核医学名词解释、简答、概述.

合集下载

核医学汇总

核医学汇总

核医学汇总1、核医学的定义:是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。

在反映脏器或组织的血流、受体密度和活性、代谢、功能变化方面有独特的优势。

2、核医学的分类:实验核医学和临床核医学3、实验核医学:利用核技术探索生命现象的本质和物质变化规律,其内容主要包括核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。

4、临床核医学:是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。

5、临床核医学分类:诊断核医学和治疗核医学6、诊断核医学:包括以脏器显像和功能测定为主要内容的体内(in vivo)诊断法和以体外放射分析为主要内容的体外(in vitro)诊断法。

7、治疗核医学:是利用放射性核素发射的核射线对病变进行高度集中照射治疗。

8、核医学的特点:1、安全、无创2、分子功能现象3、超敏感和特异性强4、定量分析5、同时提供形态解剖和功能代谢信息。

9、分子功能影像:核医学功能代谢显像是现代医学影像的重要组成内容之一,其显像原理与X线、B超、计算机体层摄影(CT)和核磁共振(MR)等检查截然不同,它通过探测接收并记录引入体内靶组织或器官的放射性示踪物发射的γ射线,并以影像的方式显示出来,这不仅可以显示脏器或病变的位置、形态、大小等解剖学结构,更重要的是可以同时提供有关脏器和病变的血流、功能、代谢甚至是分子水平的化学信息,有助于疾病的早期诊断。

单光子发射型计算机断层仪(SPECT)和正电子发射型计算机断层仪(PET)10、锝-99m(99mTc)特点:核性能优良,为纯γ光子发射体,能量140keV,T1/2为6.02h,99mT c是现象检查中最常用的放射性核素。

11、氟[18F]脱氧葡萄糖(18F-FDG)是目前临床应用最为广泛的正电子放射性药物。

131I是治疗甲状腺疾病最常用的放射性药物12、放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。

核医学 名解

核医学  名解

1.核医学(中)nuclear medicine 核医学是利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科;广义则是放射性核素和核射线在医学上的应用及其理论研究的总称。

2.放射性活度(简称活度)(中)radioactivity A单位时间内发生衰变的原子核数量。

国际单位:贝可 1Bq=每秒一次(放射性核素在每秒钟内发生一次核衰变),旧制:居里 1Ci=3.7×10-10Bq3.电离(难)ionization当带电粒子(α、β粒子)通过物质时,和物质原子的核外电子发生静电作用,使电子脱离轨道束缚而形成自由电子,这一过程称为电离。

4.同位素(中)isotope核内质子数相同,但中子数不同,在元素周期表中处于同一位置的同种元素称为同位素;它们是化学性质相同的一类原子。

5.光电效应(难)photoelectric effect γ光子与介质原子的轨道电子(主要是内层电子)碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失,这一作用过程称为光电效应。

6.同质异能素(中)isomer核内质子数相同,中子数也相同,但能量状态不相同的原子。

7.生物半衰期(易)biological half life放射性核素经生物代谢作用从机体内排出一半所需的时间。

8.有效半衰期(中)effective half life 是指放射性核素由于物理衰变和生物代(排)谢两者的共同作用,在体内的放射性减少一半所需的时间。

9.湮灭辐射(annihilation radiation):β+衰变产生的正电子具有一定的动能,能在介质中运动一定的距离,当其耗尽动能后,将与物质中的自由电子结合,转换为两个方向相反、能量各为0.511Mev 的γ光子的而自身消失的过程。

(β+粒子与物质作用耗尽动能后,将与物质中的电子结合,正负电荷相互抵消,两个电子的质量转换为两个方向相反、能量各为0.511Mev 的γ光子的过程)10、治疗用放射性药物(therapeutic pharmaceutical )(难)能够高度选择性浓集在病变组织产生局部电离辐射生物效应,从而抑制或破坏病变组织发挥治疗作用的一类体内放射性药物11、诊断用放射性药物(diagnostic pharmaceutical) (难)用于获得体内靶器官或病变组织的影像或功能参数,进行疾病诊断的一类体内放射性药物。

核医学的名词解释

核医学的名词解释

核医学的名词解释核医学是应用核技术在医学诊断和治疗中的一门学科。

它利用放射性同位素标记的生物分子进入体内,通过检测和分析它们的放射性衰变过程,来获得人体内部器官的结构、功能以及代谢情况等信息,从而达到对疾病进行早期诊断和治疗的目的。

核医学主要包括放射性同位素的制备及其标记、医学影像学和生物学等方面内容。

在核医学诊断中,常见的影像学技术有放射性核素显像、单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)。

这些技术通过将放射性同位素标记的生物分子注射到患者体内,利用放射性同位素的放射性衰变来探测和分析患者的器官结构和功能状态。

放射性核素显像是核医学中最早也是最常用的技术之一,它是通过摄取或注射放射性同位素来探测人体内脏器官的功能状态。

比如,甲状腺扫描常用于评估甲状腺的功能和结构,心脏显像则可以用来观察心肌供血和心脏功能状况。

这些显像技术通过测量放射性同位素在患者体内的分布来反映不同器官的代谢活性,从而帮助医生进行疾病的诊断。

而SPECT和PET则在核医学诊断中扮演着更加精确和敏感的角色。

SPECT通过测量单光子的发射能量和位置,可以提供三维的断层影像,用于心脏、脑部等多个器官的检查,尤其是对于功能性异常的早期诊断具有重要价值。

PET则通过注射放射性同位素标记的生物分子,如葡萄糖等,以观察其在患者体内的分布和代谢情况。

PET可以非常精确定位和定量分析器官细胞的代谢活性,对于肿瘤、心血管和神经系统等多种疾病的早期诊断和治疗监测起到至关重要的作用。

此外,核医学还在放射性同位素治疗方面有着广泛的应用。

放射性同位素治疗是利用放射性药物直接或间接杀死和控制肿瘤细胞的方法。

与传统的手术、放疗和化疗相比,放射性同位素治疗具有创伤小、疗效高、副作用少等优势。

比如,对于甲状腺功能异常、骨转移的癌症患者,可以通过摄取放射性碘或其他放射性核素来破坏甲状腺或骨转移灶,达到治疗的目的。

在核医学领域,还有一些常用的术语和技术需要了解。

核医学重点归纳

核医学重点归纳

核医学重点归纳核医学是一门结合核物理学、生物学和医学的学科,利用放射性同位素及其产生的辐射,应用于诊断和治疗疾病。

本文将对核医学的重要概念和应用进行详细阐述。

1. 核医学概述核医学是利用放射性同位素技术进行医学诊断和治疗的一门学科。

它主要包括核医学影像学和核医学治疗两个方面。

核医学影像学主要通过放射性同位素的放射性衰变过程及其特征辐射来获取人体内部器官的形态、功能和代谢信息,为疾病的诊断和治疗提供依据。

核医学治疗则是利用放射性同位素的特殊性质和作用机制,直接作用于人体,治疗某些疾病。

2. 核医学影像学2.1 放射性同位素的选择和制备核医学影像学中,选择合适的放射性同位素是关键。

常用的同位素有技99mTc、201Tl、131I等。

制备这些同位素通常需要一个核反应堆作为能源供应的源泉。

2.2 核医学影像设备核医学影像设备主要包括单光子发射计算机断层摄影(SPECT)和正电子发射计算机断层摄影(PET)。

SPECT技术使用单个探测器在360度旋转的过程中记录放射性同位素的发射。

PET技术则利用正电子发射的特性来观察放射性同位素的分布。

2.3 核医学影像的分类核医学影像可分为核素显像和功能代谢显像。

核素显像是通过观察放射性同位素在人体内部分布情况,来获得器官形态的影像。

功能代谢显像则是通过观察人体器官的代谢情况,来评估其功能状态。

2.4 核医学临床应用核医学影像学在临床上广泛应用于诊断各种疾病,如癌症、心脏病、骨科疾病等。

核医学影像可以提供关于病变的位置、大小、代谢活性以及与周围组织的关系等信息,为医生制定诊断方案提供重要依据。

3. 核医学治疗3.1 放射性同位素治疗核医学治疗主要通过放射性同位素的放射性衰变来实现。

这些同位素可以通过口服、静脉注射等方式进入人体,在体内靶向作用于病变部位,杀死或抑制异常细胞的生长。

3.2 放射性碘治疗放射性碘治疗是一种常见的治疗甲状腺疾病的方法。

通过口服放射性碘同位素,碘同位素会富集在甲状腺组织中,辐射杀死异常细胞,从而治疗甲状腺癌和甲状腺功能亢进等疾病。

核医学名词解释、简答、概述

核医学名词解释、简答、概述

核医学名词解释、简答、概述分子核医学研究的是分子水平上的生物学过程,主要包括分子成像和分子治疗两个方面。

分子成像是指利用放射性核素或荧光标记的分子探针,通过影像技术对生物分子进行定量、定位、定性的成像,以实现疾病的早期诊断、病理生理过程的监测和药物疗效的评价。

分子治疗是指利用分子水平上的药物或治疗方法,通过针对特定的分子靶点,实现精准治疗,减少副作用,提高治疗效果。

分子核医学的发展,将有望实现对疾病的精准治疗和个性化医疗的实现。

答:常用的脏器显像仪有CT、MRI、X线、超声、放射性核素显像等。

PET(正电子发射断层扫描)是一种核医学检查方法,通过注射放射性药物,利用正电子与电子湮灭产生的两个γ光子探测器记录,得到人体内部器官的代谢信息。

SPECT(单光子发射计算机断层扫描)是一种核医学影像技术,通过注射放射性核素,利用放射性核素发射的单一γ光子探测器记录,得到人体内部器官的代谢信息。

免疫分析是一种超微量分析技术,利用特异抗体与标记抗原和非标记抗原的竞争结合反应,通过测定放射性复合物量来计算出非标记抗原量。

非放射性的标记免疫分析包括时间分辨荧光分析法、酶标记的免疫分析法和化学发光免疫分析法。

免疫放射分析技术以标记抗体作为示踪剂,反应动力学,因为标记抗体是过量的,且反应是非竞争性的,抗原抗体是全量反应,所以反应速度比RIA快,灵敏度明显高于放射免疫分析,约为放射免疫分析的10~100倍,标准曲线工作范围宽,特异性高,稳定性好。

质控指标包括稳定性、精密度、灵敏度、准确度和特异性。

脑灌注显像的原理是利用血脑屏障的特殊功能,选择一些具有脂溶性的、电中性的小分子(<500)放射性示踪剂,它能自由通过完整无损的血脑屏障,并大部分被脑细胞所摄取,且在脑内的存留量与血流量成正比,通过体外计算机断层显像显示脑内各局部放射性分布状态,从而获得脑血流灌注显像图。

显像剂的基本特征包括可以自由通过完整无损血脑屏障、脑细胞的摄取量与局部血流量成正比、进入血脑屏障后不能反向出血脑屏障、在脑细胞中的滞留时间较长,能满足断层显像的时间要求。

核 医 学

核 医 学

目前最先进的PET是探头多环型、模块和3D结构。 探头晶体除外经典锗酸铋(BGO),已推出硅酸镥(LSO) 硅酸钆(GSO)和混合型晶体,如LYSO。
近年来,PET与CT合二为一的显像设备问世,称之PET/CT
PET/CT以PET特性为主,同时将PET影像叠加在 CT图像上,使得PET影像更加直观,解剖定位 更加准确。
治疗用放射性药物 种类很多,常用 放射性核素多是发射纯β -射线(32P、89Sr、 90Y等)或发射β -射线时伴有γ 射线(131I、 153Sm、188Re、117mSn、117Lu等)的核素, 其中适宜的射线能量和在组织中的射程是 选择性集中照射病变组织而避免正常组织 受损并获得预期治疗效果的基本保证。
功能测定仪
功能测定仪由一个或多个探头、电 子线路、计算机和记录显示装置组 成。
甲 状 腺 功 能 测 定 仪
a:正常志愿者 b:甲亢 c:甲亢高峰前移 d:甲低
肾 图 仪
其 他
活度计(radioactivity calibrator) 是用于测量并直接给出放射性药物 或试剂所含放射性活度的一种专用 放射性计量仪器。它主要由探头、 后续电路、显示器及计算机系统组 成。 活度计 国家规定 惟一强制 检定的计 量工具
三、污染、剂量监 测仪
主要用于放射防
护。 表面污染监测仪 用于对工作人员体表、 衣物表面和工作场所 有无放射性沾染的检 测。剂量监测仪用于 测量工作场所的照射 剂量和放射性工作人 员的吸收剂量。
放射性药物
放射性药物基本概念 放射性药物制备 诊断与治疗放射性药物 质量保证与控制 正确使用、不良反应及防治
核素治疗总原则
1.正当性的判断 。在决定是否给病人使用放射性 药物进行诊断或治疗时,首先要作出正当性判断。 2.最优化分析。若有几种同类放射性药物可供诊 断检查用,则选择所致辐射吸收剂量最小者;对用于 治疗疾病的放射性药物,则选择病灶辐射吸收剂量最 大而全身及紧要器官辐射吸收剂量较小者。 3. 在保证显像或治疗的前提下使用放射性剂量必须 尽量小。 (1)诊断检查时尽量采用先进的测量和显像设备。 (2) 采用必要的保护 。 (3)对小儿、孕妇、哺乳妇女、育龄妇女应用放射 性药物要从严考虑。

核医学名词解释、简答、概述

核医学名词解释、简答、概述

1、核素nuclide :指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

2、同位素isotope:具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

3、同质异能素isomer:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

4、放射性活度radioactivity:简称活度:单位时间内原子核衰变的数量。

5、放射性核纯度:也称为放射性纯度,指所指定的放射性核素的放射性活度占药物中总放射性活度的百分比,放射性纯度只与其放射性杂志的量有关.6、放射化学纯度(放化纯):指特定化学结构的放射性药物的放射性占总放射性的百分比.7、放射性药物:指含有一个或多个放射原子(放射性核素)而用于医学诊断和治疗用的一类特殊药物。

8、正电子发射型计算机断层仪(PET):利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能,代谢成像的仪器。

9、单光子发射型计算机断层仪(SPECT):利用注入人体的单光子放射性药物发出的γ射线在计算机辅助下重建影响,构成断层影像的仪器。

10、“闪烁”现象 (flare phenomenon): 在肿瘤病人放疗或化疗后,临床表现有显著好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。

1、核医学的定义及核医学的分类.答:核医学是一门研究核素和核射线在医学中的应用及其理论的学科.及应用放射性核素诊治疾病和进行生物医学研究.核医学包括实验核医学和临床核医学.实验核医学主要包括核衰变测量,标记,示踪.体外放射分析,活化分析和放射自显影.临床诊断学是利用开放型放射性核素诊断和治疗疾病的临床医学学科.由诊断和治疗两部分组成.诊断和医学包括以脏器显像和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法.治疗核医学是利用放射性核素发射的核射线对病变进行高密度集中治疗.2、分子核医学的主要研究内容。

核医学简介介绍

核医学简介介绍
神经传导与功能
通过核医学技术,可以研究神经传导的机制和功 能,了解神经系统在生理和病理状态下的变化。
3
细胞信号转导
核医学技术可以用于研究细胞信号转导的机制和 过程,了解细胞对外部刺激的应答和反应,为疾 病治疗提供新的思路。
生物医学工程
生物材料与组织工程
01
核医学技术可以用于研究生物材料的性能和组织工程中细胞的
定义
核磁共振成像是一种基于 磁场和射频脉冲的医学成 像技术。
应用
MRI广泛应用于医学诊断 中,能够提供高分辨率和 高对比度的解剖结构和生 理功能图像。
优势
MRI具有无创、无辐射、 无骨伪影等优点,能够提 供高质量的解剖结构和生 理功能图像。
03
核医学在临床诊断中的应用
肿瘤诊断与治疗
肿瘤诊断
核医学利用放射性示踪剂来检测肿瘤的存在和位置,如正电子发射断层扫描( PET)和单光子发射计算机断层扫描(SPECT)。这些技术能够早期发现肿瘤 ,提高诊断的准确性和可靠性。
核医学的历史与发展
核医学的历史可以追溯到20世纪初,当时科学家发现了放射性元素并开始研究其 在医学中的应用。随着科技的发展,核医学逐渐成为一门独立的学科,并在诊断 、治疗和科研方面取得了显著进展。
核医学的发展经历了多个阶段,包括放射性元素的发现、放射免疫分析、正电子 发射断层扫描(PET)等技术的出现和应用。如今,核医学已经成为一种高度专 业化、技术密集型的医学领域,为临床医生和科研人员提供了重要的工具和手段 。
肿瘤治疗
核医学通过放射性药物来治疗肿瘤。放射性药物能够选择性地集中在肿瘤组织 ,释放出辐射能量来杀死癌细胞。这种方法具有创伤小、副作用少等优点。
心脑血管疾病的诊断与治疗
诊断

(完整版)核医学简答、概述总结(二),推荐文档

(完整版)核医学简答、概述总结(二),推荐文档

1、核医学的定义及核医学的分类.答:核医学是一门研究核素和核射线在医学中的应用及其理论的学科.及应用放射性核素诊治疾病和进行生物医学研究.核医学包括实验核医学和临床核医学.实验核医学主要包括核衰变测量,标记,示踪.体外放射分析,活化分析和放射自显影.临床诊断学是利用开放型放射性核素诊断和治疗疾病的临床医学学科.由诊断和治疗两部分组成.诊断和医学包括以脏器显像和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法.治疗核医学是利用放射性核素发射的核射线对病变进行高密度集中治疗.2、分子核医学的主要研究内容。

答:分子医学的概念:是建立在分子细胞学、分子生物化学、分子药理学及计算机技术基础上的一门边缘学科,是在大分子、蛋白、核酸水平上研究疾病的发生、发展规律,最终达到对疾病进行特异性诊断和个性化治疗的一门学科。

研究内容:代谢显像、受体显像、反义与基因显像、放射免疫显像、凋亡显像。

3、原子的结构.元素、同位素、核素、同质异能素、放射性活度的概念,放射性衰变的类型。

答:原子是由处于原子中心的原子核和带负电荷核外电子组成,原子核由质子和中子组成,他们统称核子.核素:指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

同位素:具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

同质异能素:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

放射性活度:简称活度:单位时间内原子核衰变的数量。

放射性衰变:α衰变(alpha decay)、β—衰变(beta decay)、正电子衰变、电子俘获(electron capture)、γ衰变(gamma decay)。

4、什么是放射性药物,按理化性质如何分类,放射性药物与普通药物有何不同,医用放射性药物由哪些途径产生,放射性核纯度和放化纯的概念?答:放射性药物指含有一个或多个放射原子(放射性核素)而用于医学诊断和治疗用的一类特殊药物;分类:离子型、胶体型、放射性标记化合物、放射性标记生物活性物质。

核医学 名解

核医学 名解

核医学:核医学是利用核素及其标记化合物用于诊断和治疗疾病的临床医学学科,包括诊断核医学和治疗核医学。

核素:指质子数,中子数均相同,且原子核处于相同能级状态的原子。

半衰期:指放射性核素的数量因衰变减少一半所需要的时间,又称物理半衰期。

(T1/2=0.693/λ)湮灭辐射:β+衰变产生的正电子具有一定的动能,能在介质中运行一定的距离,当其能量耗尽时可与物质中的自由电子相结合,转化为两个方向相反,能量各为0.511MeV的γ光子消失,这叫湮灭辐射,是符合正电子显像的基础。

晶体(闪烁体):用于放射性测量的闪烁晶体是在放射线或原子核粒子作⽤下发生闪烁现象的晶体材料,其作用是将射线的辑射能转变为光能,因此又被称为闪烁体。

光电倍倍增管(PMT):是基于光电效应和二次电子发射效应的真空电子器件,其作用是将微弱的光信号转换成可测量的电信号,因此它也是一种光电转换放大器件。

符合探测:利用湮灭辐射的特点和两个相对探测器输出脉冲的符合来确定闪烁事件位置的方法称为电子准直,这种探测方式则称为符合探测。

甲功仪:主要用于甲状腺功能的测定和诊断,它是以甲状腺组织对放射性碘摄取率来衡量甲状腺的功能故而又称为甲状腺吸碘率测定仪。

动态显像:是显像剂引⼊体内后迅速以设定的显像速度采集脏器的多帧连续影像。

静态显像:是指当显像剂在脏器内或病变处的浓度处于稳定状态时进行的显像。

阳性显像:指显像剂主要被病变组织摄取,而正常组织⼀般不摄取或摄取很少,在静态影像上病灶组织的放射性比正常组织高而呈“热区”改变。

如心肌梗死灶显像等。

阴性显像:指显像剂主要被有功能的正常组织摄取,而病变组织基本上不摄取,在静态影像上表现为正常组织器官的形态,病变部位呈放射性分布稀疏或缺损。

如心肌灌注显像,甲状腺显像等。

负荷显像:是受检者在药物或生理性活动干预下所进行的显像。

有利于发现在静息显像下不易观察到的病变从而提高显像诊断的灵敏度。

正电子显像:是用于探测正电⼦的显像仪器通过显像剂中放射性核素发射的正电子进行的显像技术,称为正电子显像。

核医学主要内容

核医学主要内容

总论1、核医学(nuclear medicine):核医学是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。

2、核医学的分类包括实验核医学和临床核医学两部分。

3、分子核医学:是分子生物学技术和现代放射性核素示踪技术相结合而产生的一门心的核医学分支学科。

4、实验核医学是利用和技术探索生命现象的本质和规律,为认识正常生理、生化过程和病理过程提供新理论和新技术,已广泛用于医学基础理论研究;其主要内容包裹核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。

5、临床核医学是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。

诊断核医学包括以脏器现象和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法;治疗核医学利用放射性核素发射的核射线对病变进行高度集中的照射治疗。

6、实验核医学和临床核医学是同一学科的不同分支,前者的成果不断推动后者的发展,而后者在应用与时间中又不断向前者提出新的研究课题,二者相互促进,密不可分。

7、核医学优势:①安全无创:放射性核素显像为无创性检查,所用的放射性核素物理半衰期短,显像剂化学剂量极微,病人所接受的辐射吸收剂量低,因此发生毒副作用的几率极低;②分子功能显像:核医学功能显像是现代医学影像的重要组成内容之一,它是通过探测接受并记录引入人体内靶组织或器官的放射性示踪物发射的γ射线,以影像的方式显示出来,不仅可以显示脏器或病变的位置、大小、形态等解剖学结构,更重要的是可以提供有关脏器和病变的血流、功能、代谢,甚至是分子水平的化学信息;③超敏感和特异性强:利用放射性核素示踪超敏感技术早起预警和探测病变,同时利用抗原与抗体、受体与配体等特异性结合和反义显像、基因表达显像等为临床诊治疾病提供客观、科学依据;④定量分析:在保证获得高质量的分子探针或示踪剂的前提下,借助生理数学模型和计算机软件技术可以进行半定量或定量分析;⑤同时提供形态解剖和功能代谢信息。

核医学名词解释、简答、概述

核医学名词解释、简答、概述

1、核素nuclide :指质子数与中子数均相同,并且原子核处于相同能态得原子称为一种核素。

2、同位素isotope:具有相同质子数而中子数不同得核素互称同位素。

同位素具有相同得化学性质与生物学特性,不同得核物理特性。

3、同质异能素isomer:质子数与中子数都相同,处于不同核能状态得原子称为同质异能素。

4、放射性活度radioactivity:简称活度:单位时间内原子核衰变得数量。

5、放射性核纯度:也称为放射性纯度,指所指定得放射性核素得放射性活度占药物中总放射性活度得百分比,放射性纯度只与其放射性杂志得量有关、6、放射化学纯度(放化纯):指特定化学结构得放射性药物得放射性占总放射性得百分比、7、放射性药物:指含有一个或多个放射原子(放射性核素)而用于医学诊断与治疗用得一类特殊药物。

8、正电子发射型计算机断层仪(PET):利用发射正电子得放射性核素及其标记物为显像剂,对脏器或组织进行功能,代谢成像得仪器。

9、单光子发射型计算机断层仪(SPECT):利用注入人体得单光子放射性药物发出得γ射线在计算机辅助下重建影响,构成断层影像得仪器。

10、“闪烁”现象 (flare phenomenon): 在肿瘤病人放疗或化疗后,临床表现有显著好转,骨影像表现为原有病灶得放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。

1、核医学得定义及核医学得分类、答:核医学就是一门研究核素与核射线在医学中得应用及其理论得学科、及应用放射性核素诊治疾病与进行生物医学研究、核医学包括实验核医学与临床核医学、实验核医学主要包括核衰变测量,标记,示踪、体外放射分析,活化分析与放射自显影、临床诊断学就是利用开放型放射性核素诊断与治疗疾病得临床医学学科、由诊断与治疗两部分组成、诊断与医学包括以脏器显像与功能测定为主要内容得体内诊断法与以体外放射分析为主要内容得体外诊断法、治疗核医学就是利用放射性核素发射得核射线对病变进行高密度集中治疗、2、分子核医学得主要研究内容。

核医学重点

核医学重点

一、名词解释1.核医学(nuclear medicine):是研究核技术在医学的应用及其理论的学科,是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。

2.放射性活度(radioactivity,A):单位时间内原子核的衰变数量。

3.放射化学纯度:是指以特定化学形式存在的放射性活度占总放射性活度的百分比。

4.功能显像:与CT、MRI及超声成像主要反映组织密度的差别不同,核素显像主要反映放射性核素示踪剂在体内脏器组织的分布及浓度的变化及异常,提供有关脏器和病灶的功能、血流及代谢情况,故有功能显像之称。

5.融合图像:将来自相同或不同成像方式的图像进行一定的变换处理,使其之间的空间位置、空间坐标达到匹配的一种技术。

核医学ECT、PET显像与CT、MRI相融合,既反映脏器组织功能学、代谢学信息,又能起到精确定位学诊断的目的。

6.放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称为放射性核素。

7.动态显像:在显像剂引入体内后,迅速以设定的显像速度动态采集脏器的多帧连续影像或系列影像。

8.阳性显像:又称热区显像,是指显像剂主要被病变组织摄取,而正常组织一般不摄取或摄取很少,在静态影像上病灶组织的放射性比正常组织高而呈“热区”改变的显像。

阴性显像:又称冷区显像,指显像剂主要被有功能的正常组织摄取,而病变组织基本上不摄取,在静态影像上表现为正常组织器官的形态,病变部位则呈放射性分布稀疏或缺损改变。

9.大小脑失联络/交叉失联络:大脑原发病变的对侧小脑同时出现葡萄糖代谢的减轻,除此之外,大脑各皮层之间以及大脑与基底节和丘脑之间也存在失联络症。

局部脑血流灌注显像检查中,脑梗死患者病变对侧小脑放射性分布减低。

10.超级骨显像:放射性显像剂在全身骨骼分布呈均匀的对称性的异常浓聚,骨骼影像非常清晰,而肾区却无放射性显像剂分布,膀胱内放射性分布很小,软组织内亦无放射性显像剂分布,这种影像称为“超级骨显像”。

核医学名词解释、简答、概述

核医学名词解释、简答、概述

1、核素nuclide :指量子数战中子数均相共,而且本子核处于相共能态的本子称为一种核素.之阳早格格创做2、共位素isotope:具备相共量子数而中子数分歧的核素互称共位素.共位素具备相共的化教本量战死物教本性,分歧的核物理本性.3、共量同能素isomer:量子数战中子数皆相共,处于分歧核能状态的本子称为共量同能素.4、搁射性活度radioactivity:简称活度:单位时间内本子核衰变的数量.5、搁射性核杂度:也称为搁射性杂度,指所指定的搁射性核素的搁射性活度占药物中总搁射性活度的百分比,搁射性杂度只与其搁射性杂志的量有闭.6、搁射化教杂度(搁化杂):指特定化教结构的搁射性药物的搁射性占总搁射性的百分比.7、搁射性药物:指含有一个或者多个搁射本子(搁射性核素)而用于医教诊疗战治疗用的一类特殊药物.8、正电子收射型估计机断层仪(PET):利用收射正电子的搁射性核素及其标记表记标帜物为隐像剂,对于净器或者构制举止功能,代开成像的仪器.9、单光子收射型估计机断层仪(SPECT):利用注进人体的单光子搁射性药物收出的γ射线正在估计机辅帮下重修效用,形成断层影像的仪器.10、“闪烁”局里(flare phenomenon): 正在肿瘤病人搁疗或者化疗后,临床表示有隐著佳转,骨影像表示为本有病灶的搁射性汇集较治疗前更为明隐,再通过一段时间后又会消得或者革新,那种局里称为“闪烁”局里.1、核医教的定义及核医教的分类.问:核医教是一门钻研核素战核射线正在医教中的应用及其表里的教科.及应用搁射性核素诊治徐病战举止死物医教钻研.核医教包罗真验核医教战临床核医教.真验核医教主要包罗核衰变丈量,标记表记标帜,示踪.体中搁射领会,活化领会战搁射自隐影.临床诊疗教是利用启搁型搁射性核素诊疗战治疗徐病的临床医教教科.由诊疗战治疗二部分组成.诊疗战医教包罗以净器隐像战功能测定为主要真量的体内诊疗法战以体中搁射领会为主要真量的体中诊疗法.治疗核医教是利用搁射性核素收射的核射线对于病变举止下稀度集结治疗.2、分子核医教的主要钻研真量.问:分子医教的观念:是修坐正在分子细胞教、分子死物化教、分子药理教及估计机技能前提上的一门边沿教科,是正在大分子、蛋黑、核酸火仄上钻研徐病的爆收、死少顺序,最后达到对于徐病举止特同性诊疗战本性化治疗的一门教科.钻研真量:代开隐像、受体隐像、反义与基果隐像、搁射免疫隐像、凋亡隐像.3、本子的结构.元素、共位素、核素、共量同能素、搁射性活度的观念,搁射性衰变的典型.问:本子是由处于本子核心的本子核战戴背电荷核中电子组成,本子核由量子战中子组成,他们统称核子.核素:指量子数战中子数均相共,而且本子核处于相共能态的本子称为一种核素.共位素:具备相共量子数而中子数分歧的核素互称共位素.共位素具备相共的化教本量战死物教本性,分歧的核物理本性.共量同能素:量子数战中子数皆相共,处于分歧核能状态的本子称为共量同能素.搁射性活度:简称活度:单位时间内本子核衰变的数量.搁射性衰变:α衰变(alpha decay)、β—衰变(beta decay)、正电子衰变、电子俘获(electron capture)、γ衰变(gamma decay).4、什么是搁射性药物,按理化本量怎么样分类,搁射性药物与一般药物有何分歧,医用搁射性药物由哪些道路爆收,搁射性核杂度战搁化杂的观念?问:搁射性药物指含有一个或者多个搁射本子(搁射性核素)而用于医教诊疗战治疗用的一类特殊药物;分类:离子型、胶体型、搁射性标记表记标帜化合物、搁射性标记表记标帜死物活性物量.与一般药物分歧面:搁射性,理化本性与决于被标记表记标帜物固有本性,有特定物理半衰期战灵验半衰期,脱标及辐射自领会,计量单位用活度为基础单位,治疗效用机理分歧于一般药物.爆收:加速器死产,反应堆死产,从裂变产品中提与,搁射性核素爆收器淋洗.搁射性核杂度:也称为搁射性杂度,指所指定的搁射性核素的搁射性活度占药物中总搁射性活度的百分比,搁射性杂度只与其搁射性杂志的量有闭.搁射化教杂度(搁化杂):指特定化教结构的搁射性药物的搁射性占总搁射性的百分比.5、治疗时常使用的搁射性核素.问:时常使用的搁射性核素多是收射杂β-射线(32P、89Sr、90Y 等)或者收射β-射线时陪随γ射线(131I、153Sm、188Re、117Sn m、117Lu等)的核素.131I(NaI)甲状腺徐病诊疗、治疗;133Xe肺通气隐像;99mTc-MIBI心肌灌注隐像;99mTc-MDP骨隐像;99mTc-ECD 脑灌注隐像;99mTc-MAA肺灌注隐像;99mTc-RBC肝血池隐像;99mTc-鳏核苷酸肿瘤基果反义隐像.6、姑且时常使用的净器隐像仪有哪些,什么是PET,SPECT?问:γ照相机 ECT,单光子收射型估计机断层仪(SPECT),正电子收射型估计机断层仪(PET),净器功能测定仪 CT.正电子收射型估计机断层仪(PET):利用收射正电子的搁射性核素及其标记表记标帜物为隐像剂,对于净器或者构制举止功能,代开成像的仪器.PET主要由探测系统包罗晶体、电子准直、切合线路战飞止时间技能,估计机数据处理系统图像隐现战断层床等组成.本理:是用正电子衰变战工业苏标记表记标帜的搁射性药物,正在人体内搁出的正电子与构制相互效用,爆收正电子湮灭,背好同目标收射光子,与γ光子检测仪互相效用,爆收荧光子,并产死一个电子脉冲,通过隐像系统及估计机处理产死PET图像,与SPECT比较具备空间辨别率下、探测效用下、能准确天隐现受检净器内隐像剂浓度提供的代开影像战百般定量死理参数等便宜.单光子收射型估计机断层仪(SPECT):利用注进人体的单光子搁射性药物收出的γ射线正在估计机辅帮下重修效用,形成断层影像的仪器.7、肿瘤时常使用的隐像剂问:67Ga,201Tl,99mTc-MIBI,18F-FDG,99mTc-PMT,99mTc-DMSA,99mTc-octreotide,111In-DTPA-D-phel-octreotide,本性:均为亲肿瘤隐像剂.8、幅射防备的准则及中映照防备的步伐?问:辐射防备基根源基本则是:1考查的正当化,央供爆收电离辐射的考查给部分战社会戴去便宜大于代价,补偿其所制成妨害.2防备最劣化,指用最小代价赢得最大洁便宜,预防十足没有需要的映照,使十足需要映照脆持正在合理达到的最矮火仄.3部分剂量的节制,正在真施上述二项准则时,要共时包管部分的当量剂量没有超出确定的限值.中映照防备准则:1时间防备,尽管缩小交战搁射源的时间.2距离防备,尽管删大人体与搁射源的距离.3屏蔽防备,正在人体战搁射源之间拆置屏蔽物,借帮于物量对于射线的吸中断小人体受照剂量.9、免疫领会基根源基本理,非搁射性标记表记标帜免疫领会包罗那些要领,免疫搁射领会技能的主要本性战领会量控指标.问:(1)免疫领会是利用特同抗体与标记表记标帜抗本战非标记表记标帜抗本的比赛分离反应,用过测定搁射性复合物量去估计出非标记表记标帜抗本量的一种超微量领会技能.(2)非搁射性的标记表记标帜免疫领会包罗时间辨别荧光领会法;酶标记表记标帜的免疫领会法;化教收光免疫领会法.(3)免疫搁射领会技能的本性:以标记表记标帜抗体动做示踪剂,反应能源教,果标记表记标帜抗体是过量的,且反应利害比赛性的,抗本抗体是齐量反应,故反应速度比RIA快,敏捷度明隐下于搁射免疫领会,约为搁射免疫领会的10~100倍,尺度直线处事范畴宽,特同性下,宁静性佳.(4)量控指标:宁静性、粗稀度、敏捷度、准确度、特同性.10、脑灌注隐像的本理、仄常及非常十分图像本性、主要的切合症,时常使用的隐像剂及隐像本性.相识乙酰唑胺介进隐像及PET脑隐像的主要真量.问:本理:根据血脑屏障的特殊功能,采用一些具备脂溶性的、电中性的小分子(<500)搁射性示踪剂,它能自由通过完备无益的血脑屏障,并大部分被脑细胞所摄与,且正在脑内的存留量与血流量成正比,通过体中估计机断层隐像隐现脑内各局部搁射性分集状态,从而赢得脑血流灌注隐像图.隐像剂的基础本性:1、不妨自由通过完备无益血脑屏障.2、脑细胞的摄与量与局部血流量成正比.3、加进血脑屏障后没有克没有及反背出血脑屏障.4、正在脑细胞中的滞留时间较少,能谦脚断层隐像的时间央供.时常使用隐像剂:(1)锝标记表记标帜隐像剂:99mTc-HMPAO (99mTc-六甲基丙二胺肟)战 99mTc-ECD(99mTc-单半胱乙酯)740~1100 MBq(20~30 mCi).(2)胺类隐像剂:123 I-IMP(同丙基安菲他明)战123 I-HIPDM,111~222 MBq(3~6 mCi).(3)弥集性隐像剂(即惰性气体隐像剂):133Xe.脑血流灌注隐像切合症及临床应用:(一)切合症:1诊疗短促脑缺血性收火战可顺性缺血性脑病;2脑梗死的早期诊疗及脑血管徐病治疗前、后的效验评介;3癫痫灶的定位诊疗;4老年性痴呆病的诊疗与鉴别;5脑肿瘤的定位及血供评介;6锥体中系徐病的定位诊疗;7偏偏头痛的定位诊疗;8粗神战情感障碍性徐病的辅帮诊疗;9脑死理与情绪教钻研与评介的灵验工具(推断脑牺牲);10其余脑部徐病.(二)临床应用:(1)短促脑缺血性收火(TIA)战可顺性缺血性脑病(PRIND);(2)脑梗死;(3)癫痫:脑血流灌注隐像正在本收性癫痫的定位诊疗有其特殊的劣势;(4)Alzheimer病(AD):老年性痴呆;(5)脑益伤;(6)脑肿瘤;(7)偏偏头痛;(8)粗神战情感障碍性徐病;(9)脑牺牲(脑牺牲,brain death是没有成顺的脑益伤,脑的局部功能已没有成顺性中止,患者局部脑真量无搁射性摄与);(10)震颤性麻痹;(11)其余脑部徐病:动静脉畸形.简述乙酰唑胺背荷考查脑血流灌注隐像的本理:乙酰唑胺能压制脑内碳酸酐酶的活性,使脑内pH值下落,仄常情况下会反射性天引起脑血管扩弛,引导rCBF减少20%~30%,由于病变血管的那种扩弛反应很强,使潜正在缺血区战缺血区的rCBF删下没有明隐,正在影像上出现相对于搁射性减矮或者缺益区.脑葡萄糖代开隐像:即PET脑代开隐像,搁射性核素标记表记标帜的脱氧葡萄糖(18F-FDG)动做隐像剂,正在细胞内己糖激酶效用下形成6-磷酸脱氧葡萄糖,万古间滞留正在脑内,正在体中通过PET对于收射正电子的核素举止估计机成像,从而反映脑构制的代开情况.PET脑代开隐像临床应用:1、脑功能的钻研2、癫痫灶的定位3、脑肿瘤4、痴呆的诊疗战鉴别诊疗5、震颤性麻痹(锥体中系的病变)6、粗神徐患7、短促脑缺血性收火战脑梗塞11、搁射性核素治疗骨变化癌的时常使用药物,切合证及禁忌证.×109/L,血小板大于80×109/L.禁忌证:1近6周内举止过细胞毒素治疗的患者;2化疗或者搁疗后出现宽重骨髓功能障碍者;3骨隐像隐现变化灶为溶骨性热区者;4宽重肝、肾功能益伤5妊娠及哺乳期妇女.治疗骨变化癌的核素有:89Sr,153SM-EDTMP,188Re-HEDP. 12、甲状腺吸支碘131率测定的本理、要领及临床意思.甲状腺碘-过滤酸钾释搁考查、甲状腺激素压制考查的临床意思?甲功体中考查名目包罗哪些?问:甲状腺吸支碘131率测定的本理:碘是甲状腺合成甲状腺激素的本料之一,搁射性的131I也能被摄与并介进甲状腺激素的合成,其被摄与的量战速度与甲状腺功能稀切相闭.将131I引进受检者体内,利用体中探测仪器测定甲状腺部位搁射性计数的变更,不妨相识131I被甲状腺摄与的情况,从而推断甲状腺的功能.要领:(1)停用含碘歉富的食物战药物以及其余效用甲状腺吸碘功能的物量(如海产品、碘制剂、甲状腺激素、抗甲状腺药物等)2~4周;(2)空背心服131I溶液或者胶囊74~185 kBq(2~5μCi),另与等量的131I搁进颈部模型中动做尺度源.于服药后2h、4h战24h分别丈量甲状腺部位、尺度源以及本底的计数率;(3)甲状腺摄131I率估计:甲状腺计数率-本底甲状腺摄131I率(%) = -------------------------------------× 100%尺度源计数率-本底以时间为横坐标,甲状腺摄131I率为纵坐标,画制出甲状腺摄131I率直线临床应用:1.甲卑的诊疗;2.简单性甲肿的诊疗;3.甲减的诊疗;4.亚慢性甲状腺炎的诊疗.甲状腺碘-过滤酸钾释搁考查临床意思:释搁率≤10%,标明碘氧化历程仄常;释搁率>10%且≤50%,提示碘有机化沉度障碍;释搁率>50%,提示碘有机化重度障碍.甲状腺激素压制考查的临床意思:压制率>50%为甲状腺功能仄常;压制率<50%为甲卑.甲功体中考查名目:血浑抗TSH受体抗体、血浑抗甲状腺球蛋黑抗体战抗甲状腺过氧化物酶抗体、TRH镇静考查、血浑总三碘甲状腺本氨酸战总甲状腺素、血浑游离三碘甲状腺本氨酸战游离甲状腺素、血浑反三碘甲状腺本氨酸、血浑促甲状腺激素.13、甲状腺隐像的时常使用隐像剂,甲状腺隐像的临床应用.甲状腺隐像中结节可分为几类?分类依据是什么?罕睹于哪些徐病?同位甲状腺罕睹部位有哪些?觅找同位甲状腺应用哪些隐像剂?问:隐像剂131I,123I,99mTc甲状腺隐像的临床应用:瞅察甲状腺大小战形态,同位甲状腺的诊疗,甲状腺结节的功能推断,颈部肿块的鉴别诊疗,觅找甲状腺癌的变化灶,甲状腺炎的辅帮诊疗,推算甲状腺的重量.要领:甲状腺动背局里,甲状腺固态局里,甲状腺肿瘤阳性局里,觅找甲状腺癌变化灶隐像.甲状腺隐像中结节:可分为热结节,温结节热结节三类,分类依据:病变天区示踪剂摄与状态.罕睹徐病:徐病搁射性下于仄常构制,结节功能删下,功能自决性甲状腺腺瘤Plummer病;搁射性等于或者靠近仄常甲状腺构制,搁射性矮于仄常甲状腺构制,结节构制瓦解没有良或者功能减矮,腺瘤、结节性甲状腺肿、甲状腺炎、甲状腺癌.同位甲状腺非常十分部位有舌根部、舌骨下、胸骨后、奇睹于心包、心内、卵巢等处.觅找同位甲状腺用隐像剂碘-131 99Tcm14、肺灌注隐像及肺通气隐像的本理、切合症战临床应用.问:肺灌注隐像本理:静脉注射颗粒直径略大于肺毛细血管直径的99mTc-大分子散合人血浑黑蛋黑后,隐像剂姑且随机栓塞正在毛细血管床内,局部栓塞的颗粒数与该处的血流灌注量成正比.用γ相机止多体位图像支集以赢得肺毛细血管床影像,影像的搁射性分集反映肺内各部位血流灌注情况,故称肺灌注隐像.肺通气隐像的本理:受试者吸进搁射性气体或者搁射性气溶胶后,该气体或者气溶胶随呼吸疏通加进气讲及肺泡内,随后呼出,正在此历程中用γ相机举止隐像,可隐现肺内搁射性分集战动背变更,称为肺通气隐像.肺灌注隐像切合症:肺动脉血栓栓塞的诊疗与疗效推断;诊疗肺动脉下压;肺内占位性病变的诊疗;缓性阻塞性肺病的诊疗;肺肿瘤患者治疗前后相识肺血流受益范畴以及革新程度;胶本病、大动脉炎疑乏及肺血管者.肺通气隐像切合症:相识呼吸讲的通畅情况及百般肺徐患的通气功能,诊疗气讲阻塞性徐病;评介药物或者脚术治疗前后的局部肺通气功能,以瞅察疗效的指挥治疗;与肺灌注隐像相协共鉴别诊疗肺栓塞战缓性阻塞性肺部徐病.临床应用:肺栓塞;肺部徐患脚术计划及术后评介的应用;先天性心净病的辅帮诊疗;齐身徐病乏及肺动脉的诊疗;缓性阻塞性肺部徐患的辅帮诊疗;15、碘131治疗甲卑的本理及禁忌症.甲卑碘131治疗时怎么样决定剂量?哪些情况必须减少剂量?哪些情况必须缩小剂量?碘131治疗甲状腺癌的切合症及意思,甲状腺患者治疗后的随访真量?问:本理:131I正在甲状腺构制细胞内的代开能源教历程与一般碘一般,能赶快介进甲状腺激素的合成.当Graves病引起甲卑时,碘的摄与合成与分泌超凡是.131I收射出多种能量的β-战γ射线,引起电离辐射死物效力使甲状腺构制细胞受到益伤,从而缩小甲状腺激素的合成,达到缓解或者治愈甲卑的脚法.禁忌证:(1)妊娠或者哺乳期甲卑患者;(2)甲卑陪近期心肌梗死患者;(3)甲卑合并宽重肾功能没有齐者;(4)甲状腺非常肿大有明隐压迫症状者.决定剂量:1.甲状腺重量吸支剂量法,服131I总剂量(MBq)=(甲状腺重量(g)*每克甲状腺构制需要131I剂量(MBq/g))/甲状腺最下摄131I率(%)式中,每克甲状腺构制需要的剂量为2.59至4.44MBq.2.尺度剂量法,现根据上述公式估计出应服131I总剂量,再根据临床情况将治疗剂量分为三个等第:(1)矮剂量为111~148MBq;(2)中剂量为185~222MBq;(3)下剂量为259~296MBq.屡屡治疗应隔断起码3个月以上,普遍正在6个月安排.那样不妨预防对于131I敏感性下的患者爆收永暂性甲状腺功能减退.剂量的减少与缩小:1.甲状腺的大小战重量:甲状腺越大越重,治疗剂量相映删加.2.甲状腺最下摄碘率战灵验半减期:正在治疗中,若甲状腺摄碘率下,灵验半减期父老,剂量缩小,反之减少.3.甲卑症状的宽重程度:随着甲卑宽重程度的减少,所需剂量相映减少.4.个体敏感性:敏感性下者缩小剂量敏感性好者减少剂量.5.甲状腺肿的典型甲状腺肿有结节者应减少剂量..131I治疗甲状腺癌变化灶切合证:1.瓦解型甲状腺癌,已有近处变化者,经查看有摄碘功能者.2.甲状腺脚术后复收或者术后残留肿瘤或者果故没有克没有及担当脚术治疗者,经查看病灶有摄碘功能者.3.患者普遍情景良佳,黑细胞计数没有矮于3.0*10 9.意思:1缩小复收率及牺牲率;2普及变化灶摄碘功能:有好处创制及治疗变化灶;3便当随访:普及Tg对于复收战变化灶的检出;4 131I治疗后止齐身隐像,不妨创制微强功能变化灶,有好处制定病人随访战治疗规划.甲状腺癌患者治疗后随访时间:3-6月尾次随访,继后,视转,移灶扫除情况决断复查时间.随访真量:WBI 、Tg、甲状腺激素、TSH、 X线查看等.16、门控心血池隐像临床应用,相位图、振幅图分别反映什么,室壁疏通的典型,室壁瘤的表示分为哪几种?问:临床应用:冠心病的诊疗,预后推断,瞅察疗效;室壁瘤的诊疗;室内传导非常十分徐病诊疗;本收性心肌病诊疗与鉴别;脚术或者药物治疗前后新功能改变测定预后,推断疗效.时相图:反映安排心室中断的共步性或者协做性.灰阶越下表示启初中断的时间越早.仄常情况下房室表示为真足分歧的颜色,左、左心室中断基础共步,颜色基础普遍.振幅图:反映房室各部位中断幅度的大小,灰度越下振幅越大.仄常左心室壁中断振幅下于左室,心尖战游离壁中断幅度下于室间壁.室壁疏通分为四个典型:仄常、疏通矮下、无疏通及反背疏通.室壁瘤表示为反背疏通.17、心肌灌注隐像图像应从哪几个圆里举止领会?搁射性分集非常十分图像主要有哪几种典型?睹于哪些徐病?问:心肌灌注隐像的图像应从形态、搁射性分集、心腔大小、左心室隐影情景领会.搁射性分集非常十分图像主要有可顺性灌注益伤(冠心病、心肌缺血)、没有成顺性灌注益伤(心肌梗死)、可顺坏死性灌注缺益(慢性心梗)、弥漫性没有匀称(病毒性心肌炎).18、肝胆动背隐像的临床应用,肝真量隐像、肝血池隐像的切合症,肝血管瘤的典型表示,同位胃粘膜隐像的临床应用.问:肝胆动背隐像的临床应用:慢性胆囊炎的诊疗;肝中真足性梗阻性黄疸;肝中没有真足梗阻性黄疸;肝细胞性黄疸;新死女黄疸的鉴别诊疗;先天性胆总管囊肿;胆讲脚术后并收症;同位胆囊的定位.肝血池隐像的切合症:鉴别诊疗血供歉富战血流缩小的占位性病变,特天是肝海绵状血管瘤的诊疗有肯定价格;肝血管瘤的诊疗,以及肝血管瘤战肝细胞癌的鉴别诊疗;相识肝净或者肝内局部病变的肝动脉血供战门静脉血供.肝真量隐像的切合症:相识肝净的大小、形态、位子战功能;相识肝内有无占位性病变及占位性病变的部位、大小及数目;相识上背部肿块战肝净的闭系;相识恶性肿瘤有无肝变化.肝血管瘤的典型表示病变部位的搁射性下于周围肝构制.同位胃粘膜隐像的临床应用:Barrett食管、meckel憩室、肠重复畸形.19、仄常肾图可分为几段?各段的意思怎么样?非常十分肾图有几种典型?各有什么临床意思?肾动背隐像的本理及临床应用.问:仄常肾图直线分为a、b、c三段.静脉注射示踪剂后10 s安排出现蓦天降下的a段,反映肾血流灌注的情况;b段是继a段之后的缓缓降下段,峰时多正在2~3 min,主要反映肾功能战肾血流量;c段为达到峰值后的下落段,仄常时呈指数顺序下落,其下落快缓与尿流量战尿路通畅程度有闭,正在尿路通畅情况下也反映肾功能.非常十分肾图:持绝降下型,单侧出现睹于慢性上尿路梗阻,单侧出现睹于慢性肾衰战下尿路梗阻引导的单上尿路引流没有畅;扔物线型,睹于肾小球肾炎、肾病概括征等;下火仄延少线型,多睹于肾功能受益的肾盂积火;矮火仄延少线型,多睹于宽重的肾功能受益;矮火仄递落型,可睹于肾净无功能、肾缺如、宽重肾功能受益;阶梯杨下落型,睹于尿路熏染、痛痛、粗神紧弛及尿反流等;一侧小肾图,多睹于单侧肾小管渺小或者先天性肾净收育没有齐.肾动背隐像本理:静脉注射能为肾真量摄与且赶快随尿流排出的隐像剂用γ照相机赶快动背支集单肾的搁射性影像,不妨依次瞅察到肾动脉灌注影像战肾真量影像,之后隐像剂随尿液流经肾盏、肾盂战输尿管而到达膀胱,那些部位依序隐影.肾动背隐像的本理及临床应用:(一)肾功能的推断;(二)上尿路梗阻的诊疗战疗效推断;(三)单侧肾血管性下血压的筛选;(四)慢性肾动脉栓塞的诊疗战随访;(五)泌尿系熏染的辅帮诊疗;(六)肾移植术后的监测;(七)肾净位子、大小战形态的推断.20、骨隐像的本理,仄常骨影像表示及骨变化癌的影像本性,骨代开性徐病的影像本性;”闪烁”局里.问:本理:利用亲骨性搁射性核素或者搁射性核素标记表记标帜的化合物引进体内与骨的主要无机盐身分—羟基磷灰石晶体爆收化教吸附、离子接换以及与骨构制中有机身分相分离重积正在骨骼内.正在体中用SPECT探测核素所收射的射线,从而使骨骼隐像.仄常骨影像表示:齐身骨骼搁射性汇集,二侧呈对于称性匀称分集.各部位的骨骼由于结构、代开活性程度及血运情况分歧,搁射性分集也分歧.含有紧量骨较多的扁仄骨(颅骨、肋骨、椎骨战髂骨)、大闭节(肩闭节、肘闭节、腕闭节战踝闭节)等部位,以及少骨的骨骺端搁射性较浓集;骨搞搁射性较稠稀.女童战青少年属于骨量死少活跃期骨影普遍较成人删浓.骨变化癌基础图像本性:多收的无准则的搁射性热区.“闪烁”局里:肿瘤病人搁疗或者化疗后,临床表示有隐著佳转,骨影像表示为本有病灶的搁射性汇集较治疗前更为明隐,再通过一段时间后又会消得或者革新,那种局里称为“闪烁”局里.21、搁免领会的基根源基本理.非搁射性标记表记标帜免疫领会包罗哪些要领?搁射免疫领会量控指标?问:免疫领会是以抗本与其特同性抗体的免疫反应为前提,利用待测抗本及定量标记表记标帜抗本与限量的特同性抗体举止比赛性分离反应,以搁射性丈量为定量脚法,检测待测抗本浓度的要领.非搁射性标记表记标帜免疫领会包罗:化教收光免疫领会、时间辨别荧光免疫领会、酶标记表记标帜免疫领会.搁射免疫领会量控指标:粗稀度、准确度、敏捷度、特同度、宁静度、健康性.22、相识仄常的肿瘤隐像剂:镓-67(67Gallium,67Ga)201Tl与99Tcm-MIBI、99mTc (Ⅴ)-DMSA. 23、简述乙酰唑胺背荷考查脑血流灌注隐像的本理:问:乙酰唑胺能压制脑内碳酸酐酶的活性,使脑内pH值下落,仄常。

核医学

核医学

1.核医学 .核医学是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素诊治疾病和进行生物医学研究,它是核技术与医学结合的产物。

6.阳性显像6.阳性显像是以病灶对显像剂摄取增高为异常的显像方法。

由于病灶放射性高于正常脏器、组织,故又称热区显像。

2.临床核医学 2.临床核医学是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。

7.单光子显像7.单光子显像是指显像时显像剂中的放射性核素发射单光子,需用探测单光子的显像仪器进行显像,为临床上最常用的显像方法。

3.放射性药物 3.放射性药物是指含有放射性核素或其标记化合物供医学诊断和治疗用的一类特殊药物。

4.放射化学纯度 4.放射化学纯度是指以特定化学形态存在的放射性活度占总放射活度的百分比。

9.放射性核素治疗9.放射性核素治疗是利用放射性核素在衰变过程中发射出来的射线(主要是 -射线)的辐射生物效应来抑制或破坏病变组织的一种治疗方法。

5.平面显像.平面显像是将γ照相机的探头置于体表一定位置,采集脏器放射性分布而获得影像的一种显像方法,获得的影像为脏器内放射性在探头投影方向上前后叠加的影像。

8.分子影像学分子显像学是在活体内以分子或生物大分子作为靶目标的分子成像技术。

10.放射性核素发生器10.放射性核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。

1.放射性核素:是一类原子核能自发的,不受外界影响也不受元素所处状态的影响,只和时间有关而转变成其它原子核的核素。

2放射性活度:单位时间内发生衰变的原子核数。

3元素:指质子数、核外电子数和化学性质都相同的同一类原子。

4核素:质子数,中子数,能量状态均相同的原子称为核素。

5同位素:质子数相同,中子数不同的元素互称同位素。

6同质异能素:质子数相同,中子数相同,而处于不同能量状态的元素。

7电离:带电粒子通过物质时和物质原子的核外电子发生静电作用,使电子脱离原子轨道而形成自由电子的过程。

核医学中的名词解释

核医学中的名词解释

核医学中的名词解释核医学是一门研究和应用核素在医学领域的科学,它将核技术与医学结合,为疾病的诊断、治疗和研究提供了新的手段和工具。

在核医学中,有许多专业术语和名词,本文将对一些常见的核医学名词进行解释。

核素(Radionuclide)核素是指放射性同位素,它具有放射性,即自身会发出射线。

核素广泛应用于核医学中,通过用放射性同位素所发射的射线,来检测人体内不同组织、器官的代谢和功能状态,从而达到诊断疾病的目的。

放射性同位素(Radioisotope)放射性同位素是指原子核在放射性衰变过程中释放能量的同位素。

不同的放射性同位素具有不同的半衰期、衰变方式和射线特征,因此可以通过选择合适的放射性同位素来实现不同类型的医学应用。

常用的放射性同位素有碘-131、锗-68、锝-99等。

放射性药物(Radiopharmaceutical)放射性药物是一种含有放射性同位素的药物,用于核医学诊断和治疗。

放射性药物可以通过内部(口服、注射)或外部(吸入)途径进入人体,与特定的参照物质作用后,在体内发出特定的射线或粒子,并通过影像设备或探测器来对放射性信号进行分析和解读。

单光子发射计算机断层扫描(SPECT)单光子发射计算机断层扫描是一种基于放射性同位素发射的γ射线进行成像的技术。

通过将放射性药物注射到患者体内,探测器接收并记录放射性同位素发射的γ射线,然后利用计算机重建出体内的断层图像。

SPECT可以用于诊断心血管疾病、肿瘤、骨骼疾病等。

正电子发射计算机断层扫描(PET)正电子发射计算机断层扫描是一种核医学成像技术,它使用放射性同位素如碳-11、氧-15等,以及涉及质子、中子和光子等粒子的物理过程在体内产生的正电子发射的γ射线来获取生物组织和代谢的信息。

PET可以帮助医生检测脑功能、肿瘤、头部创伤等多种疾病。

正电子发射造影术(PET-CT)正电子发射造影术是将正电子发射计算机断层扫描与计算机断层扫描(CT)技术结合的一种成像方法。

核医学

核医学

核医学又称原子医学。

是指放射性同位素、由加速器产生的射线束及放射性同位素产生的核辐射在医学上的应用。

在医疗上,放射性同位素及核辐射可以用于诊断、治疗和医学科学研究;在药学上,可以用于药物作用原理的研究、药物活性的测定、药物分析和药物的辐射消毒等方面。

编辑本段起源1896年法国物理学家Becquerel发现铀的放射性,第一次认识到放射现象(在研究铀盐时,发现铀能使附近包在纸包的感光胶片感光,由此断定铀能不断地自发地放射出某种看不见的、穿透力强的射线)。

编辑本段内容??核医学核医学是采用核技术来诊断、治疗和研究疾病的一门新兴学科。

它是核技术、电子技术、计算机技术、化学、物理和生物学等现代科学技术与医学相结合的产物。

核医学可分为两类,即临床核医学和基础核医学?或称实验核医学。

前者又与临床各科紧密结合并互相渗透。

核医学按器官或系统又可分为心血管核医学、神经核医学、消化系统核医学、内分泌核医学、儿科核医学和治疗核医学等。

70年代以来由于单光子发射计算机断层和正电子发射计算机断层技术的发展,以及放射性药物的创新和开发,使核医学显像技术取得突破性进展。

它和CT、核磁共振、超声技术等相互补充、彼此印证,极大地提高了对疾病的诊断和研究水平,故核医学显像是近代临床医学影像诊断领域中一个十分活跃的分支和重要组成部分。

实验核医学(experimental nuclear medicine)和临床核医学(clinical nuclear medicine)两部份。

实验核医学利用核技术探索生命现象的本质和物质变化规律,已广泛应用于医学基础理论研究,其内容主要包括核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。

临床核医学是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。

诊断核医学包括以脏器显像和功能测定为主要内容的体内(in vivo)诊断法和以体外放射分析为主要内容的体外(in vitro)诊断法;治疗核医学是利用放射性核素发射的核射线对病变进行高度集中照射治疗。

核医学名词解释

核医学名词解释

核医学名词解释1.核医学:是应用放射性核素或核射线诊断、治疗疾病和进行医学领域研究的学科。

2.SPECT:单光子发射型计算机断层仪。

3.PET:正电子发射型计算机断层仪。

4.ECT:发射式计算机断层显像。

5.放射性核素:不稳定核素的原子核能自发地放出各种射线同时变成另一种核素,称为放射性核素。

6.核衰变:放射性核素的原子核自发地放出射线,同时转变成别的原子核的过程,称为放射性核衰变,简称核衰变。

7.半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,又称物理半衰期,常用来表示放射性核素的衰变速率。

8.生物半衰期:指生物体内的放射性核素由于机体代谢从体内排出一半所需要的时间。

9.放射性活度(A):是表示单位时间内发生衰变的原子核数,是一个反映放射性强弱的常用物理量。

其SI单位是贝克(Bq),定义为每秒一次衰变。

即1Bq=1s旧制单位是居里(Ci),1居里表示每秒3.7×1010次衰变。

居里与贝克的换算关系:1Ci=3.7×1010 Bq;1mCi=37MBq;1Bq=2.710-11Ci。

10.母牛:即放射性核素发生器,是一种从较长半衰期的放射性母体核素中分离出由它衰变而产生的较短半衰期子体放射性核素的一种装置,常用的是99Mo——99M Tc发生器。

11.放射性核素示踪技术:是以放射性核素或其标记的化学分子作为示踪剂,应用核射线探测仪器通过探测放射性核素在发生核衰变过程中发射出来的射线,来显示被标记的化学分子的踪迹,达到示踪目的,用于研究被标记的化学分子在生物体系或外界环境中的客观存在及其变化规律的一类核医学技术。

12.静态显像:当显像剂在脏器内或病变处的浓度达到高峰处于较为稳定状态进行的显像称为静态显像,是最常用的显像方法之一。

13.动态显像:在显像剂引入人体内后,迅速以设定的显像速度动态采集脏器的多种连续影像或系列影像,称为动态显像。

14.阳性显像:又称热区显像,是指显像剂主要被病变组织摄取,而且正常组织一般不摄取或摄取很少,在静态影像上病灶组织的放射性比正常组织高,而呈“热区”改变的显像。

核医学名词解释、简答、概述

核医学名词解释、简答、概述

1、核素nuclide :指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

2、同位素isotope :具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

3、同质异能素isomer:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

4、放射性活度radioactivity:简称活度:单位时间内原子核衰变的数量。

5、放射性核纯度:也称为放射性纯度,指所指定的放射性核素的放射性活度占药物中总放射性活度的百分比,放射性纯度只与其放射性杂志的量有关. 6、放射化学纯度(放化纯):指特定化学结构的放射性药物的放射性占总放射性的百分比. 7、放射性药物:指含有一个或多个放射原子(放射性核素)而用于医学诊断和治疗用的一类特殊药物。

8、正电子发射型计算机断层仪(PET):利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能,代谢成像的仪器。

9、单光子发射型计算机断层仪(SPECT):利用注入人体的单光子放射性药物发出的γ射线在计算机辅助下重建影响,构成断层影像的仪器。

10、“闪烁”现象(flare phenomenon): 在肿瘤病人放疗或化疗后,临床表现有显著好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。

11有效半衰期:放射性核素因生物代谢与物理衰变共同作用而致在生物体内放射性活性降低到一半的时间。

决定放射性核素在体内滞留时间的长短。

12体外放射分析:是指在体外条件下,以结合反应为基础,以放射性核素标记物为踪剂,以放射测量为定量手段,对体内微量物证进行定量检测的技术的总称。

13半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,又称物理半衰期,常用来表示放射性核素的衰变速率。

14生物半衰期:指生物体内的放射性核素由于机体代谢从体内排出一半所需要的时间.15射血分数:每搏输出量占心室舒张末期容积量的百分比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、核素nuclide :指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

2、同位素isotope:具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

3、同质异能素isomer:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

4、放射性活度radioactivity:简称活度:单位时间内原子核衰变的数量。

5、放射性核纯度:也称为放射性纯度,指所指定的放射性核素的放射性活度占药物中总放射性活度的百分比,放射性纯度只与其放射性杂志的量有关.6、放射化学纯度(放化纯):指特定化学结构的放射性药物的放射性占总放射性的百分比.7、放射性药物:指含有一个或多个放射原子(放射性核素)而用于医学诊断和治疗用的一类特殊药物。

8、正电子发射型计算机断层仪(PET):利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能,代谢成像的仪器。

9、单光子发射型计算机断层仪(SPECT):利用注入人体的单光子放射性药物发出的γ射线在计算机辅助下重建影响,构成断层影像的仪器。

10、“闪烁”现象 (flare phenomenon): 在肿瘤病人放疗或化疗后,临床表现有显著好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。

1、核医学的定义及核医学的分类.答:核医学是一门研究核素和核射线在医学中的应用及其理论的学科.及应用放射性核素诊治疾病和进行生物医学研究.核医学包括实验核医学和临床核医学.实验核医学主要包括核衰变测量,标记,示踪.体外放射分析,活化分析和放射自显影.临床诊断学是利用开放型放射性核素诊断和治疗疾病的临床医学学科.由诊断和治疗两部分组成.诊断和医学包括以脏器显像和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法.治疗核医学是利用放射性核素发射的核射线对病变进行高密度集中治疗.2、分子核医学的主要研究内容。

答:分子医学的概念:是建立在分子细胞学、分子生物化学、分子药理学及计算机技术基础上的一门边缘学科,是在大分子、蛋白、核酸水平上研究疾病的发生、发展规律,最终达到对疾病进行特异性诊断和个性化治疗的一门学科。

研究内容:代谢显像、受体显像、反义与基因显像、放射免疫显像、凋亡显像。

3、原子的结构.元素、同位素、核素、同质异能素、放射性活度的概念,放射性衰变的类型。

答:原子是由处于原子中心的原子核和带负电荷核外电子组成,原子核由质子和中子组成,他们统称核子.核素:指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

同位素:具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

同质异能素:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

放射性活度:简称活度:单位时间内原子核衰变的数量。

放射性衰变:α衰变(alpha decay)、β—衰变(beta decay)、正电子衰变、电子俘获(electron capture)、γ衰变(gamma decay)。

4、什么是放射性药物,按理化性质如何分类,放射性药物与普通药物有何不同,医用放射性药物由哪些途径产生,放射性核纯度和放化纯的概念?答:放射性药物指含有一个或多个放射原子(放射性核素)而用于医学诊断和治疗用的一类特殊药物;分类:离子型、胶体型、放射性标记化合物、放射性标记生物活性物质。

与普通药物不同点:放射性,理化特性取决于被标记物固有特性,有特定物理半衰期和有效半衰期,脱标及辐射自分解,计量单位用活度为基本单位,治疗作用机理不同于普通药物。

产生:加速器生产,反应堆生产,从裂变产物中提取,放射性核素发生器淋洗。

放射性核纯度:也称为放射性纯度,指所指定的放射性核素的放射性活度占药物中总放射性活度的百分比,放射性纯度只与其放射性杂志的量有关.放射化学纯度(放化纯):指特定化学结构的放射性药物的放射性占总放射性的百分比.5、治疗常用的放射性核素。

答:常用的放射性核素多是发射纯β-射线(32P、89Sr、90Y等)或发射β-射线时伴有γ射线(131I、153Sm、188Re、117Sn m、117Lu等)的核素。

131I(NaI)甲状腺疾病诊断、治疗;133Xe肺通气显像;99mTc-MIBI心肌灌注显像;99mTc-MDP 骨显像;99mTc-ECD 脑灌注显像;99mTc-MAA肺灌注显像;99mTc-RBC肝血池显像;99mTc-寡核苷酸肿瘤基因反义显像。

6、目前常用的脏器显像仪有哪些,什么是PET,SPECT?答:γ照相机 ECT,单光子发射型计算机断层仪(SPECT),正电子发射型计算机断层仪(PET),脏器功能测定仪 CT。

正电子发射型计算机断层仪(PET):利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能,代谢成像的仪器。

PET主要由探测系统包括晶体、电子准直、符合线路和飞行时间技术,计算机数据处理系统图像显示和断层床等组成。

原理:是用正电子衰变和工业苏标记的放射性药物,在人体内放出的正电子与组织相互作用,发生正电子湮灭,向相反方向发射光子,与γ光子检测仪互相作用,产生荧光子,并形成一个电子脉冲,经过显像系统及计算机处理形成PET图像,与SPECT比较具有空间分辨率高、探测效率高、能准确地显示受检脏器内显像剂浓度提供的代谢影像和各种定量生理参数等优点。

单光子发射型计算机断层仪(SPECT):利用注入人体的单光子放射性药物发出的γ射线在计算机辅助下重建影响,构成断层影像的仪器。

7、肿瘤常用的显像剂答:67Ga,201Tl,99mTc-MIBI,18F-FDG,99mTc-PMT,99mTc-DMSA,99mTc-octreotide,111In-DTPA-D-phel-octreotide,特点:均为亲肿瘤显像剂。

8、幅射防护的原则及外照射防护的措施?答:辐射防护基本原则是:1实践的正当化,要求产生电离辐射的实践给个人和社会带来利益大于代价,抵偿其所造成危害。

2防护最优化,指用最小代价获得最大净利益,避免一切不必要的照射,使一切必要照射保持在合理达到的最低水平。

3个人剂量的限制,在实施上述两项原则时,要同时保证个人的当量剂量不超过规定的限值。

外照射防护原则:1时间防护,尽量减少接触放射源的时间。

2距离防护,尽量增大人体与放射源的距离。

3屏蔽防护,在人体和放射源之间安装屏蔽物,借助于物质对射线的吸收减少人体受照剂量。

9、免疫分析基本原理,非放射性标记免疫分析包括那些方法,免疫放射分析技术的主要特点和分析质控指标。

答:(1)免疫分析是利用特异抗体与标记抗原和非标记抗原的竞争结合反应,用过测定放射性复合物量来计算出非标记抗原量的一种超微量分析技术。

(2)非放射性的标记免疫分析包括时间分辨荧光分析法;酶标记的免疫分析法;化学发光免疫分析法。

(3)免疫放射分析技术的特点:以标记抗体作为示踪剂,反应动力学,因标记抗体是过量的,且反应是非竞争性的,抗原抗体是全量反应,故反应速度比RIA快,灵敏度明显高于放射免疫分析,约为放射免疫分析的10~100倍,标准曲线工作范围宽,特异性高,稳定性好。

(4)质控指标:稳定性、精密度、灵敏度、准确度、特异性。

10、脑灌注显像的原理、正常及异常图像特点、主要的适应症,常用的显像剂及显像特点。

了解乙酰唑胺介入显像及PET脑显像的主要内容。

答:原理:根据血脑屏障的特殊功能,选择一些具有脂溶性的、电中性的小分子(<500)放射性示踪剂,它能自由通过完整无损的血脑屏障,并大部分被脑细胞所摄取,且在脑内的存留量与血流量成正比,通过体外计算机断层显像显示脑内各局部放射性分布状态,从而获得脑血流灌注显像图。

显像剂的基本特征:1、可以自由通过完整无损血脑屏障。

2、脑细胞的摄取量与局部血流量成正比。

3、进入血脑屏障后不能反向出血脑屏障。

4、在脑细胞中的滞留时间较长,能满足断层显像的时间要求。

常用显像剂:(1)锝标记显像剂:99mTc-HMPAO (99mTc-六甲基丙二胺肟)和99mTc-ECD(99mTc-双半胱乙酯)740~1100 MBq(20~30 mCi)。

(2)胺类显像剂:123 I-IMP(异丙基安菲他明)和123 I-HIPDM,111~222 MBq(3~6 mCi)。

(3)弥散性显像剂(即惰性气体显像剂):133Xe。

脑血流灌注显像适应症及临床应用:(一)适应症:1诊断短暂脑缺血性发作和可逆性缺血性脑病;2脑梗死的早期诊断及脑血管疾病治疗前、后的效果评价;3癫痫灶的定位诊断;4老年性痴呆病的诊断与鉴别;5脑肿瘤的定位及血供评价;6锥体外系疾病的定位诊断;7偏头痛的定位诊断;8精神和情感障碍性疾病的辅助诊断;9脑生理与心理学研究与评价的有效工具(判断脑死亡);10其它脑部疾病。

(二)临床应用:(1)短暂脑缺血性发作(TIA)和可逆性缺血性脑病(PRIND);(2)脑梗死;(3)癫痫:脑血流灌注显像在原发性癫痫的定位诊断有其独特的优势;(4)Alzheimer病(AD):老年性痴呆;(5)脑损伤;(6)脑肿瘤;(7)偏头疼;(8)精神和情感障碍性疾病;(9)脑死亡(脑死亡,brain death是不可逆的脑损害,脑的全部功能已不可逆性中止,患者全部脑实质无放射性摄取);(10)震颤性麻痹;(11)其它脑部疾病:动静脉畸形。

简述乙酰唑胺负荷试验脑血流灌注显像的原理:乙酰唑胺能抑制脑内碳酸酐酶的活性,使脑内pH值下降,正常情况下会反射性地引起脑血管扩张,导致rCBF 增加20%~30%,由于病变血管的这种扩张反应很弱,使潜在缺血区和缺血区的rCBF 增高不明显,在影像上出现相对放射性减低或缺损区。

脑葡萄糖代谢显像:即PET脑代谢显像,放射性核素标记的脱氧葡萄糖(18F-FDG)作为显像剂,在细胞内己糖激酶作用下变成6-磷酸脱氧葡萄糖,长时间滞留在脑内,在体外通过PET对发射正电子的核素进行计算机成像,从而反映脑组织的代谢情况。

PET脑代谢显像临床应用:1、脑功能的研究 2、癫痫灶的定位 3、脑肿瘤4、痴呆的诊断和鉴别诊断5、震颤性麻痹(锥体外系的病变)6、精神疾患7、短暂脑缺血性发作和脑梗塞11、放射性核素治疗骨转移癌的常用药物,适应证及禁忌证。

答:适应证:1骨转移癌并伴有骨痛患者;2核素骨显像示骨转移病灶呈异常放射性浓聚者;3白细胞大于3.5×109/L,血小板大于80×109/L。

禁忌证:1近6周内进行过细胞毒素治疗的患者;2化疗或放疗后出现严重骨髓功能障碍者;3骨显像显示转移灶为溶骨性冷区者;4严重肝、肾功能损害5妊娠及哺乳期妇女。

相关文档
最新文档