人教版初中数学八年级上册第十四章达标测试卷

合集下载

人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)

人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)

第十四章《整式的乘法与因式分解》测试题一、单选题(每小题只有一个正确答案) 1.下列运算正确的是( ) A .b 4•b 4=2b 4 B .3x 2y ﹣2x 2y =1 C .(﹣3a )2=6a 2D .(﹣x 3)4=x 122.多项式8x m y n-1-12x 3m y n 的公因式是( ) A .x m y nB .x m y n-1C .4x m y nD .4x m y n-13.若2,4m n x x ==,则m n x +的值为( ) A .6B .8C .16D .644.若()213x y +=,()25x y -=,则代数式xy 的值是( ) A .9B .8C .6D .25.计算20192020(0.25)(4)-⨯-等于( ) A .1B .1-C .4D .4-6.在下列运算中,正确的是( ) A .(x ﹣y )2=x 2﹣y 2 B .(a+2)(a ﹣3)=a 2﹣6 C .(a+2b )2=a 2+4ab+4b 2D .(2x ﹣y )(2x+y )=2x 2﹣y 27.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 28.代数式9x 2+mx +4是个完全平方式,则m 的值为( ) A .±6B .±12C .±18D .±99.如果()2210a b ++-=,那么()2020a b +的值是( )A .-2020B .2020C .-1D .110.下列各式中,从左到右的变形是因式分解的是( ) A .2221211a a aa -+=-+B .()()22x y x y x y +-=-C .()()26551x x x x +=---D .()2222x y x y xy +=-+11.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ). A .b =3,c =-1 B .b =-6,c =2 C .b =-6,c =-4 D .b =-4,c =-612.若32x -=,32y +=,则x 2+y 2的值是( ) A .52B .3 C .3D .14二、填空题13.计算:234x x x =__________.14.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____. 15.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.16.小丽在计算一个二项式的平方时,得到正确结果m 2﹣10mn +■,但最后一项不慎被墨水污染,这一项应是_______.三、解答题 17.计算:(1)432(-2x z)y ·842x y ÷(-15x 2y 2) (2)(32)(32)x y x y +---(3)2(4)(2)(5)x x x +-+- (4)(3ab+4)2-(3ab -4)218.因式分解:(1)x 2﹣5x ﹣6 (2)9a 2(x ﹣y )+4b 2(y ﹣x )(3)y 2﹣x 2+6x ﹣9 (4)(a 2+4b 2)2﹣16a 2b 219.先化简,再求值:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2,其中3,y=2﹣20.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a+b ,cd ,m 的值; (2)求a bm cd m+++的值.21.小王家买了一套新房,其结构如图所示(单位:m ).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k 元,木地板的价格为每平方米2k 元,那么小王一共需要花多少钱?22.阅读理解.因为222221111()2()2a a a a a a a a +=+⋅+=++, ①因为222221111()2()2a a a a a a a a-=-⋅+=+- ②所以由①得:22211()2a a a a +=+- , 由②得:22211()2a a a a+=-+所以4224211()2a a a a+=+-试根据上面公式的变形解答下列问题:(1)已知12a a +=,则下列等式成立的是( ) ①2212a a +=; ②4412a a +=; ③10a a -=; ④21()2a a-=;A .①;B .①②;C .①②③;D .①②③④; (2)已知12a a+=-,求下列代数式的值:①221a a +; ②21()a a-;③441a a +.参考答案1.D 2.D 3.B 4.D 5.D 6.C 7.C 8.B 9.D 10.C 11.D 12.A 13.9x 14.12 15.2 16.25n 2 17.(1)-3215x 10y 6z 2;(2)x 2-4x+4-9y 2;(3)11x+26;(4)48ab. 18. 解:(1)x 2﹣5x ﹣6=(x ﹣6)(x +1); (2)9a 2(x ﹣y )+4b 2(y ﹣x ) =(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ); (3)y 2﹣x 2+6x ﹣9 =y 2﹣(x 2﹣6x +9) =y 2﹣(x ﹣3)2=(y +x ﹣3)(y ﹣x +3); (4)(a 2+4b 2)2﹣16a 2b 2=(a 2+4b 2+4ab )(a 2+4b 2﹣4ab ) =(a +2b )2(a ﹣2b )2.19.解:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2=x 2﹣y 2+xy+2y 2﹣x 2+2xy ﹣y 2 =3xy ,当y=2=3×()×(2)=3. 20.解:(1)∵a 、b 互为相反数 ∴0a b += ∵c 、d 互为倒数 ∴1cd = ∵m 的绝对值为2 ∴2m =±; (2)①当2m =时2103a bm cd m+++=++= ②当2m =-时2101a bm cd m+++=-++=- 故原式的值为3或-1.21.解:(1)木地板的面积为2b (5a−3a )+3a (5b−2b−b ) =2b•2a +3a•2b =4ab +6ab=10ab (平方米);地砖的面积为5a•5b−10ab =25ab−10ab =15ab (平方米); (2)15ab•k +10ab•2k =15abk +20abk =35abk (元),答:小王一共需要花35abk 元钱.22.解:(1)12a a+= ∴2222211112()24a a a a a a a a +=+⨯+=++=() ∴2212a a+=同理:4412a a +=由2212a a +=两边同时减去2,得:21-0a a =()∴10a a-=故选C.(2)①原式=(a +1a)2-2=(-2)2-2=2 ②原式=a 2+21a-2=2-2=0 ③原式=( a 2+21a)2-2=(2)2-2=2。

初中数学人教版八年级上册第十四章同步练习题带答案

初中数学人教版八年级上册第十四章同步练习题带答案

初初初初初初初初初初初初初初初初初初初初初初初初14.1整式的乘法一、选择题1.计算3a2⋅a3的结果是()A. 4a5B. 4a6C. 3a5D. 3a62.要使(x2+ax+5)⋅(−6x3)的展开式中不含x4的项,则a应等于()D. 1A. −1B. 0C. 163.下列计算错误的是()A. (−a)⋅(−a)2=a3B. (−a)2⋅(−a)2=a4C. (−a)3⋅(−a)2=−a5D. (−a)3⋅(−a)3=a64.已知(x−3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A. m=3,n=9B. m=3,n=6C. m=−3,n=−9D. m=−3,n=95.下列各式中,计算结果错误的是().A. (x+2)(x−3)=x2−x−6B. (x−4)(x+4)=x2−16C. (2x+3)(2x−6)=2x2−3x−18D. (2x−1)(2x+2)=4x2+2x−26.若(x+m)(x+n)=x2−5x−15,则()A. m,n同时为正B. m,n同时为负C. m,n异号且绝对值小的为负D. m,n异号且绝对值大的为负7.已知a m=5,a n=2,则a m+n的值等于()A. 25B. 10C. 8D. 78.下列计算正确的是()A. (x3)2=x5B. (x3)2=x6C. (x n+1)2=x2n+1D. x3⋅x2=x6二、填空题9.若4x=3,则4x+2=________.10.若−x a+b y5与3x4y2b−a的和是单项式,则(2a+2b)(a−3b)的值为.11.若x3n=5,y2n=3,则x6n y4n的值为.12.计算:(m−n)·(n−m)3·(n−m)4=________.13.若m为正偶数,则(a−b)m⋅(b−a)n与(b−a)m+n的结果(填“相等”或“互为相反数”).三、计算题14.计算:(1)(m−2n)(−m−n);(2)(x+1)(x2−x+1);(3)(a−b)(a2+ab+b2);(4)x(x2+x−1)−(2x2−1)(x−4).四、解答题15.小明有一块长为m米,宽为n米的长方形玻璃,长、宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面的大小相同),则台面面积是多少?16.(1)已知m+4n−3=0,求2m⋅16n的值;(2)已知x2m=2,求(2x3m)2−(3x m)2的值.17.若x=2m+1,y=3+4m.(1)请用含x的式子表示y;(2)如果x=4,求此时y的值.18.(1)已知−2x3m+1y2n与4x n−2y6−m的积和−4x4y2是同类项,求m,n的值;a xb y+8与单项式4a2y b3x−y的和为单项式,求这两个单项式的积.(2)已知单项式−23答案和解析1.【答案】C【解析】解:3a2⋅a3=3a5.故选:C.直接利用单项式乘以单项式运算法则化简得出答案.此题主要考查了单项式乘以单项式运算,正确掌握相关运算法则是解题关键.2.【答案】B【解析】【分析】本题主要考查单项式乘多项式.先展开,然后根据不含x4项可知x4项的系数为0,计算即可.【解答】解:(x2+ax+5)⋅(−6x3)=−6x5−6ax4−30a3,∵展开式中不含x4的项,∴−6a=0,∴a=0,故选B.3.【答案】A【解析】【分析】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.根据同底数幂的乘法法则,结合选项进行判断即可.【解答】解:A、(−a)⋅(−a)2=−a3,原式计算错误,故本选项正确;B、(−a)2⋅(−a)2=a4,计算正确,故本选项错误;C、(−a)3⋅(−a)2=−a5,计算正确,故本选项错误;D、(−a)3⋅(−a)3=a6,计算正确,故本选项错误;故选A.4.【答案】A【解析】【分析】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.不含某一项就是说这一项的系数为0.【解答】解:∵原式=x3+(m−3)x2+(n−3m)x−3n,又∵乘积项中不含x2和x项,∴(m−3)=0,(n−3m)=0,解得,m=3,n=9.故选A.5.【答案】C【解析】【分析】本题主要考查多项式乘多项式,根据多项式乘多项式的运算法则:用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加,逐项计算即可求解.【解答】解:A.(x+2)(x−3)=x2−3x+2x−6=x2−x−6,故正确;B.(x−4)(x+4)=x2−4x+4x−16=x2−16,故正确;C.(2x+3)(2x−6)=4x2−12x+6x−18=4x2−6x−18,故错误;D.(2x−1)(2x+2)=4x2+4x−2x−2=4x2+2x−2,故正确;故选C.6.【答案】D【解析】【分析】本题主要考查多项式乘多项式.根据多项式乘多项式展开,求出m+n=−5,mn=−15,判断即可.【解答】解:(x+m)(x+n)=x2+(m+n)x+mn,∴m+n=−5,mn=−15,∵mn=−15<0,∴m,n异号,又∵m+n=−5<0,∴m,n中负数的绝对值大,故选D.7.【答案】B【解析】【分析】本题考查了同底数幂的乘法,同底数幂的乘法:底数不变指数相加,根据同底数幂的乘法,可得答案.【解答】解:∵a m=5,a n=2,∴a m+n=a m⋅a n=10,故选B.8.【答案】B【解析】【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方的应用,着重培养学生的运算能力.解题的关键是会利用同底数幂的乘法、幂的乘方、积的乘方计算.【解答】A.(x3)2=x6,故A错误;B.(x3)2=x6,故B正确;C.(x n+1)2=x2n+2,故C错误;D.x3⋅x2=x3+2=x5,故D错误.故选B.9.【答案】48【解析】【分析】本题考查同底数幂的运算性质,代数式求值.根据a m●a n=a m+n,将所求代数式变形为4x+2=4x×42,再把4x=3代入计算即可.【解答】解:∵4x=3,∴4x+2=4x×42=3×16=48.故答案为48.10.【答案】−64【解析】【分析】此题考查了多项式乘多项式,以及合并同类项,熟练掌握同类项性质及运算法则是解本题的关键.根据题意得到两式为同类项,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵−x a+b y5与3x4y2b−a的和是单项式,∴−x a+b y5与3x4y2b−a为同类项,即a+b=4①2b−a=5②①+②得b=3,再代入①得a=1,则(2a+2b)(a−3b)=(2+6)×(1−9)=−64,故答案为:−6411.【答案】225【解析】【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方的应用。

人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典题(含答案解析)(2)

人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典题(含答案解析)(2)

一、选择题1.下列运算正确的是( )A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅= B解析:B【分析】 分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可.【详解】解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意;C .844x x x ÷=,故本选项不合题意;D .325326x x x ⋅=,故本选项不合题意.故选:B .【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.2.下列分解因式正确的是( )A .xy ﹣2y 2=x (y ﹣2x )B .m 3n ﹣mn =mn (m 2﹣1)C .4x 2﹣24x +36=(2x ﹣6)2D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y )D解析:D【分析】根据因式分解的方法:提公因式法、平方差公式、完全平方公式计算判断.【详解】A 、xy ﹣2y 2=y (x ﹣2y ),故该项错误;B 、m 3n ﹣mn =mn (m 2﹣1)=mn (m+1)(m-1),故该项错误;C 、4x 2﹣24x +36=4(x ﹣3)2,故该项错误;D 、4x 2﹣9y 2=(2x ﹣3y )(2x +3y ),故该项正确;故选:D .【点睛】此题考查因式分解的解法,熟练掌握因式分解的方法是解题的关键.3.下列运算正确是( )A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab A 解析:A【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可.A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误;故选:A .【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.4.当2x =时,代数式31ax bx ++的值为6,则2x =-时,31ax bx ++的值为( ) A .6-B .5-C .4D .4- D解析:D【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:-8a-2b=-5,再将x=-2代入这个代数式中,最后整体代入即可.【详解】解:当x=2时,代数式ax 3+bx+1的值为6,则8a+2b+1=6,即8a+2b=5,∴-8a-2b=-5,则当x=-2时,ax 3+bx+1=(-2)3a-2b+1=-8a-2b+1=-5+1=-4,故选:D .【点睛】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .5A解析:A根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5第2次输出的结果是16第3次输出的结果是8第4次输出的结果是4第5次输出的结果是2第6次输出的结果是1第7次输出的结果是4……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等故选:A【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律6.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y = D .623x x x ÷= C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.7.下列计算正确的是( )A .a 3+a 3=a 6B .a 3·a=a 4C .a 3÷a 2=a 3D .(2a 2)3 =6a 5B解析:B直接利用合并同类项法则、同底数幂的乘除运算法则以及幂的乘方运算法则、积的乘方运算法则分别化简得出答案.【详解】A 、3332a a a +=,故此选项错误;B 、34·a a a =,故此选项正确;C 、32a a a ÷=,故此选项错误;D 、236(2)8a a =,故此选项错误;故选:B .【点睛】本题主要考查了同底数幂的乘除运算以及幂的乘方运算、积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.8.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ).A .6或20B .20 或-20C .6或-6D .-6或20A 解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.9.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.10.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2- B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题11.已知2a -b +2=0,则1-4a +2b 的值为______.5【分析】由得整体代入代数式求值【详解】解:∵∴∴原式故答案是:5【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想解析:5【分析】由220a b -+=得22a b -=-,整体代入代数式求值.【详解】解:∵220a b -+=,∴22a b -=-,∴原式()()122122145a b =-+=-⨯-=+=.故答案是:5.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想.12.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.【详解】 ∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()x y=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.13.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9【分析】完全平方式可以写为首末两个数的平方(2x ,则中间项为x 2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成(2x +,则中间项为x 2倍,故62x =∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.14.|1|0-=b ,则2020()a b +=_________.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及解析:1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可.【详解】 ∵|1|0-=b 0,|1|0b -≥,∴a+2=0,b-1=0,∴a=-2,b=1,∴202020201()(21)a b +-+==,故答案为:1.【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.15.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x xx x x -+++=-; …… (1)()432(1)1x x x x x -++++=___;(2)根据规律可得:()1(1)1n x x x --+++=_____(其中n 为正整数);(3)计算:()5049482(31)333331-++++++;(1);(2);(3)【分析】(1)第二个括号里最高次数4根据观察可知结论中次数为4+1=5;(2)第二个括号里最高次数n-1根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x 次数根据解析:(1)51x -;(2)1n x -;(3)5131-.【分析】(1)第二个括号里最高次数4,根据观察可知结论中次数为4+1=5;(2) 第二个括号里最高次数n-1,根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x ,次数根据观察规律确定即可.【详解】(1)根据观察,发现结论是个二项式,且常数项为-1,另一项底数是x ,指数比第二个括号里多项式的最高次数多1,∵()4321x x x x ++++的最高次数是4,∴()432(1)1x x x x x -++++=51x -,故应该填51x -; (2)∵()11n x x -+++的最高次数是n-1, ∴()1(1)1n x x x --+++=1n x -,故应该填1n x -;(3)由(2)知:()1(1)11n n x xx x --+++=-,令3x =,51n =,得: ()504948251(31)33333131-++++++=-,故应该填5131-.【点睛】 本题考查了整式变化中的规律探索,解答时,抓住变化中变化项,不变项,变化的位置,变化的规律是解题的关键. 16.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据x0 1 1.5 2 mx +n -3 -1 01 若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.20或30【分析】把表格中的前两对值代入求出m 与n 的值即可求出x 的值然后把x 的值代入求解即可【详解】解:由表格得x =0时m 0+n =-3∴n =-3;x =1时m 1+(-3)=-1∴m =2;∵mx +n 解析:20或30【分析】把表格中的前两对值代入求出m 与n 的值,即可求出x 的值,然后把x 的值代入求解即可.【详解】解:由表格得x =0时,m ⋅0+n =-3,∴n =-3;x =1时,m ⋅1+(-3)=-1,∴m =2;∵mx +n =17,∴2x -3=17,∴x =10,当点C 在线段AB 上时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =20;当点C 在点B 右侧时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键. 17.因式分解:316m m -=________.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解 解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m -=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.18.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.19.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__.2【分析】由可得:去分母整理可得:从而得到:于是可得答案【详解】解:故答案为:2【知识点】本题考查的是整式的乘法运算完全平方公式的应用因式分解的应用非负数的性质代数式的值利用平方根的含义解方程掌握以解析:2【分析】 由()()()214b c a b c a -=--可得:()()()21,4b c bc a b c a bc -+=--+去分母整理可得:()220,b c a +-=从而得到:2,b c a +=于是可得答案.【详解】解: ()()()21,4b c a b c a -=-- ()()()21,4b c bc a b c a bc ∴-+=--+ ()()22444b c bc ac a bc ab bc ∴-+=--++,()()22440,b c a a b c ∴++-+=()220,b c a ∴+-=20,b c a ∴+-=2,b c a ∴+=∴ 2=2,b c a a a+= 故答案为:2.【知识点】本题考查的是整式的乘法运算,完全平方公式的应用,因式分解的应用,非负数的性质,代数式的值,利用平方根的含义解方程,掌握以上知识是解题的关键.20.若9m =4,27n =2,则32m ﹣3n =__.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂 解析:2【分析】根据指数的运算,把32m ﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键.三、解答题21.计算(1)(65x 2y -4xy 2)•13xy (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y ) 解析:(1)25x 3y 2-43x 2y 3;(2)5y -x 【分析】(1)按照多项式乘单项式的计算法则进行计算求解;(2)整式的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)(65x 2y -4xy 2)•13xy =25x 3y 2-43x 2y 3 (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )=[x 2-9y 2-(x 2-2xy +y 2)]÷(-2y )=(x 2-9y 2-x 2+2xy-y 2)÷(-2y )=(-10y 2+2xy )÷(-2y )=5y -x【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a +8,解:原式=a 2+6a +8+1-1=a 2+6a +9-1=(a +3)2-12=[(a +3)+1][(a +3)-1]=(a +4)(a +2)②M =a 2-2a -1,利用配方法求M 的最小值.解:a 2-2a -1=a 2-2a +1=(a -1)2-2∵(a -b )2≥0,∴当a =1时,M 有最小值-2.请根据上述材料解决下列问题:(1)用配方法...因式分解:x 2+2x -3. (2)若M=2x 2-8x ,求M 的最小值.解析:(1)()(33)x x +-;(2)-8【分析】(1)应用配方法以及平方差公式,把x 2+2x -3因式分解即可.(2)应用配方法,把2x 2-8x 化成22(2)8x --,再根据偶次方的非负性质,求出M 的最小值是多少即可.【详解】解:(1)原式=22344x x +-+-=2214x x ++-=22(1)2x +-=()(33)x x +-(2)228x x -=22(4)x x -=2(2444x x -+-)=22(2)8x --因为2(2)x -0≥,所以当x =2时,M 有最小值为-8【点睛】此题主要考查了利用平方差公式和完全平方式进行因式分解,以及偶次方的非负性质的应用,要熟练掌握.23.小王购买了一套一居室,他准备将房子的地面全部铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的6倍与厨房面积的和,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?解析:(1)S =6m +2n +18;(2)4500元.【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m ,n 的值代入计算即可.【详解】解:(1)S=2n+6m+3×4+2×3=6m+2n+18.(2)n=1.5时2n=3根据题意,得6m=8×3=24,m=4,∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】本题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是_______(写成两数平方差的形式);(2)图2是将图1中的阴影部分裁剪开,重新拼成的一个长方形,观察它的长和宽,其面积是______(写成多项式乘法的形式).(3)比较左、右两图的阴影部分面积,可以得到乘法公式_______.(用等式表示) (4)运用你所得到的公式,计算下列各题:①10.39.7⨯②(2)(2)m n p m n p +--+解析:(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;(4)①99.91;②22242m n np p -+-【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】解:(1)利用大正方形面积减去小正方形面积即可求出:22a b -,故填:22a b -;(2)它的宽是a ﹣b ,长是a+b ,面积是()()a b a b +-,故填:()()a b a b +-;(3)根据题意得出:22()()a b a b a b +-=-,故填:22()()a b a b a b +-=-;(4)①解:原式(100.3)(100.3)=+⨯- 22100.3=-1000.09=-99.91=;②解:原式[2()][2()]m n p m n p =+-⋅--22(2)()m n p =--22242m n np p =-+-.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观. 25.把一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个正方形(如图1).(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示). 方法1:______________________________.方法2:______________________________.(2)根据(1)中结论,请你写出下列三个代数式()2m n +,()2m n -,mn 间的等量关系:________(3)根据(2)中的等量关系,解决如下问题:已知实数x ,y 满足6xy =,5x y -=,请求出x y +的值.解析:(1)方法1:()24m n mn +-,方法2:()2m n -;(2)()()224m n m n mn -=+-;(3)7x y += 【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m ﹣n .根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积.(3)(x +y )2正好表示大正方形的面积,(x ﹣y )2正好表示阴影部分小正方形的面积,xy 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可.【详解】解:(1)()24m n mn +-;()2m n -.(2)()()224m n m n mn -=+-.(3)∵()()224x y x x y y +=-+,5x y -=,6xy =,∴()2254649x y +=+⨯=, ∴7x y +=.【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力. 26.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积:方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.解析:(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =, ∴()222240a b a b ab +=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.27.化简:2(3)3(2)m n m m n +-+.解析:226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.28.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题: ①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯解析:①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.。

人教版初中数学八年级上册 第十四章综合测试试题试卷含答案 答案在前

人教版初中数学八年级上册 第十四章综合测试试题试卷含答案 答案在前

第十四章综合测试答案解析一、1.【答案】D【解析】A 选项,原式5a =,所以A 选项错误;B 选项,原式23a =,所以B 选项错误;C 选项,原式68a =-,所以C 选项错误.D 选项,原式422a a a =÷=,所以D 选项正确.故选D .2.【答案】B【解析】原式100100100220.52(20.5)2=⨯⨯=⨯⨯=.3.【答案】A【解析】∵22222n n n n +++=,∴422n ⋅=,∴221n ⋅=∴121n +=,∴10n +=,∴1n =-.故选A .4.【答案】A【解析】A 选项,原式229x y =-,正确;B 选项,原式281x =-,错误;C 选项,原式222x xy y =-+-,错误;D 选项,原式214x x =-+,错误,故选A . 5.【答案】D【解析】222296(1004)1002100449 216=-=-⨯⨯+=,故A 错误; 22296(951)95295119 216=+=+⨯⨯+=,故B 错误;222296(906)90290669 216=+=+⨯⨯+=,故C 错误;222296(1004)1002100449 216=-=-⨯⨯+=,故D 正确。

故选D6.【答案】B【解析】A 选项,32262(3)a b a b ab -=⋅-,不符合因式分解的定义;B 选项,2294(32)(32)a b a b a b -=+-,是因式分解,符合题意;C 选项, ()ma m b c m a b c -+=-+,不符合因式分解的定义;D 选项,222()2a b a ab b +=++,是整式乘法,不符合题意,故选B .7.【答案】D【解析】222()(3)33(3)3x a x x x ax a x a x a x x n +-=-+-=+--=+-,则31a -=,3a n -=-,解得4a =,12n =.故选D .8.【答案】C【解析】∵2210a a --=,∴221a a -=,()4322222122121112a a a a a a a a a --+=--+=-+=+=.9.【答案】A10.【答案】A【解析】原式222221441(1)(2)x x y y x y =-+++++=-++,∵210x -=(),()220y +≥.∴221211x y -+++()()≥ 二、11.【答案】am12.513.(3)(3)by x y x y +-【解析】先提公因式,再把整式分解彻底.()232299(3)(3)bx y by by x y by x y x y -=-=+-.14.【答案】3- 【解析】在2(3)310a b +++=中,∵230a +()≥, 310b +≥,∴30a +=,310b +=,∴3a =-,13b =- ∴ 2 020 2 019 2 019 2 019 2 019 2 0191()[(3)](3)33a b a b a ab a ⋅=⋅⋅=⋅=-⨯-⨯-=-. 15.【答案】5 6【解析】∵2a b +=,1ab =-.∴3333215a ab b a b ab ++=++=⨯-=(),222()2426a b a b ab +=+-=+=.16.【答案】862a b -+【解析】它的另一边长为()24622312a a a b ab a -+÷-+=,周长为2(2231)862a a b a b +-+=-+.17.【答案】98【解析】()[]()332222()21102198x y xy xy x y xy x y xy +=+=+-=⨯-⨯=.18.【答案】2(21)12(22)n n n +-=+【解析】由已知得①231(31)(31)-=-⨯+;②251(51)(51)-=-⨯+;③2717171-=-⨯+()();… 故第n 个等式为2(21)1(211)(211)n n n +-=+-++,即2(21)12(22)n n n +-=+三、19.【答案】解:(1)原式()()6333633664642222232x x x x x x x x x x x x x x =--+=--+=+-=-(2)原式()2222224923210a b a ab b a ab b =--++=--.20.【答案】解:(1)原式()22222222a ab a ab b a b =+-++=-,当3a =,5b =时,原式2=-;(2)原式()2222424x y x y xy =--+÷()22x y xy =-÷xy =-.当10x =,125y =-时,原式1210255⎛⎫=-⨯-= ⎪⎝⎭; (3)32232x y x y xy -+()222xy x xy y =-+2()xy x y =-当1x y -=,2xy =时,原式2212=⨯=.21.【答案】解:(1)224(1)16(1)xy xy -++-[]224(1)4(1)xy xy =-+--4[(1)2(1 )][(1)2(1)]xy x y xy xy =-++-+--4(122)(122)xy xy xy xy =-++-+-+4(3)(31)xy xy =--+-4(3)(31)xy xy =--(2)()()2223231x x -+-+ ()()2223231x x =---+()2231x =--()224x =- 22(2)(2)x x =+-(3)2318()12()b a b a b ---26()[32()]a b b a b =---26()(322)a b b a b =--+26()(52)a b b a =--(4)3221218a a a -+-()2269a a a =--+22(3)a a =--22.【答案】解:331122(24)(42)44m n m n n n ⎛⎫⎛⎫+-+-+ ⎪⎪⎝⎭⎝⎭ 2322611(2)(2)1616416m n n m ⎛⎫=-+-=- ⎪⎝⎭, ∴原式的值与n 无关。

初中数学人教版八年级上册第十四章 整式的乘除与因式分解单元复习-章节测试习题(3)

初中数学人教版八年级上册第十四章 整式的乘除与因式分解单元复习-章节测试习题(3)

章节测试题1.【答题】我国古代许多关于数学的发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,第四行的四个数1,3,3,1恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数.请你猜想(a+b)5的展开式中含a3b2项的系数是()A. 10B. 12C. 9D. 8【答案】A【分析】本题考查了完全平方公式.由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;因此(a+b)5的各项系数依次为1、5、10、10、5、1,从而可得答案.【解答】解:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,∴含a3b2项的系数是10,选A.2.【答题】若2m=8,2n=32,则22m+n-4=______.【答案】128【分析】本题考查了同底数幂的乘除运算以及幂的乘方运算.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:∵2m=8,2n=32,∴22m+n-4=(2m)2×2n÷24=82×32÷24=128.故答案为:128.3.【答题】小明在进行两个多项式的乘法运算时,不小心把乘以错抄成乘以,结果得到(x2-xy),则正确的计算结果是______.【答案】x2-y2【分析】本题考查多项式乘以多项式的计算方法,根据逆运算得出正确的计算算式是解决问题的关键.错乘,得到(x2-xy)可求出没错乘之前的结果,再乘以即可,【解答】解:由题意得,(x2-xy)x(x-y)(x-y)(x+y)=x2-y2,故答案为:x2-y2.4.【答题】若x2+2kx是一个完全平方式,则k=______.【答案】±【分析】本题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵x2+2kx是一个完全平方式,∴k=±,故答案为:±.5.【答题】计算2021×2019-20202的值为______.【答案】-1【分析】本题考查了平方差公式,熟记公式是解答本题的关键.平方差公式:(a+b)(a-b)=a2-b2.根据平方差公式化简2021×2019即可得出结果.【解答】解:2021×2019-20202=×-20202=20202-1-20202=-1.故答案为:-1.6.【答题】若多项式x2-px+q(p、q是常数)分解因式后,有一个因式是x+3,则3p+q的值为______.【答案】-9【分析】本题考查了因式分解的意义.设另一个因式为x+a,∵整式乘法是因式分解的逆运算,∴将两个因式相乘后结果得x2-px+q,根据各项系数相等列式,计算可得3p+q的值.【解答】解:设另一个因式为x+a,则x2-px+q=(x+3)(x+a)=x2+ax+3x+3a=x2+(a+3)x+3a,由此可得,由①得:a=-p-3③,把③代入②得:-3p-9=q,3p+q=-9,故答案为:-9.7.【答题】有若干个形状大小完全相同的小长方形,现将其中3个如图1摆放,构造一个正方形;其中5个如图2摆放,构造一个新的长方形(各小长方形之间不重叠且不留空隙).若图1和图2中阴影部分的面积分别为39和106,则每个小长方形的面积为______.【答案】14【分析】本题考查了整式的混合运算.直接利用整式的混合运算法则结合已知阴影部分面积进而得出答案.【解答】解:设小长方形的宽为a,长为b,根据题意可得:(a+b)2-3ab=39,故a2+b2-ab=39,(2b+a)(2a+b)-5ab=106,故4ab+2b2+2a2+ab-5ab=106,则2a2+2b2=106,即a2+b2=53,则53-ab=39,解得:ab=14,故每个小长方形的面积为:14.故答案为:14.8.【题文】计算:(1)(3a-1)(3a+1)-(a-4)2.(2)(15x2y-10xy2)÷(-5xy).【答案】见解答【分析】本题考查了整式的混合运算.(1)直接利用乘法公式进而化简,再合并同类项得出答案;(2)直接利用整式的除法运算法则化简得出答案.【解答】解:(1)原式=9a2-1-(a2-8a+16)=9a2-1-a2+8a-16=8a2+8a-17;(2)原式=-(15x2y÷5xy)+10xy2÷5xy=-3x+2y.9.【题文】因式分解:(1)2a2b-12ab+18b;(2)x2-y2-2x+1.【答案】见解答【分析】本题考查了分组分解法、公式法分解因式.(1)直接提取公因式2b,再利用完全平方公式分解因式得出答案;(2)直接将原式分组,再利用公式法分解因式即可.【解答】解:(1)2a2b-12ab+18b=2b(a2-6a+9)=2b(a-3)2;(2)x2-y2-2x+1=(x2-2x+1)-y2=(x-1)2-y2=(x-1+y)(x-1-y).10.【题文】(1)已知m+4n-3=0,求2m•16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.【答案】见解答【分析】本题考查了幂的乘方,同底数幂的乘法.(1)先根据幂的乘方变形,再根据同底数幂的乘法进行计算,最后代入求出即可;(2)先根据幂的乘方法则将原式化为x2n的幂的形式然后代入进行计算即可.【解答】解:(1)∵m+4n-3=0∴m+4n=3原式=2m•24n=2m+4n=23=8.(2)原式=(x2n)3-2(x2n)2,=43-2×42,=32,11.【题文】先化简,再求值:求(x-2y)2+(3y-2x)(-2x-3y)-5(x-y)(x+2y)的值,其中x、y满足(x-2)2+|y|=0.【答案】见解答【分析】本题考查了绝对值、偶次方的非负性和整式的混合运算和求值等知识点.先算乘法,再合并同类项,求出x、y的值后代入,即可求出答案.【解答】解:(x-2y)2+(3y-2x)(-2x-3y)-5(x-y)(x+2y)=x2-4xy+4y2+9y2-4x2-5x2-10xy+5xy+10y2=-8x2-9xy+23y2,∵x、y满足(x-2)2+|y|=0,∴x-2=0,y0,解得:x=2,y,当x=2,y时,原式=-32-9+5.75=-35.25.12.【题文】已知(a+b)2=19,(a-b)2=13,求a2+b2与ab的值.【答案】见解答【分析】本题考查完全平方公式的;掌握完全平方公式,并能灵活运用公式是解题的关键.由已知可得a2+b2+2ab=19,a2+b2-2ab=13,两式相加可得a2+b2=16,两式相减可得ab.【解答】解:∵(a+b)2=19,∴a2+b2+2ab=19,∵(a-b)2=13,∴a2+b2-2ab=13,∴2a2+2b2=32,4ab=6,∴a2+b2=16,ab.13.【题文】甲、乙两个长方形的边长如图所示(m为正整数),其面积分别为S1,S2.(1)请比较S1和S2的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长之和,求该正方形的面积(用含m的代数式表示).【答案】见解答【分析】本题考查了列代数式,整式的加减及乘除运算,列代数式是解题的关键.(1)先用代数式表示S1,S2,再作差比较即可求解;(2)根据正方形的周长与面积的公式计算即可求解.【解答】解:(1)S1=(m+1)(m+7)=m2+8m+7,S2=(m+2)(m+4)=m2+6m+8,∴S1-S2=m2+8m+7-(m2+6m+8)=m2+8m+7-m2-6m-8=2m-1,∵m为正整数,∴2m-1>0,即S1>S2;(2)正方形的周长为:2[(m+1)+(m+7)]+2[(m+2)+(m+4)]=2(2m+8)+2(2m+6)=4m+16+4m+12=8m+28,∴该正方形的面积为:.14.【题文】阅读下列材料:我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);再例如求代数式2x2+4x-6的最小值.2x2+4x-6=2(x2+2x-3)=2(x+1)2-8.可知当x=-1时,2x2+4x-6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2-4m-5=______.(2)当a,b为何值时,多项式a2+b2-4a+6b+18有最小值,并求出这个最小值.(3)已知a,b,c为△ABC的三边,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状.【答案】见解答【分析】本题考查了因式分解的应用,非负数的性质,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.(1)根据阅读材料,先将m2-4m-5变形为m2-4m+4-9,再根据完全平方公式写成(m-2)2-9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2-4a+6b+18转化为(a-2)2+(b+3)2+5,然后利用非负数的性质进行解答;(3)把所给的等式能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【解答】解:(1)m2-4m-5=m2-4m+4-9=(m-2)2-9=(m-2+3)(m-2-3)=(m+1)(m-5).故答案为(m+1)(m-5);(2)∵a2+b2-4a+6b+18=(a-2)2+(b+3)2+5,∴当a=2,b=-3时,多项式a2+b2-4a+6b+18有最小值5;(3)∵a2+2b2+c2-2b(a+c)=0,∴(a-b)2+(b-c)2=0,∴a=b,b=c,∴a=b=c,∴△ABC是等边三角形.15.【题文】把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式______;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b.②研究①拼图发现,可以分解因式2a2+5ab+2b2=______.【答案】【分析】本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.(1)本题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,另一种是直接利用正方形的面积公式计算,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中的等式直接代入求得答案即可;(3)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.(4)①依照前面的拼图方法,画出图形便可;②由图形写出因式分解结果便可.【解答】解:(1)由题意得,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2-2(ab+ac+bc)=121-76=45;(3)∵a+b=10,ab=20,∴S阴影=a2+b2(a+b)•b a2a2b2ab(a+b)2ab10220=50-30=20;(4)①根据题意,作出图形如下:②由上面图形可知,2a2+5ab+2b2=(a+2b)(2a+b).故答案为(a+2b)(2a+b).16.【答题】计算a3•(-a2)结果正确的是()A. -a5B. a5C. -a6D. a6【答案】A【分析】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】a3•(-a2)=-a3+2=-a5.选A.17.【答题】下列运算正确的是()A. a2•a3=a6B. (3a)3=9a3C. 3a-2a=1D. (-2a2)3=-8a6【答案】D【分析】利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则、幂的乘方运算法则分别进行计算即可.【解答】A、a2•a3=a5,故原题计算错误;B、(3a)3=27a3,故原题计算错误;C、3a-2a=a,故原题计算错误;D、(-2a2)3=-8a6,故原题计算正确;选D.18.【答题】如果x m=2,x n,那么x m+n的值为()A. 2B. 8C.D. 2【答案】C【分析】根据同底数幂的乘法进行运算即可.【解答】如果x m=2,x n,那么x m+n=x m×x n=2.选C.19.【答题】(2x+p)(x-2)的展开式中,不含x的一次项,则p值是()A. -1B. -4C. 1D. 4【答案】D【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn计算,再根据乘积中不含x的一次项,得出它的系数为0,即可求出p的值.【解答】根据题意得:(2x+p)(x-2)=2x2-4x+px-2p=2x2+(-4+p)x-2p,∵(2x+p)与(x-2)的乘积中不含x的一次项,∴-4+p=0,∴p=4;选D.20.【答题】下列由左到右变形,属于因式分解的是()A. (2x+3)(2x-3)=4x2-9B. 2x2+4=2(x2+4)C. 1x2=(1x)(1x)D. (a-b)2-9=(a-b+3)(a-b-3)【答案】D【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案.【解答】A、原变形是整式的乘法,不是因式分解,故本选项不符合题意;B、原变形错误,正确的是2x2+4=2(x2+2),因式分解错误,故本选项不符合题意;C、原变形错误,正确的是1x2=(1x)(1x),因式分解错误,故本选项不符合题意;D、原变形符合因式分解的定义,是因式分解,故本选项符合题意.选D.。

最新最全,人教版,初中八年级数学上册,全册各章,单元测试卷汇总,(附详细参考答案)

最新最全,人教版,初中八年级数学上册,全册各章,单元测试卷汇总,(附详细参考答案)

人教版初中八年级数学上册全册单元综合测试卷汇总一、第十一章《三角形》单元综合测试卷(附详细参考答案)二、第十二章《全等三角形》单元综合测试卷(附详细参考答案)三、第十三章《轴对称》单元综合测卷(附详细参考答案)四、八年级上学期期中数学综合测试卷(附详细参考答案)五、第十四章《整式的乘法与因式分解》单元综合测试卷(附详细参考答案)六、第十五章《分式》单元综合测卷(附详细参考答案)七、八年级上学期期末数学综合测试卷(附详细参考答案)八年级数学上册第十一章《三角形》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.下列每组中的两个图形,是全等图形的是( )2.若△ABC≌△A′B′C′,且∠A∶∠B∶∠C=2∶3∶4,则∠A′∶∠B′为( )(A)2∶4 (B)2∶3(C)3∶4 (D)3∶23.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF 的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED 的长就是AB的长,判定△EDC≌△ABC最恰当的理由是( )(A)SSS (B)SAS(C)ASA (D)AAS4.△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为( )(A)3 (B)4 (C)5 (D) 3或4或55.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于( )(A)DC (B)BC (C)AB (D)AE+AC6.如图,AD是△ABC的角平分线,且AC∶AB=2∶3,则△ACD与△ABD的面积之比为( )(A)2∶3 (B)3∶2(C)4∶9 (D)9∶47.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠ACB=∠A′CB′,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是( )(A)1个 (B)2个 (C)3个 (D)4个二、填空题(每小题5分,共25分)8.如图,点B,C,F,E在同一直线上,∠1=∠2, BC=FE,∠1_____(填“是”或“不是”)∠2的对顶角,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是_________(只需写出一个).9.如图,△ABC≌△DEB,∠C=35°,∠E=30°,则∠BDE的度数为_______.10.如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有_______对.11.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有_______.(填写序号)12.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是________;中线AD的取值范围是________.三、解答题(共47分)13.(10分)如图,AB=AC,点E,F分别是AB,AC的中点.求证:△AFB≌△AEC.14.(12分)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.15.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.16.(13分)如图,点E在AC上,∠1=∠2,∠3=∠4.(1)BE与DE相等吗,为什么?(2)若点E在AC的延长线上,其他条件不变,则第(1)题中的结论还成立吗?说明理由.八年级数学上册第十一章《三角形》单元综合测试卷详细参考答案1.【解析】选C.把握全等形的定义,形状和大小完全相同的两个图形全等,与图形的位置无关.2.【解析】选B.∵△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,已知∠A∶∠B∶∠C=2∶3∶4,∴∠A′∶∠B′=2∶3.3.【解析】选C.∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE=90°.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).4.【解析】选B.由题意知,2<EF<6,又因为周长为偶数,所以EF的长为4.5.【解析】选C.∵∠DAC=∠E+∠3=∠1+∠BAC,∠1=∠3,∴∠BAC=∠E.又∵∠2=∠3,∴∠2+∠DCA=∠3+∠DCA,即∠BCA=∠DCE.又∵AC=CE,∴△ABC≌△EDC,∴DE=AB.6.【解析】选A.过点D分别作AB,AC的垂线,垂足为E,F.∵AD是△ABC的角平分线,∴DE=DF,∴△ACD与△ABD的面积之比为AC∶AB=2∶3.7.【解析】选B.①②③为条件,根据SAS,可判定△BCA≌△B′CA′,可得结论④;①②④为条件,根据SSS,可判定△BCA≌△B′CA′,可得结论③;①③④为条件,SSA不能证明△BCA≌△B′CA′.②③④为条件,SSA不能证明△BCA≌△B′CA′.最多可以构成正确结论2个.8.【解析】若用SAS,可填AC=DF;若用ASA,可填∠B=∠E;若用AAS,可填∠A=∠D.答案:不是 AC=DF(答案不唯一)9.【解析】由题意知,∠C=∠EBD=35°,所以∠BDE=180°-30°-35°=115°.答案:115°10.【解析】图中的全等三角形有△ABE≌△DCF, △ABF≌△DCE,△BEF≌△CFE,共3对.答案:311.【解析】在△AEB和△AFC中,∠E=∠F=90°, ∠B=∠C, AE=AF,可得△AEB≌△AFC,所以∠EAB=∠FAC,AC=AB,所以∠FAN=∠EAM,故③正确,所以△AEM≌△AFN,所以EM=FN,故①正确,在△ACN与△ABM中,∠C=∠B,∠CAB=∠BAC,AC=AB,所以△ACN≌△ABM,故④正确,但无法证明CD=DN,故②不正确.答案:①③④12.【解析】如图所示.在△ABC中,AB-AC<BC<AB+AC,即12-8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE.∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,∴△ACD≌△EBD,∴BE=AC.在△ABE中,AB-BE<AE<AB+BE,即AB-AC<AE<AB+AC,12-8<AE<12+8,即4<AE<20,∴2<AD <10.答案:4<BC <20 2<AD <1013.【证明】∵点E ,F 分别是AB ,AC 的中点, ∴AE=12AB ,AF=12AC.又∵AB=AC,∴AE=AF.在△AFB 和△AEC 中,A E A F A A A C A B =⎧⎪∠=∠⎨⎪=⎩,,,∴△AFB ≌△AEC(SAS).14.【证明】∵点C 是线段AB 的中点,∴AC=BC. ∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠BCD.在△ACE 和△BCD 中,A CBC ,A C E B CD ,CE C D ,=⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCD(SAS),∴AE=BD.15.【解析】△ADC ≌△ADF 、△ADC ≌△CEB 、△ADF ≌△CEB(写出其中两对即可). 方法一:若选择△ADC ≌△ADF ,证明如下: ∵AD 平分∠FAC ,∴∠CAD=∠FAD. ∵AD ⊥CF ,∴∠ADC=∠ADF=90°. 又∵AD=AD ,∴△ADC ≌△ADF(ASA). 方法二:若选择△ADC ≌△CEB ,证明如下: ∵AD ⊥CF ,BE ⊥CE , ∴∠ADC=∠CEB=90°.又∵∠ACB=90°,∴∠ACD+∠ECB=90°. 又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB. 又∵AC=CB ,∴△ADC ≌△CEB(AAS).16.【解析】(1)∵∠1=∠2,∠3=∠4,AC=AC ,∴△ABC≌△ADC(ASA),∴AB=AD.∵∠1=∠2,AE=AE,∴△BAE≌△DAE(SAS),∴BE=DE.(2)成立.如图,∵∠1=∠2,∠3=∠4,AC=AC,∴△ABC≌△ADC(ASA),∴AB=AD.∵∠1=∠2,AE=AE,∴△BAE≌△DAE(SAS),∴BE=DE.八年级数学上册第十二章《全等三角形》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.下列几何图形中,一定是轴对称图形的有( )(A)1个 (B)2个 (C)3个 (D)4个 2.已知点P 1(a-1,3)和P 2(2,b-1)关于x 轴对称,则(a+b)2 012的值为( )(A)0 (B)-1 (C)1 (D)(-3)20123.如图,AD=BC=BA ,那么∠1与∠2之间的关系是( )(A)∠1=2∠2 (B)2∠1+∠2=180° (C)∠1+3∠2=180° (D)3∠1-∠2=180° 4.已知:一等腰三角形的两边长x ,y 满足方程组2x y 33x 2y 8-=⎧⎨+=⎩,,则此等腰三角形的周长为( )(A)5 (B)4 (C)3 (D)5或45.如图所示,将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“1”的图形,将纸片展开,得到的图形是( )6.如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是( )(A)AB=BE (B)AD=DC(C)AD=DE (D)AD=EC7.如图,△ABP和△DCP是两个全等的等边三角形,且PA⊥PD,有以下4个结论:①∠PBC=15°;②AD∥BC;③直线PC⊥AB;④四边形ABCD是轴对称图形.其中正确的结论有( )(A)1个 (B)2个 (C)3个 (D)4个二、填空题(每小题5分,共25分)8.自身为轴对称图形的汉字可以组成一些词语,如“苹果”,请你也写出两个这样的词语________.9.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB,BC于D,E,若∠CAE=∠B+30°,则∠AEB的度数为_________.10.已知点A(-2,4),B(2,4),C(-1,2),D(1,2),E(-3,1),F(3,1)是平面直角坐标系内的6个点,选择其中三个点连成一个三角形,剩下的三个点连成另一个三角形,若这两个三角形关于y轴对称,就称为一组对称三角形,那么,坐标系中可以找出_________组对称三角形.11.如图,在△ABC中,∠ACB=90°,CD是AB上的高,∠BAC的平分线为AF,AF与CD交于点E,则△CEF是_________三角形.12.如图,等边三角形ABC中,D,E分别为AB,BC边上的两个动点,F G=________.且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则A F三、解答题(共47分)13.(10分)现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.14.(12分)如图,将矩形纸片ABCD按如下顺序折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③),沿GH折叠,使点C落在DH上的C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′、GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.15.(12分)已知:如图, AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF, AF相交于点P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.16.(13分)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?八年级数学上册第十二章《全等三角形》单元综合测试卷详细参考答案1.【解析】选C.轴对称图形有:扇形、等腰梯形、菱形.2.【解析】选C.因为P1、P2关于x轴对称,所以a-1=2,b-1=-3,即a=3,b=-2,所以a+b=1,所以12 012=1.3.【解析】选B.∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.4.【解析】选A.解方程组得,x=2,y=1,所以这个等腰三角形的三边长为2,2,1(其中1,1,2不满足三角形的三边关系).5.【解析】选D.根据轴对称的性质进行判断或实际操作得到.6.【解析】选B.由折叠知AB=BE,AD=DE,∠DEB=∠A=90°,∴∠DEC=∠DEB=90°,由等腰直角△ABC得∠C=45°,∴∠CDE=45°,∴DE=EC,∴AD=EC.7.【解析】选D.由题意知PB=PC,∠APB=∠ABP=∠BAP=∠DPC=∠DCP=∠CDP=60°,∠PAD=∠PDA=45°,AB=AP=BP=DP=CP=CD,∴∠BPC=360°-60°-60°-90°=150°,∴∠PCB=∠PBC=15°,∠ADC+∠BCD=105°+75°=180°,∴AD∥BC,∠ABC+∠PCB=75°+15°=90°,∴直线PC⊥AB.四边形是轴对称图形,其对称轴为过点P且与AD垂直的直线.所以四个结论都正确.8.【解析】从轴对称的特点出发,具有轴对称性质的字有“大、日、田、木、目、中、众、晶、森、林”等.组成词语可以为“森林、日本、黄山”等.答案:不唯一,如“森林、日本、黄山”等9.【解析】∵DE垂直平分斜边AB,∴AE=BE,∴∠B=∠EAB,∴∠CEA=2∠B,又∵∠CEA=90°-∠CAE=90°-(∠B+30°),∴2∠B=90°-(∠B+30°),解得∠B=20°,∴∠AEB=180°-20°-20°=140°.答案:140°10.【解析】如图,共有4组对称三角形.答案:411.【解析】∵∠CEF=∠AED=90°-∠BAF,∠CFE=90°-∠CAF. 又AF平分∠BAC,∴∠BAF=∠CAF,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.答案:等腰12.【解析】∵AD=BE,∴CE=BD,∵△ABC为等边三角形,∴△CAE≌△BCD,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴F G1.A F2答案:12 13.【解析】14.【解析】(1)连接BB′,由折叠知,EF是线段BC的对称轴,∴BB′=B′C. 又∵BC=B′C,∴△B′BC是等边三角形,∴∠BCB′=60°.(2)是正三角形.理由如下:由折叠知,GH是线段CC′的对称轴,∴GC′=GC,根据题意,GC平分∠BCB′,1∠BCB′=30°,∴∠GCB=∠GCB′=2∴∠GCC′=∠BCD-∠BCG=60°,∴△GCC′是正三角形.15.【解析】(1)∵AF平分∠BAC,1∠BAC.∴∠CAD=∠DAB=2∵D与A关于E对称,∴E为AD中点.∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD.在Rt△ACE和Rt△ABE中,∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB.∴∠ACE=∠ABE,∴AC=AB.∴AB=CD.(2)∠F=∠MCD.理由如下:∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD.∵AC=CD,∴∠CAD=∠CDA,∴∠MPC=∠CDA.∴∠MPF=∠CDM.∵AC=AB,AE⊥BC,∴CE=BE.∴AM为BC的中垂线,∴CM=BM.∵EM⊥BC,∴EM平分∠CMB(等腰三角形三线合一)∴∠CME=∠BME.∵∠BME=∠PMF,∴∠PMF=∠CME,∴∠MCD=∠F(三角形内角和定理).16.【解析】(1)①△BPD≌△CQP.理由如下:∵t=1秒,∴BP=CQ=3×1=3(厘米),∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5(厘米),∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP.②∵v P≠v Q,∴BP≠CQ,又∵△BPD与△CQP全等,∠B=∠C,则BP=PC=4,CQ=BD=5,∴点P,点Q运动的时间B P4t33==秒,∴Q C Q515v4t43=== (厘米/秒).(2)设经过x秒后点P与点Q第一次相遇,由题意,得154x=3x+2×10,解得x=803秒.∴点P共运动了803×3=80厘米.∵80=2×28+24,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.八年级数学上册第十三章《轴对称》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.(-0.7)2的平方根是( )(A)-0.7 (B)±0.7 (C)0.7 (D)0.49 2.下列判断中,你认为正确的是( ) (A)0的倒数是0 (B)2是分数2 3.下列说法正确的是( ) (A)a 一定是正数 (B)2 0113是有理数(D)平方等于自身的数只有14.如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有( )(A)a+b>0 (B)a-b>0 (C)ab>0 (D)a b>05.下列说法正确的有:①一个数的立方根的相反数等于这个数的相反数的立方根;②64的平方根是±8,立方根是±4;③ 表示非负数a 表示a 的立方根;④一定是负数( )(A)①③ (B)①③④ (C)②④ (D)①④6.如图,下列各数中,数轴上点A 表示的可能是( )(A)4的算术平方根 (B)4的立方根 (C)8的算术平方根 (D)8的立方根7.如果m 是2 012的算术平方根,那么2 012100的平方根为( )(A)±m 100(B)m 10(C)-m 10(D)±m 10二、填空题(每小题5分,共25分)8..9.则m 的取值范围为_______.10.比较大小:用“<”或“>”号填空).11.若x 、y ,则x+y=_______. 12.对于两个不相等的实数a 、b ,定义一种新的运算如下,a*b=a b-(a+b>0),如:3*2=32=-6*(5*4)=________.三、解答题(共47分)13.(10分)如图所示,数轴上表示1A ,B ,点B 到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为x , (1)请你写出数x 的值;(2)求2的立方根.14.(12分)计算.(1)|-2|()2112+--1;15.(12分)“欲穷千里目,更上一层楼”说的是登得高看得远,若观测点的高度为h ,观测者能看到的最远距离为d,则d r 为地球半径(通常取6 400 km),小明站在海边一块岩石上,眼睛离地面的高度为20m ,他观测到远处一艘轮船刚露出海平线,此时该船离小明约有多远?16.(13分)如图,A ,B 两点的坐标分别是(2,(1)将△OAB 个单位求所得的三角形的 三个顶点的坐标; (2)求△OAB 的面积.八年级数学上册第十三章《轴对称》单元综合测试卷详细参考答案1.【解析】选B.∵(-0.7)2=0.49, 又∵(±0.7)2=0.49, ∴0.49的平方根是±0.7.2.【解析】选C.0没有倒数,故A 错误;2π是一个无理数,故B 错误是指4的算术平方根,结果为2,故D 错误.3.【解析】选B.a 有可能是小于等于0的数,即不一定是正数;2 0113是分数,即也是有理数;显然是无理数;平方等于自身的有0和1,不单单只有1,所以只有2 0113是有理数正确.4.【解析】选A.∵由数轴上a 、b 两点的位置可知,a <0,b >0,|a|<b , ∴ a+b >0,a-b <0,ab <0,a b<0,故选项A 正确;选项B 、C 、D 错误.5.【解析】选A.①因为一对相反数的立方根仍是一对相反数,故说法①正确; ②因为64的立方根是4,故说法②错误;③本题符合非负数平方根的表示方法,实数立方根的表示方法,故说法③正确;④因为,故说法④错误.故选A .6.【解析】选C.由数轴知,点A 表示的数是2与3之间的数,而4的算术平方根和8的立方根都是2,4的立方根小于2,8的算术平方根大于2小于3.7.【解析】选D.把2 012缩小100倍,根据被开方数小数点的移动规律,其算术平方根为原来的十分之一,易得2 012100的平方根.故选D.8.【解析】==8.答案:89.【解析】∴3-m ≥0,∴m ≤3. 答案:m ≤310.【解析】将2.答案:>11.【解析】由题意得,x=-3,y=2,所以x+y=-1. 答案:-112.【解析】5*4=54-=3,所以6*3=63-=1.答案:113.【解析】(1)因为OA=1,所以,所以所以点C 所表示的数x(2)由(1)得22=1,即2=1,1的立方根为1. 14.【解析】(1)原式=2-14+14-1=1;(2)原式=-4-3+35=-625.15.【解析】根据题意得,h=20 m=0.02 km ,r=6 400 km ,所以小明离船的距离d ≈=16.【解析】(1)因为△OAB OAB 个单位,所以点A 的坐标为(2,0),点B 的坐标为(3,,点O 的坐标为).(2)因为OB=3,又因为点A 的坐标为(2),所以△OAB 的面积为132⨯⨯=八年级上学期期中数学综合测试卷班级:___________ 姓名:_____________ 成绩:___________(90分钟100分)一、选择题(每小题3分,共24分)1.下列几何图形:①角;②平行四边形;③扇形;④正方形,其中轴对称图形是( )(A)①②③ (B)②③④(C)①③④ (D)①②③④12.四个数-5,-0.1,( )21(A)-5 (B)-0.1 (C)23.已知图中的两个三角形全等,则∠α的度数是( )(A)72° (B)60° (C)58° (D)50°4.点P关于x轴的对称点P1的坐标是(4,-8),则P点关于y轴的对称点P2的坐标是( )(A)(-4,-8) (B)(-4,8)(C)(4,8) (D)(4,-8)5.在Rt△ABC中,∠C=90°,AB=8,∠BAC的角平分线AD交BC于点D,CD=2,则△ABD的面积是( )(A)4 (B)6 (C)8 (D)106.在△ABC中,AB=AC, ∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下述结论:①BD 平分∠ABC;②AD=BD=BC;③D是AC中点.其中正确的结论的序号是( )(A)①②③ (B)①② (C)②③ (D)①③7.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )(A)(1)(2)(3) (B)(1)(2)(4)(C)(2)(3)(4) (D)(1)(3)(4)8.在△ABC中,∠ABC=90°,AB=BC,BM是AC的中线,D、E分别是边AB、BC上的点且DM⊥ME,下列结论:①AD=BE;②DM=ME;③CM=CE;④S△ABC=2S四边形BEMD,其中正确的是( )(A)①②③ (B)②③④(C)①②④ (D)①②③④二、填空题(每小题4分,共24分)229.在3.14,710.在-2,2______.11.已知在△ABC中,①∠A=36°,∠B=72°;②∠A∶∠B∶∠C=1∶2∶3;③AB=AC,∠A∶∠B=2∶1;④BC=AC ,∠A=60°.其中为等腰三角形的是_______,为直角三角形的是_______,为等边三角形的是_______.(只填序号)12.如图,等腰△ABC 的周长为21,底边BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为_______.13.已知点A,B 的坐标分别为(2,0),(2,4),以A,B,P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标_______.14.在△ABC 中,AB=AC=12 cm ,BC=6 cm ,D 为BC 的中点,动点P 从B 点出发,以每秒1 cm 的速度沿B →A →C 的方向运动,设运动时间为t 秒,过D,P 两点的直线将△ABC 的周长分成两部分,使其中一部分是另一部分的2倍,那么t 的值为_______. 三、解答题(共52分) 15.(10分)计算:(1)(-2)321()2+--16.(10分)近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定P 点的位置.17.(10分)如图,A,B两点的坐标分别是(1),(4,C点的坐标为(3,3).(1)求△ABC的面积;(2)将△ABC个单位,得到△A′B′C′,则A′,B′,C′的坐标分别是多少?(3)△A′B′C′的面积是多少?18.(10分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图①),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并说明.19.(12分)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为△ABC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.八年级上学期期中数学综合测试卷详细参考答案1.【解析】选C.根据轴对称图形的概念及所给出的图形的特点可知角,扇形,正方形是轴对称图形.而平行四边形是中心对称图形.12.【解析】选D.整数和分数统称为有理数,其中-5是整数,-0.1和2小数.3.【解析】选D.∵图中的两个三角形全等,a与a,c与c分别是对应边,那么它们的夹角就是对应角,∴∠α=50°.4.【解析】选B.根据轴对称的性质,得点P的坐标是(4,8),则P点关于y轴的对称点P2的坐标是(-4,8).故选B.5.【解析】选C.由角平分线的性质可知,△ABD中AB边上的高等于2,所以其面积为8.6.【解析】选B.∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.∵AB的垂直平分线DE交AC于点D,交AB于点E,∴DA=DB,∴∠DBA=∠A=36°,∴∠DBC=∠ABC-∠DBA=36°,∴∠BDC=180°-∠DBC-∠C=72°,∴BD=BC,∴AD=BD=BC,∴①②正确.7.【解析】选D.根据三角形的内角和定理以及等腰三角形的判定定理:等角对等边,(1)中,作底角的角平分线即可;(2)中,不能;(3)中,作底边上的高即可;(4)中,在BC边上截取BD=AB即可.8.【解析】选C.∵∠ABC=90°,AB=BC,∴∠A=∠C=45°,又∵BM是AC的中线,∴BM⊥AC,∠MBC=∠MBA=45°,∴BM=CM,又∵DM⊥ME,∴∠DMB+∠BME=∠CME+∠BME,∴∠DMB=∠EMC,∴△DMB≌△EMC,∴DM=ME,BD=CE,1∴AB-BD=BC-CE,即AD=BE,S△BMC=S四边形BEMD=S△ABC,故选C.29.【解析】0.121 121 112…,-π,共3个.答案:310.【解析】根据正数大于0 1.414,所以可知2最大. 答案:211.【解析】①∵∠A=36°,∠B=72°,∴∠C=180°-∠A-∠B=72°,故此三角形为等腰三角形;②∵∠A∶∠B∶∠C=1∶2∶3,∴∠A=30°,∠B=60°,∠C=90°,故此三角形为直角三角形;③∵AB=AC,∠A∶∠B=2:1,∴∠A=90°,∠B=∠C=45°,故此三角形为等腰直角三角形;④∵BC=AC,∠A=60°,∴∠B=∠A=∠C=60°,故此三角形为等边三角形.答案:①③④②③④12.【解析】△ABC为等腰三角形,所以AB=AC,因为BC=5,所以2AB=2AC=21-5=16,即AB=AC=8,而DE是线段AB的垂直平分线,∴BE=AE,故BE+EC=AE+EC=AC=8,∴△BEC的周长=BC+BE+EC=5+8=13.答案:1313.【解析】如图所示,符合条件的点P的位置有3个.答案:(4,0)(或(4,4)或(0,4),答案不唯一)14.【解析】分情况讨论:①当P在AB上时,BP=t,CD=BD=3,AP=12-t此时,2(3+t)=12-t+12+3,解得t=7(秒)②当P在AC上时,BD+AB+AP=3+t,CD+PC=3+24-t此时2(27-t)=3+t,解得t=17(秒)答案:7秒或17秒115.【解析】(1)原式=-8×4-4×-34=-32-1-3=-36;(2)原式=-1+2=1.16.【解析】如图,(1)画出∠BAC的角平分线;(2)作出线段MN的垂直平分线.交点P即满足条件的点.17.【解析】(1)AB=4-1=3,点C 到AB 的距离为∴S △ABC =12×3×2(2)A ′(1),B ′(4,C ′(3,; (3)∵平移不改变图形的大小,∴S △A ′B ′C ′=S △ABC =92-.18.【解析】(1)∵点D 是AB 中点,AC=BC ,∠ACB=90°, ∴CD ⊥AB ,∠ACD=∠BCD=45°, ∠CAD=∠CBD=45°, ∴∠CAE=∠BCG. 又BF ⊥CE ,∴∠CBG+∠BCF=90°. 又∠ACE+∠BCF=90°, ∴∠ACE=∠CBG , ∴△AEC ≌△CGB , ∴AE=CG. (2)BE=CM.证明如下:∵CH ⊥HM ,CD ⊥ED , ∴∠CMA+∠MCH=90°, ∠BEC+∠MCH=90°, ∴∠CMA=∠BEC ,又∵AC=BC,∠ACM=∠CBE=45°,∴△BCE≌△CAM,∴BE=CM.19.【解析】(1)猜想:AB=AC+CD.(2)猜想:AB+AC=CD.证明如下:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD.∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB.又∵∠ACB=2 ∠B,∠FED=∠B+∠EDB,∴∠EDB=∠B.∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.八年级数学上册第十四章《整式的乘法与因式分解》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.下列函数(1)y=πx;(2)y=3x+1;(3)5y ;x=(4)y=2-3x;(5)y=x 3+4中,一次函数有( )(A)1个(B)2个(C)3个(D)4个2.一次函数y=kx+b 的图象如图,则k ,b 的值是( ) (A)3,2?2- (B)2,23- (C)3,22-(D)2,23-3.无论m 为任何实数,直线y=x+2m 和y=-x+4的交点不可能在( ) (A)第一象限 (B)第二象限 (C)第三象限(D)第四象限4.一次函数3y x 32=-+的图象如图所示,当-3<y <3时,x 的取值范围是( ) (A)x >4(B)0<x <2 (C)0<x <4(D)2<x <45.如图中表示一次函数y =mx+n 与正比例函数y =mnx(m,n 是常数,且mn ≠0)的图象的是( )6.如图,在平面直角坐标系中,线段AB 的端点坐标为A(-2,4),B(4,2),直线y=kx-2与直线AB 有交点, 则k 的值不可能是( ) (A)-5 (B)13-(C)3(D)57.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示, 相交于点P 的两条线段l 1,l 2分别表示小敏、 小聪离B 地的距离y(km)与已用时间x(h)之间 的关系,则小敏、小聪的速度分别是( ) (A)3 km/h 和4 km/h (B)3 km/h 和3 km/h (C)4 km/h 和4 km/h(D)4 km/h 和3 km/h二、填空题(每小题5分,共25分)8.一次函数y =2x -1的图象经过点(a ,3),则a =_______.9.写出一个具体的y 随x 的增大而减小的一次函数解析式___________. 10.如图所示,利用函数图象回答下列问题:(1)方程组x y 3,y 2x+=⎧⎨=⎩的解为________;(2)不等式2x>-x+3的解集为___________.11.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.12.如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A,B 两地向正北方向匀速直行,他们与A 地的距离S(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC 和BD 给出,当他们行走3小时后,他们之间的距离为___________千米.三、解答题(共47分)13.(11分)点A,B,C,D的坐标如图,求直线AB与直线CD的交点坐标.14.(12分)已知一个正比例函数和一个一次函数,它们的图象都经过点P(-2,1),且一次函数的图象与y轴相交于Q(0,3).(1)求这两个函数的解析式;(2)在给出的坐标系中画出这两个函数图象;(3)求△POQ的面积.15.(12分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球后,量桶中水面升高________cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?16.(12分) 2011年4月28日,以“天人长安,创意自然——城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园.这次世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍还多8张.设需购A种票张数为x,C种票张数为y.(1)写出y与x 之间的函数关系式;(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.八年级数学上册第十四章《整式的乘法与因式分解》单元综合测试卷详细参考答案1.【解析】选C.由一次函数的定义知(1)(2)(4)是一次函数. 2【解析】选B.由图象知b=-2,把x=3,y=0代入y=kx-2,得2k .3=3.【解析】选C.直线y=-x+4经过第一、二、四象限,不经过第三象限,所以直线y=x+2m 和y=-x+4的交点一定不在第三象限.4.【解析】选C .由函数的图象可知,当y=3时,x=0;当y=-3时,x=4,故当-3<y <3时,x 的取值范围是0<x <4.故选C.5.【解析】选C.选项C 中的y =mx+n ,m <0,n >0.∴mn <0, ∴直线y =mnx 过二、四象限.其他三个选项中两条直线的m ,n 符号不一致. 6.【解析】选B.设直线AB 的解析式为y=k 1x+b,则112k b 44k b 2,-+=⎧⎨+=⎩解得11k ,3=-若11k k ,3==-则直线y=kx-2与直线AB 平行,无交点.因此k 不可能为1.3-7.【解析】选D.根据图象知:小敏经过2.8-1.6=1.2小时,走了4.8 km ,则其速度为4 km/h ;小聪经过1.6 h ,走了4.8 km ,则其速度为3 km/h.8.【解析】将点(a ,3)代入函数y =2x -1得3=2a -1, 解得a =2. 答案:29.【解析】所写的一次函数只需满足k<0即可. 答案:y=-x+1(答案不唯一) 10.【解析】由图象知方程组的解为x 1y 2=⎧⎨=⎩,,当x >1时y=2x 的图象在x+y=3的图象的上方,∴不等式2x>-x+3的解集为x >1. 答案:(1)x 1y 2=⎧⎨=⎩ (2)x >111.【解析】把x=m,y=8代入两函数解析式得方程组m a 8,m b 8,-+=⎧⎨+=⎩两方程相加得a+b=16.答案:1612.【解析】由图象求得AC 的解析式为S 1=2t, BD 的解析式为21S t 3,2=+当t=3时,S 1=6,29S .2=∴两人相距1.5千米. 答案:1.513.【解析】用待定系数法求得直线AB 和CD 的解析式分别为:y=2x+6和1y x 1,2=-+解方程组y 2x 6,x 2,1y 2,y x 12=+⎧=-⎧⎪⎨⎨==-+⎩⎪⎩得则直线AB 与直线CD 的交点坐标为(-2,2). 14.【解析】(1)设正比例函数和一次函数解析式分别为y=k 1x 和y=k 2x+3,则-2k 1=1,-2k 2+3=1, ∴11k ,2=-k 2=1,∴正比例函数解析式为1y x 2=-,一次函数解析式为y=x+3. (2)1y x 2=-过(0,0)和(2,-1)两点,y=x+3过(-3,0)和(0,3)两点,图象如图:(3)P O QP 11SO Q x 32 3.22==⨯⨯=15.【解析】(1)2(2)设y=kx+b(k,b 为常数,k ≠0),把(0,30),(3,36)代入得:b 30k 2,.3k b 36b 30==⎧⎧⎨⎨+==⎩⎩解得即y=2x+30. (3)由2x+30>49,得x>9.5, 即至少放入10个小球时有水溢出. 16.【解析】(1)y=100-x-(3x+8)=-4x+92. (2) w=60x+100(3x+8)+150(-4x+92) . w=-240x+14 600. (3) 由题意,得x 20,924x 0,≥⎧⎨->⎩解得20≤x <23.∵x是正整数,∴x可取20、21、22.∴共有3种购票方案.∵k=-240<0,∴w随着x的增大而减小,当x=22时,w的取值最小.即当A票购买22张时,购票的总费用最少.∴购票的总费用最少时,购买A、B、C三种票的张数分别为22,74,4.八年级数学上册第十五章《分式》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.下列计算正确的是( ) (A)(2x 2)3=8x 6(B)a 6÷a 2=a 3(C)3a 2×2a 2=6a 2(D)01()303⨯=2.马大哈同学做如下运算题:①x 3+x 3=x 6;②x 5-x 4=x;③x 5·x 5=x 10;④x 10÷x 5=x 2; ⑤(x 5)2=x 25.其中结果正确的是( ) (A)①②④ (B)②④ (C)③(D)④⑤3.计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( ) (A)-2(B)2(C)-4 (D)44.化简(-x)3·(-x)2的结果正确的是( ) (A)-x6(B)x6(C)-x5(D)x 55.(x-a)(x 2+ax+a 2)的计算结果是( ) (A)x 3+2ax 2-a 3(B)x 3-a 3(C)x 3+2a 2x-a 3 (D)x 2+2ax 2+2a 2-a 36.计算()2 0142 0132 0122()1.513⨯⨯-的结果是( ) (A)23(B)32(C)23-(D)32-7.下列等式不成立的是( ) (A)m 2-16=(m -4)(m +4) (B)m 2+4m =m(m +4) (C)m 2-8m +16=(m -4)2(D)m2+3m+9=(m+3)2二、填空题(每小题5分,共25分)8.分解因式:-x3y+2x2y-xy=___________.9.小亮与小明在做游戏,两人各报一个整式,两整式相除的商式必须是2xy,若小明报的被除式是x3y-2xy2,则小亮报的一个整式是___________.10.已知a+b=2,则a2-b2+4b的值为___________.11.如图1,边长为a的大正方形中有一个边长为b的小正方形,若将图1中的阴影部分拼成一个长方形如图2,比较图1和图2中的阴影部分的面积,你能得到的公式是___________.12.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:x-y=0,x+y=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码,对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是___________.三、解答题(共47分)13.(12分)计算:(1)3x2y·(-2xy)3;(2)2a2(3a2-5b);(3)(5x+2y)(3x-2y).14.(11分)计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y15.(12分)先化简,再求值:(a+b)(a-b)+(4ab3-8a2b2)÷4ab,其中a=2,b=1.16.(12分)已知:m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.八年级数学上册第十五章《分式》 单元综合测试卷详细参考答案1.【解析】选A.a 6÷a 2=a 6-2=a 4,所以选项B 错误;3a 2×2a 2=(3×2)a 2+2=6a 4,所以选项C 错误;而01()31333⨯=⨯=,所以选项D 错误;(2x 2)3=23x 2×3=8x 6,所以选项A 正确. 2.【解析】选C.x 3+x 3=2x 3,故①错误;x 5与x 4不是同类项,不能合并,故②错误;x 5·x 5=x 5+5=x 10,故③正确;x 10÷x 5=x10-5=x 5,故④错误;(x 5)2=x5×2=x 10,故⑤错误,可知选C.3.【解析】选D.由完全平方公式知,(x +2)2=x 2+2·x ·2+22=x 2+4x+4,所以“□”中的数是4. 4.【解析】选C.(-x)3·(-x)2=(-x)5=-x 5.5.【解析】选B.原式=x 3+ax 2+xa 2-ax 2-a 2x-a 3=x 3-a 3. 6.【解析】选A.()2 0142 0122 01222()1.5133=⨯⨯⨯-原式()2 0142 0122222( 1.5)111.3333=⨯⨯⨯-=⨯⨯=7.【解析】选D.选项D 中的3m 不是m 与3乘积的2倍,不能用完全平方公式进行因式分解. 8.【解析】-x 3y +2x 2y-xy =-xy(x 2-2x +1) =-xy(x-1)2. 答案:-xy(x-1)29.【解析】()3221x y 2x y2x y x y.2-÷=-答案:21x y 2-10.【解析】a 2-b 2+4b=a 2-(b 2-4b+4)+4=a 2-(b-2)2+4=(a-b+2)(a+b-2)+4, 又a+b=2,所以原式=(a-b+2)(2-2)+4=4. 答案:411.【解析】由图1可得阴影面积为a 2-b 2,由图2可得阴影面积为(a +b)(a -b), 由两图面积相等可得,a 2-b 2=(a +b)(a -b). 答案:a 2-b 2=(a +b)(a -b)12.【解析】4x 3-xy 2=x(4x 2-y 2)=x(2x+y)(2x-y), 取x=10,y=10时,2x+y=30, 2x-y=10. ∴产生的密码是103010. 答案:10301013.【解析】(1)原式=3x 2y ·(-8x 3y 3)=-24x 5y 4.。

人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解(能力提升)八年级数学上册单元过关测试

人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解(能力提升)八年级数学上册单元过关测试

2022-2023学年人教版八年级数学上册单元测试定心卷第十四章 整式的乘法与因式分解(能力提升)时间:100分钟 总分:120分一、选择题目(每题3分,共24分)1.计算()2223x x ⋅-的结果是 ( )A .46x -B .56xC .52x -D .62x【解析】 解:()2223x x ⋅-=46x -,故选:A .【点睛】本题考查单项式乘单项式,熟练掌握运算法则是解答的关键.2.下列单项式中,使多项式216a M +能用平方差公式因式分解的M 是 ( )A .aB .2bC .-16aD .2b -【解析】解:A 、16a 2+a ,不符合平方差公式,不符合题意;B 、16a 2+b 2,不符合平方差公式,不符合题意;C 、16a 2-16a ,不符合平方差公式,不符合题意;D 、16a 2-b 2,符合平方差公式,符合题意.故选:D .【点睛】本题考查了平方差公式:a 2-b 2=(a+b )(a-b ),掌握平方差公式是解题的关键.3.若323b a =+,则代数式224129a ab b -+的值为 ( )A .1-B .9C .7D .5【解析】解:∵323b a =+,∴323b a -=∴()222412932a ab b b a -+=-23= =9.故选:B .【点睛】本题考查求代数式的值,完全平方式,解题关键能发现所给的条件等式与所求代数式之间的关系.4.把一块边长为a 米(5a >)的正方形土地的一边增加5米,相邻的另一边减少5米,变成一块长方形土地,你觉得土地的面积 ( )A .没有变化B .变大了C .变小了D .无法确定【解析】解:由题意得:长方形土地的长为()5a +米,宽为()5a -米,∴长方形的面积为()()()225525m a a a +-=-,正方形的面积为2a 平方米,∴2225a a >-,∴我觉得土地的面积变小了;故选C .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式 ( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b2【解析】解:∵长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∴(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.6.阅读材料:数学课上,杨老师在求代数式245x x -+的最小值时,利用公式222)2(a ab b a b ±+=±,对式子作如下变形:22245441(2)1x x x x x ++=+++=++,因为2(2)0x +≥,所以2(2)11x ++≥,当2x =-时,2(2)11x ++=,因此245x x ++的最小值是1.通过阅读,解答问题:当x 取何值时,代数式289x x ---有最大或最小值,是多少?( )A .当4x =时,有最小值7-.B .当4x =-时,有最小值7.C .当4x =-时,有最大值7.D .当4x =时,有最大值7-.【解析】解:289x x ---=()289x x -++=()28167x x -+++=()247x -++∴当4x =-时,有最大值7,故选:C .【点睛】本题考查求代数式的最值,完全平方公式的应用,解题的关键是参照样例对代数式进行变形.7.如图,有两个正方形A ,B ,现将B 放置在A 的内部得到图甲,将A 、B 并列放置,以正方形A 与正方形B 的边长之和为新的边长构造正方形得到图乙,若图甲和图乙中阴影部分的面积分别为1和8,则正方形A 、B 的面积之和为 ( )A .8B .9C .10D .12【解析】解:设大小正方形边长分别为a 、b ,S 阴1=(a ﹣b )2=1,即a 2+b 2﹣2ab =1,S 阴2=(a +b )2﹣a 2﹣b 2=8,得:ab =4.∴a 2+b 2﹣2×4=1,∴a 2+b 2=9.故选:B .【点睛】考查了完全平方式的应用,把阴影部分表示出来是解题的关键.8.若()()35M x x =--,()()26N x x =--,则M 与N 的关系为 ( )A .M NB .M N >C .M N <D .不能确定【解析】 解:∵()()235815M x x x x =--=-+,()()226812N x x x x =--=-+,()228158123M N x x x x -=-+--+=>0,∴M N >.故选:B .【点睛】本题主要考查多项式乘以多项式、整式的加减.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.二、填空题目(每题3分,共24分)9.计算:(21)(21)x x -+--_________.【解析】解:(21)(21)x x -+--241x =-.故答案为:241x -【点睛】本题主要考查了平方差公式,熟练掌握平方差公式是解题的关键.10.计算:4.3×202.2+7.6×202.2-1.9×202.2=__________.【解析】解:4.3×202.2+7.6×202.2-1.9×202.2=202.2×(4.3+7.6-1.9)=202.2×10=2022,故答案为:2022.【点睛】本题考查提公因式法分解因式,掌握提公因式的方法是正确应用的前提.11.已知(1)(1)8x y --=,8x y +=,则xy =________.【解析】解:(1)(1)8,x y --=18,xy x y ∴--+=()18,xy x y ∴-++=()7,xy x y ∴=++8,x y ∴+=7815.xy ∴=+=故答案为:15.【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式乘法法则是解此题的根据.12.若2(3)9x m x +-+是完全平方式,则m =______.【解析】解:∵2(3)9x m x +-+是完全平方式,∴m −3=±6,解得:m =-3或9.故答案为:-3或9.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.已知21m x =+,132m y +=+,若用含x 的代数式表示y ,则y =______.【解析】∵21m x =+,132m y +=+,∴12m x -=,322m y -=⨯,∴3(1)2y x -=-⨯,即21y x =+,故答案为:21x +.【点睛】本题考查了同底数幂的乘法的逆用,掌握同底数幂的乘法是解答本题的关键.14.若n 满足22(2020)(2022)1n n -+-=,则(2020)(2022)n n --=________.【解析】解:()()()()()()222420202022=20202022+220202022n n n n n n ⎡⎤=-+--+---⎣⎦, 又22(2020)(2022)1n n -+-=,212(2020)(2022)24n n ∴+--==,3(2020)(2022)2n n ∴--=, 故答案为:32.【点睛】本题考查了完全平方公式,能灵活运用完全平方公式进行变形计算是解此题的关键.15.已知6m n -=,216730mn c c +++=,则m +n +c 的值为__________.【解析】解:∵m −n =6,∴m =n +6,∵216730mn c c +++=,∴n (n +6)+c 2+16c +73=0,∴n 2+6n +c 2+16c +73=0,∴n 2+6n +9+c 2+16c +64=0,∴(n +3)2+(c +8)2=0,∴n +3=0,c +8=0,∴n =−3,c =−8,∴m =n +6=−3+6=3,∴m +n +c =3+(−3)+(−8)=−8,∴m +n +c 的值为−8.故答案为:−8.【点睛】本题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.16.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.解:可得:(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.故答案为:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.三、解答题(每题8分,共72分)17.计算(1)计算:(2x ﹣y )2﹣(2x +y )(2x ﹣y );(2)用简便方法计算:20212﹣2020×2022.【解析】(1)解:原式=4x 2-4xy +y 2-4x 2+y 2=-4xy +2y 2;(2)解:原式=(2020+1)2-2020×(2020+2)=20202+2×2020×1+1-20202-2020×2=1.【点睛】本题考查整式混合运算,完全平方公式,平方差公式,熟练掌握完全平方公式和平方差公式是解题的关键.18.以下是小鹏化简代数式()()()()221123a a a a a -++---的过程.(1)小鹏的化简过程在第______步开始出错,错误的原因是______.(2)请你帮助小鹏写出正确的化简过程,并计算当0.5a =-时代数式的值.【解析】(1)小鹏在第①步开始出错,(a -2)2≠a 2-2a +4,错误的原因是完全平方公式运用错误. 故答案为:①,完全平方公式运用错误.(2)(a -2)2+(a +1)(a -1)-2a (a -3)=a 2-4a +4+a 2-1-2a 2+6a=2a +3.∴当0.5a =-时,原式=2×(-0.5)+3=2.【点睛】本题考查了整式的混合运算,熟练掌握相关公式及运算法则是解题的关键.19.甲、乙两个同学因式分解2x ax b ++时,甲看错了a ,分解结果为()()48x x +-,乙看错了b ,分解结果为()()26x x -+.求多项式2x ax b ++分解因式的正确结果.【解析】解:∵()()248432x x x x +-=--,甲看错了a 的值,又∵()()226412x x x x -+=+-,乙看错了b 的值,∴4a =,∴多项式()()2243284x ax b x x x x ++=+-=+-.故答案为:()()84x x +-.【点睛】本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.20.如图,学校有一块长为()2m a b +,宽为()m a b +的长方形土地,四个角留出四个边长为()m b a -的小正方形空地,剩余部分进行绿化.(1)用含a 、b 的式子表示要进行绿化的土地面积;(结果要化简)(2)当6a =,10b =时,求要进行绿化的土地面积.【解析】(1)解:由于S 绿化面积=S 长方形﹣4S 小正方形,因此有,(a +b )(a +2b )﹣4(b ﹣a )2=a 2+3ab +2b 2﹣4a 2+8ab ﹣4b 2=(11ab ﹣3a 2﹣2b 2)(m 2),答:绿化的面积为(11ab ﹣3a 2﹣2b 2)(m 2);(2)解:当a =6,b =10时,原式=660﹣108﹣200=352(m 2)答:当a =6,b =10时,绿化的土地面积为352m 2.【点睛】本题考查完全平方公式的几何背景,多项式乘多项式,单项式乘多项式,掌握完全平方公式的结构特征,多项式乘多项式,单项式乘多项式的计算方法是正确解答的前提.21.计算并观察规律,完成下列问题:例:计算:32022202120222023-⨯⨯解:设2022x =,则原式3(1)(1)x x x x =--⋅⋅+32(1)x x x =--x =2022=.(1)计算:2223224222-⨯;(2)若123456789123456786M =⨯,123456788123456787N =⨯,请比较M 、N 的大小.【解析】(1)设223=x,∴2232-224×122=x2-(x+1)(x-1)=x2-x2+1=1;(2)设123456786=x,∴M=123456789×123456786=(x+3)•x=x2+3x,N=123456788×123456787=(x+2)(x+1)=x2+3x+2,∴M<N.【点睛】本题考查了整式的混合运算,单项式乘多项式,理解例题的解题思路是解题的关键.22.初中数学的一些代数公式可以通过几何图形的面积来推导和验证.如图①,从边长为a的正方形中挖去一个边长为b的小正方形后,将其沿虚线裁剪,然后拼成一个矩形(如图②).(1)通过计算图①和图②中阴影部分的面积,可以验证的公式是:.(2)小明在计算(2+1)(22+1)(24+1)时利用了(1)中的公式:(2+1)(22﹣1)(24+1)=1•(2+1)(22+1)(24+1)=.(请你将以上过程补充完整.)(3)利用以上的结论和方法、计算:12+(3+1)(32+1)(34+1)(38+1)(316+1).【解析】(1)解:图①中阴影部分的面积可以看作两个正方形的面积差,即a2−b2,图②是长为(a+b),宽为(a−b)的长方形,因此面积为(a+b)(a−b),由图①、图②面积相等可得:(a+b)(a −b)=a2−b2,故答案为:(a+b)(a−b)=a2−b2;(2)解:原式=(2−1)•(2+1)(22+1)(24+1)=(22−1)(22+1)(24+1)=(24−1)(24+1)=28−1,故答案为:28−1;(3)解:原式=12+12(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)=12+12(32−1)(32+1)(34+1)(38+1)(316+1)=12+12(34−1)(34+1)(38+1)(316+1)=12+12(38−1)(38+1)(316+1)=12+12(316−1)(316+1)=12+12(332−1)=12+3232−12=3232. 【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确解答的前提,用代数式表示图形中阴影部分的面积是正确解答的关键.23.先阅读,再解答.例:222450x y x y +-++=,求x y +的值.解:∵222450x y x y +-++=∴()2221)440x x y y -++++=( 即()221)20x y -++=( 221)0,(20x y -≥+≥()221020x y ∴-=+=(),()1,2x y ∴==- 1x y ∴+=-(1)已知22464100x y x y +-++=,求xy 的值;(2)已知c a b 、、为ΔABC 的三边,且满足()222220,a b c b a c ++-+=判断ΔABC 的形状,并说明理由.【解析】(1)解:∵22464100x y x y +-++=∴()2269)4410x x y y -++++=( 即()223)210x y -++=( ∵()223)0,210x y -≥+≥( ∴()()2230,210x y -=+= ∴13,2x y ==- ∴32xy =-.(2)解:ΔABC 是等边三角形,理由∵()222220,a b c b a c ++-+=∴()()2222220a ab b b bc c -++-+=∴()()220a b b c +-=-∵()()220,0a b b c -≥-≥∴()()220,0a b b c -=-=∴,a b b c ==即a b c ==∴ΔABC 是等边三角形.【点睛】本题考查了配方法的应用以及非负数的性质,等边三角形的判定,熟练掌握完全平方公式是解题的关键.24.(1)请用两种不同的方法表示图中阴影部分的面积和.方法1:____________________________;方法2:____________________________.(2)请你直接写出三个代数式:()2a b +,22a b +,ab 之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:①已知5m n +=,2220m n +=,求mn 和()2m n -的值;②已知()()222021202374x x -+-=,求()22022x -的值.【解析】解:(1)方法1:两个阴影部分的面积和就是边长为a 的正方形,与边长为b 的正方形的面积和,即22a b +;方法2:两个阴影部分的面积和也可以看作从边长为a b +的正方形面积中减去两个长为a ,宽为b 的长方形面积,即2()2a b ab +-;故答案为:22a b +,2()2a b ab +-;(2)由(1)得,222()2a b a b ab +=+-;(3)①5m n +=,222()252m n m mn n ∴+==++,2220m n +=,25mn ∴=, 即52mn =;222()220515m n m mn n -=-+=-=,答:52mn =,2()15m n -=;②设2021a x =-,2023b x =-,则2a b -=,2222(2021)(2023)74a b x x +=-+-=, 所以2222()7423522a b a b ab +---===, 即(2021)(2023)35x x --=,所以2[(2022)1][(2022)1](2022)135x x x -+--=--=,即2(2022)36x -=.【点睛】本题考查完全平方公式的几何背景,解题的关键是用不同的代数式表示阴影部分的面积.25.在求代数式值的问题中,有时通过观察式子的特点,可以找到较为简单的解法. 例如,若x 满足()()2510x x --=,求()()2225x x ---的值,可以按下列的方法来解: 解:设()2x a -=,()5x b -=,则()()2510ab x x =--=,()()253a b x x -=---=,∴()()22449a b a b ab +=-+=,∴7a b +=±,∴()()()()2222257321x x a b a b a b ---=-=+-=±⨯=±.请仿照上面的方法求解下面的问题:(1)若x 满足()()496x x --=,求()()2249x x -+-的值; (2)将正方形ABCD 和正方形EFGH 按如图所示摆放,点F 在BC 边上,EH 与CD 交于点I ,且1ID =,2CG =,长方形EFCI 的面积为24,以CF 为边作正方形CFMN .设AD x =,①用含x 的代数式直接表示EF 和CF 的长;②求图中阴影部分的面积.【解析】(1)解:设()4x a -=,()9x b -=,则()()496ab x x =--=,()()495a b x x -=---=, ∴()()()22222249252637x x a b a b ab -+-=+=-+=+⨯=;(2)①∵四边形ABCD 是正方形,四边形EFGH 是正方形,四边形EFCI 是长方形,1ID =,2CG =, ∴CD =AD =x ,∴1EF IC x ==-,∴FG =1EF x =-,∴123CF x x =--=-;②∵长方形EFCI 的面积为24,∴()()1324x x --=,设1x a -=,3x b -=,则24ab =,2a b -=,∴()()224100a b a b ab +=-+=,∵0a >,0b >,∴10a b +=,∴()()()()22221320S x x a b a b a b =---=-=+-=阴影.【点睛】本题主要考查了完全平方公式和平分差公式的应用,牢记完全平方公式和平方差公式以及变形公式(a +b )2=(a −b )2+4ab 是解题关键.祝福语祝你考试成功!。

八年级上册数学第十四章 14.3因式分解 测试卷(含答案)

八年级上册数学第十四章 14.3因式分解 测试卷(含答案)

八年级上册数学第十四章 14.3因式分解 测试卷知识要点一:提公因式法1.下列变形是因式分解的是( ) A .a ²-b ²-1=(a+b)(a-b)-1 B .ax ²+x+b ²=x(ax+1)+b ² C .(a+2)(a-2)=a ²-4 D .4x ²-9=(2x+3)(2x-3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( ) A .xyz B .2x C .2z D .2xz 3.将21a ²b-ab ²提公因式后,另一个因式是( )A. a+2bB.-a+2bC.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( ) A. a ²-b ²= (a+b) (a-b) B.a ²-2ab+b ²= (a-b)² C.ab+ac=a (b+c) D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab=2,则3a ²b+3ab ²的值是( ) A .24 B .18 C .12 D .86.多项式x ²+x ⁶提取公因式x ²后的另一个因式是( ) A .x ⁴ B .x³ C .x ⁴+1 D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+ c ²=ac+ bc+ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形 8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=_____.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、_____. 10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于_____. 11.计算:5×3⁴+9×3⁴-12×3⁴=_____.12.已知a=49,6=109,则ab - 9a 的值为_____. 13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a .3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x-1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.知识要点二:公式法17.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B.-1-m²C.a²-9b² D.4m²-118.下列各式中不是完全平方式的是()A.x²-10x+25 B.a²+a+41C.4n²+n+4 D.9m²+6m+119.下列四个多项式,能因式分解的是()A.a²+b²B.a²-a+2C.a²+3bD.(x+y)²-420.若x为任意有理数,则多项式-41x²+x-1的值()A.一定为负数B.一定为正数C.不可能为正数D.不可能为负数21.若n为任意整数,则(n+7)²-n²一定能被______整除()A.7 B.14 C.7或14 D.7的倍数22.下列因式分解不正确的是()A.2x³-2x= 2x (x²-1) B.mx²-6mx+ 9m= m(x -3)²C.3x²-3y²=3 (x+y)(x-y) D.x²-2xy+y²= (x-y)²23.若9x²-kx+4是一个完全平方式,则k=_____.24.已知x²+6xy+9y²+∣y-1∣=0,则x+y=_____.25.若x²+x+m=(x- n)²,则m=_____,n=_____.26.如果x+y=-3,x-y=6,则代数式2x²-2y²的值为_____.27.若9x²-M= (3x+y-1)(3x-y+1),则M=_____.28.分解因式:4+12 (a-b)+9(a-b)²=_____.29.因式分解:(1) 8a³ - 2a(a+1)²; (2) m²-4n²+4n -1.30.已知x-y=1,xy=2,求x³y-2x²y²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a,b为何值时,多项式a²+b²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.参考答案1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x²-2x+4)9. 3m⁴n+3m²n 6m²n³-3m²n(答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y)²-x(x+2y)=(x+2y)(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b⁴-3a⁴b⁴ - 3a²b+2a⁴b⁴+ 3a²b=a³b⁴(6 -a).当a= -1, b-2时,原式=(-1)³×2⁴×【6 -(-1)】- 16×7=-112.15.∵x²+4x-1=0,∴x²+4x=1.∴2x⁴+ 8x³- 4x²-8x+1=2x²(x²+4x) -4(x²+4x) +8x+1=2x²·1 -4×1+8x+1= 2x²+8x -3 =2(x²+4x)-3=2×1-3=-1.16.因为2x²+mx+n=(2x-3)(x+ 21) =2x²-2x-23,所以m= -2, n= 23-.17.B 18.C 19.D 20.C 21.A 22.A23.±12 24.-2 25.4121-26.-3627.(y-1)²28.(2+3a - 3b)²29.(1)原式=2a[4a²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m²- (4n²-4n+1)=m²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2. 31.(1)是.理由如下: ∵28=8²- 6², 2016= 505² - 503² ∴28是“神秘数”;2016是“神秘数”. (2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k) (2k+2+2k)= 2(4k+2)=4(2k+1), ∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”. 32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²-(x-1)²,当x-1=5时,原式=52)5( .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
3 2 3 -4
x +
4x 2 ÷x =- +8x B .3a 2· 3=12a 5 2 2 2 2
第十四章达标测试卷
一、选择题(每题 3 分,共 30 分)
1.计算 2x 3·x 2 的结果是(
)
A .-2x 5
B .2x 5
C .-2x 6
D .2x 6
2.下列运算正确的是(
)
A .3a 2-2a 2=1
B .a 2· =a 6
C .(ab) ÷a =b 2
D .(-ab) =-a 3b 3
3.下列多项式中,不能进行因式分解的是(
)
A .-a 2+b 2
B .-a 2-b 2
C .a 3-3a 2+2a
D .a 2-2ab +b 2-1
4.多项式 a(x 2-2x +1)与多项式 x 2-1 的公因式是(
)
A .x -1
B .x +1
C .x 2+1
D .x 2
5.下列计算错误的是(
)
A. 1 1 1 4a
C .(a +3b)(3a +b)=3a 2+3b 2+10ab
D .(x +y) -
xy =x 2+y 2
5 2 019 7 2 020
6.计算 7 ×5 ×(-1) 021的结果是(
)
5
7 5
7
A.7
B.5 C .-7 D .-5
7.若 3x =4,9y =7,则 3x -2y 的值为(
)
4 7 2 A.7
B.4
C .-3
D.7
8.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形
(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠,无缝隙),则长方形的
面积为(
)
A .(2a 2+5a)cm 2
B .(3a +15)cm 2
C .(6a +9)cm 2
D .(6a +15)cm 2
(第 8 题)
(第 10 题)
n
9.已知 a ,b ,c 为一个三角形的三边长,则(a -b )2-c 2 的值(
)
A .一定为负数
B .一定为正数
C .可能为正数,也可能为负数
D .可能为零
10.7 张如图①的长为 a ,宽为 b (a >b )的小长方形纸片,按图②的方式不重叠地
放在长方形 ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角
与右下角的阴影部分的面积的差为 S ,当 BC 的长度变化时,按照同样的方式
放置,S 始终保持不变,则 a ,b 满足(
)
5
7
A .a =2b
B .a =3b
C .a =2b
D .a =4b
二、填空题(每题 3 分,共 30 分)
11.计算:|-3|+(π+1)0- 4=________.
12.若 a m =2,a n =8,则 a m +
=________. 13.已知 2a 2+2b 2=10,a +b =3,则 ab 的值为________. 14.计算 2 019×2 021-2 0202=__________.
15.若|a +2|+a 2-4ab +4b 2=0,则 a =________,b =________. 16.计算:1.672-1.332=________,772+77×46+232=________.
17.若关于 x 的式子(x +m )与(x -4)的乘积中一次项是 5x ,则常数项为________. 18.若 m -n =-1,则(m -n )2-2m +2n 的值为________.
⎪a b ⎪
19.将 4 个数 a ,b ,c ,d 排成 2 行、2 列,两边各加一条竖直线记成⎪ ⎪,定
⎪c d ⎪
⎪a b ⎪
⎪x +1 1-x ⎪ 义⎪ ⎪=ad -bc ,上述记号就叫做 2 阶行列式.若⎪ ⎪=8,则 x
⎪c d ⎪ ⎪ 1-x x +1⎪
=________.
20.请看杨辉三角如图①,并观察下列等式如图②:
(第 20 题)
根据前面各式的规律,则(a+b)6=____________________________________.三、解答题(21,22,24,25题每题6分,23,26题每题8分,27,28题每题10
分,共60分)
21.计算.
(1)(a+b-c)(a+b+c);(2)(2a+3b)(2a-3b)-(a-3b)2.
3
22.(1)先化简,再求值:(2+x)(2-x)+(x-1)(x+5),其中x=2.
(2)已知4x=3y,求式子(x-2y)2-(x-y)(x+y)-2y2的值.
23.把下列各式分解因式:
(1)x2y-y;(2)a2b-4ab+4b;
(3)x2-2x+(x-2);(4)(y+2x)2-(x+2y)2.
24.在对二次三项式x2+px+q进行因式分解时,甲同学因看错了一次项系数而将其分解为(x-2)(x-8),乙同学因看错了常数项而将其分解为(x+2)(x-10),试将此多项式进行正确的因式分解.
25.学习了因式分解的知识后,老师提出了这样一个问题:设n为整数,则(n+
7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出
一个反例.你能解答这个问题吗?
b c
分给七(1)班的清洁区是一块边长为(a -2b )m 的正方形
0<b <2⎪.
26.已知 a ,, 是△ABC 的三边长,且 a 2+2b 2+c 2-2b (a +c)=△0,你能判断 ABC
的形状吗?请说明理由.
27.如图,某校一块边长为 2a m 的正方形空地是七年级四个班的清洁区,其中
⎛ a ⎫ ⎝ ⎭
(1)求出七(3)班的清洁区的面积;
(2)若 a =10,b =2,七(4)班的清洁区的面积比七(1)班的清洁区的面积多多少
平方米?
(第 27 题)
28.已知x≠1,(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.
(1)根据以上式子计算:
①(1-2)×(1+2+22+23+24+25);
②2+22+23+…+2n(n为正整数);
③(x-1)(x99+x98+x97+…+x2+x+1).
(2)通过以上计算,请你进行下面的探索:
①(a-b)(a+b)=____________;
②(a-b)(a2+ab+b2)=____________;
③(a-b)(a3+a2b+ab2+b3)=____________.
答案
一、1.B 2.D 3.B 4.A 5.D 6.D7.A8.D9.A10.B
二、11.212.16
13.214.-1
15.-2;-116.1.02;1000017.-36
18.319.2
20.a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6
三、21.解:(1)原式=(a+b)2-c2=a2+2ab+b2-c2.
(2)原式=4a2-9b2-(a2-6ab+9b2)=3a2+6ab-18b2.
22.解:(1)原式=4-x2+x2+4x-5=4x-1.
33
当x=2时,原式=4×2-1=5.
(2)原式=x2-4xy+4y2-(x2-y2)-2y2=-4xy+3y2.
因为4x=3y,
所以原式=-3y·y+3y2=0.
23.解:(1)原式=y(x2-1)=y(x+1)(x-1).
(2)原式=b(a2-4a+4)=b(a-2)2.
(3)原式=x(x-2)+(x-2)=(x+1)(x-2).
(4)原式=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]
=(y+2x+x+2y)(y+2x-x-2y)
=(3x+3y)(x-y)
=3(x+y)(x-y).
24.解:∵(x-2)(x-8)=x2-10x+16,
∴q=16.
∵(x+2)(x-10)=x2-8x-20,
∴p=-8.
原多项式因式分解为x2-8x+16=(x-4)2.
25.解:一定能被20整除.理由如下:
∵(n+7)2-(n-3)2=(n+7+n-3)(n+7-n+3)=(2n+4)×10=20(n+2),∴一定能被20整除.
1
26.△解: ABC 是等边三角形.理由如下:
∵a 2+2b 2+c 2-2b (a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b )2+
(b -c)2=0.∴a -b =0 且 b -c =0,即 a =b =c △.故 ABC 是等边三角形.
27.解:(1)∵2a -(a -2b )=a +2b ,
∴七(3)班的清洁区的面积为(a +2b )(a -2b )=(a 2-4b 2)(m 2).
答:七(3)班的清洁区的面积为(a 2-4b 2)m 2. (2)(a +2b )2-(a -2b )2
=a 2+4ab +4b 2-a 2+4ab -4b 2
=8ab(m 2).
∵a =10,b =2,∴8ab =160.
答:七(4)班的清洁区的面积比七(1)班的清洁区的面积多 160 m 2.
28.解:(1)①原式=1-26=-63;
②原式=2n +
-2;
③原式=x 100-1.
(2)①a 2-b 2;②a 3-b 3;③a 4-b 4。

相关文档
最新文档