《简单的轴对称图形》第三课时教案1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《简单的轴对称图形》教案
教学目标
一、知识与技能
1.掌握作已知角的平分线的尺规作图方法。
2. 利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.
二、过程与方法
1.在探究作已知角的平分线的方法和角平分线的性质的过程中,发展几何直觉。
2.提高综合运用三角形全等的有关知识解决问题的能力.
3.初步了解角的平分线的性质在生活、生产中的应用.
三、情感态度和价值观
1. 使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验;
2.在探讨作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。
教学重点
角的轴对称性及其有关性质,角平分线的性质
教学难点
尺规作图.
教学方法
探究——归纳法
课前准备
PPT课件
课时安排
1课时
教学过程
一、导入新课
活动内容:
[情境问题一]不利用工具,请你将一张用纸片做的角分成两个
相等的角。你有什么办法?(对折)再打开纸片,看看折痕
与这个角有何关系?
学生实验:通过折纸的方法作角的平分线。
教师与学生一起动手操作。展示学生作品。
活动目的:体验角平分线的简易作法,并为角平分线的性质定理的引出做铺垫,为下一步设置问题墙。
活动效果:通过折纸及作图过程,由学生自己去发现结论.教师要有足够的耐心,要为学生的思考留有时间和空间.
二、新课学习
1、[情境问题二] 对这种可以折叠的角可以用折叠方法的角平分线,对不能折叠的角怎样得到其角平分线?
有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC 画一条射线AE,AE就是∠BAD的平分线,为什么?
教师课件展示实验过程,学生将实物图抽象出数学图形。
学生独立运用三角形全等的方法证明AE是∠BAD的平分线。
本次活动中,教师重点关注:
(1)学生是否能从简易角平分仪中抽象出两个三角形;
(2)学生能否运用三角形全等的条件证明两个三角形全等,从而说明线段AE是∠BAD的平分线。
活动目的:说明用其他实验的方法可以将一个角平分。培养学生的抽象思维能力和运用三角形全等的知识解决问题的能力,让学生体验成功。
活动效果:这个提问设置为角平分线的基本作图的出现做好铺垫,同时证明又验证了学生猜想的正确性,使学生获得成功的体验.将实际问题转化为数学问题,从而顺利解决.
2、问题:
(1)从上面的探究中,可以得出作已知角的平分线的方法。
已知什么?求作什么?
(2)把简易平分角的仪器放在角的两边.且平分角的仪器
两边相等,从几何角度怎么画?
(3) 简易平分角的仪器BC=DC,从几何角度如何画
(4)OC与简易平分角的仪器中,AE是同一条射线吗?
(5)你能说明OC是∠AOB的平分线吗?
(6)归纳角平分线的作法
教师提问,学生与老师一起完成探究过程.
学生独立说明,学生相互讨论,交流,归纳后教师归纳展示
作法。
活动目的:从实验中抽象出几何模型,明确几何作图的基本思路和方法.培养学生运用直尺和圆规作已知角的平分线的能力.让学生体验成功。
活动效果:这个提问设置为角平分线的基本作图的出现做好铺垫,同时证明又验证了学生猜想的正确性,使学生获得成功的体验.将实际问题转化为数学问题,从而顺利解决.
[情境问题三] 将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.问题 1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
学生动手剪纸,折叠,教师在多媒体上演示折叠过程.学生观察思考后,分组讨论、交流:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边的距离,它们的长度相等.再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)
教师归纳,引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影展示,强调定理的条件和作用.
活动目的:经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而把学生的直观体验上升到理性思维.
活动效果:从实验探索中发现角的平分线的性质,培养学生的数学抽象概括能力及理性精神,让学生体验成功。
三、结论总结
角是轴对称图形,对称轴是角平分母所在的直线,角平分线上的点
到角两边的距离相等
尺规作图应用了三角形全等的知识
四、课堂练习
辨一辨:如图,OC平分∠AOB,PD与PE相等吗?
判断:(1)∵如图,AD平分∠BAC(已知)∴BD = CD
(2)∵如图, DC⊥AC,DB⊥AB (已知)∴BD = CD
(3)∵ AD平分∠BAC, DC⊥AC,DB⊥AB (已知)∴BD = CD
练一练:1、如图,∵OC是∠AOB的平分线,又________________∴PD=PE ( )
2、在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与
DC相等吗?为什么?
3、如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂
足分别是D、E,PD=4cm,则PE=__________cm.
4、已知△ABC中, ∠C=900,AD平分∠ CAB,且BC=8,BD=5,求点D到AB的距离是多少?
活动目的:通过学生对角的平分线的知识进行独立练习,自我评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。
活动效果:本次活动中,教师重点关注:(1)不同层次的学生对角的平分线的性质的理解程度;
(2)对学生在练习中的问题进行针对性的分析、讲解。
五、布置作业
讲学稿【自我检测】、【拓展提高】
六、板书设置:
5.3简单的轴对称图形(三)
1. 角:轴对称图形,对称轴,角平分线的性质
2. 尺规作图