离心泵特性实验报告

合集下载

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告离心泵特性曲线的测定实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产、农业灌溉和城市供水等领域。

了解离心泵的特性曲线对于正确选择和使用离心泵至关重要。

本实验旨在通过测定离心泵的特性曲线,分析其性能参数,为离心泵的应用提供参考。

一、实验目的1. 了解离心泵的基本原理和工作特性;2. 掌握离心泵特性曲线的测定方法;3. 分析离心泵的性能参数,如扬程、流量和效率等。

二、实验原理离心泵是利用离心力将液体从低压区域输送到高压区域的装置。

其工作原理是通过转子的旋转产生离心力,使液体在离心力的作用下产生压力,从而实现液体的输送。

离心泵的特性曲线是描述离心泵在不同工况下流量、扬程和效率之间关系的曲线。

三、实验仪器和材料1. 离心泵实验装置;2. 流量计;3. 压力计;4. 温度计。

四、实验步骤1. 连接实验装置:将离心泵与流量计、压力计和温度计等仪器连接好,确保密封良好;2. 开始实验:首先调整离心泵的转速,使其达到设定值。

然后逐渐调整流量计的开度,记录不同流量下的压力和温度数据;3. 测定数据:根据实验装置的读数,得到不同流量下的扬程、压力和温度数据;4. 绘制特性曲线:根据测得的数据,绘制离心泵的特性曲线,包括流量-扬程曲线和效率-流量曲线;5. 分析结果:根据特性曲线,计算出离心泵的最大流量、最大扬程和最佳效率点。

五、实验结果和分析根据实验数据绘制的特性曲线显示了离心泵在不同工况下的性能表现。

根据流量-扬程曲线,我们可以得到离心泵的最大流量和最大扬程。

最大流量是指离心泵能够输送的最大液体流量,而最大扬程是指离心泵能够提供的最大扬程高度。

根据效率-流量曲线,我们可以得到离心泵的最佳效率点。

最佳效率点是指离心泵在该点下的效率最高,能够以最小的能量损失输送液体。

通过分析特性曲线,可以选择合适的工况来提高离心泵的效率和使用寿命。

六、结论通过实验测定离心泵的特性曲线,我们可以得到离心泵在不同工况下的性能参数。

实验报告范文三离心泵的特性曲线

实验报告范文三离心泵的特性曲线

实验报告范文三离心泵的特性曲线一、实验目的1、了解离心泵结构与特性,学会离心泵的操作。

2、掌握离心泵特性曲线测定方法。

二、实验原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H、轴功率N及效率η与流量V之间的关系曲线,它是流体在泵内流动规律的外部表现形式。

由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。

1、扬程H的测定与计算在泵进、出口取截面列柏努利方程:2u2u12p2p1HZ2Z1g2gp1,p2:分别为泵进、出口的压强N/mρ:液体密度kg/mu1,u2:分别为泵进、出口的流量m/g:重力加速度m/当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:2232、轴功率N的测量与计算Hp2p1gN=0.94ww-电机输出功率;W可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。

3、效率η的计算泵的效率η为泵的有效功率Ne与轴功率N的比值。

有效功率Ne是流体单位时间内自泵得到的功,轴功率N是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne可用下式计算:Ne=HVρg故η=Ne/N=HVρg/N4、转速改变时的换算泵的特性曲线是在指定转速下的数据,就是说在某一特性曲线上的一切实验点,其转速都是相同的。

但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变化,多个实验点的转速将有所差异,因此在绘制特性曲线之前,须将实测数据换算为平均转速下的数据。

换算关系如下:三、实验装置流程离心泵性能特性曲线测定系统装置工艺控制流程图和离心泵性能特性曲线测定实验仪控柜面板图如图所示:四、实验步骤及注意事项1、关闭进口阀及管道阀门。

2、打开总开关,打开仪表开关通电,把离心泵电源转换到“直接”位置。

停止按钮灯亮。

3、打开进口阀,打开离心泵灌水罚,进行水泵灌水(注意:在打开灌水阀时要慢,且只打开一定的开度,不要开太大,否则会损坏压力表)。

离心泵特性曲线实验报告误差分析

离心泵特性曲线实验报告误差分析

离心泵特性曲线实验报告引言离心泵是一种常用的流体机械设备,被广泛应用于各个领域。

通过研究离心泵的特性曲线,可以评估其性能和效率,并且为泵的选型和运行提供重要参考。

本实验旨在通过实验分析离心泵的特性曲线,并进行误差分析,为泵的实际应用提供指导。

实验过程实验设备和材料本次实验使用的设备和材料如下:•离心泵•流量计•压力计•水槽•输送管道•计算机实验步骤1.将离心泵安装在水槽中,并连接好流量计和压力计。

2.打开水泵,调整流量计和压力计的刻度,使其能够准确测量水流量和压力。

3.通过调整阀门来改变流量,记录不同流量下的压力值和流量值。

4.将实验数据记录在计算机中,用于后续的数据处理和图表绘制。

数据处理绘制特性曲线根据实验数据,我们可以绘制离心泵的特性曲线。

特性曲线通常以流量为横坐标,压力为纵坐标。

通过绘制特性曲线,可以直观地了解离心泵在不同流量下的性能变化。

计算效率除了压力和流量,泵的效率也是评估其性能的重要指标。

泵的效率可以通过以下公式计算:效率 = (输出功率 / 输入功率) * 100%其中,输出功率可以通过流量和压力计算得出,输入功率是泵的电力输入。

误差分析在实验中,由于测量设备和实验操作等原因,可能会存在误差。

为了准确评估离心泵的性能,我们需要对实验误差进行分析。

1.测量误差:流量计和压力计的测量精度是有限的,可能存在一定的误差。

在实验过程中,应该注意操作的准确性,并尽量减小测量误差。

2.系统误差:由于实验装置和环境等因素,例如管道摩擦、泵内部摩擦等,可能会引入系统误差。

为了减小系统误差,可以通过校正实验来修正特性曲线数据。

结论通过离心泵特性曲线实验分析,我们可以得出以下结论:1.离心泵的特性曲线通常呈现出一种明显的曲线形状,流量和压力之间存在一定的关系。

2.在特性曲线中,泵的效率是一个重要的指标,可以通过计算得出。

3.在实验过程中,应该注意减小测量误差和系统误差,以提高实验结果的准确性。

值得注意的是,本实验报告仅对离心泵的特性曲线实验进行了简要分析,实际应用中还需要综合考虑其他因素,例如泵的可靠性、寿命等。

离心泵特性测定实验报告

离心泵特性测定实验报告

离心泵特性测定实验报告一、实验目的1、了解离心泵的结构、工作原理和性能特点。

2、掌握离心泵特性曲线的测定方法。

3、熟悉离心泵在不同工况下的运行特性,为实际应用提供参考。

二、实验原理离心泵主要依靠叶轮的高速旋转产生离心力,将液体甩出叶轮并进入压出室,从而实现液体的输送。

其性能通常用流量 Q、扬程 H、功率 N 和效率η 等参数来描述。

1、流量 Q 的测定通过安装在管路上的流量计来测量离心泵的流量。

2、扬程 H 的测定在离心泵进出口处分别安装压力表,根据压力差计算扬程:\H =(P_2 P_1) /(ρg) +(v_2^2 v_1^2) /(2g)\其中,P1、P2 分别为离心泵进出口处的压力,ρ 为液体密度,g 为重力加速度,v1、v2 分别为离心泵进出口处的流速。

3、功率 N 的测定由电机输入功率乘以电机效率和传动效率得到离心泵的轴功率:\N = N_e \times η_m \times η_v\其中,Ne 为电机输入功率,ηm 为电机效率,ηv 为传动效率。

4、效率η 的计算\η =(ρgQH) / N\三、实验装置1、离心泵实验中采用的是型号为_____的离心泵。

2、管路系统包括吸水管路和压出管路,管路上安装有阀门、流量计、压力表等测量仪表。

3、电机用于驱动离心泵运转。

4、测量仪表流量计采用_____型流量计,精度为_____;压力表采用_____型压力表,量程为_____。

四、实验步骤1、实验前准备(1)检查实验装置的连接是否牢固,各仪表是否正常工作。

(2)向离心泵内灌满液体,排除泵内的气体。

2、启动离心泵(1)接通电源,启动电机,缓慢打开出口阀门,调节流量至一定值。

(2)待离心泵运行稳定后,记录此时的流量、进出口压力、电机功率等数据。

3、改变工况(1)逐步调节出口阀门,改变流量,在不同流量下重复上述测量。

(2)记录多组数据,流量的调节范围应涵盖离心泵的正常工作范围。

4、实验结束(1)关闭出口阀门,切断电源,停止离心泵运行。

离心泵性能实验报告(1)(总10页)

离心泵性能实验报告(1)(总10页)

离心泵性能实验报告(1)(总10页)离心泵是一种常用的流体机械,广泛应用于各种工业领域中。

本次实验旨在对离心泵的性能进行测试与分析,包括流量、扬程、效率等指标。

本文将分为实验目的、实验原理、实验方法、实验结果、实验分析以及实验结论六个部分。

一、实验目的1、了解离心泵的工作原理及分类。

2、测量离心泵的流量、扬程、效率等性能指标。

3、分析离心泵的性能曲线及工作状态。

4、掌握离心泵注意事项及安全知识。

二、实验原理离心泵是一种由转子和静叶轮组成的轴向流泵。

其工作原理是通过叶轮的高速旋转将物质吸入中心,并带动物质在离心力的作用下向外流动。

叶轮是离心泵主要的旋转部件,其结构形式多样,可以分为开式叶轮和闭式叶轮两种。

另外,根据叶轮的进口位置,离心泵还可以分为前置叶片泵和后置叶片泵两种。

离心泵的性能曲线是指在不同流量下,离心泵所能提供的最大扬程和效率的关系曲线。

其中最大扬程是指在某一流量下,泵所能提供的最大扬程高度;效率则是指在某一流量下,泵所能转换成流体能量的比例。

离心泵的性能曲线实际上反映了离心泵在不同工况下的性能和工作状态,是进行离心泵选择和设计的重要依据。

三、实验方法1、实验设备(1)离心泵一台(2)流量计、压力表等实验仪器(3)进出口管道及附件等2、实验步骤(1)检查实验设备的完好性及安全性,确定试验内容并准备所需仪器。

(2)将离心泵安装于实验台上,连接管道及附件,并根据所需实验流量调节泵的出口阀门。

(3)启动泵,并调整进水管道阀门实测所需流量,记录流量计及各压力表的数据。

(4)根据实验数据绘制离心泵的性能曲线,并分析曲线中的各项性能指标。

(5)实验结束后及时关闭水源及电源,并清洁实验设备。

四、实验结果1、原始数据流量(Q)(m³/h)压力(P)1(kPa) 压力(P)2(kPa) 效率(η)10 370 190 45%15 355 185 53%20 345 182 60%25 330 173 65%30 310 160 70%35 290 155 72%40 260 135 75%45 230 118 76%50 205 105 75%2、实验性能曲线由上表中数据得到离心泵的性能曲线如下:3、实验分析根据实验数据及曲线图可知,离心泵的最佳工作流量范围为20-40m³/h,此时泵的效率较高,且扬程逐渐增加。

离心泵特性曲线实验报告

离心泵特性曲线实验报告

离心泵特性曲线实验报告一、实验目的。

离心泵是一种常用的流体输送设备,其性能参数对于流体输送系统的设计和运行具有重要的影响。

本次实验旨在通过对离心泵的特性曲线进行测定,了解离心泵的性能特点及其在不同工况下的工作状态,为离心泵的选型和运行提供依据。

二、实验原理。

离心泵是利用离心力将流体加速并输送至出口的一种动能泵,其主要由叶轮、泵壳、轴承和密封等部件组成。

在离心泵运行时,叶轮受到驱动装置的转动,使流体产生离心力,从而加速流体并将其输送至出口。

离心泵的性能曲线通常包括流量、扬程、效率等参数,通过对这些参数的测定,可以全面了解离心泵在不同工况下的工作状态。

三、实验仪器与设备。

本次实验所使用的仪器设备包括离心泵、流量计、压力表、转速表等。

四、实验步骤。

1. 将离心泵与流量计、压力表、转速表等设备连接好,并按照实验要求进行调试和校准。

2. 开始进行实验测量,依次改变离心泵的转速,记录相应的流量、扬程和效率等参数。

3. 根据实验数据绘制出离心泵的特性曲线,并进行分析和讨论。

五、实验结果与分析。

通过实验测量和数据处理,得到了离心泵在不同转速下的特性曲线。

从曲线图中可以清晰地看出,随着转速的增加,离心泵的流量、扬程和效率等参数呈现出不同的变化规律。

具体分析如下:1. 流量与转速的关系,随着转速的增加,离心泵的流量呈现出逐渐增大的趋势。

当转速达到一定数值后,流量增长速度逐渐减缓。

2. 扬程与转速的关系,随着转速的增加,离心泵的扬程也呈现出逐渐增大的趋势。

但与流量不同的是,扬程的增长速度并不会随着转速的增加而减缓。

3. 效率与转速的关系,随着转速的增加,离心泵的效率呈现出先增大后减小的趋势。

在一定转速范围内,效率会达到最大值,超过这一范围后效率会逐渐下降。

六、实验结论。

通过本次实验,我们了解了离心泵特性曲线的测定方法,以及离心泵在不同工况下的性能特点。

实验结果表明,离心泵的流量、扬程和效率等参数与转速之间存在一定的关系,通过合理选择转速可以实现最佳的工作状态。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告
马达—天平测功仪测定轴功率P计算公式为:
P= = (3)
通过调节阀门开度调节流量,由式(3)求取的数据或扭矩测功仪可直接采集轴功率数据,就可得出泵的轴功率和流量的关系曲线。
3.离心泵效率的计算
离心泵的有效功率可用下式计算:
Pe=qv gH(4)
离心泵的效率为:
(5)
通过调节阀门开度调节流量,由式(5)求取的数据就可得出泵的效率和曲线流量。
=lgA+mlgRe
在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,即可得到系数A,即:
A=
用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到m、n。
(2)对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:
(3)将出口调节阀开至最大,在流量范围内合理布置实验点,要求由大到小取10组以数据。
(4)将流量调节至某-数值,待系统稳定后读取并记录所需实验数据(包括流量为零时数据)。
(5)将泵出口调节阀关闭后,断开电源开关,停泵开启出口阀.开启进水阀。
(6)关闭各测试仪表,关闭总电源。
六、实验原始数据记录
水温:21.0℃转速:2900r/min
H=(pM-pV)/ρg=8.99(m)
P=2π*9.81Gnl/60=Gnl/0.974=58%
Pe=qvρgH=9.91m3/h×0.998(kg/m3)×8.99m=58%
η=Pe/P=23%/58%=39%
八、实验结果与分析讨论
离心泵有个重要特性:当压力(扬程)很低时,其流量会很大,这从泵的特性曲线上可以看出。而泵的功率与流量成正比,泵起动时,管道内没有压力,则造成泵的流量很大,则泵的功率很大,加上电机、泵的转动部分从静止到高速运转,需要很大的加速度,这样势必造成起动电流很大,因此采取关闭出口阀门的方法,使泵在起动时不输出水量,使泵的功率最小,当泵达到额定转速后,慢慢开启出口阀,逐渐增加水流量,使电机电流逐渐增加到额定电流。

离心泵特性实验报告

离心泵特性实验报告

离心泵特性测定实验报告一、实验目的1.了解离心泵结构与特性,熟悉离心泵的使用;2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。

二、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f h gug p z H g u g p z ∑+++=+++2222222111ρρ (1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- 210(H H H ++=表值)(2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

2.轴功率N 的测量与计算k N N ⨯=电 (3)其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

即:电N N 95.0= (4)3.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。

有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

离心泵特性曲线实验报告

离心泵特性曲线实验报告

离心泵特性曲线实验报告离心泵特性曲线实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产和民用领域。

离心泵的性能特点对于流体输送和流体力学的研究具有重要意义。

本实验旨在通过实际操作和数据分析,探究离心泵的特性曲线,深入了解离心泵的运行原理和性能。

一、实验目的本实验的目的是通过实际操作,测量离心泵在不同工况下的流量、扬程和功率,绘制离心泵的特性曲线,并对实验结果进行分析和讨论。

二、实验原理离心泵是一种通过离心力将流体从低压区域输送到高压区域的设备。

其工作原理基于离心力和动能转换的原理。

流体在离心泵的叶轮作用下获得动能,并通过泵壳和导叶的引导,将动能转换为压力能,从而实现流体的输送。

三、实验装置和方法实验装置包括离心泵、流量计、压力计、电动机等。

具体实验步骤如下:1. 将离心泵与电动机连接,确保泵轴与电动机轴线一致。

2. 调整流量计和压力计的位置,使其与离心泵的进口和出口相连。

3. 打开电动机,逐渐增加电动机的转速,记录相应的流量和扬程数据。

4. 根据测量数据,计算离心泵的功率,并绘制特性曲线图。

四、实验结果与分析根据实验数据,我们得到了离心泵在不同转速下的流量、扬程和功率数据。

通过绘制特性曲线图,我们可以观察到以下几个特点:1. 流量和扬程随着转速的增加而增加。

这是因为离心泵的工作原理决定了转速越高,泵的输送能力越强。

2. 在一定范围内,流量和扬程呈线性关系。

这说明离心泵的性能在一定范围内是稳定的,符合理论预期。

3. 随着转速的增加,功率也逐渐增加。

这是因为离心泵需要消耗更多的能量来提供更大的流量和扬程。

五、实验误差和改进措施在实验过程中,由于设备和操作的限制,可能存在一定的误差。

为了提高实验的准确性,可以采取以下改进措施:1. 提高测量设备的精度。

选择精度更高的流量计和压力计,减小测量误差。

2. 增加实验数据的采集点。

通过增加转速的测量点,可以更全面地了解离心泵的特性曲线。

3. 控制实验条件的一致性。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告离心泵特性曲线测定实验是一种真实模拟性强的实验,了解离心泵在供压、流量、叶轮拖曳功率和效率范围内的、水轮机各种工况下的性能特性曲线。

为保证离心泵特性曲线测定实验结果准确,需要经过调试的充分准备、仪器准备、设备的管道接口准备、特性测试夹具的使用准备、实验参数设定、试验保护措施的采取等一系列操作。

实验开始前要进行调试,主要是调整控制参数,使得离心泵状态正常,这样才能得出准确的特性曲线。

调试程序主要包括检查叶轮、叶轮壳之间的压力:调节叶轮的截面,控制水振、水紊流等状况;核查叶轮出口后的状态:检查叶轮运动状况、防止空载及轮转频率等。

实验的实施,主要有仪器的准备、设备的管道接口准备、特性测试夹具的使用准备、实验参数设定、试验保护措施的采取等。

其中仪表准备主要是按照特性曲线测试实验要求,实验所需仪器设备,准备压力表、流量表、热表等测量仪器。

设备的管道接口采用管道压力表、流量表、热表在泵常规排管交叉口处,或者采用现场接口。

特性测试夹具用于测量叶轮拖曳功率、效率。

试验参数一般为:供水压力、流量和水轮机的轮转频率。

实验中还要根据实际情况,准备消防器材,控制实验过程中发生的火灾,以保障安全。

最后,完成数据的采集测试,以找出最优的状态,根据测试数据,画出离心泵的全特性曲线和部分特性曲线,以及用于评价离心泵性能的水轮机各种工况下的叶轮拖曳功率、效率、熵生成率曲线,对比画出叶轮当量曲线。

曲线需要画出来,以便进行实验结果的分析。

通过实验数据的分析,得出离心泵的性能特性等,以评价其工作状况是否合理,并且可以为离心泵的调整和改进提供依据。

总之,经过调试及数据测试,可以得出实验准确的离心泵特性曲线,为离心泵的正确运行提供可靠的参考依据。

离心泵实验报告

离心泵实验报告

一、实验目的1. 了解离心泵的结构和性能,掌握其工作原理。

2. 通过实验测定离心泵在一定转速下的特性曲线,包括流量与扬程、功率与流量的关系。

3. 分析离心泵的效率与流量的关系,并了解泵在不同工况下的性能变化。

二、实验原理离心泵是一种常见的流体输送设备,其工作原理是利用旋转叶轮对流体做功,使流体获得能量。

在实验中,我们主要关注以下参数:1. 流量(Q):单位时间内流体通过泵的体积。

2. 扬程(H):流体在泵内获得的能量,通常以米(m)为单位。

3. 功率(N):泵在输送流体过程中消耗的功率,通常以千瓦(kW)为单位。

4. 效率(η):泵的输出功率与输入功率的比值。

离心泵的特性曲线是描述泵在不同工况下性能变化的重要依据。

实验中,我们将通过改变泵的转速和管路阻力,测定泵的特性曲线。

三、实验仪器与设备1. 离心泵一台2. 转速表一台3. 流量计一台4. 压力表两台5. 计时器一台6. 电机调速器一台7. 实验台架一套四、实验步骤1. 准备工作:将离心泵安装到实验台上,连接好流量计、压力表和转速表,并确保各仪表正常工作。

2. 实验数据采集:a. 将泵的转速设定为一定值,记录此时的转速。

b. 调节泵的出口阀门,改变管路阻力,记录不同流量下的扬程、功率和效率。

c. 重复步骤b,改变泵的转速,记录不同转速下的扬程、功率和效率。

3. 数据处理:a. 将实验数据整理成表格。

b. 绘制流量与扬程、功率与流量的关系曲线。

c. 分析离心泵的效率与流量的关系,并确定泵的最佳工作范围。

五、实验结果与分析1. 流量与扬程的关系:实验结果表明,离心泵的流量与扬程呈非线性关系。

在低流量区域,流量增加时扬程显著增加;而在高流量区域,流量增加时扬程增加幅度逐渐减小。

2. 功率与流量的关系:实验结果表明,离心泵的功率与流量呈非线性关系。

在低流量区域,功率随流量的增加而增加;而在高流量区域,功率增加幅度逐渐减小。

3. 效率与流量的关系:实验结果表明,离心泵的效率与流量呈非线性关系。

实验四 离心泵特性曲线测定实验

实验四 离心泵特性曲线测定实验

实验四 离心泵特性曲线测定实验一、实验目的:1、熟悉离心泵的结构与操作方法,了解压力、流量的测量方法。

2、掌握离心泵特性曲线的测定方法、表示方法,加深对离心泵性能的了解。

二、实验内容:1、熟悉离心泵的结构与操作。

2、手动(或计算机自动采集数据和过程控制)测定某型号离心泵在一定转速下,Q (流量)与H (扬程)、N (轴功率)、η(效率)之间的特性曲线。

一、 实验原理:A 、离心泵性能的测定:离心泵是最常见的液体输送设备。

对于一定型号的泵在一定的转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 的改变而改变。

通常通过实验测出Q-H 、Q-N 及Q-η关系,并用曲线表示之,称为特性曲线。

特性曲线是确定泵的适宜操作条件和选用泵的重要依据。

本实验中使用的即为测定离心泵特性曲线的装置,具体测定方法如下:1、H 的测定:在泵的吸入口和压出口之间以1N 流体为基准列柏努利方程出入入出入出入出出入出出出入入入)--+-+-+-=+++=+++f f H gu u g P P Z Z H H gu g P Z H g u g P Z 2(222222ρρρ (4-1)上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力(不包括泵体内部的流动阻力所引起的压头损失),当所选的两截面很接近泵体时,与柏努利方程中其它项比较,出入-f H 值很小,故可忽略。

于是上式变为:gu u g P P Z Z H 2(22入出入出入出)-+-+-=ρ (4-2)将测得的高差)入出Z Z -(和入出PP -的值以及计算所得的u 入,u 出代入式4-2即可求得H 的值。

2、 N 的测定:功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1.0,所以电动机的输出功率等于泵的轴功率。

即: 泵的轴功率N =电动机的输出功率,kw电动机的输出功率=电动机的输入功率×电动机的效率。

泵的轴功率=功率表的读数×电动机效率,kw 。

泵的特性实验报告

泵的特性实验报告

一、实验目的1. 了解泵的基本结构和工作原理。

2. 掌握泵性能参数的测量方法。

3. 通过实验,绘制泵的特性曲线,分析泵的工作特性。

4. 学习泵在不同工况下的性能变化规律。

二、实验原理泵是一种将能量传递给流体的机械设备,其性能参数主要包括流量Q、扬程H、轴功率N和效率η。

泵的特性曲线反映了泵在不同工况下的性能变化规律。

1. 流量Q:单位时间内泵输送的流体体积。

2. 扬程H:泵输送流体所需的能量,通常用泵出口与入口的压力差表示。

3. 轴功率N:泵轴上所传递的功率。

4. 效率η:泵输出功率与输入功率的比值。

泵的特性曲线主要包括以下三种:1. Q-H曲线:表示在恒定转速下,泵的流量与扬程之间的关系。

2. N-Q曲线:表示在恒定转速下,泵的轴功率与流量之间的关系。

3. η-Q曲线:表示在恒定转速下,泵的效率与流量之间的关系。

三、实验仪器与设备1. 离心泵一台2. 转速表一台3. 电磁流量计一台4. 涡轮流量计一台5. 压力表两台6. 电功率表一台7. 计时器一台8. 实验台一套四、实验步骤1. 将离心泵安装于实验台上,连接好相关仪表。

2. 启动泵,调整转速至预定值。

3. 逐步调节出口阀门,使泵的流量逐渐增加。

4. 在每个流量点,记录泵的扬程、轴功率、转速和效率等数据。

5. 重复步骤3和4,得到不同转速下的泵特性曲线。

五、实验结果与分析1. Q-H曲线:实验结果显示,泵的流量与扬程呈非线性关系。

在低流量区域,扬程随流量的增加而迅速增加;在高流量区域,扬程随流量的增加而逐渐减小。

这是由于泵内部流动状态的变化所导致的。

2. N-Q曲线:实验结果显示,泵的轴功率与流量呈非线性关系。

在低流量区域,轴功率随流量的增加而迅速增加;在高流量区域,轴功率随流量的增加而逐渐减小。

这是由于泵内部流动阻力增加所导致的。

3. η-Q曲线:实验结果显示,泵的效率与流量呈非线性关系。

在低流量区域,效率随流量的增加而迅速增加;在高流量区域,效率随流量的增加而逐渐减小。

离心泵特性曲线实验报告

离心泵特性曲线实验报告

离心泵特性曲线实验报告一、目的:掌握离心泵特性曲线(H —Q 曲线, N —Q 曲线, —Q 曲线)的测定方法。

二、设备简图:三、原理: 1. 流量测定:流量采用体积法, 用电子流量计进行测量。

2. 扬程:扬程采用离心泵出口压力表及进口真空表进行测量。

gP g P Z H VM ρρ++∆= 式中: H ——离心泵扬程m ;Z ∆——离心泵出口压力表中心到进口真空表测点之间的高差m ;V M P P +——离心泵出口压力表与真空压力表读值(MPa )。

3. 功率:功率采用马达天平法进行测量。

将电机转子固定于轴承上, 使电机定子可自由转动, 当定子线圈通入电流时, 定子与转子之间便产生一个感应力矩M, 该力矩使定子和转子按不同方向各自旋转。

若在定子上安装一套测力矩装置, 使之对定子作用一反向力矩M, 当定子不动时, 二力矩相等。

因此, 只要测读测力表读数及力臂的长度, 便可求出感应力矩M, 该力矩与转子旋转角度的乘积即为电机的输出功率。

转子旋转的角速度ω可通过测速表测量求得。

ωM N = FL M = 602nπω= 式中: N ——电机的输出功率w ;M ——电机与转子之间的感应力矩Nm ; ω——转子的旋转角速度l/S ; F ——力传感器读数; L ——力臂的长度m ; n ——电机的转速。

4. 效率:效率等于离心泵的有效功率与电机的输出功率或轴功率之比, 即: %100⨯=NgQHρη式中: ——离心泵的效率; ρ——水的密度 1000kg/m 3。

四、实验步骤及注意事项:1.实验前检查试验台的准备状况, 确保水泵及电机连接螺栓紧固。

用手转动水泵联轴器, 确认转动正常。

2.关闭水泵压水管阀门, 打开入水管阀门及计量水箱的放水阀门。

3.启动水泵, 将压水管阀门开到最大, 为便于测量扬程, 调节吸水管阀门至真空表读值为0.03MPa, 在以后的实验过程中, 吸水管阀门开度固定不动。

离心泵性能测定实验报告

离心泵性能测定实验报告

离心泵性能测定实验报告篇一:离心泵性能测定实验报告化工原理实验实验题目:——离心泵性能实验姓名:沈延顺同组人:覃成鹏臧婉婷王俊烨实验时间:XX.11.21一、实验题目:离心泵性能实验。

二、实验时间:XX.11.21三、姓名:沈延顺四、同组人:覃成鹏、臧婉婷、王俊烨五、实验报告摘要:通过实验学习和练习离心泵的灌泵等注意事项和离心泵的使用,通过孔板压计对压将的测量和水温等的测量,得到实验数据绘制离心泵的特性曲线。

通过改变离心泵的转速来测的压头和流速的关系来测绘实验的管道特性曲线。

通过实验也从实验的方向来了解化工原理的知识点,从感性的方向来了解书本上的知识点。

六、实验目的及任务:1、了解离心泵的构造,掌握其操作和调节方法。

2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

3、熟悉孔板流量计的构造、性能及安装方法。

4、测定孔板流量计的孔流系数。

5、测定管路特性曲线。

七、基本原理:1、离心泵特性曲线的测定。

离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通孤傲对泵内液体之地那运动的理论分析得到,如图所示的曲线。

由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦阻力、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数见的关系,并将测出的He~Q、N~Q、和η~Q 三条曲线称为离心泵的特性曲线。

另外,根据此曲线也可以求出最佳操作范围,作为选泵的依据。

图(1)、泵的扬程He式中:——泵出口处的压力。

——泵入口处的真空度。

——压力表和真空表测压口之间的垂直距离,=0.85m。

(2)、泵的有效功率和效率。

由于泵在运转中存在种种能量损失,是泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为:式中:Ne——泵的有效功率,KwQ——流量,He——扬程,ρ——流体的密度,kg/m3 由泵轴输入离心泵的功率为:式中:——电机的输入功率,kw——电机效率,取0.9——传动装臵的转动效率,一般取1.02、孔板流量计孔流系数的测定孔板流量计的构造原理如图所示,图在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。

离心泵特性测定实验报告

离心泵特性测定实验报告

离心泵特性测定实验报告实验目的:1. 了解离心泵的工作原理和特性;2. 学习测量离心泵的流量、扬程、效率等特性参数;3. 掌握离心泵的性能曲线绘制方法。

实验仪器:1. 离心泵及管路;2. 流量计;3. 压力表;4. 电流表;5. 多用表。

实验原理:离心泵是一种常用的旋转泵,其工作原理是通过离心力使流体产生压力,并将流体由低压处输送到高压处。

离心泵是一种低扬程、大流量的泵,因此广泛应用于供水、排水、工业与农业生产等领域。

离心泵的特性参数主要包括流量、扬程、效率等。

流量(Q):流量是指单位时间内通过管道或装置的液体或气体体积。

流量的单位是升/秒、立方米/秒等。

扬程(H):扬程是指泵的输送高度。

扬程与泵的出口压力有关,扬程的单位是米、千米等。

效率(η):效率是指泵在输送流体时消耗的功率与所输送流体机械能之比。

效率的单位是%、‰等。

实验步骤:1. 将离心泵放置在水槽内,并将水管与流量计连接。

2. 开始实验前,先根据泵的型号设置相应的电流值。

3. 打开流量计,记录水流量,同时测量出离心泵入口和出口处的水压。

4. 不断调节泵的电流值,重复上述步骤,记录不同电流下的流量、扬程和效率数据。

实验数据处理:根据上述实验步骤所得到的数据,可以进一步绘制离心泵的性能曲线。

1. 流量-扬程曲线:将不同电流下的流量和扬程数据绘制在同一张坐标图上,得到流量-扬程曲线图。

2. 功率-流量曲线:根据流量-扬程曲线图可以计算出每组数据下的功率值,然后将其与流量数据绘制在同一张坐标图上,得到功率-流量曲线图。

3. 效率-流量曲线:根据功率-流量曲线图可以计算出每组数据下的效率值,然后将其与流量数据绘制在同一张坐标图上,得到效率-流量曲线图。

实验结论:1. 离心泵的特性曲线是指泵的流量、扬程和效率随电流变化的关系图。

2. 离心泵的流量随电流增大而增大,但增长率逐渐减缓,最终趋于饱和。

3. 离心泵的扬程随电流增大而增大,但增长率逐渐减缓,最终趋于饱和。

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告一、实验目的。

离心泵是一种常用的水泵,其性能参数对于工程设计和运行具有重要意义。

本实验旨在通过实验测定,了解离心泵的特性曲线,包括扬程、流量、效率等参数的关系,为离心泵的选型和运行提供依据。

二、实验原理。

离心泵是利用离心力将液体输送到一定高度或压力的机械设备。

其工作原理是通过叶轮的旋转产生离心力,使液体产生压力,从而实现液体的输送。

离心泵的性能参数主要包括扬程、流量和效率。

扬程是指泵能提供的最大扬程高度,流量是指单位时间内泵能输送的液体体积,效率是指泵的输液效率。

三、实验仪器和设备。

1. 离心泵。

2. 流量计。

3. 压力表。

4. 水槽。

5. 测量尺。

6. 实验台架。

四、实验步骤。

1. 将离心泵安装在实验台架上,并连接好进水管和出水管。

2. 将水槽中注满水,并打开进水阀门,使水槽中的水与泵相连通。

3. 打开离心泵,并逐渐打开出水阀门,记录下不同流量下的压力表读数。

4. 根据实验数据,绘制离心泵的特性曲线图,包括扬程-流量曲线和效率-流量曲线。

五、实验数据处理与分析。

根据实验数据,我们绘制了离心泵的扬程-流量曲线和效率-流量曲线。

通过分析曲线图,我们可以得出以下结论:1. 随着流量的增加,离心泵的扬程逐渐减小,这是由于泵的内部阻力和泵水的摩擦力增加导致的。

2. 在一定范围内,随着流量的增加,离心泵的效率也会增加,但当流量达到一定值后,效率会逐渐下降。

这是因为在低流量时,泵的内部损失较小,效率较高;而在高流量时,泵的内部损失增加,效率下降。

六、实验结论。

通过本次实验,我们对离心泵的特性曲线有了更深入的了解。

离心泵的扬程、流量和效率之间存在一定的关系,通过测定特性曲线,可以为离心泵的选型和运行提供依据。

同时,我们也了解到在实际工程应用中,需要根据具体情况选择合适的离心泵,以达到最佳的工作效果。

七、实验总结。

本次实验通过测定离心泵的特性曲线,加深了对离心泵工作原理和性能参数的理解,为今后的工程设计和运行提供了重要参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵特性测定实验报告
一、实验目的
1.了解离心泵结构与特性,熟悉离心泵的使用;
2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。

二、基本原理
离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算
取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:
f h g
u
g p z H g u g p z ∑+++=+++222
2222111ρρ (1)
由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g
p p z z ρ1
212)-+
- 210(H H H ++=表值)
(2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;
ρ——流体密度,kg/m 3
; g ——重力加速度 m/s 2;
p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;
H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

2.轴功率N 的测量与计算
k N N ⨯=电 (3)
其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

即:电N N 95.0= (4)
3.效率η的计算
泵的效率η是泵的有效功率Ne 与轴功率N 的比值。

有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne 可用下式计算:
g HQ Ne ρ= (5)
故泵效率为 %100⨯=N
g
HQ ρη (6) 4.转速改变时的换算
泵的特性曲线是在定转速下的实验测定所得。

但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量Q 的变化,多个实验点的转速n 将有所差异,因此在绘制特性曲线之前,须将实测数据换算为某一恒定转速n '下(可取离心泵的额定转速2900rpm )的数据。

换算关系如下:
流量 n
n Q
Q '
=' (7) 扬程 2
)(
n
n H H '=' (8) 轴功率 3
)(
n
n N N '=' (9) 效率 ηρρη==''=
'N
g
QH N g H Q ' (10) 三、实验装置与流程
离心泵特性曲线实验测定装置流程图如下:
1-水箱; 2-电动调节阀;3-电磁流量计;4-进口阀;5-均压阀;6-闸阀;
7-引压阀;8-压力变送器;9-出口阀;10-排水阀;11-电气控制箱
图1 实验装置流程示意图
四、实验步骤及注意事项
1.实验步骤:
(1)泵启动:首先对水箱进行清扫,加水,关闭水箱出口阀,向水箱中加水至超过2/3。

然后打开总电源开关,打开仪表电源开关,进行设备仪表预热。

打开灌泵阀,加水灌泵排除泵内空气,待泵内空气排净后关闭灌泵阀,然后按下水泵启动按钮启动离心泵进行实验。

(2)实验时,逐渐打开出口流量调节阀增大流量,调节流体流量,让流量从1~6m3/h范围内变化调节,每次实验流量调节变化1m3/h左右。

待各仪表读数显示稳定后,读取相应数据。

离心泵特性实验主要获取实验数据为:流量Q、泵进口压力p1、泵出口压力p2、电机功率N电、泵转速n,及流体温度t和两测压点间高度差H0(H0=0.1m)。

(3)实验结束:关闭水泵和仪表电源,关闭出口阀,将装置中的水排放干净,最后放空水箱。

(4)将实验数据输入实验系统软件中进行处理,得出实验结论。

2.注意事项:
(1)一般每次实验前,均需对泵进行灌泵操作,以防止离心泵气缚。

同时注意定期对泵进行保养,防止叶轮被固体颗粒损坏。

(2)泵运转过程中,勿触碰泵主轴部分,因其高速转动,可能会缠绕并伤害身体接触部位。

(3)不要在出口流量调节闸阀关闭状态下长时间使泵运转,一般不超过三分钟,否则泵中液体循环温度升高,易生气泡,使泵抽空。

(4)调节流量时要缓慢进行,待系统稳定。

(5)记录实验数据时,要待系统流动稳定后记录,避免误差过大。

五、数据处理
(1)记录实验原始数据如下表1:
离心泵型号MS60/0.55,额定流量Q=60L/min,额定扬程H=19.5m,额定功率P=0.55kW,
额定转速n=2850rpm
泵进出口测压点高度差H0= 0.1m,流体温度t=30℃
数据序号流量m3/h 转速r/m 进口压力Kpa 出口压力Kpa 电机功率
kw
温度℃
1 1.00 2880 -2.3 222.7 0.506 17.3
2 2.00 2860 -2.8 208.6 0.574 17.4
3 3.00 2840 -3.7 189.6 0.641 17.7
4 4.00 2820 -5.0 167.0 0.693 18.0
5 5.00 2800 -6.
6 137.
7 0.731 18.3
6 6.00 2800 -8.5 103.5 0.75
7 18.6
7(最大) 6.11 2800 -8.7 100.7 0.758 18.9
(2)根据原理部分的公式,按比例定律校合转速后,计算各流量下的泵扬程、轴功率和效率,如下表2:
序号流量Q’
m3/h
扬程H’
m
轴功率N’
kW
泵效率η’
%
1 0.9922.490.4713.00
2 1.9921.430.5421.54
3 3.0119.870.6226.45
4 4.0417.930.6829.03
5 5.0915.260.7328.86
6 6.1111.850.7625.96
7 6.2211.570.7625.78
六、实验报告
1.分别绘制一定转速下的H~Q、N~Q、η~Q曲线
Q/m3/h 0.64 1.28 2.13 2.97 3.37 3.79 4.21 4.63 5.02 5.43 5.85 6.27 扬程/m 28.81 28.2 27.47 26.01 24.91 24.06 23.26 22.3 20.8 19.47 17.9 16.3
Q/m3/h 0.64 1.28 2.13 2.97 3.37 3.79 4.21 4.63 5.02 5.43 5.85 6.27 轴功率/kW 0.505 0.54 0.602 0.659 0.68 0.714 0.741 0.76 0.759 0.784 0.792 0.814
Q/m3/h 0.64 1.28 2.13 2.97 3.37 3.79 4.21 4.63 5.02 5.43 5.85 6.27
泵效率/% 9.4 17.23 25.06 30.15 31.72 32.86 34.03 34.93 35.42 34.74 34.09 32.44
2.分析实验结果,判断泵最为适宜的工作范围。

流量在4.63m3/h到5.43m3/h之间泵效率达到最高,因此为最适宜的工作范围。

七、思考题
1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?
答:关闭阀门的原因从试验数据上分析:开阀门时,扬程极小,电机功率极大,可能会烧坏电机。

2.启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么?
答:因为空气密度小,所产生的离心力很小,在吸入口所形成的真空不足以将液体吸入泵内;泵不启动可能是电路问题或是泵本身已损坏。

3.为什么用泵的出口阀门调节流量?这种方法有什么优缺点?是否还有其他方法调节流量?
答:用出口阀门调解流量而不用泵前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。

还有的调节方式就是增加变频装置。

4.泵启动后,出口阀如果不开,压力表读数是否会逐渐上升?为什么?
答:不会,因为当泵完好时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响。

5.正常工作的离心泵,在其进口管路上安装阀门是否合理?为什么?
答:不合理,安装阀门会增大摩擦阻力,影响流量的准确性。

6.试分析,用清水泵输送密度为1200Kg/m3的盐水,在相同流量下你认为泵的压力是否变化?轴功率是否
变化?
答:不会变化,泵的压力及轴功率只跟流量有关,流量不变,则泵的压力及轴功率都不会变。

相关文档
最新文档