粉体材料表面改性
粉体表面改性的研究进展
粉体表面改性的研究进展物理改性中的热处理和球磨是两大常见且有效的方法。
热处理可以改变粉体表面的化学成分和结构,从而影响其性能。
比如通过高温热处理,可以在粉体表面形成高熵合金、氧化层等,改善其力学性能和耐腐蚀性。
球磨作为一种粗糙化技术,可以通过改变粉体表面形貌提高其活性。
通过改变球磨参数,甚至可以将一种粉体转变为另一种具有完全不同性能的粉体。
化学改性方法中,溶剂处理技术被广泛应用于许多工业领域,如环保、能源及催化剂等。
这种方法主要通过选择不同的溶剂来改变粉体表面的化学组成和物理状态,进而达到优化粉体性能的目的。
化学气相沉积(CVD)这种技术已成功地用于粉体表面的加工改性,能显著改善包括磁性、电性、光学性、催化性在内的多种性能。
化学吸附和化学反应也是现阶段常用的化学改性方法,其中化学吸附主要通过在粉体表面吸附不同的化学物质来调整其性能,而化学反应则可以在粉体表面制备复合薄膜,提高其功能性。
需要注意的是,粉体表面改性不仅影响粉体的性能,也会影响到其环境适应性、经济性和安全性等方面。
因此,在粉体表面改性研究中,除了追求性能优化,还需要充分考虑这些因素,使改性后的粉体既具有良好性能,又具有广阔的应用前景。
最近的研究还向生物改性方向发展,如通过酶催化,生物胶凝等方式对粉体进行改性,让粉体获得新的功能和特性。
还有通过物理、化学和生物的组合方式对粉体进行多重改性,使粉体在多个方面都具有优越性能。
总的来说,粉体表面改性技术的研究已经取得了显著的进展,在许多领域都得到了广泛的应用。
然而,由于粉体的复杂性,粉体表面改性仍然面临许多挑战,包括改性机制的解析、改性效果的稳定性及改性方法的绿色化等问题亟待研究解决。
未来的研究还需要持续深入,不断探索更有效、更经济、更环保的粉体表面改性方法,让这种技术在生产实践中发挥出更大的作用。
无机粉体表面改性的目的、原理及方法及改性剂的选择
无机粉体表面改性的目的、原理及方法及改性剂的选择
虽然无机粉体表面改性的目的因应用领域的不同而异,但总的目的是通过粉体改性剂改善或提高粉体材料的应用性能或赋予其新的功能以满足新材料、新技术发展或者新产品开发的需要。
无机粉体改性的目的是什么呢
1.使无机矿物填料由一般增量填料变为功能性填料;
2.提高涂料或油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性和保色性等;
3.在无机/无机复合粉料中,提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料;
4.通过对层状粉体进行插层改性,制备新型的层间插层矿物材料;
5.对于吸附和催化材料,提高其吸附和催化活性以及选择性、稳定性、机械强度等性能
6.超细和纳米粉体制备中的抗团聚;
粉体表面改性的原理和方法
1.表面或界面性质与其应用性能的关系
2.表面或界面与表面改性剂或者处理剂的作用机理和作用模型
3.各种表面改性方法的基本原理或者理论基础,包括表面改性处理过程中的热力学和动力学,模拟和化学计算等。
《粉体表面改性》--3表面改性剂
表面活性剂
• (2)高级胺盐 • 阳 离 子 表 面 活 性 剂 , 其 分 子 通 式 为 RNH2( 伯 胺 ) 、 R2NH(仲胺)R3H(叔胺)等.其中,至少有1~2个为长链 烃基(C12 ~C22)。与高级脂肪酸一样,高级胺盐的烷 烃基与聚合物的分子结构相近,因此与高聚物基料 有一定相容性,分子另一端的氨基与无机粉体表面 发生吸附作用。 • 在对膨润土或蒙脱石型粘土进行有机覆盖(或插 层)处理以制备有机土时,一般采用季铵盐,即甲 基苯基或二甲基二烃基胺盐
偶联剂
• 硅烷偶联剂的应用: • 适用于中性和酸性无机粉体的表面处理 • Ⅰ品种选择 • 在用硅烷偶联剂改性矿物粉体时,品种选择 至关重要。 • 选择考虑因素: • ①应用体系的性质或树脂种类; • ②填充材料(或复合体系)的技术指标要求
偶联剂
• Ⅱ用法: • 一般水解后使用。水解pH范围为酸性或中性 (pH3.5~6.0)。 • Ⅲ用量: • 一般为粉体质量的0.2~2.0%;如已知粉体的比表面 积和偶联剂最小包覆面积可按下式估算:
偶剂
• (3)铝酸酯偶联剂 • 化学通式: • Dn • ↓ • (RO)x—Al----(OCOR’)m
• 式中, Dn代表配位基团,如N、O等
偶联剂
• 用途: • 各种无机填料、颜料及阻燃剂,如重质碳酸 钙、碳酸镁、磷酸钙、硫酸钡、硫酸钙、滑 石粉、钛白粉、氧化锌、氧化铝、氧化镁、 铁红、铬黄、碳黑、白炭黑、立德粉、云母 粉、高岭土、炼铝红泥、叶腊石粉、硅灰石 粉、粉煤灰、玻璃粉、玻纤、氢氧化镁、氢 氧化铝、三氧化二锑、聚磷酸铵、偏硼酸锌 等的表面改性
偶联剂
• 配位型 • (i—C3H7O)4Ti•[P—(OC8H17)2OH]2
• 配位型偶联剂是以2个以上的亚磷酸酯为配体,将磷 原子上的孤对电子移到钛酸酯中的钛原子上,形成2 个配价健, 钛原子由4价键转变为6价键,降低了钛酸 酯的反应活性,提高了耐水性。配位型钛酸酯偶联剂 多数不不溶解于水,可以直接高速研磨使之乳化分散 在水中,也可以加表面活性剂或亲水性助溶剂使它分 散在水中,对填、颜料进行表面处理
【精品文章】一文粉体表面改性效果评价方法
一文粉体表面改性效果评价方法
现代新材料的设计和功能化,离不开作为原料或填料的粉体表面性质的设计和功能化。
粉体表面改性主要根据应用需要有目的地改变粉体表面的物化性质,如表面晶体结构和官能团、表面能、表面润湿性、电能、表面吸附和反应特性等。
如何评价粉体表面改性效果,下面小编做简要介绍。
一、粉体表面改性效果评价方法
目前,表面改性效果的评价方法主要有两种:应用结果评价法、预先评价法。
(一)应用结果评价法
应用结果评价法是通过测试改性粉体填充形成的制品性能,特别是力学性能就可对改性效果作出直接评价。
优点是结果可靠,但存在的问题是测试过程费用较高。
目前,应用结果评价法主要应用于粉体表面改性的研究和应用中。
(二)预先评价法
预先评价法对改性粉体进行物理性质、化化性质和表面特性的测试,比较改性前后指标的变化,达到预先评价改性结果的目的。
预先评价法主要分为:润湿性评价法、表面自由能评价法、药剂吸附量评价法、红外光谱、X射线、差热分析、表面分析新技术。
1、润湿性评价法
润湿性包括渗透时间、接触角、吸油率、活化指数等指标,是衡量粉体与聚合物之间相容性好坏的主要指标之一。
润湿好的粉体,填加到聚合物。
粉体表面改性
粉末进行表
面改性,推测在CH4
和H2
的共同作用下TiO2
表
面将形成Ti-C-O结构,使其导电性与TiC类
似。Yamada等〔12〕先后用Ar和N2
等离子体改性
处理TiO2
膜,在通入N2
之前首先进行Ar处理以
除去吸附在TiO2
表面的水分子、清洁表面,最后
得到的掺氮TiO2
不同,得到的涂层组成也会不同。文献〔23-24〕中还指
出,经无机表面沉积改性以后,粉体的性能提高了,
在基体中分散性较好。章金兵〔25〕用液相沉积法对
纳米ZnO/TiO2
进行表面改性,改性后的粉体表面存
在致密的Al2O3
膜,产物经充分分散后在有机介质
或水中的稳定时间明显提高,紫外线透过率则由改
性前的大于8.5%降低到小于7%。
粉体表面改性
前言:粉体是无数个细小固体粒子集合体的总称。根据固体粒子的尺寸不同可以将固体粒子分为颗粒、微米颗粒、亚微米颗粒、超微颗粒、纳米颗粒。通常粉体是尺度界于10-9m到10-3m范围的颗粒。随着颗粒尺寸的减小相应的各种性质也随着尺寸的改变而改变。
因此小尺寸颗粒有如下几个特征:
1.比表面积增大促进溶解性和物质活性的提高,易于反应处理。
粉体的团聚现象减少了,分散性提高
了,并且改性后的纳米SiO2
粉体与有机基体聚氨
酯弹性体( PUE)的相容性增强了,PUE材料的力学
性能也有较大的改善,能同时达到增强增韧的效
果。余江涛等〔9〕利用阴离子表面活性剂对钛白粉
进行改性,结果表明粉体的疏水性有所改善,其中
使用十二烷基苯磺酸钠与硬脂酸的复配体系其接
向排列,使其表面性质或界面性质发生显著变化;
微纳米粉体表面改性剖析课件
•微纳米粉体表面改性剖析
•43
(1)非共价修饰纳米粉体
② 带官能团的分子
NH3+
静电作用
CH=CH2 COOH NH2
•微纳米粉体表面改性剖析
•44
(1)非共价修饰纳米粉体
③无机包覆改性
用无机物作改性剂,无机物与纳米粒子表面不发生化学 反应,改性剂与纳米粒子间依靠物理方法或范德华力结合。
利用无机化合物在纳米粒子表面进行沉淀反应,形成表 面包覆。
•微纳米粉体表面改性剖析
•24
10.3.2 纳米颗粒的分散
阻止纳米粒子形成高密度、硬块状沉淀。
手段:减小粒子间的范德华引力或基团间的相 互作用。
使初级粒子不易团聚生成二次粒子!!!!
•微纳米粉体表面改性剖析
•25
10.3.2 纳米颗粒的分散
• 物理法分散纳米粉体 超声波法 机械分散法
• 化学法 非共价方法 共价方法 π-π共轭的方法
如果减小范德华引力或羟基间的作用,就可以减小纳米 粒子间的团聚。
•微纳米粉体表面改性剖析
•19
5)团聚机理方式
① 毛细管吸附理论 毛细管效应一般发生在湿化学法制备纳米粉
体时的脱除溶剂和干燥过程的排水阶段。
•微纳米粉体表面改性剖析
•20
5)团聚机理方式
② 晶桥理论 在纳米粉体干燥过程中,颗粒间由于表面羟基
➢ 热力学角度看,纳米粉体粒子间的作用为范德华力和库仑力, 因而产生纳米粒子的团聚。
•微纳米粉体表面改性剖析
•14
3)团聚机理
根据团聚机理的不同可分为软团聚和硬团聚。 (1)软团聚
由颗粒间的范德华力、表面带电引起的静电引力及毛细管 力等较弱的力引起的颗粒聚集,称为“软团聚”。
粉体表面改性处理介绍-文档资料
(3)气相法改性 气相法改性是指将改性剂汽化以后与固体颗粒表
面进行接触,在其表面发生化学反应或物理结合而吸
附在颗粒表面,达到对颗粒进行表面改性处理的方法 。在该方法中由于要将改性剂汽化,一般局限于一些 低分子量、低沸点的改性剂。
干法表面改性设备
目前干法表面改性设备主要有高速加热 式混合机、SLG型连续式粉体表面改性机、 PSC型连续式粉体表面改性机、高速气流冲
图4 HYB主机的结构示意图
(5)流化床式粉体表面改性机
图5 不同形式的流化床
(a) 顶喷式 (b) 底喷式 (c)Wurster式 (d) 侧喷旋转式
2)表面改性的分类
包覆处理改性 表面化学包覆
沉淀反应包膜 胶囊化处理
机械化学改性,等
包覆处理改性 包覆 也称涂敷,利用有机高聚物或树脂等对粉体
(1)干法改性 干法改性是指颗粒在干态下在表面改性设备中首先进 行分散,然后通过喷洒合适的改性剂或改性剂溶液,在一 定温度下使改性剂作用于颗粒材料表面,形成一层改性剂 包覆层,达到对颗粒进行表面改性处理的方法。这种改性 方法具有简便灵活,适应面广,工艺简单,成本低,改性
后可直接得到产品,易于连续化、自动化等优点,但是在
粉体表面改性
概述
1)定义
表面改性 是指利用各类材料或助剂,采用物理、 化学 等方法对粉体表面进行处理,根据应用的需要有目的地改 善粉体表面的物理化学性质或物理技术性能,如表面晶体 结构和官能团、表面能、表面润湿性、电性、表面吸附和
反应特性等等,以满足现代新材料、新工艺和新技术发展
的需要。
2) 表面改性的目的
化学方法
物理化学方法 机械物理方法
其它表面改性方法
大颗粒球形粉体材料的表面改性与功能化研究
大颗粒球形粉体材料的表面改性与功能化研究摘要:大颗粒球形粉体材料是一种广泛应用于化学、生物、医药等领域的重要材料。
然而,其应用受制于表面性质和功能性的限制。
因此,对大颗粒球形粉体材料的表面改性与功能化研究具有重要意义。
本文主要讨论了大颗粒球形粉体材料的表面改性方法、功能化策略以及应用前景。
一、引言大颗粒球形粉体材料具有广泛的应用前景,但其表面性质和功能性的限制制约了其应用范围。
因此,对大颗粒球形粉体材料的表面改性与功能化研究具有重要意义。
二、表面改性方法1. 化学改性方法:通过化学反应,在大颗粒球形粉体材料表面引入新的官能团,改变其表面性质。
例如,利用硅烷偶联剂对颗粒表面进行改性,引入羟基或氨基等新的官能团。
2. 物理改性方法:通过物理手段对大颗粒球形粉体材料进行表面改性,如静电喷涂、电子束辐照等。
这些方法可以改变颗粒表面的形貌、结构和疏水性等性质。
三、功能化策略1. 介孔化改性:将大颗粒球形粉体材料转化为介孔结构,增加其比表面积和孔隙率。
这可以提高颗粒材料的吸附能力和催化活性,扩展其应用领域。
2. 纳米包埋改性:利用纳米材料对大颗粒球形粉体进行包埋改性,可以改变颗粒表面的光学、磁性、阻尼等性质,拓宽其应用范围。
3. 功能分子修饰:将功能性分子修饰到大颗粒球形粉体材料表面,可以赋予颗粒特定的化学、生物活性。
例如,将荧光染料修饰到颗粒表面,可以用于生物荧光成像。
四、研究进展1. 表面改性与应用:大颗粒球形粉体材料经过表面改性后,可以应用于催化、传感、吸附等领域。
例如,改性后的颗粒材料可以用于高效催化反应,实现废水处理和有机合成。
2. 功能化与应用:通过功能化策略,大颗粒球形粉体材料可以具备特定的功能,如生物活性、磁性等。
这些功能化颗粒材料能够应用于生物医学、电子器件等领域。
五、应用前景与展望大颗粒球形粉体材料的表面改性与功能化研究为其应用领域的拓展提供了新的可能。
未来,随着表面改性技术和功能化策略的不断发展,大颗粒球形粉体材料的应用前景将更加广阔。
第四讲 纳米粉体表面改性
(2)纳米粉体表面改性的必要性 )
纳米粉体一般是指粒径在 以下的粒子或颗粒。 纳米粉体一般是指粒径在100nm以下的粒子或颗粒。由于 一般是指粒径在 以下的粒子或颗粒 纳米粉体粒度细、比表面积大、表面能高、表面原子数增多、 纳米粉体粒度细、比表面积大、表面能高、表面原子数增多、 原子配位不足及高的表面能, 原子配位不足及高的表面能,使得这些表面原子具有很高的 活性,极不稳定,很容易“团聚” 失活” 活性,极不稳定,很容易“团聚”及“失活”。 对于软团聚的纳米粒子,通过表面的物理和化学改性,来 对于软团聚的纳米粒子,通过表面的物理和化学改性, 提高纳米粉体的分散性 分散性; 提高纳米粉体的分散性;改善或提高无机纳米粉体与复合材 料中基料或其他物质之间的相容性 相容性; 料中基料或其他物质之间的相容性; 纳米粉体在催化、环保、微电子、 纳米粉体在催化、环保、微电子、生物医药及化工等领域 的应用需要特定的表面物理化学特性及功能。因此, 的应用需要特定的表面物理化学特性及功能。因此,有选择 性地赋予无机纳米粉体材料新的物理化学性能及新的功能 新的物理化学性能及新的功能也 性地赋予无机纳米粉体材料新的物理化学性能及新的功能也 要通过表面改性或表面处理来实现。 要通过表面改性或表面处理来实现。
1.表面活性剂改性 表面活性剂改性
无机纳米粉体颗粒经表面活性剂改性或处理后可阻止或 减轻硬团聚体的形成 提高其分散性。 的形成, 减轻硬团聚体的形成,提高其分散性。表面活性剂还能改善 或提高纳米粒子与相应体系中基料或其他物质的相容性 相容性。 或提高纳米粒子与相应体系中基料或其他物质的相容性。 纳米粉体的表面活性改性法既可湿法进行也可干法进 纳米粉体的表面活性改性法既可湿法进行也可干法进 行或干-湿结合 湿结合。 行或干 湿结合。 对于湿法化学合成,如沉淀法、水热法、溶胶 凝胶法等 对于湿法化学合成,如沉淀法、水热法、溶胶-凝胶法等 湿法化学合成 工艺制备纳米粉体, 工艺制备纳米粉体,在湿法生成纳米粉体过程中或生成后立 即加入表面活性剂,不仅可以防止硬团聚体的形成, 即加入表面活性剂,不仅可以防止硬团聚体的形成,还有助 于遏止粒子“长大”。纳米粉体的表面改性最好在湿法制备 于遏止粒子“长大” 过程中就开始进行。 过程中就开始进行。 进行干法改性。 表面活性剂也可以用于对纳米无机粉体 进行干法改性。 干法改性的关键是改性设备能够很好地将纳米粉体和表面活 干法改性的关键是改性设备能够很好地将纳米粉体和表面活 性剂分散, 性剂分散,使表面活性剂能够均匀地吸附包覆于纳米颗粒表 面。 :
粉体表面改性技术
粉体表面改性方法
涂敷改性(冷法、热法) 石英砂涂敷树脂,提高铸造时粘结性 表面化学改性(主要方法) 颗粒表面性质、改性剂种类、用量用法 及工艺设备与操作条件 沉淀反应改性(钛白、云母) 机械化学改性 高能改性、酸碱处理等
粉体表面改性设备
高速混合(捏和)机 HYB高速气流冲击式粉体表面处理机 (东京理科大学、奈良机械制作所) 球磨机、砂磨机 液相表面处理 喷雾表面处理
超分散剂的吸附形态
超分散剂在强极性 表面的单点化学吸附
超分散剂在弱极性 表面的多点氢键吸附
超分散剂通过表面增 效剂在非极性表面吸附
超分散剂作用机理示意图
锚固基团
颗粒
颗粒
溶剂化链
超分散剂的吸附性能
Rehacek方法
Xap
MaCa
Xap Mo(Co Ce) X MoCo ( Mo X Xsolv)Ce Ma X Xsolv Ca X / Ma Xap Ma (Ca Ce) Ma / ( s )
CH-5使用方法
将研磨基料的树脂浓度降低至30-40% 在基料中尽量少使用胶质油或胶凝剂 在用基料调制油墨时多补充上述物质 由于CH-5降低基料粘度,故可提高颜 料含量,减少溶剂用量,改善油墨干燥 性能
热固型/单张纸型研磨基料配方
RUBINE / Ca 4B TONER 36 PHTHALOCYANINE BLUE DIARYLIDE YELLOW CARBON BLACK GRINDING VEHICLE 48 ALKYD RESIN 8 CH-5 HYPERDISPERSANT CH-11B HYPERDISPERSANT CH-22 HYPERDISPERSANT ANTIOXIDANT 2 ALIPHATIC DISTILLATE 6 50 36 50 28 26 8 4 52 9 33 9 3.75 1.25 3 65 5 40 49 5 3 1 2 40 53 5 50 33 5 4
粉体表面改性处理介绍
2)有机酸及其盐类改性剂
❖高级脂肪酸及其盐 结构通式:RCOOH 为阴离子表面活性剂,其结构和聚合物分子结
构相似,与聚合物基料有一定的相容性。分子一 端为羧基,可与无机填料或颜料表面发生物理、 化学吸附作用,另一端为长链烷基(C16-C18)
作用: 用高级脂肪酸及其盐(如硬脂酸)处理无机填料
或颜料,有一定的表面处理效果 可改善无机填料或颜料与高聚物基料的亲和性, 提高其在高聚物基料中的分散度。 本身具有润滑作用,可使复合体系内摩擦力减
(1)干法改性 干法改性是指颗粒在干态下在表面改性设备中首先进
行分散,然后通过喷洒合适的改性剂或改性剂溶液,在一 定温度下使改性剂作用于颗粒材料表面,形成一层改性剂 包覆层,达到对颗粒进行表面改性处理的方法。这种改性 方法具有简便灵活,适应面广,工艺简单,成本低,改性 后可直接得到产品,易于连续化、自动化等优点,但是在 改性过程中对颗粒难以做到处理均一、颗粒表面改性层可 控等目的。
2023最新整理收集 do something
概述
1)定义
粉体表面改性
表面改性是指利用各类材料或助剂,采用物理、 化学 等方法对粉体表面进行处理,根据应用的需要有目的地改 善粉体表面的物理化学性质或物理技术性能,如表面晶体 结构和官能团、表面能、表面润湿性、电性、表面吸附和 反应特性等等,以满足现代新材料、新工艺和新技术发展 的需要。
亲水基的性质
硅烷偶联剂亲水基也称水解性基团,遇水可分解成 活性硅醇(≡Si-OH),通过硅醇和无机矿物表面反应, 形成化学结合或吸附于矿物表面 X为—OCH3和—OC2H5,水解速度缓慢,产物
醇为中性物质,用水介质进行表面改性。 X为—OC2H4OCH3基团,不仅保留水解性,还
能提高水溶性、亲水性,应用更为方便
粉体表面改性及分散技术
1、纳米粉体的分散重要性
纳米粉体稳定分散在各种液相介质形成的分散体本身往往 就是十分重要的产品。如将某些具有特殊电磁性的纳米粉 体分散在液相介质中可制成导电料浆或磁性浆料;将纳米 TiO2粉体分散在水中或有机溶剂中可以制成具有抗紫外、 自清洁或光催化等特殊功能的涂料;这些产品的性能与纳 米粉体的分散状况密切相关。
3、粉体表面改性的目的
4、环境保护
某些公认的对健康有害的原料,如石棉,对人体健康有害主要 在于其生理活性;一是细而长的纤维形状(长度为5-100微米, 直径3微米以下的纤维)在细胞中特别具有活性;二是石棉表面 的极性点(这些极性点主要是OH-官能团)容易与构成生物要素 的氨基酸蛋白酶的极性基键合。如果这两个因素在细胞中起主导 作用的话,那么就可以认为表面改性有可能改变石棉的生理活性。 可用对人体无害和对环境不构成污染,又不影响其使用性能的其 他化学物质覆盖、封闭其表面的活性点OH-。
1、粉体的用途
在橡胶、塑料、涂料、胶粘剂等高分子材料工业及高 聚物基复合材料领域中,无机粉体填料占有很重要的 地位。如碳酸钙、高岭土、氢氧化铝、云母、石棉、 石英、硅藻土、白碳黑等等,不仅可以降低材料成本, 还能提高材料的硬度、刚性和尺寸稳定性,改善材料 的力学性能并赋予材料某些特殊的物理化学性能,如 耐腐蚀性、耐侯性、阻燃性和绝缘性等。
2、纳米粉体分散改性的目的
粉体表面改性及分散技术
主要内容
一.粉体表面改性 二.纳米粉体表面改性 三.超分散剂
超细粉体分类
分类
直径
原子数目
微米粉体
>1m
>1011
亚微米粉体 100nm~1 m 108
特征 体效应 体效应
纳米粉体 100nm~10nm 105 尺寸与表 1nm
《粉体材料表面改性》课程教学大纲
《粉体材料表面改性》课程教学大纲课程代码:050542002课程英文名称:SurfaceModificationofpowder(A2)课程总学时:24讲课:24实验:0上机:0适用专业:粉体科学与工程专业大纲编写(修订)时间:2017.3一、大纲使用说明(一)课程的地位及教学目标粉体表面改性是粉体科学与工程专业方向课,为选修课。
本门课程讲授粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、各行业典型粉体及纳米粉体饿表面改性方法、实践及改性产品的检测及表征方法。
通过本课程的学习,不仅让学生掌握粉体表面改性的相关理论,同时培养学生发现、分析与解决问题的能力和精密进行科学研究的技能。
为学生将来从事粉末材料、粉体工程领域的生产、科研打下坚实的理论和实践基础。
通过本课程的学习,学生将达到以下要求:1.掌握粉体材料表面改性工艺的方法和原理;2.使学生掌握目前工业表面改性典型设备;3.使学生了解表面改性剂的种类、性质、使用条件;4.掌握粉体改性前后的物性变化及相关的检测方法;5.进一步结合创新创业培养目标,加强学生创新能力的培养,使学生具备独立进行粉体表面原位修饰工艺设计与设备选型的能力。
(二)知识、能力及技能方面的基本要求1.基本知识:掌握粉体表面改性一般知识,包括粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、改性产品的检测及表征方法等。
2.基本理论和方法:掌握粉体表面的物性,粉体表面改性的基本原理、掌握粉体表面改性工艺设计和设备;了解常见工业粉体的表面改性方法及应用。
3.基本技能:掌握粉体改性工艺设计计算、独立进行设备选型的技能等。
了解特种粉体的生产工艺、制备技术及行业发展趋势。
具备制备、加工特种粉体的必要的基础知识和基本技能。
(三)实施说明本课程安排在第七学期学习,共24学时,其中理论讲课24学时。
根据教学的需要,有针对性地对教学内容适当增减,各部分学时数可适当调整2学时。
粉体表面改性
4.1 概述
1)定义 表面改性是指利用各类材料或助剂,采用物理、 化学、机械等方法对矿物粉体表面进行处理,根据 应用的需要有目的地改善粉体表面的物理、化学性 质或物理技术性能,以满足现代新材料、新工艺和 新技术发展的需要。
粉体的表面改性处理直接影响着粉体的使用价值和应 用领域。
常用改性剂 偶联剂 ——最常用的矿物表面改性剂 高级脂肪酸及其盐 ——适用于表面含金属活性粒子的矿物 不饱和有机酸和有机硅,等
改性剂的选择范围较大,具体选用时要综合考虑粉 体的表面性质、改性产品的用途、质量要求、处理 工艺以及表面改性剂的成本等因素。
表面化学改性一般在高速加热混合机或捏合 机、流态化床、研磨机等设备中进行。这是因为 粉体的表面改性处理大多是在粉体物料中加入少 量表面改性剂溶液进行的操作。
常见的方法:包覆改性和高能改性。
包覆改性 包覆也称涂敷,是一种对粉体表面简单处理的方法, 借助于黏附力,利用有机高聚物或树脂等对粉体表面 进行“包覆”,以达到改善粉体表面性能的方法。
影响因素: 颗粒的形状 比表面积 孔隙率 涂覆剂的种类 涂敷处理工艺,等
例:树脂包覆石英砂--冷法和热法
表面改性是为改善矿物材料的使用性能,提高使用
价值并拓展新的应用领域,以满足新材料、新技术
发展、新产品开发的需要。
• 对膨润土进行有机阳离子覆盖处理,可提高其在弱极 性或非极性体系中的膨胀、悬浮、触变等特性;
• 通过表面改性处理,可提高涂料的分散性并改善涂料 的光泽、着色力、遮盖力以及耐热性、保光性、保色 性等。
在包覆处理前对石英砂进行冲洗或擦洗和干燥。
冷法包覆砂是在室温下制备的,先将粉状树脂与砂混匀,然后加 入溶剂(工业酒精、丙酮或糠醛),溶剂加入量根据混砂机能否 封闭而定。封闭者,酒精用量为树脂用量的40-50%;不能封闭 者为70-80%,再继续混碾到挥发完,干燥后经粉碎和筛分即得 产品。但该法使用有机溶剂量大,仅用于少量生产。
超细粉体的应用及其表面改性机理浅析
超细粉体的应用及其超细粉体的应用及其表面表面表面改性机理改性机理改性机理浅析浅析刘涛(上海汇精亚纳米新材料有限公司凤阳汇精纳米新材料科技有限公司)功能材料是高分子材料研究、开发、生产和应用中最活跃的领域之一,在材料科学中具有十分重要的地位。
超细粉体不仅是一种功能材料,而且其为新的功能材料的复合更使之具有广阔的应用前景,在国民经济各个领域都有着广泛的应用,起着极其重要的作用。
一:超细粉体的性质及应用1.超细粉体表面特性超细粉体科学与技术是近年来发展起来的一门新的科学技术,是材料科学的一个重要组成部分。
对于超细粉体统一定义,一般将粒径大于1μm 的粉体称为微米粉体,粒径处于0.1-1μm 之间的粉体称为亚微米粉体,粒径小于100nm 的粉体称为纳米粉体,也有人将粒径小于3μm 的粉体称为超细粉体。
超细粉体通常又分为微米粉体、亚微米粉体及纳米粉体。
超细粉体的粒径与其特性的关系如下表所示。
2.超细粉体表面结构根据晶体的空间结构,可以分为四种类型紧密堆积结构、骨架结构、层状结构和链状结构。
晶体受外力作用破坏时,将沿着晶体构造中键合力最弱的地方断裂。
在断裂面上均产生得不到补偿的断键,即不饱和键。
不同化学组成的超细粉体在新鲜表面具有极不相同的不饱和度。
根据断裂键能的性质,表面不饱和键有强弱之分,断裂面以离子键和共价键为主的是强不饱和键,表面为极性表面断裂面以分子键为主的为弱不饱和键,表面为非极性表面。
超细粉体不同,表面官能团的种类和数量不同,同一超细粉体表面官能团有一定的分布。
3、超细粉体的应用(1)超细粉体在塑胶领域中的应用超细粉体在化工领域中的应用十分广泛,在涂料、塑料、橡胶、造纸、催化、裂解、有机合成、化纤、油墨等领域都有广泛的应用。
在塑料行业,将超细粉体与塑料复合可起到增强增韧的作用,如将纳米碳酸钙表面改性后,对材料的缺口抗冲击强度和双缺口冲击强度的增韧效果十分显著,而且加工性能依然良好。
除此之外,超细粉体的加入,可以改善复合材料的耐老化性,防止塑料光辐射老化,提高塑料制品的使用寿命。
纳米二氧化硅粉体的表面改性研究
纳米二氧化硅粉体的表面改性研究一、本文概述随着纳米科技的飞速发展,纳米二氧化硅粉体因其独特的物理化学性质,在众多领域如橡胶、塑料、涂料、陶瓷、医药和化妆品等中得到了广泛的应用。
然而,纳米二氧化硅粉体的高比表面积和强表面能使得其极易发生团聚,这不仅影响了其性能的发挥,也限制了其在某些领域的应用。
因此,对纳米二氧化硅粉体进行表面改性,提高其分散性和稳定性,成为了当前研究的热点之一。
本文旨在探讨纳米二氧化硅粉体的表面改性研究,通过对表面改性方法、改性剂种类和改性效果等方面的深入研究,为纳米二氧化硅粉体的应用提供理论支持和实践指导。
文章首先介绍了纳米二氧化硅粉体的基本性质和表面改性的重要性,然后综述了目前常用的表面改性方法,包括物理法、化学法和复合法等,并分析了各种方法的优缺点。
接着,文章重点研究了不同改性剂对纳米二氧化硅粉体表面改性的效果,通过对比实验和表征分析,揭示了改性剂种类、用量和改性条件等因素对改性效果的影响。
文章对纳米二氧化硅粉体表面改性的未来发展趋势进行了展望,提出了一些有待进一步研究的问题和方向。
本文的研究结果不仅有助于深入理解纳米二氧化硅粉体的表面改性机制,也为优化改性工艺、提高改性效果提供了有益的参考。
本文的研究也有助于推动纳米二氧化硅粉体在各个领域的应用,促进纳米科技的进一步发展。
二、纳米二氧化硅粉体的基本性质纳米二氧化硅粉体是一种无机纳米材料,因其独特的物理化学性质,在众多领域有着广泛的应用。
其基本性质主要表现在以下几个方面:粒径与比表面积:纳米二氧化硅粉体的粒径通常在1-100纳米之间,这使得其比表面积远大于常规材料。
高比表面积赋予了纳米二氧化硅优异的吸附性能和反应活性。
表面能:由于纳米二氧化硅粉体的高比表面积,其表面能也相对较高。
这使得纳米二氧化硅易于团聚,从而影响了其分散性和应用性能。
表面羟基:纳米二氧化硅粉体表面存在大量的羟基(-OH),这些羟基不仅使纳米二氧化硅具有亲水性,还为其表面改性提供了反应位点。
粉体表面改性方法原理、工艺技术及使用的粉体改性剂
粉体表面改性方法原理、工艺技术及使用的粉体改性剂无机粉体的表面改性是根据使用行业所需求粉体具备的性能而进行的对应表面改性,以满足现代新材料、工艺和技术的发展需求,提升原有产品的性能特点,而且还可以提升对应的产能以及生产效率,在粉体加工行业也越来越受到重视,目前无机粉体表面改性的方法主要为6大类。
1、方法一:物理涂覆方法原理:利用高聚物或树脂等对粉体表面进行处理,一般包括冷法和热法两种。
粉体改性剂:高聚物、酚醛树脂、呋喃树脂等。
影响因素:颗粒形状、比表面积、孔隙率、涂敷剂的种类及用量、涂敷处理工艺等。
适用粉体:铸造砂、石英砂等。
2、方法二:化学包覆方法原理:利用有机物分子中的官能团在无机粉体表面的吸附或化学反应对颗粒表面进行包覆,一般包括干法和湿法两种。
除利用表面官能团改性外,该方法还包括利用游离基反应、鳌合反应、溶胶吸附等进行表面包覆改性。
粉体改性剂:如硅烷、钛酸酯、铝酸酯、锆铝酸盐、有机铬等各种偶联剂,高级脂肪酸及其盐,有机铵盐及其他各种类型表面活性剂,磷酸酯,不饱和有机酸,水溶性有机高聚物等。
影响因素:粉体的表面性质,粉体改性剂种类、用量和使用方法,改性工艺,改性设备等。
适用粉体:石英砂、硅微粉、碳酸钙、高岭土、滑石、膨润土、重晶石、硅灰石、云母、硅藻土、水镁石、硫酸钡、白云石、钛白粉、氢氧化铝、氢氧化镁、氧化铝等各类粉体。
3、沉淀反应方法原理:通过无机化合物在颗粒表面的沉淀反应,在颗粒表面形成一层或多层“包膜”,以达到改善粉体表面性质,如光泽、着色力、遮盖力、保色性、耐候性、电、磁、热性和体相性质等。
粉体改性剂:金属氧化物、氢氧化物及其盐类等各类无机化合物。
影响因素:原料的性质(粒度大小和形状、表面官能团),无机表面改性剂的品种,浆液的pH值、浓度,反应温度和反应时间,洗涤、脱水、干燥或焙烧等后续处理工序。
适用粉体:钛白粉、珠光云母、氧化铝等无机颜料。
4、机械力化学方法原理:利用超细粉碎及其他强烈机械作用,有目的的对粉体表面进行激活,在一定程度上改变颗粒表面的晶体结构、溶解性能(表面无定形化)、化学吸附和反应活性(增加表面活性点或活性基团)等。
无机粉体的表面改性技术
有 工艺简单 、操作灵 活、投资节省等优 的有机改性剂和制备工艺需要干 燥的情 是将干燥 与表 面改性合 一。此法 可简化 点 ,并且水溶性和 非水溶 性表面改性剂 况。如 轻质碳酸钙 的表面改性 ,有机 硅 工艺 ,但干燥过程 中加入 的低沸点表面 均 可使 用。干法改性分 为连续式和间歇 改 性 钛 白粉 等 ;在 反 应后 的 浆料 过 滤 改性剂可能还来不及 与粉体表 面作用就 式两种 。连续 式即连续给料并同时添加 干燥前先进行改性还能 改善产 品结块团 随水分子一起 蒸发掉。如果在水分蒸发 表 面改性剂 ,粉体表 面包覆较均匀 ,适 聚的状 况 ,提高粉体 的分散性 。沉淀包 后 添 加 表 面 改 性 剂 ,虽 然 可 以避 免 表 面
2 . 1 干法 工 艺
干 法工艺是工业上 应用最为广泛 的 剂 的包 覆更均匀 ,但后续需要进行 过滤 是 ,粉碎 时局部温度过 高会在一 定程 度
表 面 改 性 工 艺 。 与 湿 法 改 性 相 比 ,它 具 和干燥。一般有机包覆改性 用于水溶性 上破坏表 面活性剂 的分 子结构。另一种
般用于采用共沉淀法制备复合粒子 。
1 . 7插层 改 性
2 . 无机粉体表面改性 工艺
改性工艺依 照表 面改性的方法 、设 面改性剂进行稀释 ,因此工 业上 操作相 2 。 3复合 工艺 备 和粉体的制备方法 而异。 目前工业上 对复杂 ,不适合 大规 模生产。 应用的改性工 艺主要有干法工艺 、湿法 2 . 2湿法 工 艺
将 有机 物 单 体 聚 合 在 粉 体 粒 子 表 面 ,得
1 . 1 物理 涂覆 改性
物理 涂覆改性即表面包覆改性 ,当
1 . 2高能表 面改性
到复合的胶囊化粒子 。与表面包覆改性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学包覆:利用颗粒表面官能团火集团与表面改性分子的
特性吸附或化学反应使粉体表面改性的方法。 表面改性剂:硅烷、钛酸酯、铝酸酯、锆铝酸盐等偶联剂; 高级脂肪酸及其盐;有机铵盐;磷酸酯;不饱和有机酸;水 溶性高分子及其他表面活性剂等。
沉淀包覆:利用无机化合物的沉淀反应,在颗粒表面形
成一层或多层“包覆”,以达到改善粉体表面性质,如光 泽、着色力、遮盖力、保色性、催化性、耐候性、耐热性、 点、磁、热性和体相性质等目的,这是一种“无机无机包 覆”的表面改性方法。一般采用湿法工艺,在反应釜火反 应罐中进行。影响沉淀包膜效果的因素较多,如浆液的PH、 浓度、反应温度和反应时间,颗粒的粒度、形状及后续处 理工序等。 硅灰石表面无机纳米改性
无机/无机复合材料:提高无机组分,特别是小比例无极组分在大比例无极组分中的
分散性,如陶瓷颜料和多想陶瓷。
• •
无机盐、话费、灭火剂等:再起表面包覆一层表面活性剂、偶联剂、有机高分子材
料等,级降低表面极性、减少从空气中吸附水,防止团聚并改善起流动性
造纸:通过对无机填料的表面改性,增加起留着率,减少损失。 用氧化钛、氧化铁、氧化铬等包覆改性的珠光云母;用氧化硅和氧化铝改性 的氧化钛;用有机物覆盖的膨润土;吸附环保材料;无机载体和催化材料等。 健康与环境保护:缓释药物胶囊、石棉纤维无害化等
机械化学:利用超细粉碎及其他强烈机械作用对粉体表
面进行激活,在一定程度上改变颗粒表面的晶体结构、化 学吸附和反应活性等。对粉体物料进行机械激活的设备主 要是各种类型的球磨机、气流磨及告诉机械冲击式磨机等。 影响机械激活作用强弱的主要因素:分体设备类型、及协 作方式、粉碎环境、机械力的作用以及粉体力度和比表面 积等。
• 赋予粉体材料心的功能:包括光、电、磁、热、吸附、触变、催化等。如
•
粉体技术表面改性的方法
ห้องสมุดไป่ตู้物理涂覆
化学包覆
沉淀包覆
机械化学
插层
其他
物理涂覆:利用高聚物或树脂等表面改性剂对粉体表面极性物
理处理而达到表面改性的方法,如用酚醛树脂或呋喃树脂等涂敷 石英砂以提高精细铸造砂的粘结性能、熔模铸造速度、高抗卷壳 和抗开裂性能;用呋喃树脂涂抹的石英砂用于油井钻探等。 呋喃树脂是指以具有呋喃环的糠醇和糠醛作原料生产的树脂类 的总称,其在强酸作用下固化为不溶和不熔的固形物,种类有 糠醇树脂、糠醛树脂、糠酮树脂、糠酮—甲醛树脂等。
粉体材料表面改性
课程名称: 碎矿与粉体技术
训练组别: 矿加12-1班1组
同组成员: 白宏宁 毕田雨 白楠 邓鹏程
粉体定义 粉体技术
粉体技术表面改性
粉体定义
• 颗粒 • 粉体
颗粒
• 颗粒的概念 与大块固体相比较,相 对微小的固体称之为颗粒。 根据其尺度的大小,常区 分为颗粒、微米颗粒、亚 微米颗粒、超微颗粒、纳 米颗粒等。这些词汇之间 有一定的区别,目前正在 建立相应的标准进行界定。 通常粉体工程学研究的对 象。 • 颗粒的特性 • 1.比表面积增大促进溶解 性和物质活性的提高,易 于反应处理。 • 2.颗粒状态易于流动,可 以精确计量控制供给与排 出和成形。 • 3.实现分散、混合、均质 化与梯度化,控制材料的 组成与构造。 • 4.易于成分分离,有效地 从天然资源或废弃物中分 离有用成分。
目的:改善火提高粉体材料的应用性能火功能性以满足高
技术和新材料或新产品开发的需要。
• • • 有机/无机符合材料:改善无机填料与有机基料的相容性,提高其分散性,从而提高
高聚物基或无机/有机复合材料的综合性能。
油漆、涂料:提高涂料、油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力
和耐候性、耐热性、保光性、保色性等。
粉体
由是颗 粉 。粉粒粉 体集体 体 材合的 的 料体特 引的性 特 人物包 性 注性括 目,颗 的这粒 重两物 要方性 理面和
•
的体粉体 粉 集习体。固 合惯,表体 体 体上粉示颗 的 称称粒粉粒 之之体体的 概 为为,的集 念 粉粒大词合 体体颗汇体 。,粒有定 小的粒义 颗集体为 粒合,粉
•
石墨插层改性产物——膨胀石墨
其他方法:高能改性
酸碱处理
化学气相沉积
物理沉积等
矿加12-1班1组~!!
谢与方法
特我技技食原的技粉 点们术术物始发术体 来可的的开人展,技 形以感雏始学而就术 容从知形,会逐是作 粉加、。就制渐随为 体工认通出造形着一 技业知过现石成人门 术的的对了器的类综 过发变粉粉粉。文合 程展化体碎碎从明性 。 ,
•
粉 体 技 术
粉体技术表面改性
• 定义 • 目的 • 方法
定义:指用物理、化学、机械等方 法对粉体材料表面或界面进行处理, 有目的地改变粉体材料表面的物理 化学性质,如表面能、表面湿润性、 电性、吸附和反应特性、表面结构 和官能团等等,以满足现代新材料, 新工艺和新技术发展的需要。
插层:插层改性是指利用层状就够的粉体颗粒晶
体层之间结合力较弱和存在可交换阳离子等特性, 通过离子交换反应火化学反应改变粉体的界面性质 和其它性质的改性方法。 用于插层改性的粉体一 般来说具有层状或似层状晶体结构,如蒙脱土、高 岭土等层状结构的硅酸盐矿物或粘土矿物以及石墨 等。用于插层改性的改性剂大多为有机物,也有无 机物。