六、-动力学问题的有限元法
有限元分析-动力学分析PPT课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
有限元 第9讲 动力学问题有限单元法
有限元第9讲动力学问题有限单元法动力学问题是指研究物体在运动中的受力和受力作用下的运动状态,常见的应用是结构工程学中的振动分析。
有限单元法是解决结构工程学中动力学问题的常用方法之一。
本文将介绍动力学问题和有限单元法的基本概念,并介绍其应用。
动力学问题的定义动力学是研究质点或刚体运动情况的分支学科,在结构工程学中是指结构在做振动时所受的力和运动状态。
动力学问题可以分为两种类型:稳态动力学问题和非稳态动力学问题。
稳态动力学问题是指结构在振动状态下所受的恒定力,而非稳态动力学问题则是指结构所受的变化的力,例如冲击力或地震力。
动力学问题的求解包括两个方面:一是确定受力情况;二是求解结构的运动状态。
确定受力情况通常需要通过实验或计算确定,求解结构运动状态则可以通过有限单元法来解决。
在结构工程学中,动力学问题的应用非常广泛。
例如,建筑物抗震设计需要对建筑物在地震作用下的反应进行分析,桥梁工程需要对桥梁在行车作用或风力作用下的振动响应进行分析。
有限单元法的基本概念有限单元法是一种将结构离散成若干小单元的数值分析方法,将结构分割成细小的单元,每个单元内部假设为均匀且连续的,通过对单元本身的运动状态进行求解,进而推知整个结构的运动状态。
有限元法用于解决的问题包括静力学问题、动力学问题、热力学问题和流体问题等。
有限单元法求解动力学问题的步骤主要包括如下几个步骤:1.离散化:将连续结构离散化成有限的小单元,每个单元内部运动状态通过定义一定数量的节点来确定。
2.建立单元的动力学方程:根据单元的形状和材料性质,建立单元的动力学方程,并计算单元的振动特性,例如频率和模态。
3.组装单元的方程:将单个单元的方程组装成整个结构的方程。
4.边界条件的处理:利用结构的边界条件(例如支撑、铰支等),将结构自由度减少到实际问题所需要的自由度。
5.求解结构的运动状态:通过求解整个结构的方程,得到结构的运动状态。
6.后处理:根据求解结果,进行结果的可视化和分析。
动力学有限元
6.2结构动力有限元法理论与模型一、基本原理在实际问题的求解中,应用最广的是基于位移的有限元素法。
此法的基本思想是把本来为连续的工程结构分割成在结点上相联的单元组合体。
取这些结点的位移为基本未知量,并假定每个单元中的位移用单元位移函数来描述,这实质上是假定了单元的模态。
在此基础上,利用能量变分原理进行单元分析的全结构分析,得到全结构的振动平衡方程,从而把连续体的动力学问题化为多自由度系统的振动问题。
有限元动力分析的基本过程是首先将工程结构离散化,通过选择合理的单元确定出分析模型,在此基础上选择位移函数,进行单元分析,确定单元的刚度、质量、阻尼、载荷矩阵,再经过坐标变换,通过能量变分原理,进行全结构分析,建立系统的振动平衡方程。
最后运用有限元数值方法进行方程的求解。
结构动力有限元法采用的单元位移函数与静力分析相同,基本原理和求解过程也与静力分析相同,不同之处仅在分析模型的确定与运动方程的建立方面。
二、动态分析模型的确定由于结构动态分析中除考虑弹性力外,还要考虑惯性力和阻尼力,其运动方程是常微分方程组,所以动态分析的复杂程度高,计算工作量大,有限元分析模型要尽量精炼、简单。
1.模型确定的基本原则•分析模型应与分析的目的相适应。
动力分析的目的各不相同,有的是为了提供固有特性计算动态响应或供控制系统用;有的是为了舱内提供振动环境。
不同的目的,通常要求不同的模态数与计算精度。
显然,用于估算基本固有频率的模型应当比计算冲击响应的模型简单。
用于设计计算的模型应当比用于校核计算的模型简单。
•分析模型要与选用的计算工具与计算条件相适应。
计算机软件种类日益丰富,选择分析模型要与所用程序、所用计算机容量相适应。
如对于容量大的计算机,可选用较为复杂的有限元模型,而对于容量小的计算机则在能反映结构动态性能的前提下尽量简化模型,使求解规模尽量小。
对于大模型,可选用子结构模型,采用模态综合方法求解。
应注意, 不一定模型愈精细精度就愈高。
结构动力学问题的有限元法
K Q
K Q
对于结构动力学问题,节点载荷阵还包括惯性力和阻尼力。
e e e K Q (M C ) e e 1 m
或改写为:
C K M Q
代入:
dV Q N u
T T T
M N N dV
dV N N
e T
e
e dV Q N u
e T T
N N dV C
其中:
M M C C
e
e
质量阵和阻尼阵的叠加方法与刚度阵的叠加方法相同,也 是对称稀疏阵。
三、动力方程的简化
M e N T N dV
称为一致质量矩阵,是稀疏带状阵。
如果将单元质量阵近似作为对角阵,则方程变成彼此独立,避免 联立,称为集中质量阵或团聚质量阵。 解耦 例如长度为L,截面积为A,密度为ρ的梁单元。 i
A,ρ
L
j
x
1 A L 0 集中质量阵: m 2 0 0
0 0 0 0
0 0 1 0
0 0 0 0
156 22L 22L 2 一致质量阵: 4 L AL m 13L 420 54 2 13 L 3 L
54 13L 13L 3L2 156 22L 2 22L 4 L
ˆ P K P K
T
在变换[K]和[M]的过程中,有时使用一次雅克比变换将一个 非对角线元素化为零以后,它在另一次变换中会重新变为非零 元素,但在素质上有所减小。这说明需要反复使用雅克比变换, 最终非对角线元素将趋于零。 在实际求解过程中,不必严格地把矩阵[K]和[M]所有的非对 角线元素变换为零,通常在完成一次变换后进行判断是否达到预 l 1 (l ) 设的精度:
动力学问题的有限元法
❖ 结构动力学问题在工程中具有普遍性。
3) 弹塑性动力学问题
❖ 这是连续介质变形体动力学问题的另一个重要领域。 涉及许多科学和工程领域,如高速碰撞,爆炸冲击, 人工地震勘探,无损探伤等。
力学问题。对等效系统应用虚功原理:
T
V
dV VuT(fu u)dV SuTTdS
• 将前面位移空间离散表达式和单元的几何方程、物理方 程代入上式虚功方程,并考虑到变分的任意性,得到离
散系统控制方程——结构有限元动力学方程:
Ma(t)Ca(t)Ka(t)Q(t)
方程中的系数矩阵分别为:系统质量矩阵,阻尼 矩阵,整体刚度矩阵。右端项为整体节点载荷向量。
u N ae
u(x, y, z,t) u来自v(x,
y,
z, t)
w( x, y, z, t)
a
e
a a
1 2
a n
ai
uvii
(t) (t)
(i
1,2,, n)
wi (t)
• 为建立有限元动力学响应控制方程,利用达朗倍尔原
理,在每个时刻 t,将连续介质中质点加上惯性力 u 和阻尼力 u ,则系统的动力学问题转化为等效静
• 如果忽略阻尼,则结构动力学方程简化为:
Ma(t) Ka(t) Q(t)
• 上式动力学方程的右端项为零时就得到结构自由振动 方程。
• 从动力学方程导出过程可以看出,动力学问题的有限元 分析中,由于平衡方程中出现了惯性力和阻尼力,从而 引入了质量矩阵和阻尼矩阵,运动方程是耦合的二阶常 微分方程组,而不是代数方程组。该方程又称为有限元 半离散方程,因为对空间是有限元离散的,对时间是连 续的。
有限元分析-动力学分析
1.为何傅里叶变换要换成正弦函数余弦函数这样的三角级数? 2. 谐振运动的特征是什么?谐振运动有阻尼存在吗?
梁结构瞬态动力学分析实例
A steel beam of length and geometric properties shown in Problem Specifications is supporting a concentrated mass, m. The beam is subjected to a dynamic load F(t) with a rise time tr and a maximum value F1. If the weight of the beam is considered to be negligible, determine the time of maximum displacement response tmax and the response ymax. Also determine the maximum bending stress σbend in the beam.
谱分析
谱分析是一种将模态分析结果与已知的谱分析联系起来的 计算位移和应力的分析技术。它主要用于时间历程分析,以 便确定结构在任意时间变化载荷下的动力学响应,简单而言 就是载荷的谱不再是简谐运动。
简支梁的两端作垂直运动,也就是地震时的作用,确定其 响应频率。
梁对地基地震时的谱分析
A simply supported beam of length , mass per unit length m, and section properties shown in Problem Specifications, is subjected to a vertical motion of both supports. The motion is defined in terms of a seismic displacement response spectrum. Determine the nodal displacements, reactions forces, and the element solutions.
力学中的数值模拟方法
力学中的数值模拟方法力学是自然科学中研究物体运动和相互作用的学科。
力学的研究对象包括刚体、弹性体、流体等物质,而这些物质的运动和相互作用往往是非常复杂的。
为了更深入地了解这些现象,研究者们常常采用数值模拟方法。
本文将介绍在力学中常用的数值模拟方法和其应用。
1. 有限元法有限元法是解决力学问题的一种常用数值方法。
它将复杂的物体划分成有限个小元素,在每个小元素上进行基本方程的数值求解。
这些小元素可以是输入自然或几何区域的任意形状和大小。
通过将整个物体分解为由许多这样的小元素组成的形式,有限元法可以轻松处理具有复杂边界和几何形状的问题。
有限元法的一个重要优点是可以模拟多种不同的问题,例如,静力学问题,热力学问题和流体力学问题。
在建筑和航空航天科学中有限元法广泛应用,设计和优化桥梁、飞机机翼和汽车车身。
2. 边界元法边界元法是另一种广泛用于力学课题研究的数值模拟方法。
与有限元法相比,它的计算成本和计算时间更低。
其基本思想是借助几何中的经典定理——格林公式,将原方程转换为涉及单独表面积分的一组方程。
这些方程的求解是通过构造矩阵并进行数值求解得到的。
边界元法在流体动力学中的应用非常广泛,例如模拟液体流动和超声波传播等。
3. 分子动力学模拟分子动力学模拟是一种基于牛顿力学构建计算统计物理学的方法。
它通过建模粒子之间的相互作用来模拟分子系统的力学行为。
由于该方法可以与巨分子水平的化学反应联系起来,这使得它可以在化学和材料科学中应用得非常广泛。
通过使用物理特征的数值模拟,研究者们可以了解更多基于分子层面的成分内部运作和物理过程。
4. 自适应Mesh网格算法有些力学问题中变量可能有非常高的梯度,为解决这种问题,自适应Mesh算法应运而生。
自适应Mesh网格将整个求解域划分成相互交叉的奇下网格或三角形网格。
然后,当解的精度要求在较高的局部变化时,通过极小化给定误差级别来改变不同的小视窗大小,以便能够应对快速变化的解。
有限元第六讲 动力学分析
5.1.2谐响应分析
谐响应分析是用于确定线性结构在承受随时间按正弦(简谐) 规律变化的载荷时的稳态响应的一种技术。分析的目的是计 算结构在几种频率下的响应并得到一些响应值(通常是位移) 对频率的曲线,从这些曲线上可找到“峰值”响应并进一步 查看峰值频率对应的应力。
这种分析技术只计算结构的稳态受追振动,发生在激励开 始时的瞬态振动不在谐响应分析中考虑。作为一种线性分析, 该分析忽略任何即使己定义的非线性特性,如塑性和接触 (间隙)单元。但可以包含非对称矩阵,如分析在流体一结构 相互作用问题。谐响应分析也可用于分析有预应力的结构, 如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)
MassMatrix Formulation[LLIMPMIL]:使用该选项可以选 定采用默认的质量矩阵形成方式(和单元类型有关)或集中质 量阵近似方式,建议在大多数情况下应采用默认形成方式。
PrestressEffectsca/culation[PSTRES]:选用该选项可以计 算有预应力结构的模态。默认的分析过程不包括预应力,即 结构是处于无应力状态的。
求解结构的前几阶模态,以了解结构如何响应的情形。该方法采用集中 质量阵(LUMPM,ON); Reduced(Householder)method:使用减缩的系统矩阵求解,速度快。但 由于减缩质量矩阵识近似矩阵,所以相应精度较低; Unsymmetric method:用于系统矩阵为非对称矩阵的问题,例如流体一 结构相同作用; Damped method:用于阻尼不可忽略的问题; QR Damped method:采用减缩的阻尼阵计算复杂阻尼问题,所以比 Damped method方法有更快的计算速度和更好的计算效率。
《有限元法及其应用》课件
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点
有限元第六章 动力问题的有限元法
第六章 动力问题的有限元法6.1 概述前面几章所研究的问题都属于静力问题,其特点是施加到结构上的外载荷不会使结构产生加速度,且外载荷的大小和方向不随时间变化,因而结构所产生的位移和应力也不随时间变化。
本章将要研究结构分析中另一类重要问题的有限元解法,即动力问题的有限元解法。
动力学问题的特点是,载荷是随时间变化的,因而结构所产生的位移和应力是时间的函数,结构会产生速度和加速度。
由于结构本身的弹性和惯性,结构在动力载荷的作用下,往往呈现出振动的运动形态。
结构振动是工程中一个很普遍很重要的问题。
有些振动对我们有利,例如,振动打桩,振动选料,有些振动对我们有害,例如,机床的振动,仪器与仪表的振动,桥梁、水坝及高层建筑在地震作用下的振动等。
因此,我们必须对振动体本身的振动特性以及它对外部激振力的响应有一个明确的认识,才能更好地利用它有利的一面,而避免它有害的一面,设计出更好的机械和结构。
振动问题主要解决两方面的问题。
1. 寻求结构的固有频率和主振型,从而了解结构的固有振动特性,以便更好地利用或减少振动。
2. 分析结构的动力响应特性,以计算结构振动时动应力和动位移的大小及其变化规律。
6.2 结构的振动方程结构的振动方程可用多种方法建立,这里我们使用达朗伯原理(动静法),仿照前几章建立静力有限元方程的方法,来建立动力问题的有限元方程。
在静力问题中用有限元法建立的平衡方程是}{}]{[F K =δ在振动问题中,对结构的各节点应用达郎伯原理所建立的振动方程仍然具有与上式相同的形式,只不过节点位移是动位移,节点载荷是动载荷,它们都是时间的函数。
上面的方程成为)}({)}(]{[t Q t K =δ (6.1)上式中{})(t δ为节点的动位移,它是时间的函数,)}(]{[t K δ是t 时刻的节点位移产生的弹性恢复力,它与该时刻的节点外力{})(t Q 构成动态平衡。
在动态情况下,结构承受的载荷(集中载荷 ,分布载荷 )可随时间而变化,是时间的函数。
有限元-第9讲-动力学问题有限单元法
a1 ae a2
... an
ui(t) ai vi(t)
wi(t)
(i 1,2,...n,)
(3)形成系统的求解方程
••
•
M a(t)C a(t)K(ta )Q (t)
(1.8)
其中
••
•
a(t)和a(t)
分别是系统的结点加速度向量和结点速度向量,
M,C,K和Q(t)分别是系统的质量、阻尼、刚度和结点载荷向量。9
•
at
1 2t
att att
中心差分法的递推公式
(3.1) (3.2)
1 t2 M 2 1 tC a t t Q t K 2 t2 M a t 1 t2 M 2 1 tC a t t(3.3)
上式是求解各个离散时间点解的递推公式,这种数值积分方法又 称为逐步积分法。
动力分析的计算工作量很大,因此提高效率,节省计算工作量的 数值方案和方法是动力分析研究工作中的重要组成部分。目前两 种普遍应用的减缩自由度的方法是减缩法和动力子结构法。
11
第2节 质量矩阵和阻尼矩阵
一、协调质量矩阵和集中质量矩阵
单元质量矩阵
Me NTNdV称为协调质量矩阵。 Ve
集中质量矩阵假定单元的质量集中在结点上,这样得到的质量矩 阵是对角线矩阵。以下分实体单元和结构单元进行讨论。
16
第2节 质量矩阵和阻尼矩阵
按第二种方法计算,得到集中质量矩阵与第一种方法结果一样。
注:对于8结点矩形单元,两种方法得到的集中质量矩阵不同。
在实际分析中,更多的是推荐用第二种方法来计算集中质量矩阵。 2.结构单元
2结点经典梁单元、协调质量矩阵和集中质量矩阵如下所示: (1)协调质量矩阵
位移插值函数是 N N 1 N 2 N 3N 4(2.7)
有限元法的基本概念和特点
边界条件和载荷对分析结果的影 响
边界条件和载荷的设置直接影响分析结果 的精度和可靠性,因此需要仔细考虑和验 证。
03 有限元法的特点
适应性
有限元法能够适应各种复杂形状和边 界条件,通过将连续的求解域离散化 为有限个小的单元,实现对复杂问题 的近似求解。
有限元法的适应性表现在其能够处理 不规则区域、断裂、孔洞等复杂结构 ,并且可以根据需要自由地组合和修 改单元,以适应不同的求解需求。
降低制造成本。
THANKS FOR WATCHING
感谢您的观看
通过将不同物理场(如结构、流体、电磁等)耦 合在一起,可以更准确地模拟复杂系统的行为。
多物理场耦合分析将为解决复杂工程问题提供更 全面的解决方案面具有重要作用。
通过先进的建模技术和优化 算法,可以更有效地设计出 高性能、轻量化的结构。
有限元法在结构优化方面的应 用将有助于提高产品的性能和
近似性
利用数学近似方法对每个单元体的行 为进行描述,通过求解代数方程组来 获得近似解。
通用性
适用于各种复杂的几何形状和边界条 件,可以处理多种物理场耦合的问题。
高效性
通过计算机实现,能够处理大规模问 题,提高计算效率和精度。
02 有限元法的基本概念
离散化
离散化
将连续的物理系统分割成有限个小的、相互连接的单元,每个单 元称为“有限元”。
随着计算机技术的发展,有限元法的精度不断提高,对于一些高精度要求的问题 ,有限元法已经成为一种重要的数值分析工具。
04 有限元法的应用领域
工程结构分析
01
02
03
结构强度分析
通过有限元法,可以对工 程结构进行强度分析,评 估其在各种载荷条件下的 稳定性。
有限元动力学问题有限单元法
动力学问题在物理领域中也有着广泛的应用,如力学、电磁学、光学等。例如,力学中的弹性力学问题、电磁学中的 电磁场问题、光学中的光束传播问题等。
其他领域
动力学问题在其他领域中也有着广泛的应用,如生物学、化学、地球科学等。例如,生物学中的生物力 学问题、化学中的化学反应动力学问题、地球科学中的地震动力学问题等。
03
有限元方法在多个领域都有广泛的应用,如机械、建筑、 航空航天、电子等。通过对不同领域动力学问题的有限元 分析,可以为相关领域的研究和应用提供重要的参考和指 导。
研究限制与不足
有限元方法虽然具有广泛的应用前景,但仍存在一些 限制和不足之处。例如,对于一些复杂结构和多尺度 问题,有限元方法的计算量和计算成本可能会较高, 需要进一步优化算法和计算流程。
有限元方法是一种有效的数值计算方法,可以精确地解决 结构动力学问题。通过对结构进行离散化,将连续的物理 问题转化为离散的数学问题,可以更方便地进行数值计算 和模拟。
02
有限元方法具有广泛的适用性,可以应用于各种材料和结 构的动力学问题。通过对不同材料和结构的有限元分析, 可以得到其动力学特性和响应规律,为工程设计和优化提 供依据。
02
有限元法基础
有限元法概述
有限元法是一种数值分析方法,用于 求解各种物理问题,如结构力学、流 体动力学、热传导等。它通过将连续 的求解域离散化为由有限个简单单元 组成的集合,从而将连续的偏微分方 程转化为离散的线性方程组,降低了 问题的复杂性和难度。
VS
有限元法在工程领域应用广泛,可以 用于分析复杂结构、设备和系统的动 力学行为,进行结构优化和设计等。
04
有限元法在动力学问 题中的应用
动力学问题的有限元法求解步骤
动力学问题的数值解法研究
动力学问题的数值解法研究引言动力学是研究物体在不同力的作用下的运动规律和相互作用关系的学科,它在物理学、工程学和生物学等领域具有广泛的应用。
在传统的理论框架下,解析解方法在求解动力学问题中扮演重要角色,但是在复杂的现实问题中,往往难以以解析方法求得准确的解。
此时,数值方法成为研究动力学问题的重要工具。
本文将探讨一些常见的动力学问题的数值解法及其应用。
一、常微分方程数值解法1. Euler方法Euler方法是最简单的一种常微分方程数值解法,它基于欧拉公式,将微分方程转化为差分方程。
具体而言,从初始条件出发,用差分逼近微分,然后迭代更新求解。
然而,Euler方法的精度较低,在解决一些复杂动力学问题时,往往无法满足精确性的要求。
2. Runge-Kutta方法Runge-Kutta方法是一类常用的常微分方程数值解法,其通过使用多步骤的迭代算法,提高了解的精确度。
相较于Euler方法,Runge-Kutta方法的误差更小,因此在实际问题中更受欢迎。
常见的二阶和四阶Runge-Kutta方法在动力学问题的数值求解中具有重要的应用。
二、偏微分方程数值解法偏微分方程是描述动力学问题中时空变化的数学模型,其数值解法相较于常微分方程更为复杂。
在动力学问题中,常见的偏微分方程数值解法包括有限差分法、有限元法和谱方法等。
下面将简要介绍其中两种方法。
1. 有限差分法有限差分法是一种将微分方程离散化的方法,它将求解区域划分为有限的网格,在格点上构造离散的差分方程,从而逼近原微分方程。
该方法通过选取合适的差分格式和网格剖分,能够得到模拟区域内各点的数值解。
有限差分法在求解热传导方程、波动方程和扩散方程等动力学问题中被广泛使用。
2. 有限元法有限元法是一种将求解域分割为许多小的子域,并在子域上构建局部基函数的方法。
通过在子域上选取适当的基函数,将原偏微分方程化简为子域上的代数方程组,再通过解代数方程组得到整个区域上的数值解。
结构动力学问题的有限元法
二、单元分析
单元分析旳任务仍是建立单元特征矩阵,形成单元特征方程。 动态分析中,单元特征矩阵:刚度矩阵、质量矩阵和阻尼矩阵。
动态分析中,仍采用虚位移原理建立单元特征矩阵。
在动载荷作用下,对于任一瞬时,设单元节点发生虚位移 qe ,则单元 内也产生相应旳虚位移 d 和虚应变 。单元内产生旳虚应变能为:
式中,ω为简谐振动圆频率;{Φ}为节点振幅列向量。
将解代入振动方程中,同步消去因子ejωt,可得
K 2 M 0
上式为一广义特征问题。根据线性代数可知,求解该问题能够求出n个特
征值
12
,
12
,,
2 n
和相相应旳n个特征向量
1,2 ,n 。其中特
征值ωi(i=1,2,…..,n)就是构造旳i阶固有频率,特征向量{Φi} i(i=1,2,…..,n)就是构造
三、总体矩阵集成 总体矩阵集成旳任务是将各单元特征矩阵装配成整个构造旳特征矩阵,
从而建立整体平衡方程,即
M q Cq K q Rt
式中,{q}为所以节点位移分量构成旳n阶列阵,n为构造总自由度数;
R
t
n
Ri
t
(i为节点数),称为节点载荷列阵;[K]、[M]、[C]
分别为构i造1 旳刚度矩阵、质量矩阵和阻尼矩阵。
旳i阶模态振型。
振型{Φi}是构造按频率ωi振动时各自由度方向振幅间旳相对百分比关系, 它反应了构造振动旳形式,并不是振幅旳绝对大小。
固有特征分析实际上就是求解广义特征值问题。求解旳数值措施主要有 1、变换法 基本思想是经过一系列矩阵变换,将矩阵[M][K]化为对角阵,
k11
K d
k 22
5 动态分析有限元法
动力学有限元问题的龙格库塔法 知乎
动力学有限元问题的龙格库塔法知乎动力学有限元问题的龙格库塔法1. 介绍动力学有限元问题是一类涉及结构物或系统在时间变化下的运动和响应的问题。
为了解决这类问题,我们可以使用数值方法,其中最常用的之一是龙格库塔法(Runge-Kutta method)。
本文将探讨龙格库塔法在解决动力学有限元问题中的应用,并对其进行深入思考和全面分析。
2. 龙格库塔法的基本原理和应用龙格库塔法是一种数值求解常微分方程的方法,通过迭代逼近来计算方程的数值解。
它的优点在于能够准确地模拟系统的动态行为,并且对于非线性问题也有较好的适用性。
在动力学有限元问题中,我们通常需要求解结构物或系统在时间上的响应,而龙格库塔法可以提供相对精确的数值计算结果。
3. 动力学有限元问题在动力学有限元问题中,我们需要考虑结构物或系统在外部作用下的运动和响应。
这通常涉及到求解质点、刚体或弹性体的运动方程。
通过建立合适的模型和边界条件,我们可以得到动力学方程。
通过数值方法求解这些方程,我们可以得到系统在一段时间内的响应。
4. 龙格库塔法的步骤和计算过程龙格库塔法的基本步骤包括选择适当的时间步长和计算时间步数,以及计算中间步骤的函数值。
具体来说,龙格库塔法将时间区间划分为若干个小时间步,并通过迭代逼近的方式计算每个时间步的系统响应。
这个过程可以通过多种不同的方法进行,其中最常用的是四阶龙格库塔法。
5. 龙格库塔法的优点和缺点龙格库塔法作为数值求解常微分方程的方法,具有一定的优点和缺点。
其优点在于能够准确地模拟系统的动态行为,对于非线性问题也有较好的适用性。
而缺点在于需要选择合适的时间步长和计算步数,以及计算量较大。
在处理某些特殊问题时,龙格库塔法可能会出现数值不稳定或数值误差较大的情况。
6. 对龙格库塔法的个人观点和理解在我个人看来,龙格库塔法是一种非常有效的数值求解方法。
它可以帮助我们更好地理解和分析动力学有限元问题,提供精确的数值计算结果。
通过选择适当的参数和方法,我们可以获得准确的结果,并在实际工程和科学研究中得到有效的应用。
机械结构有限元分析---结构动力问题有限元法
e T
单元阻尼矩阵
单元刚度矩阵 单元等效结点荷 载向量
F (t )e V N T FV dV S N T Fs T dS
07
制作:南昌航空大学————贺红林,2014
7.3 结构运动方程及其动力学矩阵
一、结构的运动方程 按照与静力有限元相同的方法,将所有单元的运动方程进 行集成,可得结构总体运动方程:
07
制作:南昌航空大学————贺红林,2014
7.1 动力学问题的基本概念
1、自由振动与受迫振动 自由振动——动荷载为零,由初始位移和初始速度引 起的结构振动。 受迫振动——由动荷载引起的结构振动。 2、动力问题的主要研究内容 结构的自振特性分析(无阻尼自由振动分析),寻求结构 的固有频率和主振型
结构的动力响应分析(受迫振动分析),寻求结构的 动内力、动位移的大小及其变化规律。
07
制作:南昌航空大学————贺红林,2014
3、动力有限元法的基本概念
结构离散
与静力问题相同,基本未知量仍为独立的结点位移 {δ},但{δ}是时间t的函数,同时是确定结构全部质量位置 的参数,故又称作动力自由度。 位移模式
07
制作:南昌航空大学————贺红林,2014
2、集中质量矩阵 将分布质量按某种原则换算成结点集中质量,按单元动 力自由度顺序放入相应位置形成的单元质量矩阵,称集中质 量矩阵。 当质量均匀分布时,常按照结点所分担的线段、面积和 体积确定该结点集中质量的大小。 因为假设集中质量集中成质点,故没有转动惯量,与转 动自由度相对应的质量为零。
0 sin t
代带入自由振动方程得
K M O
有限元法在结构力学分析中的应用
有限元法在结构力学分析中的应用有限元法是一种经典的结构力学分析方法。
在结构力学领域中,有限元法可以用来解决许多静力学和动力学问题。
本文将探讨有限元法在结构力学分析中的应用。
一、有限元法的基本原理有限元法是一种数值分析方法,可以用来解决大型结构的力学问题。
它的基本原理是将结构分割成一个个的单元,每个单元内的力学问题可以用简单的数学公式来描述。
然后将所有单元的力学问题集成到一起,形成一个大的数学模型。
通过数学计算,可以获得结构的应力、应变、变形等力学参数。
有限元法的优点在于它可以解决复杂结构的力学问题。
例如,有限元法可以用来分析汽车、航空器、建筑物等结构中的应力、应变、变形和振动等问题。
此外,有限元法具有高精度、高效率和高灵活性等特点,可以快速、准确地分析各种结构的力学性能。
二、有限元法在结构力学中的应用有限元法在结构力学中的应用非常广泛。
下面我们来具体看一下有限元法在结构力学分析中的应用案例。
1、建筑物结构的力学分析建筑物是大型结构中的一个重要领域。
有限元法可以用来分析各种建筑物的力学性能,例如建筑物的强度、振动、承载能力等。
通过有限元法可以模拟建筑物在地震、风力等环境下的响应,确定建筑物的结构安全性。
2、航空器的强度分析航空器飞行过程中面临各种力学环境,例如重力、空气阻力等。
有限元法可以用来分析航空器结构在高速、高空环境下的应力和变形情况。
从而确定航空器的强度和安全性。
3、机器设备的振动分析机器设备在运行过程中会产生振动,有可能对设备的安全和稳定性带来影响。
有限元法可以用来分析机器设备的振动情况,在设计过程中优化设备结构,避免发生振动破坏的危险。
总之,有限元法在结构力学分析中的应用非常广泛。
有限元法的基本原理简单,但是要想将其用于具体的问题需要进行复杂的计算。
因此,有限元法在结构力学分析中的应用需要具有一定的专业知识和技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Newmark方法 ❖ 在积分区间上采用如下的速度、位移假设:
❖ 通过t+Δt时刻的运动方程来决定t+Δt时刻的位移
a 解 tt ,即:
❖ 从上面三个方程联立可推出从 t 时刻的运动参量计算 t+Δt 时刻位移的公式:
❖ 由于从上式求解 t+Δt 时刻位移时需要对非对角的等效 刚度阵求逆,因此称为隐式算法。
第五节 瞬态响应分析
• 瞬态响应分析是计算动力强迫响应分析的最一般方法。其 目的是计算结构受随时间变化激励作用下的行为。瞬态激 励定义在时间域中,每个瞬时的大小已知。激励可以是作 用力和强迫运动。
• 根据结构和载荷的性质,可以用两种不同的数值方法进行 瞬态响应分析:直接积分法和振型叠加法。前者对全耦合 的有限元离散运动方程直接进行积分;后者利用主振型对 运动方程进行变换和解耦,结构的响应根据相应于各振型 的响应累加而成。
2、阻尼矩阵
单元阻尼矩阵:
• 称为协调阻尼矩阵。这种阻尼是由阻尼力正比于质点 运动速度得到的,属于粘性阻尼。显然,这种阻尼阵 与质量矩阵成正比。
• 对结构而言,阻尼并非粘性的,而主要是由于材料内 部摩擦效应引起的能量耗散,但这种耗散机理尚未完 全清楚,更难以用数学模型表达,故通常假设这种情 况的阻尼力正比于应变速率,从而可导出比例于单元 刚度矩阵的单元阻尼阵,大多数情形下足够精确。
1) 准静态问题
❖ 指边界条件和/或体力变化缓慢,或者物体内加速度分 布均匀等类型的问题。这类变形体问题的平衡微分方程 中忽略了惯性项,但载荷是时间的函数。在某时刻t, 采用动静法将整体惯性力转化为体力,或者忽略惯性力。 对应此刻载荷的静力学解作为t时刻的解。工程上可取 随时间变化载荷的最大值的静力学解作为问题的准静态 解。
它们分别称为固有振型矩阵和固有频率矩阵
• 利用固有振型矩阵和固有频率矩阵,结构固有振型的 正交性质可以表示成:
原来的特征值问题可以表示成:
• 固有频率和固有振型是一个结构自由振动的基本特性, 也是结构动态特性的基本要素。
•求解结构自由振动的广义特征值问题,由于系统自由度 很多,而研究系统动态响应和动态特性时,往往只需要 少数低阶特征值和特征向量。因此在有限元分析中发展 了许多针对上述特点的效率较高的算法。其中应用最广 泛的有Lanczos法、子空间迭代法、逆迭代法等。
2)是条件稳定算法。时间步长必须小于某个临界值:
t
tcr
Tn
Tn 是有限元系统的最小固有振动周期,通常用最小尺
寸单元的最小固有振动周期代替。因此,有限元网格中最
小单元尺寸将决定中心差分法时间步长的选择。有限元网
格划分时要考虑到这个因素,避免个别单元尺寸太小。
3)中心差分法适合用于考虑波传播效应的线性、非线性 响应分析。但是对于结构动力学问题中的瞬态响应分 析,不适合采用中心差分法,因为这类问题,重要的 是较低频的响应成分,允许采用较大的时间步长。通 常采用无条件稳定的隐式算法。
❖ 这类问题的研究要深入到介质中的弹塑性波的传播过 程以及考虑波动效应前提下介质中应力应变的响应。
❖ 这类问题中载荷的特点是构件上载荷作用前沿时间远 少于应力波在构件中的传播时间。该状态通常由构件 高速碰撞或爆炸载荷产生。
• 对于上述后两类问题,描述质点平衡和运动的微分方程 相同,包含惯性力项和阻尼力项。其数值求解方法主要 是有限元法。
• 研究结构自由振动特性。设阻尼和外力均为零,则结 构自由振动有限元运动方程为:
Ma(t) Ka(t) 0
设各自由度作简谐运动:
a sin (t t0 )
其中 是n阶向量,表示有限元离散结构所有自由度的
振幅,ω是该向量振动的频率。将上式代入自由振动 方程得到:
• 该方程描述的问题称为广义特征值问题。
❖ 当算法中的参数满足一定条件时,该算法是无条件稳定 的。此时,步长的选择取决于解的精度,可以根据对结 构响应有主要贡献的若干基本振型的周期来确定。通常 可取为所要考虑的基本振型周期中最小周期的二十分之 一。
❖ 对结构动力学问题,所关心的较低阶振型的周期比全系 统的最小周期大得多,也就是无条件稳定的隐 式算法可以 采用比有条件稳定的显式算法大得多的时间步长,而采用 较大时间步长还可以滤掉不精确的高阶响应成分。
1、直接积分法
• 直接积分法的两个前提:
❖ 第一,将求解时间域0<t<T内任何时刻t都满足运动方 程的要求降低为在相隔Δt的离散时间点上满足运动方 程。
❖ 第二,在离散时间点之间的Δt区域,对位移,速度, 加速度进行假设。相当于对运动微分方程组在时间域 进行离散化,并逐点求解。
• 直接积分法概述:
1、协调质量矩阵和集中质量矩阵
上节导出的单元质量矩阵为: Me
NT NdV
Ve
• 该矩阵称为协调质量矩阵或一致质量矩阵。因为它和刚 度矩阵依据同样的原理、过程和插值函数导出,还表示 质量在单元上呈某种分布。
• 此外,有限元中还经常采用集中质量矩阵,它是一个对 角矩阵,由假定单元质量集中在节点上得到。
❖ 就结构的瞬态响应分析而言,典型的有结构在冲击载 荷下的响应问题。结构动力学中这类问题的特点是, 载荷作用前沿时间与构件的自振基频周期相近,远大 于应力波在构件中的传播时间。或者构件上长时间作 用随时间剧烈变化的载荷。
❖ 结构动力学问题在工程中具有普遍性。
3) 弹塑性动力学问题
❖ 这是连续介质变形体动力学问题的另一个重要领域。 涉及许多科学和工程领域,如高速碰撞,爆炸冲击, 人工地震勘探,无损探伤等。
——单元阻尼矩阵
Qe NTfdV NT TdS ——单元等效节点力向量
Ve
Se
• 如果忽略阻尼,则结构动力学方程简化为:
M a(t) K a(t) Q(t)
• 上式动力学方程的右端项为零时就得到结构自由振动 方程。
• 从动力学方程导出过程可以看出,动力学问题的有限元 分析中,由于平衡方程中出现了惯性力和阻尼力,从而 引入了质量矩阵和阻尼矩阵,运动方程是耦合的二阶常 微分方程组,而不是代数方程组。该方程又称为有限元 半离散方程,因为对空间是有限元离散的,对时间是连 续的。
❖ 大多数显式方法是条件稳定的:当时间步长大于结构 最小周期的一定比例时,计算得到的位移和速度将发 散或得到不正确的结果;
❖ 隐式方法往往是无条件稳定的,步长取决于精度,而 不是稳定性方面的考虑。
❖ 典型的显式方法是所谓的“中心差分法”,其基本思 想如下。
• 中心差分法 ❖ 将某时刻的加速度和速度用中心差分表示:
u N ae
u(x, y, z, t)
u
v(
x,
y,
z,
t)
w( x, y, z, t)
ae
aa 12
a n
ui (t)
ai
vi
(t) (i
1,2,, n)
wi (t)
• 为建立有限元动力学响应控制方程,利用达朗倍尔原
理,在每个时刻 t,将连续介质中质点加上惯性力 u 和阻尼力 u ,则系统的动力学问题转化为等效静
• 由于系统的固有振型对于结构质量矩阵和结构刚度矩 阵具有正交性,因此,系统振型对上述Rayleigh阻尼 矩阵也是正交的。所以这类阻尼矩阵又称为振型阻尼。
• 采用振型阻尼矩阵后,可以利用系统振型对动力学方 程进行变换,得到解耦的方程组,使每个方程可以独 立求解,给计算带来方便。
第四节 结构自振频率和振型
力学问题。对等效系统应用虚功原理:
V T
dV
V uT (
f
u u)dV
S
uT T
dS
• 将前面位移空间离散表达式和单元的几何方程、物理方 程代入上式虚功方程,并考虑到变分的任意性,得到离
散系统控制方程——结构有限元动力学方程:
M a(t) C a(t) K a(t) Q(t)
❖ 尽管这种静态情况在实际上并不存在,但作为一种基本 力学模型,在工程实践上具有重要意义。很多实际问题 可近似归入准静态问题,而满足工程上的精度要求。
❖ 通过这种近似处理,可以避免大量的动力学模型解算, 而在有限的计算机资源下,可把实际问题的模型在准静 态假设前提下考虑得更细致、更实用。在许多情况下, 由此带来的对实际情况的逼近将大大抵消由于准静态假 设产生的误差。
❖ 至于哪些问题可作准静态来处理,需要综合考虑分析目 的与精度要求,构件的尺度和动态特性(固有振动周 期),载荷的特性(上升前沿和作用时间),计算机资 源情况等。
2) 结构动力学问题
❖ 该领域研究下列问题:弹性结构(系统)的自由振动 特性(频率和振型)分析;瞬态响应分析;频率响应 分析;响应谱分析等。
2、振型叠加法
•振型叠加法是计算结构瞬态响应的另一种数值方法。该 方法利用结构固有振型对动力学方程组进行变换,缩减未 知量规模,并对运动方程组进行解耦,大幅度提高数值求 解的效率。
方程中的系数矩阵分别为:系统质量矩阵,阻尼 矩阵,整体刚度矩阵。右端项为整体节点载荷向量。
• 上述矩阵由相应的单元矩阵组集而成:
M Me K Ke C Ce Q Qe
其中:
Me NT NdV Ve
K e BT DBdV Ve
——单元质量矩阵 ——单元刚度矩阵
Ce NT NdV Ve
❖ t+Δt时刻的位移解 att 从t时刻的运动方程建立:
❖ 将加速度和速度的差分格式代入上式,得到:
❖ 上式就是求离散时间点上位移解的递推公式。但该算法 有起步问题(见P449)。
❖ 中心差分法特点如下:
1)是显式算法,并且当质量阵和阻尼阵都是对角阵时,利 用该递推公式求解运动方程时不需要进行矩阵求逆,这个 特点在非线性问题中将更有意义。
• 当求解该微分方程组,得出节点位移响应后,其它计 算步骤与静力分析相同。