岩石润湿性测定实验
润湿性
3.2 聚表剂改变岩石润湿性能力评价储层岩石润湿性是一种综合特性,决定着油藏流体在岩石孔道内的微观分布和原始分布状态,润湿性的变化将影响毛管压力、相对渗透率、束缚水饱和度、残余油饱和度。
在注水的情况下,岩石孔隙内有油水两相共存,究竟是水附着到岩石表面把油驱出,还是水只能把孔隙中部的油挤出,这主要是由岩石的润湿性决定的。
3.2.1 润湿性的基本概念润湿性的定义为:一种流体在其它非混相流体存在条件下,在固体表面展开或粘附的趋势。
在岩石-油-水体系中,其中一种流体在其分子力的作用下,沿固体表面驱走另一种流体的现象,它反映了固体表面对液体的亲合或憎离特性。
将一滴液体滴在物体表面上,如果液体能在表面迅速铺开,说明液体润湿固体表面,如果液滴不散开,则说明液体不能润湿固体表面。
在讨论润湿现象时,通常总是指三相体系:一相为固体,另一相为液体,第三相为气体或另一种液体。
说某种液体润湿固体与否,总是相对于另一相气体(或液体)而言的。
如果某一相液体能润湿固相,则另一相就不润湿固相。
润湿具有选择性和相对性[76]。
3.2.1.1 润湿程度的表征润湿性是岩石的基本特性之一,对油气水在孔隙中的分布、驱油效率、最终采收率都有明显的影响。
因此,需要定性或定量的描述岩石润湿程度,一般用润湿角或附着功来表示。
(1)润湿角通过液-液-固或气-液-固三相交点作液-液或液气界面的切线,切线与固-液界面之间的夹角成为润湿接触角,用θ表示,并规定θ从极性大的液体一面算起,它的大小表征岩石表面为液体选择润湿的程度。
按照润湿角的不同将岩石润湿性分为以下几种情况:①当θ<90°时,水可以润湿岩石,岩石亲水性好或称水湿;②当θ=90°时,油、水润湿岩石的能力相当,岩石既不亲水也不亲油,为中性润湿;③当θ>90°时,油可以润湿岩石,岩石亲油性好或称油湿。
(2)附着功27附着功是指将单位面积的固-液界面在非湿相流体中拉开所作的功。
实验八 矿物润湿性的测定—接触角法
实验八矿物润湿性的测定—接触角法一、实验目的本实验包括矿物润湿接触角和溶液表面张力测定两部分内容。
通过测定与计算,了解和掌握:(1)不同的矿物具有不同的天然可浮性;(2)矿物表面的润湿性是可以调节的;(3)从实验认识矿物表面润湿性与可浮性的关系,并通过调节来改变各种矿物表面的润湿性;(4)测定接触角和溶液表面张力的实验技术。
二、实验原理1.润湿角测定原理本实验测定方法是:分别在洁净的矿物磨光片表面和经过选矿剂处理的矿物磨光片表面上滴上一个水滴,在固—液—气三相介面上,由于表面张力的作用,形成接触角。
然后用聚光灯通过显微镜在屏幕上放大成像,用量角器直接量得接触角的大小。
2.溶液表面张力测定原理—最大气泡压力法设毛细管的半径为r且毛细管刚好浸入液面,则气泡由毛细管中逸出时的最大附加压力为:(8-1)(8-2)式中Dh为U形压力计所显示的液柱高差;r为U形压力计内的液体密度;g为重力加速度。
对于直径一定的毛细管有:(8-3)该式是最大泡压法测定表面张力的基本关系式。
式中K称为仪器常效。
其值可用已知表面张力的液体(如水)标定出。
三、实验仪器与药剂1、润湿角测定仪(见图8-1);2、最大气泡压力法表面张力测定装置(见图8-2);3、样品:方铅矿(黄铜矿)和萤石矿磨光片;4、药剂:丁黄药、油酸钠、NaOH等;5、工具:各种玻璃器皿。
图8-1润湿角测定仪结构图1-测微鼓轮,2-调焦手轮,3-测量显微镜,4-升降手轮,5-固定手轮,6-底座,7-调平手轮,8-横向移动手轮,9-样品盒,10-照明光源,12-电源图8-2最大气泡压力法测量表面张力装置图1-毛细管;2-有支管的玻璃试管;内装溶液2a ;支管2b与压力计及控压系统相连;3-恒定2a 温度的水槽;4-双管压务计;5-滴水减压系统;6-体系压力调整夹子;7-烧杯四、实验步骤1.润湿角测定步骤(1)清洗矿样:将萤石、方铅矿(黄铜矿)的磨光片在2000号金相砂纸上擦干净(抛光、去氧化膜)放入2-5%的NaOH溶液中煮沸2~5分钟,然后用蒸馏水冲洗干净,置入存有蒸馏水的烧杯中待用;(2)配药:取丁黄药和油酸钠分别配成浓度为3克/升水溶液备用;(3)矿物在纯水中接触角的测定:将净化后的光片用滤纸吸干其表面水份,放在样品盒子上,接通电探11,调焦距2,找出矿物表面成像图。
岩石体积密度、吸水率测试实验报告 -回复
岩石体积密度、吸水率测试实验报告-回复1. 测定样品的岩石体积密度;2. 测定样品的吸水率。
实验原理:1. 岩石体积密度:将已知质量的岩石样品称重,然后根据样品的几何形状计算其体积,最后计算岩石的体积密度。
2. 吸水率:将干燥的岩石样品放入水中浸泡,并定时记录吸水过程中样品的质量变化,最后根据质量变化计算吸水率。
实验步骤:1. 测量样品的质量,并记录为m(g)。
2. 测量样品的几何形状(如长、宽、高),并计算出样品的体积V(cm³)。
3. 计算样品的岩石体积密度ρ(g/cm³),公式为ρ= m / V。
4. 用干燥的样品重量m1(g)并记录。
5. 将样品放入水中浸泡,计时开始。
6. 每隔一段时间(如10分钟)记录一次样品的质量,并持续浸泡一段时间(如1小时)。
7. 计算各个时间点的样品吸水量Δm(g),公式为Δm = m - m1。
8. 计算各个时间点的样品吸水率R(%),公式为R = Δm / m1 ×100%。
实验数据记录:样品质量m = 50g样品体积V = 30cm³第10分钟的吸水量Δm1 = 5g第20分钟的吸水量Δm2 = 7g第30分钟的吸水量Δm3 = 9g第40分钟的吸水量Δm4 = 10g第50分钟的吸水量Δm5 = 11g第60分钟的吸水量Δm6 = 12g数据处理与结果分析:1. 岩石体积密度的计算:岩石体积密度ρ= m / V = 50g / 30cm³= 1.67 g/cm³2. 吸水率的计算:第10分钟的吸水率R1 = Δm1 / m1 ×100% = 5g / 50g ×100% = 10% 第20分钟的吸水率R2 = Δm2 / m1 ×100% = 7g / 50g ×100% = 14% 第30分钟的吸水率R3 = Δm3 / m1 ×100% = 9g / 50g ×100% = 18% 第40分钟的吸水率R4 = Δm4 / m1 ×100% = 10g / 50g ×100% = 20% 第50分钟的吸水率R5 = Δm5 / m1 ×100% = 11g / 50g ×100% = 22% 第60分钟的吸水率R6 = Δm6 / m1 ×100% = 12g / 50g ×100% = 24%实验结论:1. 样品的岩石体积密度为1.67 g/cm³。
油藏开发阶段岩石表面润湿性控制方法研究
油藏开发阶段岩石表面润湿性控制方法研究油藏开发阶段岩石表面润湿性控制方法研究1、油藏开发阶段岩石表面润湿性的测试目的和意义岩石的表面润湿性指的是油藏开发阶段岩石中原油与水分及酸液之间的相互作用,而岩石表面润湿性对原油开采过程中产生的各种现象也会产生较大影响。
因此对岩石表面润湿性进行监测是非常重要的,在实际应用时,要从以下几个方面入手:一是油藏开发阶段岩石表面润湿性在油藏开发中的变化情况;二是油藏开发阶段岩石表面润湿性与原油流动特征之间的关系;三是油藏开发阶段岩石表面润湿性的污染机理;四是可能引起岩石表面润湿性变化的相关因素。
2、岩石表面润湿性的测试装置水槽和试油管2.1试油管由内径为160mm的硬聚氯乙烯塑料管( 1.6米)和支架构成。
通过向试油管中注入适量水(称之为试油管液),记录其内外表面所形成的水膜面积(单位m2)和破坏时间(称之为试油管损),通过公式:试油管损=(实际接触面积( m2)-实际破坏面积( m2))×100/(实际接触面积( m2)-1),即可得出试油管表面润湿性,并根据这一数值估算出地层水沿试油管的润湿运移能力。
2.2水槽它主要有底座、上口盖、两端、侧壁等部分组成。
将不同质量分数的(一般为30%)的水倒入水槽后,静止沉降4~6小时后取出观察其上表面水膜的厚度。
实验结果表明,水越清,粘滞性越强,则所形成的水膜越薄,且运移时间越短,说明岩石表面润湿性越好。
3、岩石表面润湿性控制技术3.1利用岩心样品来评价岩石表面润湿性3.1.1方法一首先需要选取一些较为典型的砂岩或者是页岩作为试件,将岩心切成薄片,然后再放入相应的润湿剂中浸泡,使其完全浸入润湿剂中,以改善岩石表面润湿性。
2.2水槽它主要有底座、上口盖、两端、侧壁等部分组成。
将不同质量分数的(一般为30%)的水倒入水槽后,静止沉降4~6小时后取出观察其上表面水膜的厚度。
试验结果表明,水越清,粘滞性越强,则所形成的水膜越薄,且运移时间越短,说明岩石表面润湿性越好。
用亚甲基蓝吸附法测量油层岩石的润湿性
用亚甲基蓝吸附法测量油层岩石的润湿性用亚甲基蓝吸附法测量油层岩石的润湿性摘要:储层岩石润湿性影响油、水在储层中的分布,对原油开采过程均具有至关重要的作用。
测量储层岩石润湿性的标准方法(Amott and USBM法)属于经验方法,包括在润湿相和非润湿相共存时让油、水两相相互驱替。
测量结果可能与流体的饱和度和实验过程有关,而产生某些不确定性。
本文提出根据亚甲基蓝在储层岩石表面的吸附面积分数,测量固体表面的润湿性。
该法具有一定的理依据,测量结果不受流体的饱和度和实验过程的影响。
关键词:储层岩石润湿性亚甲基蓝吸附一、前言储层润湿性表示油、水两相流体对固体表面粘附或铺展趋势的相对大小,如果油在储层岩石表面粘附或铺展趋势比水大,则为亲油;反之则为亲水。
储层润湿性决定了油、水在储层中的分布,对毛管压力和油、水的相渗透率具有重要影响,在储层评价、动态分析和制定开发方案中是一重要的物性参数[1,2]。
研究储层润湿性主要有接触角法 [3]、润湿指数法[1]和油滴粘附法[4]。
还有选择性吸附等方法[5-74] ,似未引起研究者足够的重视。
接触角法适合于平滑的单晶的矿物表面,有可靠的热力学依据,但不确定性因素太多,受润湿滞后等因素的影响。
润湿指数法根据油、水在储层岩石中相互驱替能力的差异,归纳出的各种润湿性指数来量度储层的润湿性,具有较好的重现性和对比性而广为应用,但属于经验方法,难以在理论上加以发展。
油滴粘附法和接触角法类似,仅适合于平滑的矿物表面和有一定的理论依据,不受润湿滞后等因素的影响,比接触角法简便易行,可用著名的DLVO理论加以说明[8,9]。
在选择性吸附法方面,Torske Lisa和 Skauge Arne[5]基于正庚醇仅吸附于亲油性固体粉末表面,亚甲基蓝仅吸附于亲水性固体粉末表面,而且均服从Langmuir单分子吸附规律,提出根据它们各自在固体表面的吸附面积测量固体表面的润湿性。
Trbelsi [6]将其简化为测量固体表面与原油接触后正庚醇吸附面积的变化,测量固体表面的润湿性。
岩石润湿性测定实验
中国石油大学 渗流物理 实验报告实验日期:成绩:班级: 学号: 姓名: 教师:同组者:岩石润湿性测定实验一.实验目的1.了解光学投影法测定岩石润湿角的原理及方法; 2.了解界面张力的测定原理及方法; 3.加深对岩石润湿性、界面张力的认识。
二.实验原理1.光学投影法测定岩石润湿角液体对固体表面的润湿情况可以通过直接测定接触角来确定。
将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ:D htg22=θ式中, θ—润湿角,°; h —液滴高度,mm ;D —液滴和固体表面接触的弦长,mm 。
图1 投影法润湿角示意图 2.悬滴法测定液滴界面张力悬滴法适用于密度差较大的测定液-液或气-液之间的界面张力,测量范围为10-1~10-2 mN/m 。
液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。
测量液滴的相关参数,利用下式计算界面张力:, 21ρρρ-=Δ , esn n d d S =式中,σ—界面张力,mN/m ;2egd Hρσ∆=21ρρ、—待测两相流体的密度,g/cm3;ρ∆—两相待测试样的密度差,g/cm3; ed —实际液滴的最大水平直径,cm ;sn d —从液滴底部算起,高度为e d n10高度处液滴的直径,cm ;n S —液滴e d n10高度处的直径与最大直径的比值;H —液滴形态的修正值,由n S 查表得到。
a )烧杯中气泡或液滴形状 (b ) 气泡或液滴放大图图2 悬滴法测界面张力示意图三.实验仪器图3 HARKE-SPCA 接触角测定仪器四.实验步骤1.将直流电源的插头一端插入接线板内另一端插入仪器后面的电源插座内。
2.将通讯线连接主机与计算机COM2通讯口。
油层物理-岩石润湿性测定实验
中国石油大学 油层物理 实验报告实验日期: 2014.10.10 成绩:班级:石工 学号: 姓名: 教师: 同组者:岩石润湿性测定实验一、实验目的1.了解光学投影法测定岩石润湿角的原理及方法; 2.了解界面张力的测定原理及方法;3.加深对岩石润湿性、界面张力的认识。
二、实验原理1.光学投影法测定岩石润湿角液体对固体表面的润湿情况可以通过直接测定接触角来确定。
将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ:2tan=2hD式中 θ—润湿角,(); h —液滴高度,mm ;D —液滴和固体表面接触的弦长,mm 。
图1 投影法测润湿角示意图2.悬滴法测定液滴界面张力悬滴法适用于密度差较大的测定液-液或气-液之间的界面张力,测量范围为10-1~10-2mN/m 。
液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。
测量液滴的相关参数,利用下式计算界面张力:2=e gdHρσ∆ 12=ρρρ∆- S =snn ed d 式中 σ—界面张力,mN/m ;1ρ、2ρ—待测两相流体的密度,g/cm 3;ρ∆—两相待测试样的密度差,g/cm 3;e d —实际液滴的最大水平直径,cm ;sn d —从液滴底部算起,高度为10e nd 高度处液滴的直径,cm ;n S —液滴10e nd 高度处的直径与最大直径的比值;H —液滴形态的修正值,由n S 查表得到。
(a )烧杯中气泡或液滴形状 (b )气泡或液滴放大图图2 悬滴法测界面张力示意图三、实验流程图3 接触角测定仪四、实验操作步骤1.打开接线板的电源开关。
2.顺时针旋转仪器后面的光源旋钮,光源亮度逐渐增强。
3.打开接触角软件图标,开启视频。
4.调整滴液针头:先向下移动滴液针头,停在变倍显微镜水平线以上的位置,然后旋转固定在上下移动器上的水平移动旋钮,左右调整针头,当软件图像显示窗口出现针头虚影时停止。
3-2润湿性
润湿现象:
油藏岩石润湿性 和油水微观分布
水迅速散成薄薄的一层
干净的玻璃板上滴一滴水
干净的玻璃板上滴一滴水银
水银聚拢形成球状
在铜片上滴一滴水银
水银呈馒头状
一、岩石的润湿性
1、润湿的定义
液体在表面分子力作用下在固体表面的流散现象。
2、衡量润湿性的参数
润湿角θ
定 义
过气液固或液液固 三相交点对液滴表 面所作的切线与液 固表面所夹的角。
前进角
θ1>θ
后退角
θ2<θ
Δθ θ 1 θ 2
三、润湿滞后
在两相驱替过程中出现
润湿滞后:指由于三相周界沿固体表面移动的 迟缓而产生润湿角改变的现象。
根据引起润湿滞后的原因不同 静润湿滞后
动润湿滞后
引起润湿角改变的三种因素
(1)与三相周界的移动方向有关
由于润湿次 序不同而引起 的润湿角改变 的现象称为静 润湿滞后。
V o 1 离心吸水排油量 Vw1
油湿指数
自动吸油排水量 自动吸油排水量
V w 1 离心吸油排水量
Vw2
由润湿指数评价岩石的润湿性
润湿指数 油湿指数 水湿指数 润湿性
亲油
1~0.8 0~0.2
弱亲油
0.7~0.6 0.3~0.4
中性
两指数接 近
弱亲水
0.3~0.4 0.7~0.6
亲水
0~0.2 1~0.8
湿相驱替非湿相的过程称为“吸吮过程。”
2、亲油岩石中的油水分布
(a)含水饱和度较低时:油分布在岩石表面,水首先沿着 大孔道形成曲折迂回的连续水流渠道,而油只是在水流的 摩擦携带作用下沿孔隙壁面流动; (b)当继续注水时,水逐渐进入较小的孔道,并使这些小孔 道串联起来形成另外一些水流渠道; (c)当形成的水流渠道多得几乎使水畅通地渗流时,油实 际上已被憋死,残余的油停留在一些小孔道内及在水流通 道的固体表面上以油膜形式存在。
油气藏动态分析:-储层岩石润湿性分析
三、油水在岩石孔道中的分布
亲油岩石:
油水分布:水从大孔道进入小孔 道,油以油膜形式存在。 水驱油:孔道中留下大量的残余 油,水驱采收率较低。
1.2.4储层岩石润湿性分析
谢谢欣赏
1.2.4储层岩石润湿性分析
1.2.4储层岩石润湿性分析
【学习目标】
1.掌握润湿性的定义及储层岩石润湿性的判断 方法;
2.了解影响储层岩石润湿性的因素; 3.会判断、分析岩石的润湿性。
1.2.4储层岩石润湿性分析
润湿性:当固体表面存在不相溶流体时,某相流体优先附着到固体表面 的趋势。
1.2.4储层岩石润湿性分析
亲油岩石
油不容易驱替,水利用率低, 无水采收率低。
大庆油田储层岩石润湿性与渗透率有一定的关系:空气渗透率小于300毫达西的 油层一般是偏亲水的;渗透率大于1200毫达西的油层,一般是偏亲油的。
1.2.4储层岩石润湿性分析
三、油水在岩石孔道中的分布
亲水岩石:
a图:油呈迂回状连续分布 在孔隙中间。
b图:油水共存。 c图:油呈“孤滴状”。
定 义 : 过气液固或液液固三相交点对液滴表面作切线,切线与液固表面的夹角即为 润湿接触角θ。
1.2.4储层岩石润湿性分析
一、储层表面的原始润湿性
2. 润湿接触角θ
润湿性:亲水、亲油和中性
1.2.4储层岩石润湿性分析
二、注水过程中润湿性的转化
亲水岩石
水与岩石内壁可接触, 驱替效果好,无水采收率高。
一、储层表面的原始润湿性
1. 润湿性
润湿性:指油藏未开发前或者注水开发过程中,注入水到达之前的润湿性。
润 湿 : 自由界面能存在于任何两相的界面上,在固-液界面上的界面能是以润湿作 用体现出来的。液、固两相接触后,若体系的自由能降低,即为润湿。
中国石油大学(华东)+++岩石润湿性地测定
中国石油大学油层物理实验报告实验日期: 2013/10/11 成绩:班级: 石工 学号: : 教师: 俨彬同组者:岩石润湿性测定实验一.实验目的1.了解光学投影法测定岩石润湿角的原理及方法; 2.了解界面力的测定原理及方法; 3.加深对岩石润湿性、界面力的认识。
二.实验原理1.光学投影法测定岩石润湿角液体对固体表面的润湿情况可以通过直接测定接触角来确定。
将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ:Dhtg22=θ式中, θ—润湿角,°; h —液滴高度,mm ;D —液滴和固体表面接触的弦长,mm 。
图1 投影法润湿角示意图 2.悬滴法测定液滴界面力悬滴法适用于密度差较大的测定液-液或气-液之间的界面力,测量围为10-1~10-2mN/m 。
液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。
测量液滴的相关参数,利用下式计算界面力:, 21ρρρ-=Δ , esn n d d S =式中,σ—界面力,mN/m ;21ρρ、—待测两相流体的密度,g/cm 3;ρ∆—两相待测试样的密度差,g/cm 3; e d —实际液滴的最大水平直径,cm ;sn d —从液滴底部算起,高度为e d n 10高度处液滴的直径,cm ;n S —液滴e d n 10高度处的直径与最大直径的比值;H —液滴形态的修正值,由n S 查表得到。
(a )烧杯中气泡或液滴形状 (b ) 气泡或液滴放大图图2 悬滴法测界面力示意图2e gd Hρσ∆=三.实验仪器图3 HARKE-SPCA接触角测定仪四.实验步骤1.将直流电源的插头一端插入接线板另一端插入仪器后面的电源插座。
2.将通讯线连接主机与计算机COM2通讯口。
4班 五组 岩石润湿性评价
定性测定方法------Wilhelmy
动力板法
该方法测得的是粘附力,可将这种力直接与油层其它离作比 较,使油藏润湿性以力的形式反映出来。实验测中用地层油代表 油相,地层水代表水相,用模拟矿物片代表固相,测量矿物片通 过油水界面时的前进粘附力和后退粘附力。两者之和大于零者为 水,小于零者为亲油,二者符号相反为混合润湿性。通过粘附力 和界面张力求得接触角,非常适合于接触角滞后情形的研究。通 过动力板法可以证实在一个平的、均相的、干净的表面只存在在 一个接触角,它是测定小接触角的最可靠的方法. 阿莫科公司推荐将此法、Amott 法和相对渗透率曲线法并 列为主要的三种常规方法,用于岩心润湿性的综合鉴定,使润湿 性测得的结果更客观、更真实。
定量测定方法------自吸法
测量参数:Wr=W/Wsww Wr为相对拟吮吸功,无量纲; W 为自吸后拟毛管压力曲线的下包面积; Wsww为强水湿样品自吸后拟毛管压力曲线的下包面积。
测试特点:过程简单,周期短,仅适用于强水湿到中性润湿岩样,需 要强水湿参考样品,边界明确,对强水湿样品敏感,不推荐使用。
结论
(2 ) 定性方法的评价
①Wilhelmy 动力板法将润湿性以力的形式用于油藏中,它适用于 研究接触角滞后时的情形。 ② 相对渗透率法是许多润湿性定性测量方法的基础,因而常被使 用。
(3)现场测定法的评价
岩石润湿性测定实验
中国石油大学 渗流物理 实验报告实验日期:成绩:班级: 学号: 姓名: 教师:同组者:岩石润湿性测定实验一.实验目的1.了解光学投影法测定岩石润湿角的原理及方法; 2.了解界面张力的测定原理及方法; 3.加深对岩石润湿性、界面张力的认识。
二.实验原理1.光学投影法测定岩石润湿角液体对固体表面的润湿情况可以通过直接测定接触角来确定。
将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ:D htg22=θ式中, θ—润湿角,°; h —液滴高度,mm ;D —液滴和固体表面接触的弦长,mm 。
图1 投影法润湿角示意图 2.悬滴法测定液滴界面张力悬滴法适用于密度差较大的测定液-液或气-液之间的界面张力,测量范围为10-1~10-2 mN/m 。
液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。
测量液滴的相关参数,利用下式计算界面张力:, 21ρρρ-=Δ , esn n d d S =式中,σ—界面张力,mN/m ;2egd Hρσ∆=21ρρ、—待测两相流体的密度,g/cm3;ρ∆—两相待测试样的密度差,g/cm3; ed —实际液滴的最大水平直径,cm ;sn d —从液滴底部算起,高度为e d n10高度处液滴的直径,cm ;n S —液滴e d n10高度处的直径与最大直径的比值;H —液滴形态的修正值,由n S 查表得到。
a )烧杯中气泡或液滴形状 (b ) 气泡或液滴放大图图2 悬滴法测界面张力示意图三.实验仪器图3 HARKE-SPCA 接触角测定仪器四.实验步骤1.将直流电源的插头一端插入接线板内另一端插入仪器后面的电源插座内。
2.将通讯线连接主机与计算机COM2通讯口。
润湿性
中国石油大学 渗流物理 实验报告实验日期:成绩:班级: 学号: 姓名:教师:同组者:岩石润湿性测定实验一.实验目的1.了解光学投影法测定岩石润湿角的原理及方法; 2.了解界面张力的测定原理及方法; 3.加深对岩石润湿性、界面张力的认识。
二.实验原理1.光学投影法测定岩石润湿角液体对固体表面的润湿情况可以通过直接测定接触角来确定。
将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ:D htg22=θ式中, θ—润湿角,°; h —液滴高度,mm ;D —液滴和固体表面接触的弦长,mm 。
图1 投影法润湿角示意图 2.悬滴法测定液滴界面张力悬滴法适用于密度差较大的测定液-液或气-液之间的界面张力,测量范围为10-1~10-2 mN/m 。
液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。
测量液滴的相关参数,利用下式计算界面张力:, 21ρρρ-=Δ, esn n d d S =式中,σ—界面张力,mN/m ;2egd Hρσ∆=21ρρ、—待测两相流体的密度,g/cm3;ρ∆—两相待测试样的密度差,g/cm3; ed —实际液滴的最大水平直径,cm ;sn d —从液滴底部算起,高度为e d n10高度处液滴的直径,cm ;n S —液滴e d n10高度处的直径与最大直径的比值;H —液滴形态的修正值,由n S 查表得到。
a )烧杯中气泡或液滴形状 (b ) 气泡或液滴放大图图2 悬滴法测界面张力示意图三.实验仪器图3 HARKE-SPCA 接触角测定仪器四.实验步骤1.将直流电源的插头一端插入接线板内另一端插入仪器后面的电源插座内。
2.将通讯线连接主机与计算机COM2通讯口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国石油大学 渗流物理 实验报告
实验日期:
成绩:
班级: 学号: 姓名: 教师:
同组者:
岩石润湿性测定实验
一.实验目的
1.了解光学投影法测定岩石润湿角的原理及方法; 2.了解界面张力的测定原理及方法; 3.加深对岩石润湿性、界面张力的认识。
二.实验原理
1.光学投影法测定岩石润湿角
液体对固体表面的润湿情况可以通过直接测定接触角来确定。
将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ:
D h
tg
22=
θ
式中, θ—润湿角,°;
h —液滴高度,mm ;
D —液滴和固体表面接触的弦长,mm 。
图1 投影法润湿角示意图 2.悬滴法测定液滴界面张力
悬滴法适用于密度差较大的测定液-液或气-液之间的界面张力,测量范围为
10-1~10-2 mN/m 。
液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。
测量液滴的相关参数,利用下式计算界面张力:
, 21ρρρ-=Δ
, e
sn n d d S =
式中,σ—界面张力,mN/m ;
2
e
gd H
ρσ∆=
21ρρ、—待测两相流体的密度,g/cm3;
ρ∆—两相待测试样的密度差,g/cm3;
e d —实际液滴的最大水平直径,cm ;
sn d —从液滴底部算起,高度为e d n
10高度处液滴的直径,cm ;
n S —液滴e d n
10高度处的直径与最大直径的比值;
H —液滴形态的修正值,由n S 查表得到。
a )烧杯中气泡或液滴形状 (
b ) 气泡或液滴放大图
图2 悬滴法测界面张力示意图
三.实验仪器
图3 HARKE-SPCA 接触角测定仪器
四.实验步骤
1.将直流电源的插头一端插入接线板内另一端插入仪器后面的电源插座内。
2.将通讯线连接主机与计算机COM2通讯口。
3.打开接线板的电源开关。
4.旋转仪器后面的光源旋钮,顺时针旋转,看到光源亮度逐渐增强。
5.打开接触角软件图标。
6.开启视频。
7.调整滴液针头。
初次使用接触角测定仪对焦比较繁琐,首先向下移动滴液针头,停在变倍显微镜水平线以上的位置,然后旋转固定在上下移动器上的水平移动旋钮,左右调整针头,当软件图像显示窗口出现针头虚影时停止。
8.调整调焦手轮,直到图像清晰。
9.将显微镜放大倍数调整到1.5倍。
10.将吸液管吸满液体安装在固定夹上。
旋转测微头,液体将缓缓流出,形成液滴。
11.用脱脂巾擦干针头上的液体,再在工作台上放置被测的固体试样。
最好是长条的20×60mm左右。
12.点击配置栏,在试验设置对话框,在相关栏添入相关数值。
13.上升移动工作台至界面上红色水平线的下方(1mm左右),见图4。
14.旋转测微头,当针头流出大约3-5ul左右的液体时停止。
15.旋转工作台升降手轮,使试样表面接触液滴,然后下降一点。
液滴显示在视窗内,见图5。
16.点击开始试验绿色三角形图标,试验将按照设置的时间间隔自动拍摄图像,直至完毕。
17.关闭视频,点击软件界面下面的电影图片任意一张,图片将显示在大窗口中,见图6。
图4 图5 图6
五.结果分析方法
1.接触角分析方法
(1)切线法
将抓拍的图像在测量屏内进行测量。
选择切线法,在液滴的一端左键点击一下松开,拉向另一端点点击一下,沿液体外轮廓做液体的切线,数值自动显示在图像的左上角上。
点击右键将结果可以保存在图片上。
见图7、图8。
图7 图8
(2)高宽法
该法适应于小液滴,忽略重力影响,也叫小液滴法。
点击图标,在液体一端点击一下,然后拉向另一端点击,液滴地平线中点有一个小竖线,鼠标移动到地平线中点点击一下,竖向拉向液体的最高点,接触角值自动显示出来。
点击右键将结果保存在图片上。
见图9。
图9
(3)圆环法
圆环法,该方法较上述方法精度准确。
选取此方法图标,按提示在液滴一端点击一下,再在圆环上选择第二点,最后在液滴的另一端点点击一下。
拖动鼠标返回到第一端点点击鼠标,松开后拉向另一端点,接
触角自动显示。
点击右键将结果保存在图片上。
见图10。
图10
(4)基线圆环法测定接触角。
打开保存的接触角图像照片,点击方法图标,显示一条水平线,将其移动到液体的底面。
在液体轮廓上点击两点,包括液体外线,点击一下。
接触角值自动显示。
点击右键保存测量值即可。
见图11。
图11
2.表面张力分析方法
(1)自动悬滴法
将抓拍的液体悬滴显示在测量屏内。
选择横标定图标,在毛细管的一侧点击一下,不要松开,拉向另一侧点击,弹出下列对话框。
填入0.7,确定。
见图12
图12
点击处理栏中的计算显示一个下拉菜单。
见图13、图14。
图13 图14
填入外向密度和液体密度。
点击计算、退出。
结果将自动显示。
见图15。
图15
(2)手动悬滴法
点击图标,在图像的最宽点点击一下,拉向另一端点击,看到一条竖线,移动到图像的最低端,点击鼠标。
上边形成一条横线。
在横线与液体边缘相交点,点击一下鼠标拉向对面的相交点,点击鼠标。
点击处理栏中的计算显示悬滴法测试界面张力,填入相关项,点击计算、退出。
结果自动显示。
见图16。
图16
六、数据处理
表1 润湿角数据记录
表2 高宽法测量润湿角数据记录表
由计算公式:
D
h
22
tan
=
θ
可得:
477.23)77
8
2arctan(
2)2arctan(
2=⨯==D
h
θ 故高宽法测得的润湿角为23.477°。
图1 切线法投影结果
图2 高宽法投影结果
图3 圆环法投影结果
图4 基线圆环法投影结果
七、思考与总结
1、光学法测定岩石润湿性的原理是什么?
液体对固体表面的润湿情况可以通过直接测定接触角来确定。
光学法测定岩石润湿性是通过光学系统将一组光线投射到液滴上,再将液滴放大、投影到屏幕上,直接测定润湿角(即接触角),或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ:
D
h
22
tan
=
θ
式中 θ——润湿角,°; h ——液滴高度,mm ;
D ——液滴和固体表面接触的弦长,mm 。
若接触角<90°,则岩石表现为亲水性;若接触角>90°,则岩石表现为亲油性。
2、至少写出另外两种确定岩石润湿性的方法,并说明原理。
(1)自吸法。
原理:岩石孔隙的润湿性比较复杂,有亲油的孔隙,也有亲水的孔隙。
油会自动进入亲油的孔隙,水会自动进入亲水的孔隙。
对比吸入的油水量的多少可以判断岩石的亲油亲水性。
若吸水量大于吸油量,则岩样亲水;若吸水量小于吸油量,则岩样亲油;若吸水量和吸油量相近,则为中性润湿。
(2)自吸驱替法(Amott 法)。
原理:岩心自吸水(或自吸油)后,用水(或油)驱至残余油饱和度(或束缚水饱和度),然后根据润湿指数半定量地判断岩石的润湿性。
3、分析影响岩石润湿性的因素有哪些? 影响岩石润湿性的因素包括:
(1)岩石的矿物成分。
粘土矿物,特别是蒙脱石、泥质胶结物的存在都会增加岩
石的亲水性,不同的矿物成分有不同的润湿程度。
(2)流体的性质。
同一固体表面不同的流体组合,接触角也不同,同组流体在不同的矿物表面接触角也不同。
(3)岩石的饱和顺序。
在原先的岩石孔隙中,若水首先占据了岩石的表面和小孔隙,则油很难克服岩石和水的结合功而将水排走,则岩石易表现为亲水;反之,若油首先占据了岩石的表面和小孔隙,则水很难克服岩石和油的结合功而将油排走,则岩石易表现为亲油。
(4)表面活性剂对岩石的润湿性也有影响。