角形与原三角形相似;如图:如果DE ∥BC,那么△A DE∽△ABC3.推论2 平行于三角形一边直线截其它两边(或其延长线),所得的对应线段成比例.如果DE ∥BC ,4.定理 两边对应成比例,且夹角相等的两个三角形相似; 5.定理 三边对应成比例的两个三角形相似.6.模型“双垂直”三角形.BC DEAC AE AB AD ==;EC AE DB AD =那么;AC AE AB AD =或;AE EC AD DB =或.ACEC AB DB =或直角三角形斜边上的高分直角三角形所成的两个直角三角形与原三角形相似. △ACD ∽△CBD ∽△ABC.认识结论:∠A=∠DCB;∠B=∠ACD;经典例题例 如图,四边形EFGH 为矩形,AD ⊥BC 于D , BC =36 cm, AD =12 cm.求矩形EFGH 的周长.【解析】在矩形EFGH 中,EF ∥BC ,∴∠AEF =∠ABC ,∠AFE =∠ACB ,∴△AEF ∽△ABC,∴设EF=5x,FG=9x,则ID=FG=9x,∴矩形EFGH 的周长例 如图,有一批形状大小相同的不锈钢片,呈直角三角形,已知∠C =90°,AC =12 cm ,BC =5 cm ,你能设计一种方案,用这批不锈钢片裁出面积最大的正方形不锈钢片吗?你能求出这种不锈钢片的边长吗?【解析】能.方案1:如图,设正方形EFGH 的边长为x cm , 过C 作CD ⊥AB 于D ,交EH 于点M.∵∠ACB =90°,AC =12 cm ,BC =5 cm , ∵AB ·CD =AC ·BC ,∵EH ∥AB ,∴△CEH ∽△CAB.例 如图,设正方形CFGH 的边长为ycm.∵GH ∥AC , 在上述两种方案中,因为x <y ,所以应按方案2裁剪,这时正方形面积最大,它的边长为例 如图所示,在△ABC 与△ADB 中,∠ABC= ∠ADB= 90°,且AC=10,AB=8,如果图中两直角三角形相似,你能求出AD 的长吗?若能,请直接;2AB AD AC ⋅=;2AB BD BC ⋅=;2DB AD CD ⋅=.CD AB BC AC ⋅=⋅AI EFAD BC∴=,EF 5FG 9=,5x 129x 9,x ,36128-∴=∴=EF 5,FG 9= 928x 288==⨯=()31.5cm. AB 13cm.∴=AC BC 12560CD .AB1313⨯∴== =EH CM.AB CD ∴=()60xx 13.1313780x cm .229-=∴=即GH BHAC BC ∴=,()y 5y ,12560y cm .17-∴=∴=60cm.17求解.若不能,请说明理由.【解析】由题意知,在△ABC 和△ADB 中,只能判断点B 和点D 是一对对应顶点,其余两对对应顶点无法确定,因此分两种情况讨论:①当△ABC ∽△ADB 时,有因为AB=8,AC=10,所以 所以 ②当△ABC ∽△BDA 时,有 在Rt △ABC 中,由勾股定理, 得 所以因此AD 的长为6.4或4.8.例 (1)如图,点C ,D 在线段AB 上,且△PCD 是等边三角形,若∠APB=120°,求证△ACP∽△PDB.(2)若没有(1)中∠APB=120°这一条件,则当AC ,CD,DB 满足怎样的关系时,△ACP ∽△PDB ;(3)若没有(1)中∠APB=120°这一条件,则当△ACP ∽△PDB 时,∠APB 的度数是多少? 【解析】(1)∵△PCD 是等边三角形,∴∠CPD=∠PCD=∠PDC=60°,又∵∠APB=120°,∴∠APC+∠DPB=60°, 又∵∠A+∠APC=∠PCD=60°, ∴∠A=∠DPB,同理∠APC=∠PBD, ∴△ACP ∽△PDB.(2)∵△PCD 为等边三角形, ∴∠PCD =∠PDC =60°, ∴∠ACP =∠PDB=120°,要使△ACP ∽△PDB ,需使 ∴AC ·DB =PC ·PD , 又∵PC =PD =CD , ∴CD 2=AC ·DB.(3)要使△ACP ∽△PDB , 需∠A =∠DPB ,∠APC =∠B , 又∵∠A +∠APC +∠ACP =180°,∴∠A +∠APC =60°,即∠DPB+∠APC=60°, 又∵∠CPD =60°,∴∠APB =∠APC+∠BPD+∠CPD=120°.例 如图,在梯形ABCD 中,AD ∥BC, ∠A=90°, AB=7, AD=2,BC=3,问:在线段AB 上是否存在点P ,使得以P 、A 、D 为顶点的三角形和以P 、B 、C 为顶点的三角形相似?若不存在,请说明理由;若存在,这样的P 点共有几个?并请你求出AP 的长.AB AD .AC AB=8AD 108=,64AD 6.4.10==AC BCAB AD=,BC 6.108AD=,AD 4.8.10==AC PD PC DB=,【解析】假设满足条件的P 点存在,则有以下两种情形∶(1)△APD ∽△BPC,∵∠A=∠B=90°,故只需(2)△APD ∽△BCP ,∵∠A=∠B=90°, 故只需 ∴7AP-AP 2=6,即AP 2-7AP+6=0, ∴AP=1或AP=6.故P 点共有3个,AP=1或AP=6或 四、位似1.位似图形的概念如果两个图形不仅形状相同,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.2.位似图形的性质性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.经典练习一、精心选一选1.一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其它两边的和是( )A .19B .17C .24D .21 2.下列说法不正确的是( )A .所有的矩形是相似的;B .含︒30直角三角形与含︒60角的直角三角形是相似的;C .所有边数相等的正多边形是相似的;D .所有的等边三角形都是相似的。
相似三角形的周长比等于相似比,面积比等于相似比的平方
1 4
2
32
(2)
所以它们的长与宽对应 成比例,
32
(1)
如果以图(1)最大矩形的左下顶点为原点, 宽和长所在直线分别为x轴、y轴,那么这组矩 形右上顶点的坐标都满足
y 2,即y 2x,也就是说它们在直线y 2x上 x
谈谈收获
今天我们了解了相似图 形王国的一个伟大的家族……
相似多边形
相似多边形的性质
解:对开后所得的矩形纸张和原来的矩形纸
张相似,理由如下:设原来的纸张为矩形A BCD,如图: BC 2
AB
连结BC与AD的中点F,E,则EF就把
矩形ABCD分为全等的两个矩形. A
E
D
在矩形ABEF中,AB
BF
AB BC
AB 1 BC 2
2 2
2.
BF AB
B
F
C
矩形ABFE与矩形BCDA的对应角
个内角的度数,
然后与你的同
伴议一议;这两 C
个四边形的对
应角之间有什
B1
么关系?对应
边之间有什么 关系?
C1
A
D A1
D1
相似多边形 各对应角相等、各对应边成
比例的两个多边形叫做相似多边 形.
对应顶点的字母写在对应的位置上
相似比 相似多边形对应边的比叫做
相似比.
它们形状相同吗?
B
A
F
C
ED
A1 F1
相等,对应边成比例,矩形ABFE与
矩形BCDA相似
1、右面两个矩形相似,
求它们对应边的比. 2∶3
2
2、如图,两个正六边形的边长分别
3
为a和b,它们相似吗?为什么?
初三数学九年级上册知识点——图形的相似
九年级数学上册知识点图形的相似一、成比例线段1.定义:(1)线段比:如果选用一个长度单位量得两条线段AB、CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB:CD=m:n,或者写成AB/CD=m/n. (2)成比例线段:四条线段a、b、c、d中,如果a与b的比等于c与d的比,即a/b=c/d,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。
2.定理:如果a/b=c/d==m/n(b+d++n≠0),那么(a+c+m)/(b+d++n)=a/b二、平行线分线段成比例1.两条直线被一组平行线所截,所得的对应线段成比例。
2.平行于三角形一边的直线与其他两边相交。
截得的线段成比例。
三、相似多边形定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比。
四、探索三角形相似的条件1.两角分别相等的两个三角形相似。
2.两边成比例且夹角相等的两个三角形相似。
3.三边成比例的两个三角形相似。
4.概念:一般地,点C把线段AB分成两条线段AC和BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。
五、相似三角形判定定理的证明判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(此定理用的最多)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
六、利用相似三角形测高1.利用阳光下的影子2.利用标杆3.利用镜子的反射七、相似三角形的性质1.相似三角形对应高的比、对应角平分线的比、对应中线的比等于相似比。
相似多边形的周长比和面积比
第八节相似多边形的周长比和面积比第十课时●课题§相似多边形的性质(一)●教学目标(一)教学知识点相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.(二)能力训练要求1.经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似多边形的性质.2.利用相似三角形的性质解决一些实际问题.(三)情感与价值观要求1.通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识.2.通过运用相似三角形的性质,增强学生的应用意识.●教学重点1.相似三角形中对应线段比值的推导.2.运用相似三角形的性质解决实际问题.●教学难点相似三角形的性质的运用.●教学方法引导启发式●教具准备投影片两张第一张:(记作§ A ) 第二张:(记作§ B ) ●教学过程Ⅰ.创设问题情境,引入新课[师]在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.Ⅱ.新课讲解 1.做一做 投影片(§ A )钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,如图4-38,图纸上的△ABC 表示该零件的横断面△A ′B ′C ′,CD 和C ′D ′分别是它们的高.(1)B A AB '',C B BC '',CA AC''各等于多少? (2)△ABC 与△A ′B ′C ′相似吗?如果相似,请说明理由,并指出它们的相似比. (3)请你在图4-38中再找出一对相似三角形. (4)D C CD''等于多少?你是怎么做的?与同伴交流.图4-38[生]解:(1)B A AB ''=C B BC ''=C A AC ''=43(2)△ABC ∽△A ′B ′C ′ ∵B A AB ''=C B BC ''=CA AC'' ∴△ABC ∽△A ′B ′C ′,且相似比为3∶4.(3)△BCD ∽△B ′C ′D ′.(△ADC ∽△A ′D ′C ′) ∵由△ABC ∽△A ′B ′C ′得 ∠B =∠B ′∵∠BCD =∠B ′C ′D ′∴△BCD ∽△B ′C ′D ′(同理△ADC ∽△A ′D ′C ′) (4)D C CD ''=43∵△BDC ∽△B ′D ′C ′ ∴D C CD ''= C B BC ''=432.议一议已知△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比为k .(1)如果CD 和C ′D ′是它们的对应高,那么D C CD''等于多少? (2)如果CD 和C ′D ′是它们的对应角平分线,那么D C CD''等于多少?如果CD 和C ′D ′是它们的对应中线呢?[师]请大家互相交流后写出过程.[生甲]从刚才的做一做中可知,若△ABC ∽△A ′B ′C ′,CD 、C ′D ′是它们的对应高,那么D C CD ''=C B BC''=k . [生乙]如4-39图,△ABC ∽△A ′B ′C ′,CD 、C ′D ′分别是它们的对应角平分线,那么D C CD ''= CA AC''=k .图4-39∵△ABC ∽△A ′B ′C ′∴∠A =∠A ′,∠ACB =∠A ′C ′B ′∵CD 、C ′D ′分别是∠ACB 、∠A ′C ′B ′的角平分线. ∴∠ACD =∠A ′C ′D ′ ∴△ACD ∽△A ′C ′D ′ ∴D C CD''= CA AC''=k .[生丙]如图4-40中,CD 、C ′D ′分别是它们的对应中线,则D C CD ''= C A AC''=k .图4-40∵△ABC ∽△A ′B ′C ′ ∴∠A =∠A ′,CA AC ''=B A AB''=k .∵CD 、C ′D ′分别是中线∴D A AD ''=B A AB''2121=B A AB ''=k .∴△ACD ∽△A ′C ′D ′ ∴D C CD ''= C A AC''=k . 由此可知相似三角形还有以下性质.相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比. 3.例题讲解 投影片(§ B )图4-41如图4-41所示,在等腰三角形ABC 中,底边BC =60 cm,高AD =40 cm ,四边形PQRS 是正方形.(1)△ASR 与△ABC 相似吗?为什么? (2)求正方形PQRS 的边长. 解:(1)△ASR ∽△ABC ,理由是: 四边形PQRS 是正方形SR ∥BC(2)由(1)可知△ASR ∽△AB C.根据相似三角形对应高的比等于相似比,可得BCSRAD AE =设正方形PQRS 的边长为x cm ,则AE =(40-x )cm , 所以Ⅲ.课堂练习如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢?(都是4∶5). Ⅳ.课时小结本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比.Ⅴ.课后作业 习题.1.解:∵△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,且C A AC ''=23. ∴D B BD ''= C A AC ''=23∴234=BD ∴BD =62.解:∵△ABC ∽△A ′B ′C ′,AD 和A ′D ′是它们的对应角平分线,且AD =8 cm,A ′D ′=3 cm.∴D A AD ''= B A AB'', 设△ABC 与△A ′B ′C ′对应高为h 1,h 2. ∴B A AB ''=21h h∴21h h =D B A ABD '''=38. Ⅵ.活动与探索图4-42如图4-42,AD ,A ′D ′分别是△ABC 和△A ′B ′C ′的角平分线,且B A AB ''=D B BD ''=DA AD '' 你认为△ABC ∽△A ′B ′C ′吗? 解:△ABC ∽△A ′B ′C ′成立. ∵B A AB ''=D B BD ''=D A AD'' ∴△ABD ∽△A ′B ′D ′∴∠B =∠B ′,∠BAD =∠B ′A ′D ′ ∵∠BAC =2∠BAD ,∠B ′A ′C ′=2∠B ′A ′D ′ ∴∠BAC =∠B ′A ′C ′ ∴△ABC ∽△A ′B ′C ′●板书设计§ 相似多边形的性质(一)一、1.做一做2.议一议3.例题讲解二、课堂练习三、课时小节四、课后作业●备课资料如图4-43,CD是Rt△ABC的斜边AB上的高.图4-43(1)则图中有几对相似三角形.(2)若AD=9 cm,CD=6 cm,求BD.(3)若AB=25 cm,BC=15 cm,求BD.解:(1)∵CD⊥AB∴∠ADC=∠BDC=∠ACB=90°在△ADC和△ACB中∠ADC=∠ACB=90°∠A=∠A∴△ADC∽△ACB同理可知,△CDB∽△ACB∴△ADC∽△CDB所以图中有三对相似三角形. (2)∵△ACD ∽△CBD∴BD CDCD AD =即BD669= ∴BD =4 (cm ) (3)∵△CBD ∽△ABC∴BC BDBA BC =. ∴152515BD = ∴BD =251515⨯=9 (cm ).第十一课时●课 题§ 相似多边形的性质(二) ●教学目标 (一)教学知识点1.相似多边形的周长比,面积比与相似比的关系.2.相似多边形的周长比,面积比在实际中的应用. (二)能力训练要求1.经历探索相似多边形的性质的过程,培养学生的探索能力.2.利用相似多边形的性质解决实际问题训练学生的运用能力. (三)情感与价值观要求1.学生通过交流、归纳,总结相似多边形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似多边形的周长比、面积比与相似比关系的推导.2.运用相似多边形的比例关系解决实际问题.●教学难点相似多边形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的目的.●教具准备投影片四张第一张:(记作§ A)第二张:(记作§ B)第三张:(记作§ C)第四张:(记作§ D)●教学过程Ⅰ.创设问题情境,引入新课[师](拿大小不同的两个等腰直角三角形三角板).我手中拿着两名同学的两个大小不同的三角板.请同学们观察其形状,并请两位同学来量一量它们的边长分别是多少.然后告诉大家数据.(让学生把数据写在黑板上)[师]同学们通过观察和计算来回答下列问题.1.两三角形是否相似.2.两三角形的周长比和面积比分别是多少?它们与相似比的关系如何?与同伴交流. [生]因为两三角形都是等腰直角三角形,其对应角分别相等,所以它们是相似三角形.周长比与相似比相等,而面积比与相似比却不相等. [师]能不能找到面积比与相似比的量化关系呢? [生]面积比与相似比的平方相等.[师]老师为你的重大发现感到骄傲.但这是特殊三角形,对一般三角形、多边形,我们发现的结论成立吗?这正是我们本节课要解决的问题.Ⅱ.新课讲解 1.做一做 投影片(§ A )图4-44在图4-44中,△ABC ∽△A ′B ′C ′,相似比为43. (1)请你写出图中所有成比例的线段.(2)△ABC 与△A ′B ′C ′的周长比是多少?你是怎么做的?(3)△ABC 的面积如何表示?△A ′B ′C ′的面积呢?△ABC 与△A ′B ′C ′的面积比是多少?与同伴交流.[生](1)∵△ABC ∽△A ′B ′C ′∴B A AB ''=C B BC ''=C A AC ''=D C CD ''=D B BD ''=D A AD ''=43. (2)43='''∆∆的周长的周长C B A ABC .∵B A AB ''=C B BC ''=C A AC ''=43.∴CA CB B A ACBC AB l l C B A ABC ''+''+''++='''∆∆ =C A C B B A C A C B B A ''+''+''''+''+''434343 =43)(43=''+''+''''+''+''C A C B B A C A C B B A . (3)S △ABC =21AB ·C D. S △A ′B ′C ′=21A ′B ′·C ′D ′.∴2)43(2121=''⋅''=''⋅''⋅='''∆∆D C CD B A AB D C B A CDAB S S C B A ABC .2.想一想如果△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比和面积比分别是多少?[生]由上可知若△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比为k ,面积比为k 2.3.议一议 投影片(§ B ).图4-45(1)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的周长比是多少?(2)连接相应的对角线A 1C 1,A 2C 2,所得的△A 1B 1C 1与△A 2B 2C 2相似吗? △A 1C 1D 1与△A 2C 2D 2呢?如果相似,它们的相似各是多少?为什么?(3)设△A 1B 1C 1,△A 1C 1D 1,△A 2B 2C 2,△A 2C 2D 2的面积分别是,111C B A S ∆222222111,,D C A C B A D C A S S S ∆∆∆那么222111222111D C A D C A C B A C B A S S S S ∆∆∆∆=各是多少?(4)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的面积比是多少? 如果把四边形换成五边形,那么结论又如何呢?[生]解:(1)∵四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2.相似比为k .(2)△A 1B 1C 1∽△A 2B 2C 2、△A 1C 1D 1∽△A 2C 2D 2,且相似比都为k . ∵四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2 ∴2211221122112211D A DA D C D C CBC B B A B A ===∠D 1A 1B 1=∠D 2A 2B 2,∠B 1=∠B 2. ∠B 1C 1D 1=∠B 2C 2D 2,∠D 1=∠D 2. 在△A 1B 1C 1与△A 2B 2C 2中 ∵22112211C B CB B A B A = ∠B 1=∠B 2. ∴△A 1B 1C 1∽△A 2B 2C 2. ∴2211B A B A =k . 同理可知,△A 1C 1D 1∽△A 2C 2D 2,且相似比为k . (3)∵△A 1B 1C 1∽△A 2B 2C 2,△A 1C 1D 1∽△A 2C 2D 2.22222222222222)(k S S S S k D C A C B A D C A C B A =++∆∆∆∆照此方法,将四边形换成五边形,那么也有相同的结论. 由此可知:相似多边形的周长比等于相似比,面积比等于相似比的平方. 4.做一做 投影片(§ C )图4-46是某城市地图的一部分,比例尺为1∶100000.(1)设法求出图上环形快速路的总长度,并由此求出环形快速路的实际长度.(2)估计环形快速路所围成的区域的面积,你是怎样做的?与同伴交流.图4-46解:(1)量出图上距离约为20 cm,则实际长度约为20千米.(2)图上区域围成的面积约为 cm2.根据相似多边形面积的比等于相似比1∶100000的平方,则实际区域的面积约为平方千米.Ⅲ.随堂练习投影片(§ D)在设计图上,某城市中心有一个矩形广场,设计图的比例尺是1∶10000,图上矩形与实际矩形相似吗?如果相似,它们的相似比是多少?图上矩形与实际矩形的周长比是多少?面积比呢?答案:相似,相似比是1∶10000.周长比是1∶10000.面积比是1∶100002.Ⅳ.课时小结本节课我们重点研究了相似多边形的对应线段(高、中线、角平分线)的比,周长比都等于相似比,面积比等于相似比的平方.Ⅴ.课后作业 习题预习位似图形的定义、性质. Ⅵ.活动与探究如图4-47已知,M 是□ABCD 的AB 边的中点,CM 交BD 于点E ,则图中阴影部分的面积与平行四边形ABCD 的面积比是多少?图4-47过程:这是一道综合性较高的题目,它考查了相似三角形的性质、面积计算及等积定理等,所以让学生进行讨论、总结,利用所学知识解决这个问题.讨论结果:作DN ⊥AB 于N ,过E 作GF ⊥AB 于F . ∵M 为AB 中点 ∴S △AMD =S △DMB =21S △ABD =41S □ABCD ∵S △MBD =S △MBC (同底等高的两个三角形面积相等). ∴S △MBD -S △MBE =S △MBC -S △MBE 即S △DME =S △CBE因此图中阴影部分的面积与平行四边形的面积之比是31. ●板书设计§ 相似多边形的性质(二)一、1.做一做 2.想一想 3.议一议 4.做一做 二、课堂练习 三、课时小结 四、课后作业●备课资料 参考例题[例1]如图4-48,在△ABC 中EF ∥BC 且EF =32BC =2 cm , △AEF 的周长为10 cm ,求梯形BCFE 的周长.图4-48解:∵EF =32BC ∴32=BC EF ∵EF ∥BC ∴△AEF ∽△ABC32==∆∆BC EF ABC AEF 周长周长∴3210=∆周长ABC ∴△ABC 周长=15 (cm )∴梯形BCF 的周长=△ABC 的周长-△AEF 的周长+2EF =15-10+4=9 (cm ) [例2]如图4-49△ABC 中,DE ∥BC ,S △ADE ∶S △ABC =4∶9 (1)求AE ∶EC ; (2)求S △ADE ∶S △CDE .图4-49解:(1)∵DE ∥BC ∴△ADE ∽△ABC 又∵94=∆∆ABC ADE S S ∴32=AC AE ∴23=AE AC 21=-AE AE AC 即21=AE EC ∴AE ∶EC =2∶1(2)连结CD ,过D 作DH ⊥AC 交AC 于H122121==⋅⋅=∆∆CE AE DH CE DHAE S S CDEADE 参考练习如图4-50平行四边形ABCD 中,E 是BC 上一点,AE 交BD 于点F ,已知BE ∶EC =3∶1,S △FBE =18,求S △FDA .图4-50答案:32§ 相似多边形的周长比和面积比班级:_______ 姓名:_______一、请你填一填(1)若△ABC ∽△A ′B ′C ′,AB =4,BC =5,AC =6,△A ′B ′C ′的最大边长为15,那么它们的相似比是________,△A ′B ′C ′的周长是________.图4—8—1(2)两个相似三角形的相似比为2∶3,它们周长的差是25,那么较大三角形的周长是________.(3)如图4—8—1,在ABCD 中,延长AB 到E ,使BE =21AB ,延长CD 到F ,使DF =DC ,EF 交BC 于G ,交AD 于H ,则△BEG 与△CFG 的面积之比是________.(4)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,那么边长应缩小到原来的________倍.二、认真选一选(1)如图4—8—2,把一个矩形纸片ABCD 沿AD 和BC 的中点连线EF 对折,要使矩形AEFB 与原矩形相似,则原矩形长与宽的比为( )∶1 B.3∶1 C.2∶1 ∶1图4—8—2 图4—8—3 (2)如图4—8—3,在△ABC 中,D 、E 分别是边AB 、AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1、S 2,那么21S S 的值为( ) A.21 B.41 C.31 D.32图4—8—4(3)如图4—8—4,在Rt △ABC 中,AD 为斜边BC 上的高,若S △CAD =3S △ABD ,则AB ∶AC 等于( )∶3 ∶4 ∶3 ∶2(4)顺次连结三角形三边的中点,所成的三角形与原三角形对应高的比是( ) ∶4 ∶3 ∶2 ∶2三、灵机一动!哇……某生活小区开辟了一块矩形绿草地,并画了甲、乙两张规划图,其比例尺分别为1∶200和1∶500,求这块矩形草地在甲、乙两张图纸上的面积比.四、用数学眼光看世界如图4—8—5,△ABC是一块锐角三角形余料,其中BC=12 cm,高AD=8 cm,现在要把它裁剪成一个正方形材料备用,使正方形的一边在BC上,其余两个顶点分别在AB、AC 上,问这个正方形材料的边长是多少?图4—8—5参考答案2一、(1)2∶5 (2)75 (3)1∶16 (4)2二、(1)C (2)C (3)C (4)D三、解:设这块矩形绿地的面积为S ,在甲、乙两张规划图上的面积分别为S 1、S 2 则S S 1=(2001)2,SS 2=(5001)2 ∴S 1=40000S ,S 2=250000S ∴S 1∶S 2=40000S ∶250000S =41∶251=25∶4 即:这块草地在甲、乙两张图上的面积比为25∶4四、解:设这个正方形材料的边长为x cm则△PAN 的边PN 上的高为(8-x ) cm∵由已知得:△APN ∽△ABC ∴BC PN =AD x -8,即12x =88x -解得:x = 答:这个正方形材料的边长为 cm.。
相似三角形性质(2)导学案
九年级数学上册导学案
4.7相似三角形的性质(2)
一、学习目标:
1、相似多边形的周长比、面积比与相似比的关系
2、相似多边形的周长比、面积比在实际中的应用
3、利用相似多边形的性质解决实际问题,训练运用能力
二、导学过程
如图,△ABC∽△A'B'C' ,相似比为2
(1)请你写出图中所有成比例的线段;
(2)△A BC与△A'B'C' 的周长比是多少?面积比呢?
想一想:
如果,△ABC∽△A'B'C',相似比为k,那么△A BC与△A'B'C' 的周长之比和面积比又是多少呢?
定理:相似三角形的周长比等于,面积比等于
练习:
1、判断正误:
(1)如果把一个三角形三边的长同时扩大为原来的10倍,那么它的周长也扩大为原来的10倍;()
(2)如果把一个三角形的面积扩大为原来的9倍,那么它的三边的长都扩大为原来的9倍。
()
2、如图:将∆ABC沿BC方向平移得到∆DEF,∆ABC与∆DEF重叠部分(图中阴影部分)的面积是∆ABC的面积的一半。
已知BC=2,求∆ABC 平移的距离。
反思:。
浙教版数学九年级上册4.5《相似多边形》说课稿
浙教版数学九年级上册4.5《相似多边形》说课稿一. 教材分析《相似多边形》是浙教版数学九年级上册4.5节的内容,本节内容是在学生已经掌握了多边形的概念、三角形的知识以及全等图形的性质等基础上进行讲解的。
相似多边形是数学中的一个重要概念,它不仅可以巩固学生对全等图形的理解,还能为后续的函数、解析几何等章节打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于图形的认识也有了一定的基础。
但是,学生对于相似多边形的理解可能会存在一定的困难,因为相似多边形既包含了图形的形状,又包含了图形的大小,这对于学生来说是一个新的概念。
三. 说教学目标1.让学生理解相似多边形的概念,掌握相似多边形的性质。
2.培养学生观察、分析、解决问题的能力。
3.提高学生的空间想象能力,培养学生的抽象思维能力。
四. 说教学重难点1.重点:相似多边形的概念及其性质。
2.难点:相似多边形的性质的证明和应用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生通过观察、思考、交流等方式自主探索相似多边形的性质。
2.利用多媒体手段,如图片、动画等,帮助学生形象直观地理解相似多边形的概念。
六. 说教学过程1.导入:通过展示一些生活中的相似图形,如两只相似的钟表、两只相似的飞机模型等,让学生感受相似图形的魅力,激发学生的学习兴趣。
2.新课导入:引导学生思考,如果两个多边形的形状完全相同,但大小不同,我们应该如何称呼它们?从而引入相似多边形的概念。
3.概念讲解:通过具体的例子,解释相似多边形的定义,让学生理解相似多边形的内涵。
4.性质探索:引导学生通过观察、思考、交流等方式,自主探索相似多边形的性质。
5.性质证明:利用几何画板等工具,引导学生证明相似多边形的性质。
6.性质应用:通过一些具体的题目,让学生运用相似多边形的性质解决问题。
7.课堂小结:让学生回顾本节课所学的内容,加深对相似多边形的理解。
8.布置作业:布置一些有关相似多边形的练习题,让学生巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节相似多边形的周长比和面积比第十课时●课题§4.8.1 相似多边形的性质(一)●教学目标(一)教学知识点相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.(二)能力训练要求1.经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似多边形的性质.2.利用相似三角形的性质解决一些实际问题.(三)情感与价值观要求1.通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识.2.通过运用相似三角形的性质,增强学生的应用意识.●教学重点1.相似三角形中对应线段比值的推导.2.运用相似三角形的性质解决实际问题.●教学难点相似三角形的性质的运用.●教学方法引导启发式●教具准备投影片两张第一张:(记作§4.8.1 A)第二张:(记作§4.8.1 B)●教学过程Ⅰ.创设问题情境,引入新课[师]在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.Ⅱ.新课讲解1.做一做投影片(§4.8.1 A))B A '',C B '',C A ''各等于多少?)DC ''等于多少?你是怎么做的?与同伴交流图4-38[生]解:(1)B A AB ''=C B BC ''=C A AC ''=43(2)△ABC ∽△A ′B ′C ′∵B A AB ''=C B BC ''=C A AC '' ∴△ABC ∽△A ′B ′C ′,且相似比为3∶4.(3)△BCD ∽△B ′C ′D ′.(△ADC ∽△A ′D ′C ′) ∵由△ABC ∽△A ′B ′C ′得 ∠B =∠B ′∵∠BCD =∠B ′C ′D ′∴△BCD ∽△B ′C ′D ′(同理△ADC ∽△A ′D ′C ′)(4)D C CD ''=43∵△BDC ∽△B ′D ′C ′ ∴D C CD ''= C B BC ''=43 2.议一议已知△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比为k .(1)如果CD 和C ′D ′是它们的对应高,那么D C CD''等于多少?(2)如果CD 和C ′D ′是它们的对应角平分线,那么D C CD''等于多少?如果CD 和C ′D ′是它们的对应中线呢?[师]请大家互相交流后写出过程.[生甲]从刚才的做一做中可知,若△ABC∽△A′B′C′,CD、C′D′是它们的对应高,那么DCCD''=CBBC''=k.[生乙]如4-39图,△ABC∽△A′B′C′,CD、C′D′分别是它们的对应角平分线,那么DCCD''=CAAC''=k.图4-39∵△ABC∽△A′B′C′∴∠A=∠A′,∠ACB=∠A′C′B′∵CD、C′D′分别是∠ACB、∠A′C′B′的角平分线.∴∠ACD=∠A′C′D′∴△ACD∽△A′C′D′∴DCCD''=CAAC''=k.[生丙]如图4-40中,CD、C′D′分别是它们的对应中线,则DCCD''=CAAC''=k.图4-40∵△ABC∽△A′B′C′∴∠A=∠A′,CAAC''=BAAB''=k.∵CD、C′D′分别是中线∴DAAD''=BAAB''2121=BAAB''=k.∴△ACD ∽△A ′C ′D ′∴D C CD ''= C A AC''=k . 由此可知相似三角形还有以下性质.相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比. 3.例题讲解投影片(§4.8.1 B )图4-41如图4-41所示,在等腰三角形ABC 中,底边BC =60 cm,高AD =40 cm ,四边形PQRS 是正方形.(1)△ASR 与△ABC 相似吗?为什么? (2)求正方形PQRS 的边长. 解:(1)△ASR ∽△ABC ,理由是: 四边形PQRS 是正方形SR ∥BC(2)由(1)可知△ASR ∽△AB C.根据相似三角形对应高的比等于相似比,可得BCSRAD AE =设正方形PQRS 的边长为x cm ,则AE =(40-x )cm , 所以604040xx =- 解得: x =24所以,正方形PQRS 的边长为24 cm.Ⅲ.课堂练习如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢?(都是4∶5). Ⅳ.课时小结本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比.Ⅴ.课后作业 习题4.10.1.解:∵△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,且C A AC ''=23. ∴D B BD ''= C A AC ''=23∴234=BD ∴BD =62.解:∵△ABC ∽△A ′B ′C ′,AD 和A ′D ′是它们的对应角平分线,且AD =8 cm, A ′D ′=3 cm.∴D A AD ''= B A AB '',设△ABC 与△A ′B ′C ′对应高为h 1,h 2.∴B A AB ''=21h h ∴21h h =D B A ABD '''=38. Ⅵ.活动与探索图4-42如图4-42,AD ,A ′D ′分别是△ABC 和△A ′B ′C ′的角平分线,且B A AB ''=D B BD ''=D A AD'' 你认为△ABC ∽△A ′B ′C ′吗? 解:△ABC ∽△A ′B ′C ′成立.∵B A AB ''=D B BD ''=D A AD ''∴△ABD ∽△A ′B ′D ′∴∠B =∠B ′,∠BAD =∠B ′A ′D ′ ∵∠BAC =2∠BAD ,∠B ′A ′C ′=2∠B ′A ′D ′ ∴∠BAC =∠B ′A ′C ′ ∴△ABC ∽△A ′B ′C ′●板书设计§4.8.1 相似多边形的性质(一)一、1.做一做 2.议一议 3.例题讲解 二、课堂练习 三、课时小节 四、课后作业●备课资料如图4-43,CD 是Rt △ABC 的斜边AB 上的高.图4-43(1)则图中有几对相似三角形. (2)若AD =9 cm,CD =6 cm,求BD . (3)若AB =25 cm,BC =15 cm,求BD . 解:(1)∵CD ⊥AB∴∠ADC =∠BDC =∠ACB =90° 在△ADC 和 △ACB 中 ∠ADC =∠ACB =90° ∠A =∠A∴△ADC ∽△ACB同理可知,△CDB ∽△ACB ∴△ADC ∽△CDB所以图中有三对相似三角形. (2)∵△ACD ∽△CBD ∴BDCDCD AD即BD669=∴BD =4 (cm )(3)∵△CBD ∽△ABC ∴BC BD BA BC =. ∴152515BD = ∴BD =251515⨯=9 (cm ).第十一课时●课 题§4.8.2 相似多边形的性质(二) ●教学目标(一)教学知识点1.相似多边形的周长比,面积比与相似比的关系.2.相似多边形的周长比,面积比在实际中的应用. (二)能力训练要求1.经历探索相似多边形的性质的过程,培养学生的探索能力.2.利用相似多边形的性质解决实际问题训练学生的运用能力. (三)情感与价值观要求1.学生通过交流、归纳,总结相似多边形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识. ●教学重点1.相似多边形的周长比、面积比与相似比关系的推导.2.运用相似多边形的比例关系解决实际问题. ●教学难点相似多边形周长比、面积比与相似比的关系的推导及运用. ●教学方法 引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的目的.●教具准备 投影片四张 第一张:(记作§4.8.2 A ) 第二张:(记作§4.8.2 B ) 第三张:(记作§4.8.2 C ) 第四张:(记作§4.8.2 D )●教学过程Ⅰ.创设问题情境,引入新课 [师](拿大小不同的两个等腰直角三角形三角板).我手中拿着两名同学的两个大小不同的三角板.请同学们观察其形状,并请两位同学来量一量它们的边长分别是多少.然后告诉大家数据.(让学生把数据写在黑板上)[师]同学们通过观察和计算来回答下列问题. 1.两三角形是否相似.2.两三角形的周长比和面积比分别是多少?它们与相似比的关系如何?与同伴交流. [生]因为两三角形都是等腰直角三角形,其对应角分别相等,所以它们是相似三角形.周长比与相似比相等,而面积比与相似比却不相等. [师]能不能找到面积比与相似比的量化关系呢? [生]面积比与相似比的平方相等.[师]老师为你的重大发现感到骄傲.但这是特殊三角形,对一般三角形、多边形,我们发现的结论成立吗?这正是我们本节课要解决的问题.Ⅱ.新课讲解 1.做一做投影片(§4.8.2 A )图4-44在图4-44中,△ABC ∽△A ′B ′C ′,相似比为43. (1)请你写出图中所有成比例的线段.(2)△ABC 与△A ′B ′C ′的周长比是多少?你是怎么做的?(3)△ABC 的面积如何表示?△A ′B ′C ′的面积呢?△ABC 与△A ′B ′C ′的面积比是多少?与同伴交流.[生](1)∵△ABC ∽△A ′B ′C ′∴B A AB ''=C B BC ''=C A AC ''=D C CD ''=D B BD ''=D A AD ''=43. (2)43='''∆∆的周长的周长C B A ABC .∵B A AB ''=C B BC ''=C A AC ''=43. ∴C A C B B A ACBC AB l l C B A ABC ''+''+''++='''∆∆ =C A C B B A C A C B B A ''+''+''''+''+''434343 =43)(43=''+''+''''+''+''C A C B B A C A C B B A . (3)S △ABC =21AB ·C D. S △A ′B ′C ′=21A ′B ′·C ′D ′. ∴2)43(2121=''⋅''=''⋅''⋅='''∆∆D C CD B A AB D C B A CDAB S S C B A ABC . 2.想一想如果△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比和面积比分别是多少?[生]由上可知若△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比为k ,面积比为k 2.3.议一议投影片(§4.8.2 B ).如图4-45,四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2,相似比为k .图4-45(1)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的周长比是多少?(2)连接相应的对角线A 1C 1,A 2C 2,所得的△A 1B 1C 1与△A 2B 2C 2相似吗? △A 1C 1D 1与△A 2C 2D 2呢?如果相似,它们的相似各是多少?为什么?(3)设△A 1B 1C 1,△A 1C 1D 1,△A 2B 2C 2,△A 2C 2D 2的面积分别是,111C B A S ∆222222111,,D C A C B A D C A S S S ∆∆∆那么222111222111D C A D C A C B A C B A S S S S ∆∆∆∆=各是多少?(4)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的面积比是多少? 如果把四边形换成五边形,那么结论又如何呢?[生]解:(1)∵四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2.相似比为k .(2)△A 1B 1C 1∽△A 2B 2C 2、△A 1C 1D 1∽△A 2C 2D 2,且相似比都为k . ∵四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2 ∴2211221122112211D A DA D C D C CBC B B A B A === ∠D 1A 1B 1=∠D 2A 2B 2,∠B 1=∠B 2. ∠B 1C 1D 1=∠B 2C 2D 2,∠D 1=∠D 2. 在△A 1B 1C 1与△A 2B 2C 2中 ∵22112211C B CB B A B A = ∠B 1=∠B 2. ∴△A 1B 1C 1∽△A 2B 2C 2. ∴2211B A B A =k . 同理可知,△A 1C 1D 1∽△A 2C 2D 2,且相似比为k . (3)∵△A 1B 1C 1∽△A 2B 2C 2,△A 1C 1D 1∽△A 2C 2D 2.22222222222222)(k S S S S k D C A C B A D C A C B A =++∆∆∆∆照此方法,将四边形换成五边形,那么也有相同的结论. 由此可知:相似多边形的周长比等于相似比,面积比等于相似比的平方. 4.做一做投影片(§4.8.2 C )图4-46是某城市地图的一部分,比例尺为1∶100000.(1)设法求出图上环形快速路的总长度,并由此求出环形快速路的实际长度. (2)估计环形快速路所围成的区域的面积,你是怎样做的?与同伴交流.图4-46解:(1)量出图上距离约为20 cm ,则实际长度约为20千米.(2)图上区域围成的面积约为23.7 cm 2.根据相似多边形面积的比等于相似比1∶100000的平方,则实际区域的面积约为23.7平方千米.Ⅲ.随堂练习投影片(§4.8.2 D )在设计图上,某城市中心有一个矩形广场,设计图的比例尺是1∶10000,图上矩形与实际矩形相似吗?如果相似,它们的相似比是多少?图上矩形与实际矩形的周长比是多少?面积比呢?答案:相似,相似比是1∶10000. 周长比是1∶10000. 面积比是1∶100002. Ⅳ.课时小结本节课我们重点研究了相似多边形的对应线段(高、中线、角平分线)的比,周长比都等于相似比,面积比等于相似比的平方.Ⅴ.课后作业 习题4.11预习位似图形的定义、性质. Ⅵ.活动与探究如图4-47已知,M 是□ABCD 的AB 边的中点,CM 交BD 于点E ,则图中阴影部分的面积与平行四边形ABCD 的面积比是多少?图4-47过程:这是一道综合性较高的题目,它考查了相似三角形的性质、面积计算及等积定理等,所以让学生进行讨论、总结,利用所学知识解决这个问题.讨论结果:作DN ⊥AB 于N ,过E 作GF ⊥AB 于F . ∵M 为AB 中点∴S △AMD =S △DMB =21S △ABD =41S □ABCD ∵S △MBD =S △MBC (同底等高的两个三角形面积相等). ∴S △MBD -S △MBE =S △MBC -S △MBE 即S △DME =S △CBE因此图中阴影部分的面积与平行四边形的面积之比是31. ●板书设计§4.8.2 相似多边形的性质(二)一、1.做一做 2.想一想 3.议一议 4.做一做二、课堂练习 三、课时小结 四、课后作业●备课资料 参考例题[例1]如图4-48,在△ABC 中EF ∥BC 且EF =32BC =2 cm , △AEF 的周长为10 cm ,求梯形BCFE 的周长.图4-48解:∵EF =32BC ∴32=BC EF ∵EF ∥BC ∴△AEF ∽△ABC 32==∆∆BC EF ABC AEF 周长周长∴3210=∆周长ABC ∴△ABC 周长=15 (cm )∴梯形BCF 的周长=△ABC 的周长-△AEF 的周长+2EF =15-10+4=9 (cm ) [例2]如图4-49△ABC 中,DE ∥BC ,S △ADE ∶S △ABC =4∶9 (1)求AE ∶EC ;(2)求S △ADE ∶S △CDE .图4-49解:(1)∵DE ∥BC ∴△ADE ∽△ABC 又∵94=∆∆ABC ADE S S ∴32=AC AE ∴23=AE AC 21=-AE AE AC即21=AE EC ∴AE ∶EC =2∶1(2)连结CD ,过D 作DH ⊥AC 交AC 于H122121==⋅⋅=∆∆CE AE DH CE DHAE S S CDEADE参考练习如图4-50平行四边形ABCD 中,E 是BC 上一点,AE 交BD 于点F ,已知BE ∶EC =3∶1,S △FBE =18,求S △FDA .图4-50答案:32§4.8 相似多边形的周长比和面积比班级:_______ 姓名:_______一、请你填一填(1)若△ABC ∽△A ′B ′C ′,AB =4,BC =5,AC =6,△A ′B ′C ′的最大边长为15,那么它们的相似比是________,△A ′B ′C ′的周长是________.图4—8—1(2)两个相似三角形的相似比为2∶3,它们周长的差是25,那么较大三角形的周长是________.(3)如图4—8—1,在ABCD 中,延长AB 到E ,使BE =21AB ,延长CD 到F ,使DF =DC ,EF 交BC 于G ,交AD 于H ,则△BEG 与△CFG 的面积之比是________.(4)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,那么边长应缩小到原来的________倍.二、认真选一选(1)如图4—8—2,把一个矩形纸片ABCD 沿AD 和BC 的中点连线EF 对折,要使矩形AEFB 与原矩形相似,则原矩形长与宽的比为( )A.2∶1B.3∶1C.2∶1D.4∶1图4—8—2 图4—8—3(2)如图4—8—3,在△ABC 中,D 、E 分别是边AB 、AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1、S 2,那么21S S 的值为( ) A.21 B.41 C.31 D.32图4—8—4(3)如图4—8—4,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB∶AC等于()A.1∶3B.1∶4C.1∶3D.1∶2(4)顺次连结三角形三边的中点,所成的三角形与原三角形对应高的比是()A.1∶4B.1∶3C.1∶2D.1∶2三、灵机一动!哇……某生活小区开辟了一块矩形绿草地,并画了甲、乙两张规划图,其比例尺分别为1∶200和1∶500,求这块矩形草地在甲、乙两张图纸上的面积比.四、用数学眼光看世界如图4—8—5,△ABC是一块锐角三角形余料,其中BC=12 cm,高AD=8 cm,现在要把它裁剪成一个正方形材料备用,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,问这个正方形材料的边长是多少?图4—8—5 参 考 答 案一、(1)2∶5 37.5 (2)75 (3)1∶16 (4)22二、(1)C (2)C (3)C (4)D三、解:设这块矩形绿地的面积为S ,在甲、乙两张规划图上的面积分别为S 1、S 2则S S 1=(2001)2,S S 2=(5001)2∴S 1=40000S ,S 2=250000S∴S 1∶S 2=40000S ∶250000S =41∶251=25∶4即:这块草地在甲、乙两张图上的面积比为25∶4 四、解:设这个正方形材料的边长为x cm 则△P AN 的边PN 上的高为(8-x ) cm ∵由已知得:△APN ∽△ABC ∴BC PN =AD x -8,即12x =88x -解得:x =4.8 答:这个正方形材料的边长为4.8 cm.。