火力发电厂化学水处理规范

合集下载

电力建设施工及验收技术规范(火力发电厂化学篇)

电力建设施工及验收技术规范(火力发电厂化学篇)

电力建设施工及验收技术规范(火力发电厂化学篇)电力建设施工及验收技术规范(火力发电厂化学篇)电力建设施工及验收技术规范(火力发电厂化学篇)DLJ 58-81中华人民共和国电力工业部关于颁发《电力建设施工及验收技术规范(火力发电厂化学篇)》的通知(81)电火字第29 号原水利电力部于1963 年颁发的《电力建设施工及验收暂行技术规范(水处理及制氢设备篇)》,已不适应电力建设的需要。

我部组织有关单位对原规范进行了修订,修订后的规范定名为《电力建设施工及验收技术规范(火力发电厂化学篇)》,现颁发实行。

各单位在执行过程中发现的问题和意见,希告电力工业部电力建设总局。

1981 年10 月9 日第一章总则第一节一般规定第 1 条本规范适用于火力发电厂水处理和制氢设备的施工、验收及基建阶段的化学监督工作。

第 2 条本规范着重规定各项设备在施工及验收工作中有关电厂化学专业方面的技术要求。

凡涉及机械安装、管道施工、焊接工艺、监测仪表及程序控制装置等部分,应与相应篇的专业技术规范配合使用。

第 3 条设备本身制造质量的验收,应参照设计规定、国家(或部颁)标准和相应的技术条件进行。

第 4 条各项设备的施工,应按设计图纸和制造厂的有关技术文件进行。

如需修改设计或代用设备、材料时,必须通过一定的批准手续。

并将设计变更单及修改部分的图纸、代用设备、材料的出厂证件等,附入验收签证书中。

第 5 条本规范未列入的非定型设备的施工及验收,应按设计规定进行。

国外进口设备的施工及验收,应参照制造厂的有关规定进行。

第二节设备材料的验收与保管第 6 条设备运到现场后,开箱检查及验收工作,应包括下列内容:一、清点出厂证件及发货单据;二、根据订货合同、发货单、零备件目录表清点设备数量,并参照有关技术文件对制造质量作外观检查。

第7 条设备、材料的保管工作,应按电力工业部部颁《电力基本建设设备维护保管规程》及制造厂的技术文件进行。

防止设备腐蚀、变形、冻裂及材料变质。

电厂化学水处理完整版

电厂化学水处理完整版
有机物的表示方法:通常用耗氧量来表示。
溶解物质是指颗粒直径小于10-6mm的微粒,它们大都以离子或溶解气体状态存在于水中,现概述如下。
(1)离子态杂质。天然水中含有的离子种类甚多,但在一般的情况下,它们总是一些常见的离子。如按含量多少来分,可以将这些离子归纳为表1-2中的三类。其中第一类杂质的含量为最多,是工业水处理中需要净化的主要离子。
电厂化学水处理完整版
———————————————————————————————— 作者:
———————————————————————————————— 日期:
第一章 水质概述
第一节 天然水及其分类
一、水源
水是地面上分布最广的物质,几乎占据着地球表面的四分之三,构成了海洋、江河、湖泊以及积雪和冰川,此外,地层中还存在着大量的地下水,大气中也存在着相当数量的水蒸气。地面水主要来自雨水,地下水主要来自地面水,而雨水又来自地面水和地下水的蒸发。因此,水在自然界中是不断循环的。
<200
200~500
500~1000
>1000
我国江河水大都属于低含盐量和中等含盐量水,地下水大部分是中等含盐量水。
天然水按其硬度分类如表1-4。
表1-4按硬度分类
类别
极软水
软水
中等硬度水
硬水
极硬水
硬度(mmol/L)
<1.0
1.0~3.0
3.0~6.0
6.0~9.0
>9.0
根据此种分类,我国天然水的水质是由东南沿海的极软水,向西北经软水和中等硬度水而递增至硬水。这里所谓软水是指天然水硬度较低,不是指经软化处理后所获得的软化水。
胶体:颗粒直径约在10-6---10-4毫米之间的微粒,是许多分子和离子的集合体,有明显的表面活性,常常因吸附大量离子而带电,不易下沉。

火力发电厂废水处理及其回用技术

火力发电厂废水处理及其回用技术

火力发电厂废水处理及其回用技术1. 引言1.1 火力发电厂废水处理及其回用技术火力发电厂废水处理及其回用技术一直是环境保护和资源利用的重要课题。

火力发电厂废水中含有大量的重金属离子、悬浮物、有机物和其他污染物,如果直接排放到环境中会对周围生态环境造成严重危害。

对火力发电厂废水进行有效处理是必不可少的。

火力发电厂废水处理技术主要包括物理方法、化学方法和生物方法。

物理方法包括沉淀、过滤和吸附等,可以有效去除悬浮物和部分有机物;化学方法则是通过加入化学药剂来沉淀或氧化污染物;生物方法利用微生物降解有机物和氧化废水中的污染物。

而火力发电厂废水回用技术则是将经过处理的废水再次利用,可以用于工业生产、农业灌溉等领域,实现资源的再利用和减少对自然水资源的消耗。

火力发电厂废水处理及其回用技术的研究和应用具有重要意义,不仅可以保护环境、节约资源,还可以促进火力发电行业的可持续发展。

未来,随着技术的不断创新和完善,火力发电厂废水处理及回用技术将迎来更广阔的发展前景。

2. 正文2.1 火力发电厂废水处理技术火力发电厂废水处理技术是保障环境安全和资源利用的重要手段之一。

随着工业化进程的加快,火力发电厂排放的废水中含有大量的污染物和重金属,如果不经过有效处理就直接排放到水体中,将对周边环境造成严重的污染。

火力发电厂废水处理技术的研究和应用具有重要的意义。

目前,常用的火力发电厂废水处理技术包括物理处理、化学处理和生物处理等。

物理处理主要是通过过滤、沉淀、吸附等方法去除悬浮物和颗粒物;化学处理则是利用化学药剂对废水中的污染物进行溶解或沉淀处理;生物处理则是通过微生物的作用将有机物降解成无害物质。

这些方法可以单独使用,也可以结合使用,以达到更好的处理效果。

在火力发电厂废水处理中,合理选择水处理设备也是非常重要的。

根据废水的性质和处理要求选择合适的过滤器、沉淀池、活性炭吸附器等设备,可以提高处理效率,降低处理成本。

火力发电厂废水处理技术的不断改进和创新,能够有效减少环境污染,保护水资源。

火力发电厂化学水处理规范

火力发电厂化学水处理规范

火力发电厂化学水处理设计技术规定SDGJ2—85主编部门:西北电力设院批准部门:东北电力设院施行日期:自发布之日起施行水利电力部电力规划设计院关于颁发《火力发电厂化学水处理设计技术规定》SDGJ2—85的通知(85)水电电规字第121号近几年来,随着电力工业的发展和高参数大机组的建设,电厂化学水处理技术迅速发展,积累了许多新的经验。

为了总结近年来水处理设计经验和在设计中更好地采用水处理技术革新和技术革命的新成果,提高设计水平,加速电力建设,我院组织有关设计院对原《火力发电厂化学水处理设计技术规定》(SDGJ2—77)进行了修改。

修订工作经过调查研究、征求意见、组织讨论,并邀请了有关生产、科研、设计、施工、制造等单位的有关同志对修订后的送审稿进行了审查定稿,现颁发执行,原设计技术规定作废。

本规定由水利电力部西北电力设计院和水利电力部东北电力设计院负责管理。

希各单位在执行过程中,注意积累资料,及时总结经验,如发现不妥和需要补充之处,请随时函告水利电力部西北电力设计院和水利电力部东北电力设计院,并抄送我院。

1985年10月22日第一章总则第1.0.1条火力发电厂(以下简称发电厂)水处理设计应满足发电厂安全运行的提供便利条件。

第1.0.2条水处理室在厂区总平面中的位置,宜靠近主厂房,交通运输方便,并适当地留有扩建余地;不宜设在烟囱、水塔、煤场的下风向(按最大频率风向)。

第1.0.3条水处理系统和布置应按发电厂最终容量全面规划,其设施应根据机组分期建设情况及技术经济比较来确定是分期建设还是一次建成。

第1.0.4条本规定适用于汽轮发电机组容量为12~600MW的新建发电厂或扩建发电厂的水处理设计。

第1.0.5条发电厂水处理设计,除应执行本规定外,还应执行现行的有关国家标准、规范及水利电力部颁布的有关规程。

第二章原始资料第2.0.1条在设计前应取得全部可利用的历年来水源水质全分析资料,所需份数应不少于下列规定:对于地面水,全年的资料每月一份,共十二份;对于地下水或海水,全年的资料每季一份,共四份。

DLT805.3-2004火电厂汽水化学监督导则-第3部分汽包锅炉炉水氢氧化钠处理

DLT805.3-2004火电厂汽水化学监督导则-第3部分汽包锅炉炉水氢氧化钠处理

A.1 方法概要 水样中的氯离子与硫氰酸汞反应,置换出硫氰酸根离子,硫氢酸根离子与铁反应生成红
色的络合物,此络合物的最大吸收波长为 460nm。 本方法的定量范围:Cl–,(25~500)µg/L。 精密度:变异系数 2%~10%。 溴离子、碘离子、氰化物离子、硫代硫酸根离子、硫化物离子以及亚硫酸离子会影响测
3.2 使用条件 3.2.1 锅炉热负荷分配均匀,水循环良好。 3.2.2 在采用加氢氧化钠处理方法前宜对锅炉进行化学清洗。如果水冷壁的结垢量小于 200g/m2,也可以直接转化为氢氧化钠处理;结垢量大于 200g/m2,需经化学清洗后方可转化 为氢氧化钠处理。
3.2.3 给水氢电导率(25℃)应小于 0.20µS/cm。 3.2.4 水冷壁有孔状腐蚀的锅炉应谨慎使用。 4 取样与加药 4.1 取样
定,要预先氧化。 试验过程中要防止手上的汗及实验室空气等的污染。 试验过程中使用了汞化合物,要特别注意废液的处理。 由于发色速度随温度变化,发色时的温度差尽量控制在±2℃之内。
A.2 试剂 A.2.1 无氯水:经阳离子交换柱、阴离子交换柱和阴阳离子混合交换柱的除盐水,再经二 次蒸馏制得。 A.2.2 硫氰酸汞乙醇溶液:称取硫氰酸汞 1.5g 溶于 500mL 无水乙醇中,盛于棕色试剂瓶中 保存。 A.2.3 硝酸(5mol/L):量取优级纯硝酸 380mL 溶于 600mL 无氯水中,冷却至室温,用 无氯水稀释至 1L。 A. 2.4 硫酸铁铵溶液:称取 60g 硫酸铁铵[FeNH4(SO4)2·12H2O]溶于 1L 硝酸(5mol/L) 中。若溶液浑浊需先过滤。将溶液盛于棕色试剂瓶中保存。 A.2.5 氯离子标准液。 A.2.5.1 氯离子贮备溶液(1mL 含 1mgCl–):称取 1.648g 基准氯化钠(预先在 600℃下灼 烧 1h,在干燥器中冷却至室温),加少量无氯水溶解后,移入 1000mL 容量瓶中,用无氯 水稀释至刻度。 A.2.5.2 氯离子标准溶液Ⅰ(1mL 含 10µgCl–):吸取上述贮备液 10.00mL,注入 1000mL 容量瓶中,用无氯水稀释至刻度。 A.2.5.3 氯离子标准溶液Ⅱ(1mL 含 1µgCl–):吸取上述标准溶液I10.00mL,注入 100mL 容量瓶中,用无氯水稀释至刻度。 A.3 仪器 A.3.1 分光光度计。 A.3.2 所用玻璃器皿、取样瓶等均应浸泡在 10%硝酸溶液中,使用前再用无氯水冲洗干净。 A.4 分析步骤 A.4.1 工作曲线的制作 A.4.1.1 分别吸取一组(0.00~25.00)mL 氯离子标准溶液Ⅱ(1mL 含 1µgCl–)注入 50mL 具塞锥形瓶中,各用无氯水稀释至 50mL,然后按 A.4.2.2~A.4.2.5 条步骤进行测量其吸光 度。 A.4.1.2 用一元线性回归法求得回归方程。 A.4.2 水样的测定 A.4.2.1 量取水样 50ml,注入 100ml 具塞锥形瓶中。若水样浑浊将水样用中速定性滤纸进 行过滤,弃去最初的滤液约 50mL,量取之后的滤液 50mL(含氯离子 50µg 以上时,适量减 少取样量,用无氯水稀释至 50mL),注入 100mL 具塞锥形瓶中。 A.4.2.2 加硫酸铁铵溶液 10mL 和硫氰酸汞乙醇溶液 5mL,盖上盖子,充分摇匀。 A.4.2.3 在室温下放置约 10min 发色。 A.4.2.4 同时取 50mL 无氯水做空白试验。 A.4.2.5 将 A.4.2.3 的溶液移入比色皿,以 A.4.2.4 的空白试验溶液为参比液,在 460nm 波 长下,用 100mm 比色皿测量其吸光度。 A.4.2.6 由回归方程计算水样中氯离子的浓度(µg/L)。

火力发电厂废水治理设计技术规程

火力发电厂废水治理设计技术规程

火力发电厂废水治理设计技术规程随着能源需求的不断增加,火力发电厂作为主要能源供应商,扮演着至关重要的角色。

然而,火力发电过程中产生的废水却成为环境污染的一个主要来源。

为了减少废水对环境的影响,火力发电厂需要制定废水治理设计技术规程。

1.废水治理目标和原则火力发电厂废水治理的主要目标是减少废水的排放量,降低污染物浓度,并确保达到排放标准。

废水治理应遵循“预防为主、综合治理、资源化利用、减量化排放”的原则。

2.原料水处理火力发电厂原料水处理是废水治理的第一道关口。

应建立完善的原料水处理系统,对进厂原水进行深度处理,以减少污染物的进入。

3.废水收集与预处理火力发电厂废水收集与预处理是确保后续处理工艺正常运行的关键环节。

废水应按照不同来源进行收集,并进行初级处理,包括沉淀、澄清和过滤等,以去除废水中的悬浮物、沉淀物和颗粒物。

4.二次处理工艺火力发电厂废水的二次处理包括物理、化学和生物处理等多个环节。

对于高浓度有机污染物和重金属污染物,可以采用活性炭吸附、化学沉淀和络合等方法进行处理。

对于低浓度有机污染物和溶解物质,可以采用生物处理工艺,如活性污泥法、生物膜法和生物吸附法等。

5.深度处理与回用为了提高废水治理效果和资源利用率,火力发电厂可以对经过二次处理的废水进行深度处理。

深度处理包括进一步去除残余有机物、氮和磷等营养物质,以及消毒杀菌等工艺。

同时,可考虑将经过深度处理的废水回用于火力发电过程中,如循环冷却水、锅炉给水等。

6.排放与监测火力发电厂废水治理的最终目标是达到国家和地方的排放标准。

治理工程完成后,应进行废水排放测试,确保排放水质符合标准。

同时,应建立完善的废水监测系统,定期监测和评估废水排放情况,并及时调整和改进治理工艺。

7.废水处理设施建设与运维管理火力发电厂废水治理需要建设相应的处理设施,并按照规程进行运维管理。

设施建设应符合环保法规和相关工艺标准,操作人员应接受必要的培训,并定期进行设备维护、检修和更新,以确保废水治理工艺的正常运行和效果。

火力发电厂化学水处理实用技术

火力发电厂化学水处理实用技术

火力发电厂化学水处理实用技术摘要:火力发电厂生产过程中,水质的优劣直接关系到机组的运行情况,若是水质不达标,则可能导致机组运行稳定性下降。

为避免这一问题的发生,应当采取合理可行的方法和技术措施,对化学水处理过程进行优化,避免水质不达标引起设备故障,以此来提高机组的运行可靠性,确保生产能效,增加火力发电厂的经济效益。

借此就火力发电厂化学水处理展开探讨。

关键词:火力发电厂;化学水处理;方法1引言火力发电厂的化学水处理方法,是降低其生产建设对周边环境带来污染影响的关键。

然而,在实践过程中,火力发电厂化学水处理工作的质量效果并不理想,再加上,市场环境的多元化发展,大幅度增加了处理控制的难度。

这是相关人员未将火力发电厂化学水处理方法运用充分认识导致的,为此,研究人员应加大化学水处理方法运用优势的分析力度,以使水处理方法更趋效果。

2电厂化学水处理的重要意义水资源是人类生存、生产活动的关键,没有水资源,一切人类活动都无法进行。

工业用水是水资源利用的重要方面,在我国经济进入快速发展阶段的同时,工业水处理行业也取得了很大的发展,同时也存在许多问题,其中火力发电厂水处理问题尤为突出。

电力设备的正常运行可以保证发电厂的发电和供电。

但是,如果发电厂的水质不符合相关标准,就会出现很多问题,如盐积累、结垢、腐蚀等。

除了设施损坏外,还会妨碍发电厂的日常运作。

就现阶段的发展而言,我国火力发电厂化学水处理技术主要通过物理、化学处理以去除水中悬浮物、COD、无机盐分等水中杂质,以满足锅炉对汽水品质要求。

3火力火力发电厂化学水处理系统的特点3.1化学水纯度较高在火力火力发电厂的生产过程中,化学水的作用不容小觑,化学水的质量直接关系到火力火力发电厂生产的安全性,影响生产效率。

化学水中的固体含量、有机物含量、含氧量等内容,假如有一方面未达到相关标准,都会影响化学水的质量,不能将其应用于生产工作中。

如果将不符合标准的锅炉用水和冷却用水应用在生产工作中,将会在热力设备的表面出现结垢现象,腐蚀热力设备,使得热力设备的导热性能降低,影响火力火力发电厂的生产效率,甚至会导致爆管等危险事故发生。

DLT 561-95 火力发电厂水汽化学监督导则

DLT 561-95 火力发电厂水汽化学监督导则

DLT 561-95 火力发电厂水汽化学监督导则火力发电厂水汽化学监督导则DL/T 561-95Guide for Chemical Supervision of Water and Steam inThermal Power Plants中华人民共和国电力工业部1995-03-06批准1995-08-01实施1 总则1.1 火力发电厂的水汽化学监督是保证发电设备安全、经济、稳定运行的重要环节之一。

为适应高参数、大容量火电机组迅速发展的需要,特制订本导则。

1.2 为了防止水汽质量劣化引起设备发生事故,必须贯彻“预防为主、质量第一”的方针,认真做好水汽化学监督全过程的质量管理。

新建火电厂从水源选择,水处理系统设计,设备和材料的选型,安装和调试,直至设备运行、检修和停用的各个阶段都应坚持质量标准,以保证各项水汽质量100%符合本导则规定的标准值,保证热力设备不因腐蚀、结垢、积盐而发生事故。

1.3 各电管(电力)局总工程师领导本局化学监督全过程的质量管理工作。

局总工程师和化学专业工程师应经常了解和掌握全局化学监督情况,协调和落实与化学监督有关的各项工作,总结经验,不断提高化学监督水平。

1.4 火力发电厂基建阶段的化学监督工作应由电力建设公司(局)负责组织及实施。

各项监督工作必须纳入工程进度,其执行情况应作为考核工程质量的依据之一。

1.5 火力发电厂总工程师应组织和领导汽轮机、锅炉、电气、热控、化学专业人员和运行值长共同研究热力设备的腐蚀、结垢等问题,分析原因、明确分工、落实措施,不断提高设备健康水平,防止发生事故。

1.6 要做好火力发电厂水汽化学监督工作,就必须充分发挥化学专责人员的监督职能。

化学专责人员应及时、准确地检测全厂水汽质量和热力设备的腐蚀、结垢、积盐程度。

发现异常时,应向电厂领导书面报告情况、分析原因和提出建议,以防患于未然。

化学专责人员应在总工程师的领导下,督促、检查有关部门按期实现防腐、防垢措施,使水汽质量恢复正常。

DL805.2-2004 火电厂汽水化学导则 第2部分:锅炉炉水磷酸盐处理(DL-T)

DL805.2-2004 火电厂汽水化学导则 第2部分:锅炉炉水磷酸盐处理(DL-T)
32 .
磷酸盐处理 P ) o a r t n (T hshtt a et p p e m e 为了 防止炉内生 成钙镁水垢和减少水冷壁管腐蚀,向 炉水中加入适量磷酸三钠的处理。
33 .
协调 p - H 磷酸盐处理 (P ) ogunpopa t a et C T nr t sht r t n c e h e m e
GBT 9 1 锅 炉用水和冷却水分析方法 / 14 4 3 术语 下 列定义和缩略语适用于本部分 。
31 .
碱度 的测 定
游离氢氧化钠 fe i r sd m勿do d e ou ri e d 炉水中的氢氧化钠总量超过 N3 4 解平衡反应所产生的那部分氢氧化钠。 a0水 P
5 磷酸盐处理时的炉水质量标准 ・・・・・・・, ・・・・ ・・・・・・・・・。・・・・・ ・ ・・・・。・・・ ・・・・ ・・・・・・・・・・・・・,…’ ・・・・・・・・ ・・・・ ・・・・・・・・・・・.・・ ‘3 ・ ・
6 汽 锅 水 理 式 选 ・ ・ ・・ ・ ・・ ・ ・・ … ,・“ “ ・ ・ ’・4 包 炉炉 处 方 的 择・ ‘ ・ ・ ・ ・・ ・ ・ . - … 二 . ‘… 二’ ・ ・ ・ , ・ ・ 价 ・・ ・ ・ ・. ・ ・… - , ・ ’
本部分主要 负责起 草单位:国电热工研究院、 山西 电力科学研究 院。 本部分主要起 草人:孙本达、宋敬霞 、尚玉珍 。
DL 8 52一 2 0 / 0. T 04
火电厂汽水化学导则 第2 部分:锅炉炉水磷酸盐处理
1 范围
本部分给 出了火力发 电厂汽包锅炉炉水进行各种磷酸盐 处理的使用条件、选用原则和控制指标 。 本部分适 用于火力发 电厂汽包压力为 3 MP-1. a的锅炉的炉水处理。 . a 93 8 MP 2 规范性引用文件

火力发电厂水处理一般流程

火力发电厂水处理一般流程

火力发电厂水处理一般流程1.首先,原水需要通过净化设备过滤杂质。

First, the raw water needs to be filtered through purification equipment to remove impurities.2.然后,原水需要经过沉淀池去除悬浮物。

Then, the raw water needs to go through a sedimentation tank to remove suspended solids.3.紧接着,水需要通过化学处理来调节PH值。

Next, the water needs to be chemically treated to adjust the pH level.4.接着,水需要通过混凝剂来促使悬浮物凝结。

After that, the water needs to be coagulated to help the suspended solids clump together.5.然后,水需要通过絮凝剂来沉淀凝结的悬浮物。

Then, the water needs to be flocculated to settle the coagulated suspended solids.6.接下来,水需要通过砂滤器进一步去除杂质。

Next, the water needs to pass through sand filters to further remove impurities.7.紧随其后,水需要进行活性炭过滤以去除异味和色泽。

Following that, the water needs to undergo activated carbon filtration to remove odor and color.8.此外,水需要通过反渗透膜来去除溶解的盐和有机物。

Furthermore, the water needs to pass through reverse osmosis membranes to remove dissolved salts and organics.9.接着,水需要进行杀菌消毒以杀灭细菌和病毒。

火力发电厂循环冷却水处理技术

火力发电厂循环冷却水处理技术

循环冷却水处理1. 加酸处理 (2)1.1 原理 (2)1.2 控制参数 (2)1.3 加酸量计算 (2)1.4 加酸地点 (2)1.5 加酸注意事项: (3)2.石灰处理 (4)2.1 控制原理 (4)2.2 加药量的控制 (5)2.3 石灰处理后的水质 (5)2.4 工艺流程及系统 (6)2.5 运行控制参数 (7)3. 加阻垢剂方法 (7)3.1 阻垢剂种类 (7)4.离子交换 (9)4.1 原理 (9)4.2 工艺参数 (9)5. 联合处理 (10)5.1 加酸与阻垢剂的联合处理 (10)5.2 石灰软化与阻垢剂的联合处理 (10)5.3 离子交换与阻垢剂的联合处理 (10)附录: (11)1. 极限碳酸盐硬度概念 (11)2. 循环水浓缩倍率的概念 (11)3. 循环水浓缩倍率极限值 (12)4. 循环水系统最小排污率 (12)5. CaCO3溶液平衡问题 (12)6. CaCO3溶液的稳定度 (12)7. CaCO3稳定指数I W(RSI) (13)8. CaCO3饱和指数I B (13)9. CaCO3饱和指数 (14)10. 天然水中溶有离子概况表 (15)11. 水的技术指标 (15)12. 天然水水质类型 (16)13. 我国地下水、主要河流的水质特征 (16)14. 敞开式循环冷却系统水质的控制标准 (17)15. 间冷开式循环冷却水系统水质指标 (17)16. 巴基斯坦古杜循环水处理系统 (18)17. 哈萨克斯坦阿克纠宾项目循环水资料: (20)1. 加酸处理1.1 原理在循环冷却水中投加浓硫酸,是把补充水中的碳酸硬度转化为非碳酸盐硬度,其反应可以表示为:Ca(HCO3)2+H2SO4=CaSO4+2CO2+2H2O由于硫酸钙的溶解度远远大于碳酸钙,生产的硫酸钙不宜在冷却水中生产水垢析出,故加浓硫酸后可以控制循环冷却水中碳酸钙后的生成,提高浓缩倍率。

另外有游离CO2析出,有利于抑制碳酸盐水垢。

火力发电厂水处理及水质控制

火力发电厂水处理及水质控制

火力发电厂水处理及水质控制摘要:社会经济快速发展背景下,国家正在加快环境污染整治,这有利于实现可持续发展。

因此,火力发电厂应提高对废水处理的重视程度,通常情况下,火力发电厂都会建设废水处理系统,实现废水处理和循环利用。

但结合实际情况来看,依然存在一些问题,所以,火力发电厂要不断加强水处理和水质控制。

关键词:火力发电厂:水处理;水质控制1.火力发电厂水处理的重要性现阶段,我国大多数的火力发电厂对水处理的技术分为主观和客观两个方面,主观方面就是对水处理的工作人员进行素质上的教育,加强对工作人员对水资源的管理,客观方面就是利用相应的技术手段对水进行相应的控制,但是由于工作人员的素质有限,以及水资源处理技术的不足,就导致这两种方法起到的效果不好。

除此之外,我国火力发电厂都有一套对水的处理办法,就是对水加以相关的药剂来进行处理,无论是对生产用水还是非生产用水效果都很好,但是由于加入药剂会产生不好的后果,所以这种方法不是长久的方法。

随着科技的进步以及工厂的改革,我国的火力发电厂对水资源的处理办法,有了进一步的发展,利用化学反应的特点,使用现代机械对水资源进行处理,效果可以达到最佳。

2火力发电厂水处理方式2.1膜技术水处理方式火力发电厂将膜技术用于水处理中,这可以一定程度上提升处理效率。

传统模式下,火力发电厂水处理程序复杂,所需时间较长,膜技术应用可以改善面临情况。

以往火力发电厂水处理受到技术条件限制,经过处理的水达不到排放标准,这可能会造成环境污染。

膜技术应用很好改善了这一情况,水资源处理不仅降低工艺难度,减少资源消耗,而且酸性物质排放明显减少,确保火力发电厂废水排放符合国家环保标准,这对于企业长远发展具有重要意义。

由于膜技术在水处理中的良好效果,因此,这项技术受到了火力发电厂的重视,并且应用水平在不断提升。

同时,火力发电厂要加强对膜技术研究,并与水处理紧密结合起来,展现出膜技术优势,从而优化水处理效果。

2.2 FCS 技术的水处理火力发电厂生产运行需要大量水资源,同时,对水质提出了一定要求,这可以保证电力设备安全,并延长设备使用年限。

电厂化学水处理规程

电厂化学水处理规程

电厂化学水处理规程第一章介绍1.1 背景在电厂运行过程中,水是不可或缺的资源。

为了保证电厂的正常运行和发电效率,化学水处理是必不可少的环节。

本规程旨在确保电厂水处理工作的准确性和高效性,以提高电厂的运行效率和设备寿命。

1.2 目的本规程的目的是规范电厂化学水处理的各个环节,包括水质分析、水质调整、水处理剂的添加和控制、设备清洗等。

通过具体的操作规程和严格的质量控制,以确保水处理工作的科学性和稳定性,提高水质的稳定性和供水的可靠性。

1.3 适用范围本规程适用于各种类型的电厂,包括火力发电厂、核电站、风电场等。

其中涉及到的化学水处理技术和工艺可根据具体的电厂类型和需求进行相应的调整。

第二章水质分析2.1 水样采集2.1.1 采样点的选择采样点的选择应遵循以下原则:选取具有代表性的水源点,避免来自某一特定区域的污染物的影响,确保采样结果的准确性。

2.1.2 采样器具和容器的选择采样器具和容器应保持清洁,并选择相应的容器以防止样品的二次污染。

采样器具和容器应对不同的水质进行标识,以便后续的水质分析。

2.2 水质分析方法2.2.1 常规水质指标的测定常规水质指标包括溶解氧、浑浊度、pH值、电导率等。

这些指标可通过标准化的方法进行测定,以评估水的质量。

2.2.2 有害物质的测定有害物质的测定是水质分析中的重要环节。

包括重金属、有机物、微生物等,这些有害物质可能对电厂设备和环境产生不利影响。

针对不同类型的有害物质,选择合适的测定方法并进行准确测定。

第三章水质调整3.1 pH调整根据水质分析结果,对水体中的pH值进行调整,以满足电厂运行的需要。

针对不同的水体类型和处理需求,选择合适的调整方法和化学剂。

3.2 溶解氧调整溶解氧是影响水体中生物活性和水体稳定性的重要指标。

根据水质分析结果,选择合适的方法和设备进行溶解氧调整,以维持水体中适宜的氧气含量。

3.3 防腐处理根据水质中的金属离子含量和各种溶解性盐的含量,选择合适的防腐剂进行添加,以防止水体中金属设备的腐蚀和损坏。

火力发电厂循环冷却水处理技术

火力发电厂循环冷却水处理技术

循环冷却水处理1. 加酸处理21.1 原理21.2 控制参数21.3 加酸量计算21.4 加酸地点21.5 加酸注意事项:32.石灰处理32.1 控制原理32.2 加药量的控制42.3 石灰处理后的水质52.4 工艺流程与系统62.5 运行控制参数63. 加阻垢剂方法63.1 阻垢剂种类64.离子交换84.1 原理84.2 工艺参数85. 联合处理95.1 加酸与阻垢剂的联合处理95.2 石灰软化与阻垢剂的联合处理95.3 离子交换与阻垢剂的联合处理9附录:101. 极限碳酸盐硬度概念102. 循环水浓缩倍率的概念103. 循环水浓缩倍率极限值114. 循环水系统最小排污率115. CaCO3溶液平衡问题116. CaCO3溶液的稳定度117. CaCO3稳定指数I W(RSI)128. CaCO3饱和指数I B129. CaCO3饱和指数1210. 天然水中溶有离子概况表1311. 水的技术指标1312. 天然水水质类型1313. 我国地下水、主要河流的水质特征1414. 敞开式循环冷却系统水质的控制标准1415. 间冷开式循环冷却水系统水质指标1416. 巴基斯坦古杜循环水处理系统1517. 哈萨克斯坦阿克纠宾项目循环水资料:171. 加酸处理1.1 原理在循环冷却水中投加浓硫酸,是把补充水中的碳酸硬度转化为非碳酸盐硬度,其反应可以表示为:Ca(HCO3)2+H2SO4=CaSO4+2CO2+2H2O由于硫酸钙的溶解度远远大于碳酸钙,生产的硫酸钙不宜在冷却水中生产水垢析出,故加浓硫酸后可以控制循环冷却水中碳酸钙后的生成,提高浓缩倍率。

另外有游离CO2析出,有利于抑制碳酸盐水垢。

1.2 控制参数加酸处理控制循环水硬度低于极限碳酸盐硬度,因为监督与PH值有一定关系,所以也可监测PH值,一般控制PH值在7.4~7.8之间。

当把酸加在补充水中时,水中残留碱度一般控制在0.3~0.7mmol/L之间,避免出现酸性。

火力发电厂锅炉化学水处理技术

火力发电厂锅炉化学水处理技术

火力发电厂锅炉化学水处理技术【摘要】随着我国经济的不断发展,电力行业也面临着新的挑战。

电力行业在面对这些新的挑战时,要不断的提高各项科学技术水平,紧跟时代发展的脚步,与时俱进。

锅炉化学水处理技术在火力发电厂在发展过程中发挥着重要的作用,在火力发电厂中占据着重要的位置,火力发电厂在应用锅炉化学水处理这一项技术的过程中,需要注意很多的事项,还存在着诸多的不足与缺陷,如何解决应用中存在的问题,是火力发电厂在发展中必须解决的问题。

【关键词】火力发电厂;锅炉化学水处理;技术;问题1前言就目前来看,我国在经济发展的过程中,在一定程度上对环境也造成了污染,影响了水资源的质量。

火力发电厂中的相关设备在运用自然水时,锅炉化学水处理这一项技术的应用非常关键,因为自然水中含有着大量损坏设备的有害物质,经过一般的过滤网或化学混合处理过后,虽然能够有效的将自然水中的悬浮物质消除干净。

但是,因为过滤网与化学混合处理自身的局限性,对于自然水中的一些残存的悬浮颗粒,无法对其进行完全的清除,而且自然水中这些微小的悬浮颗粒自身的硬度不会发生任何的变化,碱性度数还比较高,火力发电厂中的设备在利用这样的自然水时,容易使相关的热力设备内部发生腐蚀、结垢等一系列影响其正常运行的因素,严重的影响了热力设备的运行安全,对热力设备造成极大的破坏。

2火力发电厂锅炉化学水处理技术的概述随着火力发电厂的不断发展,火力发电厂中的锅炉正在朝着高温高压、大型化这一方向快速的转变,在转表过程中对于锅炉中的补给水质量也有了更高的要求,需要将补给水中含有的有害物质全部清除干净,确保相关热力设备在运行过程中的安全。

火力发电厂中相关的汽水管道与热力设备在运行的过程中,会出现一定程度上的汽水损失,例如:汽水管道、热力设备、相关阀门的泄漏以及火力发电厂锅炉中的排污等一系列情况。

所以,在火力发电厂内部中相关设备运行的过程中,要及时对锅炉补充质量合格的自然水,保持火力发电厂中水汽系统在运行中的平衡状态。

火力发电厂化学水处理规范

火力发电厂化学水处理规范

火力发电厂化学水处理设计技术规定SDGJ2—85 ???????????????????????主编部门:西北电力设院???????????????????????批准部门:东北电力设院???????????????????????施行日期:自发布之日起施行水利电力部电力规划设计院关于颁发《火力发电厂化学水处理设计技术规定》SDGJ2—85的通知(85)水电电规字第121号????近几年来,随着电力工业的发展和高参数大机组的建设,电厂化学水处理技术迅速发展,积累了许多新的经验。

为了总结近年来水处理设计经验和在设计中更好地采用水处理技术革新和技术革命的新成果,提高设计水平,加速电力建设,我院组织有关设计院对原《火力发电厂化学水处理设计技术规定》(SDGJ2—77)进行了修改。

修订工作经过调查研究、征求意见、组织讨论,并邀请了有关生产、科研、设计、施工、制造等单位的有关同志对修订后的送审稿进行了审查定稿,现颁发执行,原设计技术规定作废。

????本规定由水利电力部西北电力设计院和水利电力部东北电力设计院负责管理。

希各单位在执行过程中,注意积累资料,及时总结经验,如发现不妥和需要补充之处,请随时函告水利电力部西北电力设计院和水利电力部东北电力设计院,并抄送我院。

????1985年10月22日第一章总则????第1.0.1条?火力发电厂(以下简称发电厂)水处理设计应满足发电厂安全运行的保护的规定,并为施工、运行、维修提供便利条件。

????第1.0.2条?水处理室在厂区总平面中的位置,宜靠近主厂房,交通运输方便,并适当地留有扩建余地;不宜设在烟囱、水塔、煤场的下风向(按最大频率风向)。

????第1.0.3条?水处理系统和布置应按发电厂最终容量全面规划,其设施应根据机组分期建设情况及技术经济比较来确定是分期建设还是一次建成。

????第1.0.4条?本规定适用于汽轮发电机组容量为12~600MW的新建发电厂或扩建发电厂的水处理设计。

DL-T-805.1-2002火电厂汽水化学导则第1部直流锅炉给水加氧处理

DL-T-805.1-2002火电厂汽水化学导则第1部直流锅炉给水加氧处理
对于 无 铜 系统机组 (凝汽器管除外),在凝结水精处理出口或在给水泵的吸人侧的加氧点进行加氧, 也可以在上述两点同时加氧。对于有铜系统机组 (即低压加热器为铜合金管)应在给水泵的吸人侧的加 氧点进行加氧。 6.3.3 控制加级量
加 氧初 始 阶段,一般控制凝结水或给水含氧量在 150Ftg/L- 300Fkg/L。同时应监测各取样点水样的 氢电导率、含铁量和含铜量的变化情况。如果给水和蒸汽的氢电导率随氧的加人升高,但未超过
5.1 运行与监督 给水 加 氧 处理时,运行中监督和检测的水汽质量项 目按表 1的规定。各项控制指标应符合表 2的规
定。 最 重 要 的控制指标是给水氢 电导率 ,通过对其监测 ,及 时发现水质污染的状况并消除引起污染 的原
因 ,保持加氧处理所要求 的高纯水质 。
裹 1 直流炉给水加 叙处理汽水 品质监测项 目
应 采 取 的措 施
0.10--0.15
正常运行,应迅速查找污染原因,在72h内使氢电导率降至0.lopS/em以下
0.15-0.2
立 即 提 高加 氨 量 ,调 整 给水 州 值 到 9.0一 9.5,在 24h内使 氢 电 导率 降 至 0.lopS/cn以下
》O.2
停止加氧,转换为不加联氨的全挥发性处理方式运行
DL/ T 805.1 一 2002
b) 机 组 正常运行中给水的氢电导率不大于 0.15FiS/cm; c) 化 学仪 表达到加氧处理工艺所要求的分析能力; d) 加 氧 装置已安装,并已完成调试; e) 必 要 的准备工作已就绪。
62 转换前的准备工作 要事 先 对 机组情况进行调查。调查内容包括机组系统、化学运行情况、锅炉管的结垢量和成分、化
根 据 本 标准第 4章的要求设计氧气存储设备 、控制设备和管路系统 ,氧气 的存储量以满足机组在高 负荷工况下正常运行7d为宜。加氧系统的安装要以操作和维修方便为原则。氧气储存设备应安装在防 火和便于更换氧气瓶的地方;加氧的控制设备应尽量安装在运行人员操作方便的地方。加氧系统的调试

火力发电厂化学水处理要求规范

火力发电厂化学水处理要求规范

火力发电厂化学水处理设计技术规定SDGJ2—85主编部门:西北电力设院批准部门:东北电力设院施行日期:自发布之日起施行水利电力部电力规划设计院关于颁发《火力发电厂化学水处理设计技术规定》SDGJ2—85的通知(85)水电电规字第121号近几年来,随着电力工业的发展和高参数大机组的建设,电厂化学水处理技术迅速发展,积累了许多新的经验。

为了总结近年来水处理设计经验和在设计中更好地采用水处理技术革新和技术革命的新成果,提高设计水平,加速电力建设,我院组织有关设计院对原《火力发电厂化学水处理设计技术规定》(SDGJ2—77)进行了修改。

修订工作经过调查研究、征求意见、组织讨论,并邀请了有关生产、科研、设计、施工、制造等单位的有关同志对修订后的送审稿进行了审查定稿,现颁发执行,原设计技术规定作废。

本规定由水利电力部西北电力设计院和水利电力部东北电力设计院负责管理。

希各单位在执行过程中,注意积累资料,及时总结经验,如发现不妥和需要补充之处,请随时函告水利电力部西北电力设计院和水利电力部东北电力设计院,并抄送我院。

1985年10月22日第一章总则第1.0.1条火力发电厂(以下简称发电厂)水处理设计应满足发电厂安全运行的要求,做到经济合理、技术先进、符合环境保护的规定,并为施工、运行、维修提供便利条件。

第1.0.2条水处理室在厂区总平面中的位置,宜靠近主厂房,交通运输方便,并适当地留有扩建余地;不宜设在烟囱、水塔、煤场的下风向(按最大频率风向)。

第1.0.3条水处理系统和布置应按发电厂最终容量全面规划,其设施应根据机组分期建设情况及技术经济比较来确定是分期建设还是一次建成。

第1.0.4条本规定适用于汽轮发电机组容量为12~600MW的新建发电厂或扩建发电厂的水处理设计。

第1.0.5条发电厂水处理设计,除应执行本规定外,还应执行现行的有关国家标准、规范及水利电力部颁布的有关规程。

第二章原始资料第2.0.1条在设计前应取得全部可利用的历年来水源水质全分析资料,所需份数应不少于下列规定:对于地面水,全年的资料每月一份,共十二份;对于地下水或海水,全年的资料每季一份,共四份。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

火力发电厂化学水处理设计技术规定SDGJ2—85主编部门:西北电力设院批准部门:东北电力设院施行日期:自发布之日起施行水利电力部电力规划设计院关于颁发《火力发电厂化学水处理设计技术规定》SDGJ2—85的通知(85)水电电规字第121号近几年来,随着电力工业的发展和高参数大机组的建设,电厂化学水处理技术迅速发展,积累了许多新的经验。

为了总结近年来水处理设计经验和在设计中更好地采用水处理技术革新和技术革命的新成果,提高设计水平,加速电力建设,我院组织有关设计院对原《火力发电厂化学水处理设计技术规定》(SDGJ2—77)进行了修改。

修订工作经过调查研究、征求意见、组织讨论,并邀请了有关生产、科研、设计、施工、制造等单位的有关同志对修订后的送审稿进行了审查定稿,现颁发执行,原设计技术规定作废。

本规定由水利电力部西北电力设计院和水利电力部东北电力设计院负责管理。

希各单位在执行过程中,注意积累资料,及时总结经验,如发现不妥和需要补充之处,请随时函告水利电力部西北电力设计院和水利电力部东北电力设计院,并抄送我院。

1985年10月22日第一章总则第1.0.1条火力发电厂(以下简称发电厂)水处理设计应满足发电厂安全运行的要求,做到经济合理、技术先进、符合环境保护的规定,并为施工、运行、维修提供便利条件。

第1.0.2条水处理室在厂区总平面中的位置,宜靠近主厂房,交通运输方便,并适当地留有扩建余地;不宜设在烟囱、水塔、煤场的下风向(按最大频率风向)。

第1.0.3条水处理系统和布置应按发电厂最终容量全面规划,其设施应根据机组分期建设情况及技术经济比较来确定是分期建设还是一次建成。

第1.0.4条本规定适用于汽轮发电机组容量为12~600MW的新建发电厂或扩建发电厂的水处理设计。

第1.0.5条发电厂水处理设计,除应执行本规定外,还应执行现行的有关国家标准、规范及水利电力部颁布的有关规程。

第二章原始资料第2.0.1条在设计前应取得全部可利用的历年来水源水质全分析资料,所需份数应不少于下列规定:对于地面水,全年的资料每月一份,共十二份;对于地下水或海水,全年的资料每季一份,共四份。

第2.0.2条对地面水,应取得历年洪水期的悬浮物含量和枯水年的水质资料,以掌握其变化规律,并应了解上游各种排水对水质的污染程度;对受海水倒灌影响的水源,还应掌握由此而引起的污染和水质变化情况;对石灰岩地区的泉水,应了解其水质的稳定性。

第2.0.3条设计热电厂时,应掌握供热负荷、回水量、回水水质、外供化学处理水量和水质要求等资料。

第2.0.4条应了解所选用的水处理设备、材料、药剂、离子交换剂及滤料等的供应情况(质量、价格、包装和运输方式等)。

第2.0.5条应了解机炉设备的结构特点,包括锅内装置型式、减温方式、凝汽器和各种热交换器的结构及管材,发电机冷却方式,辅助起动设施等情况。

必时,可对设备制造厂提出结构和材质的要求。

第2.0.6条扩建工程应了解原有系统、设备布置和运行经验等情况。

第三章原水预处理第一节系统设计第3.1.1条预处理系统应根据原水水质、需处理水量、处理后水质要求,参考类似厂的运行经验或试验资料,结合当地条件确定。

预处理设备出力应按最大供水量加自用水量设计。

第3.1.2条经处理后的悬浮物含量应满足下一级设备的进水要求。

处理方式可按下列原则确定:一、地面水悬浮物含量小于50mg/L时,宜采用接触凝聚①“接触凝聚”系指加入凝聚剂后,经水泵或管道混合直接进入过滤器(池),或经反应器后进入过滤器(池)。

、过滤。

二、地面水悬浮物含量大于50mg/L时,宜采用凝聚、澄清、过滤,并根据原水悬浮物的含量选择合适的澄清器(池)。

当悬浮物的含量超过所选用澄清器(池)的进水标准时②采用机械加速澄清池时,最大允许悬浮物含量为3000mg/L,其它型式为2000mg/L;石灰处理时,还应适当降低。

,应在供水系统中设置预沉淀设施或设备用水源。

三、地下水含砂时,应考虑除砂措施。

第3.1.3条高压及以上机组,若原水中含有较多的胶体硅,经核算,锅炉蒸汽品质不能满足要求时,应采用接触凝聚、过滤或凝聚、澄清、过滤等方法处理。

原水胶体硅允许含量和胶体硅去除率的参考数据参见附录C(一)。

第3.1.4条当原水有机物含量较高时,可采用加氯、凝聚、澄清、过滤处理。

当用以上处理仍不能满足下一级设备进水要求时,可同时采用活性炭过滤等有机物清除措施。

离子交换装置也可选用大孔型树脂等抗有机物污染的阴离子交换树脂。

化学除盐系统进水的游离氯超过标准时,宜采用活性炭过滤或加亚硫酸钠等方法处理。

第3.1.5条化学除盐系统进水水质要求为:浊度对流 <2度顺流<5度化学耗氧量(高锰酸钾法):使用凝胶型强碱阴离子交换树脂时<2mg/L(以O2表示)游离氯 <0.1mg/L(以Cl2表示)含铁量<0.3mg/L(以Fe表示)第3.1.6条电渗析器进水水质要求为:浊度宜小于1度,不得大于3度(根据隔板厚薄、水质情况而定)化学耗氧量(高锰酸钾法) <3mg/L(以O2表示)游离氯<0.3mg/L(以Cl2表示)锰含量<0.1mg/L(以Mn表示)铁含量<0.3mg/L(以Fe表示)第3.1.7条反渗透器进水水质要求为:卷式(醋酸纤维膜):污染指数FI <4化学耗氧量(高锰酸钾法) <1.5mg/L(以O2表示)游离氯0.3~1mg/L(以Cl2表示)pH 5.5~6.5水温20~35℃含铁量<0.05mg/L(以Fe表示)中空纤维式(芳香族聚酰胺):污染指数FI <3化学耗氧量(高锰酸钾法) <1.5mg/L(以O2表示)游离氯<0.1mg/L(以Cl2表示)pH 5.5~6.5水温20~35℃含铁量<0.05mg/L(以Fe表示)第3.1.8条当原水碳酸盐硬度较高时,经技术经济比较,可采用石灰处理。

原水硅酸盐含量较高需要处理时,可加入石灰、氧化镁(或白云粉)。

第3.1.9条当地下水含铁量较高时,应考虑除铁措施。

其设计可参照现行《室外给水设计规范》进行,并参考附录C(二)地下水除铁设计参考意见。

第二节设备选择(Ⅰ)澄清器(池)第3.2.1条澄清器(池)的型式应根据原水水质、处理水量、处理系统和水质要求等,结合当地条件选用。

澄清器(池)的出力应经必要的核算。

其设计可参照现行《室外给水设计规范》的有关规定进行。

第3.2.2条选用悬浮澄清器(池)和水力循环澄清器(池)时,应注意进水温度波动对处理效果的影响。

当设有生水加热器时,应装设温度自动调节装置,使温度变化不超过±1℃。

第3.2.3条澄清器(池)不宜少于两台。

当有一台检修时,其余澄清器(池)应保证正常供水量(不考虑起动用水)。

澄清器的检修可考虑在低负荷时进行,用于短期悬浮物含量高、季节性处理时,可只设一台,但应设旁路及接触凝聚设施。

(Ⅱ)过滤器(池)第3.2.4条过滤器(池)的型式应根据进口水质、处理水量、处理系统和水质要求等,结合当地条件确定。

第3.2.5条过滤器(池)不应少于两台(格)。

当有一台(格)检修时,其余过滤器(池)应保证在正常供水量时滤速不超过规定的上限。

第3.2.6条过滤器(池)的反洗次数,可根据进出口水质、滤料的截污能力等因素考虑。

每昼夜反洗次数宜按1~2次设计。

过滤器(池)应设置反洗水泵、反洗水箱或连接可供反洗的水源。

反洗方式宜采用空气擦洗。

第3.2.7条过滤器(池)的滤速宜按表3.2.7选择:表 3.2.7 过滤器滤速第3.2.8条过滤器(池)的滤料和反洗强度可参考表3.2.8选择。

表3.2.8 过滤器滤料级配及反洗强度表续表3.2.8 注:1)表中所列为反洗水温20℃的数据。

水温每增减1℃,反洗强度相应增减1%。

2)反洗时间根据过滤器(池)的型式和预处理方式而定,一般5~10min。

(Ⅲ)清水箱(池)、清水泵第3.2.9条清水箱(池)不宜少于两台(格)。

其有效容积可按1~2h清水耗用量设计。

第3.2.10条清水泵应设备用泵。

当清水泵的布置高于清水池最低水位时,每台泵应有单独的吸水管,水池应有排空措施。

第三节布置要求第3.3.1条澄清器(池)、过滤器(池)、清水箱(池)的布置位置应根据当地气象条件决定,通常布置在室外。

第3.3.2条寒冷地区,澄清器(池)顶部及底部应设置小室,相邻澄清器(池)的顶部应有通道相连。

第四章锅炉补给水处理第一节系统设计第4.1.1条锅炉补给水处理系统,应根据原水水质、给水或炉水的质量标准、补给水率、排污率、设备和药品的供应条件等因素经技术经济比较确定。

进行技术经济比较时,应采用正常出力和全年平均水质,并用最坏水质对系统及设备进行校核。

锅炉补给水处理方式,还应与锅内装置和过热蒸汽减温方式相适应。

中压、高压、超高压和亚临界汽包锅炉常用的汽水分离系统的携带系数可参见附录C(三)。

第4.1.2条锅炉正常排污率不宜超过下列数值:一、以化学除盐水为补给水的凝汽式发电厂1%二、以化学除盐水或蒸馏水为补给水的供热式发电厂2%三、以化学软化水为补给水的供热式发电厂5%第4.1.3条水处理设备的全部出力,应根据发电厂全部正常水汽损失与机组起动或事故而增加的损失之和确定。

发电厂各项正常水汽损失及考虑机组起动或事故而增加的水处理设备出力按表4.1.3计算。

表4.1.3 发电厂各项正常水汽损失及考虑机组起动或事故而增加的水处理设备出力注:①锅炉正常排污率按表中1、2、3项正常损失量计算。

②发电厂其他用汽、用水及闭式热水网补充水,应经技术经济比较,确定合适的供汽方式和补充水处理方式。

③采用蒸馏补给水时,应考虑蒸发器的防腐、防垢及机组起动供水措施。

第4.1.4条高压、超高压、亚临界汽包锅炉和直流锅炉,应选用一级除盐加混合离子交换系统。

当进水质量较好,减温方式为表面式或自冷凝时,高压汽包锅炉补给水除盐系统可选用一级除盐系统。

固定床离子交换系统的选择,可参见附录C(四)。

第4.1.5条锅炉补给水处理采用化学除盐时,其他用汽(采暖、卸煤、燃油等) 及其他用水(机车、轮船补充水等),应与有关专业共同进行技术经济比较,研究确定合理供汽、供水及水处理方式。

第4.1.6条原水含盐量较高时,经技术经济比较,可采用弱型树脂离子交换器、电渗析器、反渗透器或蒸发器。

第4.1.7条中压汽包锅炉补给水处理,在能满足锅炉给水和蒸汽质量要求时,可采用化学软化化学软化系指软化或脱碱软化。

系统。

第4.1.8条若用固定床除盐,当其进水中的强、弱酸阴离子比值较稳定时,可采用阳离子交换器先失效的串联系统,此时阴离子交换树脂装入量应有10%~15% 裕量。

第4.1.9条设计除盐系统时,应在保证出水质量前提下采用能降低酸、碱耗量和减少废酸、碱排放量的设备和工艺。

相关文档
最新文档