离心泵的特性曲线工况点

合集下载

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告离心泵特性曲线的测定实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产、农业灌溉和城市供水等领域。

了解离心泵的特性曲线对于正确选择和使用离心泵至关重要。

本实验旨在通过测定离心泵的特性曲线,分析其性能参数,为离心泵的应用提供参考。

一、实验目的1. 了解离心泵的基本原理和工作特性;2. 掌握离心泵特性曲线的测定方法;3. 分析离心泵的性能参数,如扬程、流量和效率等。

二、实验原理离心泵是利用离心力将液体从低压区域输送到高压区域的装置。

其工作原理是通过转子的旋转产生离心力,使液体在离心力的作用下产生压力,从而实现液体的输送。

离心泵的特性曲线是描述离心泵在不同工况下流量、扬程和效率之间关系的曲线。

三、实验仪器和材料1. 离心泵实验装置;2. 流量计;3. 压力计;4. 温度计。

四、实验步骤1. 连接实验装置:将离心泵与流量计、压力计和温度计等仪器连接好,确保密封良好;2. 开始实验:首先调整离心泵的转速,使其达到设定值。

然后逐渐调整流量计的开度,记录不同流量下的压力和温度数据;3. 测定数据:根据实验装置的读数,得到不同流量下的扬程、压力和温度数据;4. 绘制特性曲线:根据测得的数据,绘制离心泵的特性曲线,包括流量-扬程曲线和效率-流量曲线;5. 分析结果:根据特性曲线,计算出离心泵的最大流量、最大扬程和最佳效率点。

五、实验结果和分析根据实验数据绘制的特性曲线显示了离心泵在不同工况下的性能表现。

根据流量-扬程曲线,我们可以得到离心泵的最大流量和最大扬程。

最大流量是指离心泵能够输送的最大液体流量,而最大扬程是指离心泵能够提供的最大扬程高度。

根据效率-流量曲线,我们可以得到离心泵的最佳效率点。

最佳效率点是指离心泵在该点下的效率最高,能够以最小的能量损失输送液体。

通过分析特性曲线,可以选择合适的工况来提高离心泵的效率和使用寿命。

六、结论通过实验测定离心泵的特性曲线,我们可以得到离心泵在不同工况下的性能参数。

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。

离心泵的主要性能参数有流量、压头、效率、轴功率等。

它们之间的关系常用特性曲线来表示。

特性曲线是在一定转速下,用20℃清水在常压下实验测得的。

(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。

离心泵的流量与泵的结构、尺寸和转速有关。

2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。

压头的影响因素在前节已作过介绍。

3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。

反映能量损失大小的参数称为效率。

离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。

闭式叶轮的容积效率值在0.85~0.95。

(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。

这种损失可用水力效率ηh来反映。

额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。

(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。

机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。

离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。

通常,小泵效率为50~70%,而大型泵可达90%。

4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。

离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。

离心泵的主要性能参数有流量、压头、效率、轴功率等。

它们之间的关系常用特性曲线来表示。

特性曲线是在一定转速下,用20℃清水在常压下实验测得的。

(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。

离心泵的流量与泵的结构、尺寸和转速有关。

2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。

压头的影响因素在前节已作过介绍。

3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。

反映能量损失大小的参数称为效率。

离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。

闭式叶轮的容积效率值在0.85~0.95。

(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。

这种损失可用水力效率ηh来反映。

额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。

(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。

机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。

离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。

通常,小泵效率为50~70%,而大型泵可达90%。

4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。

离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线离心泵的特性曲线是将由实验测定的q、h、n、η等数据标绘而成的一组曲线。

此图由泵的制造厂家提供,供使用部门选泵和操作时参考。

不同型号泵的特性曲线不同,但均有以下三条曲线:(1)h-q线表示压头和流量的关系;(2)n-q线表示泵轴功率和流量的关系;(3)η-q线表示泵的效率和流量的关系;(4)泵的特性曲线均在一定输出功率下测量,故特性曲线图上Mercoeur输出功率n值。

离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。

离心泵铭牌上标出的性能参数即为最高效率点上的工况参数。

离心泵的性能曲线可以做为挑选泵的依据。

确认泵的类型后,再依流量和压头选泵。

例2-2用清水测定一台离心泵的主要性能参数。

实验中测得流量为10m/h,泵出口处压力表的读数为0.17mpa(表压),入口处真空表的读数为-0.021mpa,轴功率为 1.07kw,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为0.2m。

试计算此在实验点下的扬程和效率。

解泵的主要性能参数包括转速n、流量q、扬程h、轴功率n和效率。

直接测出的参数为转速n=2900r/min流量q=10m/h=0.00278m/s轴功率n=1.07kw需要进行计算的有扬程h和效率。

用式排序扬程h,即为已知:于是二、影响离心泵性能的主要因素1液体物理性质对特性曲线的影响生产厂所提供更多的特性曲线就是以清水做为工作介质测量的,当运送其它液体时,必须考量液体密度和粘度的影响。

(1)粘度当输送液体的粘度大于实验条件下水的粘度时,泵体内的能量损失增大,泵的流量、压头减小,效率下降,轴功率增大。

(2)密度离心泵的体积流量及压头与液体密度毫无关系,功率则随其密度减小而减少。

2离心泵的输出功率对特性曲线的影响当液体粘度不大,泵的效率不变时,泵的流量、压头、轴功率与转速可近似用比例定律计算,即式中:q1、h1、n1离心泵输出功率为n1时的流量、扬程和功率。

管路性能曲线和工况点讲解

管路性能曲线和工况点讲解

(3)冷却 对设有填料箱水封管、水冷轴承、水冷 机械轴封或具有平衡管、平衡盘的离心 泵
注意其相应水管路是否畅通
检查冷却水量和水温。
(4)封闭起、停 闭排出阀运转时功率最低
但泵封闭运转的时间不能过长(液体发热 ) (5)检查转向
离心泵的工作点
当离心泵安装在一定的管路系统中工作时, 其压头和流量不仅与离心泵本身的特性有关,而 且还取决于管路的工作特性。
1 管路特性曲线
离心泵在特定管路系统中工作时,液体要求泵供
给的压头H可由柏努利方程式求得,即
H

z

p
g

u 2 2g

Hf
zpg源自u 2 2gHA Q
注意:管路特性曲线的形状与管路布置及操作条件有
关,而与泵的性能无关。
2 工作点 (duty point)
离心泵的特性曲线H-Q与其所在管路的特性曲线He-
Qe的交点称为泵在该管路的工作点,如图所示。
H或He H=He
H-Q M He-Qe
工作点所对应的流量 与压头既满足管路系统 的要求,又为离心泵所 能提供。
倍,如图所示。因为两台泵并联后,流量增大,管路阻力亦
增大。
Q并< 2Q
2 串联操作
当生产上需要利用原有泵提高泵的压头时,可以考虑将泵 串联使用。
H 两台相同型号的泵串联工作
时,每台泵的压头和流量也是相
同的。在同样的流量下,串联泵 H串
的压头为单台泵的两倍。
H

联合特性曲线的作法:将单 台泵的特性曲线I的纵坐标加倍 0 ,横坐标保持不变,可求得两台
按被输送液体性质分
按吸入方式分 按叶轮数目分分

离心泵的工况调节

离心泵的工况调节
离心泵的工况调节
离心泵的H和Q是由泵的特性曲线和管路特性曲线的交 点——工况点所决定 在船上,各种冷却水泵、锅炉给水泵、凝水泵、货油泵 等,工作中往往需要调节流量,也就是说需要改变泵的 工况点,称为“工况调节” 工况调节可借改变泵的特性或管路特性来实现,船用泵 常用的工况调节方法有以下几种:
选择题
离心泵叶轮的平衡孔开在

上。
A 前盖板 B 后盖板 C A+B D A或B
离心泵起动一段时间后仍不排液,但吸入真空表显示较大 的真空度,其原因是 。
A 引水失败 B 转速过低 C 叶轮反转 D 吸入阻力过大 .
离心泵发生汽蚀时,采取的应急措施可以是
A 关小排出阀 B 关小吸入阀 C 开大旁通阀

吸人指示较大真空



3-6-6离心泵常见故障的分析
液体进人泵内,排出压力上升,但小于正常值

原因可能在泵的方面

如叶轮松脱、淤塞或严重损坏;转速太低或转向弄反。
若封闭排出压力正常

如管路静压太大 并联使用时另一台泵扬程过高 排出阀未开 先开泵壳上的放气旋塞 然后开吸人阀向泵内灌水 如起动后封闭排压不足,有可能是灌人的舷外水含气 泡过多,以致起动后气体分离而聚于叶根不易冲走

1.节流调节法 增加或减小离心泵排出阀的开度,可使流量增大或减小,称为 节流调节
节流调节法
增或减泵排出阀开度, 可使Q增大或减小 图示为节流调节工况



随着排出阀开度的减小, 管路曲线变陡 R-R1,工况点A-A1, Qa-Q1, P降低,Hs增大。 原管路所利用的扬程仅 为H’1
要求型号相同的泵并联
3-6-2 离心泵的串联工作

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。

水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。

水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。

它是离心泵的基本的性能曲线。

比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。

比转速在80~150之间的离心泵具有平坦的性能曲线。

比转数在150以上的离心泵具有陡降性能曲线。

一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。

上述曲线都是在一定的转速下,以试验的方法求得的。

不同的转速,可以通过公式进行换算。

在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。

通常,把这一组相对应的参数称为工作状况,简称工况或工况点。

对于离心泵最高效率点的工况称为最佳工况点。

泵在最高效率点工况下运行是最理想的。

但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。

要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。

为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。

我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。

我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。

为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。

各类型的泵均有各自的型谱,使用户选用水泵十分方便。

每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。

同一口径的泵扬程也按一定的间隔变化。

ISO 2858规定了标准的型谱。

离心泵的特性曲线要点

离心泵的特性曲线要点

二、流量与轴功率曲线



离心泵的轴功率随流量增加而逐渐增加,曲线有上升的 特点。 当流量为零时(闸阀关闭),轴功率最小。因此,为便 于离心泵的启动和防止动力机超载,启动时,应将出水 管路上的闸阀关闭,启动后,再将闸阀逐渐打开,即水 泵的闭阀启动。 轴流泵与离心泵相反。
三、流量效率曲线

效率曲线为从最高点向两侧下降的变化趋势。 四、流量与允许吸上真空度曲线 离心泵流量与允许吸上真空度曲线是一条下降的曲线。 而离心泵流量与汽蚀余量(HSV或Δ h)曲线是一条上升的 曲线。不同转速下的性能曲线用 同一个比例尺,绘在同一坐标内而得到的性能曲线。
H=KQ2 (相似工况抛物线或等效率线)

离心泵的通用性能曲线图
水泵的系列型谱图

离心泵的综合性能图:把一种或多种泵型不同规格的一系列

泵的Q~H性能曲线工作范围段综合绘入一张对数坐标图 内,即成为水泵的综合性能曲线图(水泵的系列型谱 图)。 这不仅扩大该泵的适用范围,而且在选用水泵使需要的 工作点落在该区域内,则所选定的水泵型号是经济合理 的。
第六节 离心泵的特性曲线

水泵的性能参数,标志着水泵的性能。水泵各个性能参数之 间的关系和变化规律,可以用一组性能曲线来表达。对每一 台水泵而言,当水泵的转速一定时,通过试验的方法,可以 绘制出相应的一组性能曲线,即水泵的基本性能曲线。

一般以流量Q为横坐标,,用扬程H、功率N、效率η 和允许
吸上真空度Hs为纵坐标,绘Q~H、Q~N、Q~η 、Q~ Hs 曲线。
一、流量和扬程曲线

结论: Q~H曲线是下降的曲线,即随流量Q的增大,
扬程H逐渐减少。相应与效率最高值的点的参数,即水泵 铭牌上所列的各数据。水泵的高效段(不低于最高效率 点10%左右)

离心泵知识,性能参数及特性曲线

离心泵知识,性能参数及特性曲线

离心泵知识、性能参数与特性曲线要正确地选择和使用离心泵,就必需了解泵的性能和它们之间的相互关系。

离心泵的主要性能参数有流量、压头、轴功率、效率等。

离心泵性能间的关系通常用特性曲线来表示。

一、离心泵的概念:水泵是把原动机的机械能转换成抽送液体能量的机器。

来增加液体的位能、压能、动能。

原动机通过泵轴带动叶轮旋转,对液体作功,使其能量增加,从而使需要数量的液体,由吸入口经水泵的过流部件输送到要求的高处或要求压力的地方。

二、离心泵的基本构造离心泵的基本构造是由六部分组成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封装置,基础台板等。

1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。

叶轮上的的内外表面要求光滑,以减少水流的摩擦损失。

2、泵壳,它是水泵的主体。

起到支撑固定作用,并与安装轴承的托架相连接。

3、转轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。

4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。

轴承的依托为轴承箱。

滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。

太多油要沿泵轴渗出,不利于散热;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!5、密封装置。

叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。

为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封装置,密封的间隙保持在0.25~1.10mm之间为宜。

三、泵的分类泵的种类很多,可按其各种特征加以分类,见表1-1。

泵—离心泵的性能曲线

泵—离心泵的性能曲线
4. NPSHr-Q曲线
NPSHr-Q曲线是检查泵工作时是否发生汽蚀的依据,应全面考虑泵的安装高度、
入口阻力损失等,防止泵发生汽蚀现象。
例2-2:用清水测定一台离心泵的主要性能参数。实验中测得流量为10m3/h,泵出口 处压力表的读数为0.17MPa(表压),入口处真空表的读数为-0.021Mpa,轴功率为 1.07KW,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为 0.2m。试计算此在实验点下的扬程和效率。
见图2-35所示,M、D、C点都是离心泵的工作点。
图2-35 泵的工作点
二、工作点的类型
离心泵的性能曲线有平坦、陡降和驼峰三种,显然, 对于平坦和陡降性质的性能曲线,交点只有一个,该点 称为稳定工作点(M)。
对于驼峰性质的性能曲线,交点有两个(D、C), 但只有一个是稳定工作点(C),另一个工作点称为不稳 定工作点(D),泵只能在稳定工作点下工作。
图2-38 改变转速的调节
2. 特点
① 用这种方法调节流量,没有附加能量损失,所以是一种最经济的调节方法。
3. 驼峰H-Q曲线
具有这种性能的泵在运行中容易出现不稳定工况, 一般应在下降曲线部分操作。
图2-26 三种形状的H-Q曲线
四、离心泵性能曲线的应用
到目前为止,离心泵的性能曲线,还不能用理论计算方法精确确定,只能通过实验 获得。 离心泵的性能曲线,一般由泵的制造厂家提供,供使用部门选泵和操作时参考。
管路性能曲线
在石油化工生产中,泵和管路一起组成了一个输送系统。 能否保证泵在管路系统装置中处于最高效率点下运转,不仅取决于离心泵的性能特 性曲线,还与离心泵所在的管路特性曲线有关。
一、 管路性能曲线
所谓管路性能曲线是指使一定液体流过管路时,需 要从外界给予单位重量液体的能头HC(m)与管路液体 流量Q(m3/h)之间的关系曲线。

解析离心泵的特性曲线(图文)

解析离心泵的特性曲线(图文)

图文解析离心泵的特性曲线一、离心泵的特性曲线定义当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η= φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。

离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。

严格意义上讲,每一台水泵都有特定的特性曲线。

在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。

在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。

在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。

二、影响离心泵特性曲线的因素离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。

1、叶轮出口直径对性能曲线的影响在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。

根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。

例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。

2、转速与性能曲线的关系同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:Q1/Q2 = n1/n2H1/H2 = (n1/n2)2Nl/N2 = (n1/n2)2三、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析由HT =中,将C2u = u2 - C2rctgβ2 代入,可得:HT =(u2 - C2rctgβ2)叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线
离心泵特性曲线(Centrifugal pump performance curve)是描述离心泵在不同工作条件下流量、扬程、效率和功率
等性能参数的变化关系的曲线。

离心泵特性曲线通常由以下几个要素构成:
1. 流量(Flow):流经离心泵的液体体积或质量的量度,
通常以升/秒或立方米/小时表示。

2. 扬程(Head):液体在离心泵内获得的压力能量,通常以米或千帕表示。

3. 效率(Efficiency):离心泵将输入的功率转化为输出的液体动能的比例。

效率通常以百分比表示。

4. 功率(Power):离心泵所需的电功率或机械功率,通常以千瓦或马力表示。

离心泵特性曲线一般由实验测量得到,根据不同工作条件下的流量、扬程和功率等数据绘制而成。

典型的离心泵特性曲线通常呈现出以下特点:
1. 最大扬程点(Maximum Head Point):离心泵在某一流量下能够提供的最大扬程。

该点通常是离心泵特性曲线上的最高点,也是离心泵的额定扬程。

2. 最大效率点(Maximum Efficiency Point):离心泵在某一流量下能够达到的最高效率。

该点通常是离心泵特性曲线上的效率最大值点。

3. 关闭阻塞点(Shut-off Head Point):离心泵在流量为零时的扬程。

该点通常是离心泵特性曲线上的最低点。

离心泵特性曲线的形状和特点对于选型和运行离心泵都具有重要的参考价值,可以帮助用户了解离心泵在不同工况下的性能和适用范围,并进行合理的运行和维护。

离心泵的特性曲线绘制资料

离心泵的特性曲线绘制资料
• 离心泵在管路上工作时, 泵的给出能量与管路所消 耗的能量相等的点称为离 心泵的工作点。
• 看图解释调节离心泵排量 在ABC三点时,管路特性和 泵特性的变化
离心泵的三条特性曲线
• 特性曲线是指泵在一定的转速下的 • 扬程——流量曲线(H—Q) • 功率—流量曲线(N—Q) • 效率—流量曲线(η—Q)
0.8 0.52 1.4 0.52 1.8 0.52 2.1 0.52 2.2 0.52 2.5 0.52
离心泵的特性曲线的画法练习
• 画特性曲线时应注意的几个问题 1、当流量为零时,泵的轴功率最小但不为零
不能与y轴相交 2、当流量为零时,泵的扬程最大可以与y轴
相交 3、曲线要光滑连接
离心泵的特性曲线的画法练习
• 效的最率—流量曲线高点称为 最优工况点或最佳工作点。此 点以下7%为高效区与该点对应 的流量、扬程、功率被称作额 定流量、扬程、功率。
绘制离心泵特性曲线时必须掌握的理论基础
离心泵的最佳工况点与工作点
• 效率—流量曲线的最高点 称为最优工况点,与该点 对应的流量、扬程、功率 被称作额定流量、扬程、 功率。
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
排量
150
210
270
308
排量
338

离心泵的工作特性和工况调节

离心泵的工作特性和工况调节
2 改变泵的特性工况调节
② 切割叶轮外径:没有附加能量损失;只能作计算后长期调节,切割 后不能复原,可变泵的特性工况调节
③ 泵的串并联:流量和扬程调节范围宽,操作灵活。
六 离心泵的不稳定工作
低ns的离心泵H-Q特性呈驼峰状,这种特性曲线与管 路特性可能有两个交点M、M1,理论上都是工作点。
3、管路特性 h = hp + kQ2
4、工作点及其调节
• 管路特性调节:包括管路节流调节、旁路调节; • 泵的特性调节:包括改变工作转速、切割叶轮和串并联
等。
五 离心泵运转工况的调节
1 管路特性调节
③ 静液面变化调节:管路特性上下移动,也可达到调节目的,吸排液 罐中压力及液位变化。
五 离心泵运转工况的调节
2 改变泵的特性工况调节
① 改变工作转速:此法没有节流引起的附加损失,比较经济;取决于 原动机能否变转速,汽轮机、燃气轮机和电机变频等应用。
五 离心泵运转工况的调节
第六节 离心泵的工作特性和工况调节
在泵的实际运行中,泵和管路一起组成系统,系 统遵循质量守恒和能量守恒两个定律。泵和管路任一 方变化,均会引起系统工作参数变化。
一 离心泵的工作特性
1 固定转速泵的工作特性
H = a − bQ2−m
2 叶轮直径变化后泵的工作特性
H
=
a
D D0

b
D D0
m Q2−m
四 顺序输送时泵的特性
• 同一管道按顺序输送两种不同的油品; • 两种油品的粘性和密度都不同,设定ρB>ρA; • A和B油品的管路特性曲线分布为I和Ⅱ,泵所需
的能头不同。
五 离心泵运转工况的调节
改变运转泵的工作点称为工况调节。工作点是与管路特性的 交点,任何一曲线变化,工作点随之变化。

离心泵的极限工况点

离心泵的极限工况点

离心泵的极限工况点
离心泵是一种常见的流体机械,其工作原理是通过离心力将液体从进口处吸入,然后通过高速旋转的叶轮将液体压入出口处。

离心泵的工况点是指泵在特定工作条件下的流量和扬程。

离心泵的极限工况点是指泵在最大流量和最大扬程下的工作状态。

离心泵的极限工况点取决于泵的设计和制造质量,以及工作条件。

一般来说,离心泵的极限工况点是在泵的性能曲线上的最右上角,也就是最大流量和最大扬程的交点处。

当泵的工作点达到极限工况点时,泵的效率和稳定性都会受到影响,甚至可能导致泵的故障或损坏。

在实际应用中,为了确保离心泵的正常运行,一般会将泵的工作点设置在性能曲线上的较靠左侧,即远离极限工况点。

这样可以保证泵的效率和稳定性,并延长泵的使用寿命。

总之,离心泵的极限工况点是指泵在最大流量和最大扬程下的工作状态,其位置取决于泵的设计和制造质量,以及工作条件。

在实际应用中,为了确保泵的正常运行,应将泵的工作点设置在性能曲线上的较靠左侧,避免接近或超过极限工况点。

离心泵的特性曲线

离心泵的特性曲线

离心泵的特性曲线
离心泵是用于液体输送的工程设备,其具有流量、扬程、能量损耗等特性曲线。

离心泵的特性曲线,也叫性能曲线,是表示离心泵在不同工作条件下所取得的性能测试结果,其中包括流量曲线、扬程曲线、能量损失曲线等,可以根据这些曲线考查离心泵的性能情况。

1、流量曲线
流量曲线是离心泵性能曲线中最重要的一个曲线,它用抽水机的转速和流量的实验曲线做出来的,它表示离心泵在不同转速下输出的流量值。

流量曲线一般分为正端曲线和反比曲线。

正端曲线的表示,用抽水机的转速从低到高度和流量交点所构成的曲线,也说明着当抽水机转速提高1倍时,流量提高2倍。

反比曲线表示,流量与转速反比,当转速提高1倍时,流量减少1/2倍。

2、扬程曲线
扬程曲线表示离心泵在不同转速下所取得的扬程大小,即在1个固定的转速前提下,流量的增长会导致扬程的减小以及提高转速会带来扬程的增加。

从实际上来说,扬程曲线用于分析泵在不同转速下发出的压力,以及在设计离心泵的参数时的参照依据。

3、轴功率曲线
轴功率曲线是表示离心泵在不同情况下,轴承受的力和其产生的功率的相对大小的曲线,它可以用来检验泵的叶轮设计是否合理,以及它的效率,也可以用来加以改善泵的效率和能耗等。

4、能量损失曲线
能量损失曲线是表示泵在不同转速和扬程的情况下,其产生的能量损失的曲线。

能量损失曲线越平滑,表明扬程和流量在不同工况时的能量损失变化越不大,也就是泵的效率更高。

能量损失曲线可以用来预测离心泵的能耗情况,从而提高泵的性能。

第六节离心泵的特性曲线

第六节离心泵的特性曲线
轴流泵与离心泵相反。
三、流量效率曲线
效率曲线为从最高点向两侧下降的变化趋势。
四、流量与允许吸上真空度曲线 离心泵流量与允许吸上真空度曲线是一条下降的曲线。 而离心泵流量与汽蚀余量(HSV或Δh)曲线是一条上升的
曲线。
离心泵的试验性能曲线
离心泵的试验性能曲线:在一定的转速下测定水泵扬程、轴功率、效 率与流量之间的关系,并绘出完整的性能曲线。
一、流量和扬程曲线 结论: Q~H曲线是下降的曲线,即随流量Q的增大,
扬程H逐渐减少。相应与效率最高值的点的参数,即水泵 铭牌上所列的各数据。水泵的高效段(不低于最高效率 点10%左右)
二、流量与轴功率曲线
离心泵的轴功率随流量增加而逐渐增加,曲线有上升的 特点。
当流量为零时(闸阀关闭),轴功率最小。因此,为便 于离心泵的启动和防止动力机超载,启动时,应将出水 管路上的闸阀关闭,启动后,再将闸阀逐渐打开,即水 泵的闭阀启动。
水泵样本或产品目录中除了以性能曲线表示水泵的性能外,还以表 格的形式给出水泵的性能。
12SH-6型泵性能表
水泵 型号
流量Q
m3/h L/s
扬程 H(m)
转速 n
(r/min)
功率 P (KW)
轴 配套 功率 功率
效率 (%)
允许 吸上 真空 度(m)
叶轮 直径 D(mm)
重量 (kg)
12SH-6 590 164 792 220 936 260
IS型单级单吸泵的综合性能图
BA 型泵的综合性能图
98
213

74
5.4
90 1450 250 300 77.5 4.5
82
279
75
3.5
540 847
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【问题】离心泵的特性曲线工况点?
【解答】您好:离心泵的工况点是泵特性曲线H(Q)和管路特性曲线HA((Q)的交点。

不同型号泵的特性曲线H (Q)不同,管路特性曲线HA(Q)指流体流经管路系统的流量与所需压头之间的关系。

泵特性曲线H(Q)和管路特性曲线HA(Q)中的任何一条发生变化.工况点就会发生位移:泵特性曲线H (Q)改变,管路特性曲线HA(Q)不变:
·在调节离心泵的转速时会出现这种情况.即管道系统特性不变。

请参见图2
相同型号、相同性能的离心泵并联运行。

请参见图3
管路特性曲线HA(Q)改变,泵特性曲线H(Q)不变:
·压头损失增加(例如通过阀门进行
节流调节、管道内结垢)或静扬程的改变(例如水位变化)会导致离心泵运行过程中,管路特性曲线发生变化。

·设计点和所要求的工况点(客户的要求)只在极少情况下与最佳工况点完全一致。

经常会通过节流调节来改变和调节离心泵工作的工况点。

相关文档
最新文档