变压器油气相色谱分析方法
变压器油分析气相色谱法-技术方案
变压器油溶解气体分析技术方案北京普瑞分析仪器有限公司2021年 2月25日目录1. 总则 (1)2. 项目简介 (1)3. 项目方案 (1)3.1. 方案一:实验室专用变压器油色谱分析仪(国标配置) (1)3.2. 方案二:氦离子化检测器气相色谱仪(早期微量溶解气体分析) (2)3.3. 方案三:六氟化硫分解产物专用氦离子化气相色谱仪 (4)3.4. 方案四:六氟化硫气体中空气、四氟化碳气相色谱分析仪 (5)3.5. 方案五:醇类分析专用氦离子化气相色谱仪 (5)3.6. 方案五:醇类分析顶空气相色谱仪 (5)4. 设备简介 (5)5. 方案优势 (7)6. 分析方法对比表 (8)1.总则1)本方案阐述了变压器油中溶解气体的分析配置和达到的目的,保证分析成套系统的完整性及设计的合理性。
2)本技术方案所提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文。
保证提供符合国家有关安全、环保等强制规范要求和现行中国或国际通用标准(若无相关的国内、国际标准,则应满足引进国或所在国国家或国外生产企业的标准)的优质产品。
3)北京普瑞分析仪器有限公司提供的设备是全新的和先进的,并经过运行实践已证明是完全成熟可靠的产品。
4)所有计量单位应采用国际单位制基本单位。
2.项目简介电力变压器是电力系统最重要的设备,其安全运行关乎整个电力系统的安全。
变压器油中溶解气体的种类、含量和变化趋势是反映变压器运行状况好坏的重要依据。
通过检测变压器油中溶解气体的各项指标,已成为监测变压器运行状况的重要依据。
在新绝缘油的溶解气体中,通常除了含有约70%的氮气和30%的氧气以及0.3%左右的二氧化碳气体外,并不含有C1、C2之类的低分子烃;当变压器内部出现过热和放电故障时,变压器绝缘油和内部固体绝缘材料中受热性效应和放电效应作用,油中的一氧化碳、二氧化碳、氢气和微量的低分子烃类气体产生速度和数量就会显著地增加。
浅谈变压器油的气相色谱分析
浅谈变压器油的气相色谱分析一、色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱分析绝缘油中溶解气体,能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。
这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。
变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。
含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。
在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。
当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。
故障气体的组成及含量与故障类型和故障严重程度关系密切。
因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。
二、实例变压器内部放电性故障产生的特征气体主要是乙炔。
正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。
某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm),5天后他们再次送来该台变压器油样检测,乙炔含量猛增到12.8PPm,见表1。
表1从上表可以看出,总的烃类气体不高,惟有乙炔气体超过注意值。
氢气含量也比较高。
我们分析该变压器内可能存在放电性故障,要他们回去检查,果然发现是分接开关拨叉电位悬浮引起放电,经过处理,避免了事故的发生。
还有一次,某电站送来升压变压器油样,经色谱分析烃类气体含量均在注意值范围内,惟有氢气含量高达345ppm,见表2。
我们分析该变压器可能有进水现象。
经检查,果然发现该变压器进水受潮,经处理,避免了绝缘击穿事故的发生。
变压器油的气相色谱分析浅析
变压器油的气相色谱分析浅析【摘要】本文主要对变压器油的气相色谱分析的特征气体、产气原理以及气相色谱分析的取样方法和一些常用的便携式检测仪器做一说明。
【关键词】变压器绝缘油色谱分析一、气相色谱分析的意义变压器油是指用于变压器、电抗器、互感器、套管、油断路器等输变电设备的矿物型绝缘油。
一般有25#和45#两种变压器油。
运行中的电力设备一般只能按周期停电进行预试检查,而且变压器等密封设备根本看不到内部情况。
电力变压器的绝缘油气相色谱分析可以很好的补充这一缺陷,而且经过精密的计算和分析可以大概判断出设备内部的情况。
气相色谱分析是对设备内的油进行的分析,从分析溶解于变压器中气体来诊断内部存在的故障。
二、气相色谱分析的特征气体及产生的原理体征气体:气相色谱分析的特征气体主要有氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。
在对所做油样的品质进行判定时,还要对总烃含量做判断。
总烃即甲烷、乙烷、乙烯、乙炔四种烃类气体的总和。
在对油品检验之后,我们需要对不合格的油品分析其不合格的原因。
那么,就需要我们大概清楚在什么情况下会分解出什么气体。
产气原理:运行中的变压器油在进行气相色谱分析的时候一般会检测出特征气体和总烃。
那么这些气体又是从哪里来的呢?首先,绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C-C键键合在一起。
由电或热故障可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,它们通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体。
在低能量故障时,如局部放电。
通过离子反应促使最弱的C-H键断裂,主要重新化合成H2而积累。
对C-C键的断裂需要较高的温度,然后逊色以C-C 键、C=C键和C三C键的形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。
变压器油气相色谱分析
变压器油气相色谱分析一、基本原理正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。
这些气体大部分溶解在油中。
当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。
随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。
例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。
故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。
因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。
当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。
二、用气相色谱仪进行气体分析的对象氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。
三、试验结果的判断1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。
设备在故障下产生的气体主要也是来源于油和纸的热裂解。
2、变压器内产生的气体:变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。
其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。
在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。
在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。
在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。
随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。
在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。
如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。
有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。
变压器油色谱分析试验步骤与方法 变压器操作规程
变压器油色谱分析试验步骤与方法变压器操作规程压器油色谱分析技术已经成为发觉油浸变压器早期故障隐患、故障后分析故障性质与部位等的有效手段之一,油浸变压器的状态检修完全能够以油色谱数据作为依据。
试验对压器油色谱分析技术已经成为发觉油浸变压器早期故障隐患、故障后分析故障性质与部位等的有效手段之一,油浸变压器的状态检修完全能够以油色谱数据作为依据。
试验对变压器定期进行油色谱分析是特别必要也是特别紧要的,它可以在不停电的情况下快速有效地发觉变压器内部的潜匿性故障及缺陷。
特别是对过热性、放电性和绝缘破坏性故障等,不管故障发生在变压器的什么部位,都能很好地反映出来。
气相色谱法也有确定的局限性,如很难判定故障的精准部位,甚至还会由于误判而造成不必要的检修。
油色谱分析的原理变压器大多接受油纸复合绝缘,当内部发生潜匿性故障时,油纸会因受热分解产生烃类气体。
含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度上升依次裂解产生烷烃、烯烃和炔烃。
在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会渐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。
当充油电气设备内部存在潜匿性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的进展,分解出的气体形成气泡在油中对流、扩散,并不断溶解在油中。
故障气体的构成及含量与故障类型和故障严重程度关系紧密。
因此,在变压器、互感器等充油设备运行过程中,定期做油的色谱分析,能尽早发觉设备内部的潜匿性故障,以避开设备发生故障或造成更大的损失。
变压器油色谱分析试验步骤与方法1.取油样方法一般对于变压器油色谱分析试验可在设备运行时进行取油样。
取样前要保证设备不存在负压的情形。
取油样使用的玻璃注射器必需经密封检查试验合格,取样时从设备下部的取样阀门取油样,在特别情况下,也可以从其他取样部位取样,但是所取的油样必需能够代表油箱本体的油。
变压器油中的溶解气体分析方法
变压器油中的溶解气体分析方法随着变压器的使用年限逐渐增长,变压器油中的溶解气体也会越来越多。
这些溶解气体会导致油的劣化和变压器内部部件的氧化腐蚀,从而影响变压器正常运行。
因此,分析变压器油中的溶解气体,了解其类型和含量,对变压器的维护和管理非常重要。
那么,变压器油中的溶解气体分析方法有哪些呢?一、气相色谱法气相色谱法是目前应用较广泛的溶解气体分析方法之一。
该方法适用于水、空气、油和气体中的溶解气体的分析。
变压器油中的溶解气体分析中,气相色谱法可以分析二氧化碳、乙烯、甲烷等气体。
气相色谱法的分析原理是将混合气体样品与气相色谱柱中填充的固定相分离。
气相色谱法具有分离效果好、分离速度快、分析灵敏度高等特点。
但是,气相色谱法需要有较高的分析仪器设备和专业技术,使用成本相对较高。
二、傅里叶变换红外光谱法傅里叶变换红外光谱法是一种将样品吸收红外辐射产生的光谱进行处理以获取样品化学结构信息的分析方法。
在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、氮气、二氧化碳等气体的检测。
傅里叶变换红外光谱法的分析原理是通过改变样品中各种化学键所吸收的红外光的频率来对样品分析。
该方法具有快速、准确、不需要分离样品等优点。
但是,傅里叶变换红外光谱法需要对样品进行前处理,如稀释、过滤等,同时也需要高质量的样品和分析仪器设备。
三、电化学分析法电化学分析法是一种利用电化学方法进行分析的技术。
在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、二氧化碳等气体的检测。
电化学分析法的分析原理是利用电极反应与被测物质间的作用,测定电荷变化或者释放的能量,并进一步计算出被测物质的含量。
该方法具有实时、便捷、经济等优点,但也存在着变压器油中其他成分对溶解气体分析的干扰问题。
综上所述,变压器油中的溶解气体分析方法有多种,每种方法具有不同的优缺点和适用范围。
因此,在实际应用中需要根据分析要求和条件选择合适的分析方法,综合考虑分析精度、成本和可操作性等因素,以实现对变压器油中溶解气体的高效分析和准确检测,提升变压器的正常运行和使用寿命。
变压器油色谱检测标准
变压器油色谱检测标准变压器油色谱检测标准一、范围本标准规定了变压器油色谱检测的仪器校准、分析方法、检测报告内容及其他要求。
本标准适用于电力系统、工厂及大型机械设备等变压器油色谱的检测。
二、规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
三、术语和定义变压器油色谱分析(Transformer Oil Chromatography Analysis):利用气相色谱法对变压器油中溶解气体进行分析的方法。
四、变压器油色谱分析仪器的校准1.仪器应定期进行校准,以保证分析结果的准确性。
2.校准应包括仪器的一般性检查、性能测试和标样验证等环节。
3.校准过程中应采用标准物质进行验证,以确认仪器是否符合使用要求。
五、变压器油中溶解气体的气相色谱分析方法1.样品采集:从变压器底部采集油样,保证油样具有代表性。
2.样品处理:将采集的油样进行脱气处理,将溶解气体分离出来。
3.气相色谱分析:利用气相色谱仪对分离出来的溶解气体进行分析,测定各组分的含量。
4.结果计算:根据测定的数据,计算各组分在变压器油中的浓度。
5.结果判定:根据判定标准,对变压器油的品质进行评价。
六、变压器油中溶解气体的气相色谱分析方法(续)1.方法提要:利用气相色谱法测定变压器油中溶解气体的组分及含量。
2.试剂与材料:正己烷、异丁烷、正丁烷、乙烷、丙烷、丙烯、甲烷、氧气等。
3.仪器与设备:气相色谱仪、色谱柱、检测器等。
4.样品处理:将采集的油样在室温下放置一定时间,使溶解气体充分释放出来。
然后将油样倒入萃取器中,用正己烷萃取溶解气体,收集萃取液。
5.气相色谱分析:将萃取液注入气相色谱仪中进行分析,记录各组分的峰面积或峰高。
5.结果计算:根据记录的峰面积或峰高,计算各组分的含量。
变压器油的气相色谱分析
青海水力发电2/202043绝缘油是天然石油经过蒸馏、提炼、调和得到的一种矿物油,是各种不同分子的碳氢化合物所组成的混合物,其中碳、氢两元素占其全部质量的95%~99%,碳氢化合物主要有烷烃、环烷烃、芳香烃等,其他为氮、氧、硫及极少量的金属元素等。
绝缘油放在变压器里又叫变压器油,主要用于变压器、电抗器、互感器、套管、油断路器等输变电设备,起绝缘、冷却和灭弧的作用。
1 气相色谱分析过程及特征气体气相色谱分析是一种物理分离技术,分析程序是先将取样变压器油经真空泵脱气装置,将溶解在油中的气体分离出来,用注射器定量注入色谱分析仪,在载气的推动下流过色谱柱,混合气体经色谱柱分离后,通过鉴定器来检测。
被分离的各气体组分依一定次序逐一流过鉴定器将气体浓度变为电信号,再由记录仪记录下来,并依各组分的先后次序排列成一个个脉冲尖峰,形成了色谱图。
一个脉冲峰表示一种气体组分,峰的高度或面积则反应该气体的浓度。
色谱图对被分析的气体既定性又定量分析,再经过峰高换算出各气体的浓度。
体征气体:气相色谱分析的特征气体主要有氢气(H 2)、甲烷(CH 4)、乙烷(C 2H 6)、乙烯(C 2H 4)、乙炔(C 2H 2)、一氧化碳(CO)、二氧化碳(CO 2)。
总烃即甲烷、乙烷、乙烯、乙炔四种气体的总和。
2 气相色谱判断故障的常用方法2.1 特征气体法根据变压器油中气体的组分和含量可以判断故障的性质和严重程度,判断故障的方法,称特征气体法。
该诊断法对故障性质有较强的针对性,比较直观、方便,但不足是没有明确量化。
可以根据表1结合特征气体来判断故障。
(1)油过热:至少分两种情况,即中低温过热(低于700℃)和高温过热(高于700℃)以上过热。
如油温较低,烃类气体组分中CH 4、C 2H 6含量较多,C 2H 4较C 2H 6少甚至没有;随着温度增高,C 2H 4含量增加明显。
(2)油和纸过热:固体绝缘材料过热会产生大量的CO、CO 2,过热部位达到一定温度后,纤维素逐渐碳化,并使过热部位油温升高,才使CH 4、C 2H 6和收稿日期: 2020-4-10作者简介: 马 妮 女 (1979-) 助理工程师 黄河电力检修工程 有限公司变压器油的气相色谱分析马 妮(黄河电力检修工程有限公司甘肃项目部 甘肃兰州 730094 )内容提要 早期预测充油电气设备故障对于安全发供电、防止设备出现故障和事故是极其重要的。
变压器油色谱分析及故障判断
变压器油色谱分析及故障判断变压器油是变压器重要的绝缘介质和冷却介质,通过监测变压器油的色谱可以及时发现变压器的内部故障,确保变压器的安全运行。
本文将介绍变压器油色谱分析的原理、方法以及故障判断的相关知识。
一、变压器油色谱分析的原理变压器油色谱分析是通过检测变压器油中的有机物质和气体成分,对变压器的运行状态进行评估和监测。
其原理是利用油中有机物质和气体成分的种类、含量、比例等信息,来判断变压器的运行状态和可能存在的故障。
变压器油色谱分析的主要原理包括气相色谱(Gas Chromatography, GC)和液相色谱(High Performance Liquid Chromatography, HPLC)两种方法。
气相色谱主要用于检测变压器油中的气体成分,如甲烷、乙烷、乙烯、丙烷、丙烯等;液相色谱则主要用于检测变压器油中的有机物质成分,如苯、酚、醚、醇等。
1. 样品采集:首先需要采集变压器油样品,一般可以通过变压器油位计或油温计的取样孔进行采样。
在采样之前需要确保取样容器和工具的清洁,以避免外部杂质的污染。
2. 样品制备:将采集到的变压器油样品进行预处理,包括脱水、脱气等操作。
脱水可以通过加热和真空脱水的方式进行,脱气则可以通过超声波或真空抽滤的方式进行。
3. 色谱分析:将预处理后的变压器油样品进行气相色谱和液相色谱分析。
通过色谱仪器可以得到变压器油中的有机物质和气体成分的含量、种类、比例等信息。
1. 气体成分分析:变压器油中的气体成分主要包括甲烷、乙烷、乙烯、丙烷、丙烯等。
当油中的气体含量超过正常范围时,通常表明变压器内部存在故障,如油纸绝缘的老化、局部放电等。
气体的种类和比例也可以帮助判断故障的类型和位置。
2. 有机物质分析:变压器油中的有机物质主要包括苯、酚、醚、醇等。
这些有机物质的含量和种类也可以反映变压器的运行状态和可能存在的故障。
苯和酚的含量增加可能表明变压器中存在局部放电、绝缘老化等问题;醇的增加可能表明变压器内部存在绝缘油的氧化和老化等问题。
变压器油色谱分析
变压器油色谱分析摘要:当变压器内部发生过热、放电等故障时,势必导致故障附近的绝缘物分解。
分解产生的气体会不断地溶解在油中的,不同性质的故障所产生的气体成分也不同,即使同一性质的故障,由于故障的程度不同,产生的气体数量也不相等。
因此,对油中溶解气体的色谱分析,可以早期发现潜伏性故障的性质、程度和部位,以便及时处理故障,避免事故的发生。
关键词:变压器油;油色谱分析;故障判断1.气相色谱法的原理色谱法又叫层析法,它是一种物理分离技术。
它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相;另一相则是推动混合物流过此固定相的流体,叫做流动相。
气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。
然后再进入检测器对各组分进行鉴定。
2、色谱分析的过程2.1取出一定量的变压器油利用变压器油的色谱来判断变压器出现的故障种类,要通过几个过程的操作来进行。
在对变压器油中溶解气体进行色谱分析时,至关重要的一步是取油样,所取油样要有足够代表性,如何取样才不致于使油中溶解气体散失?理想的取样应满足以下条件。
(1)所使用的玻璃注射器严密性要好。
(2)取样时能完全隔绝空气,取样后不要向外跑气或吸入空气。
(3)材质化学性稳定且不易破损,便于保存和运输。
(4)实际取油样时,一般选用容积为100ml全玻璃注射器。
(5)取样前将注射器清洗干净并烘干,注射器芯塞应能自由滑动,无卡涩。
(6) 应从设备底部的取样阀放油取样。
(7)取样阀中的残存油应尽量排除,阀体周围污物擦干净。
(8)取样连接方式可靠,连接系统无漏油或漏气缺陷。
(9)取样前应设法将取样容器和连接系统中的空气排尽。
(10)取样过程中,油样应平缓流入容器,不产生冲击、飞溅或起泡沫。
(11)取完油样后,先关闭放油阀门,取下注射器,并封闭端口,贴上标签,尽快进行色谱分析。
变压器油分析测试一气相色谱法
变压器油分析气相色谱法1.1变压器油分析意义气相色谱法在电力系统的应用意义在于:电力系统主要是采用气相色谱法检测充油电气设备油中溶解气体;正常情况下充电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳和一氧化碳等。
这些气体大部分溶于油中,当设备存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。
随着故障发展,分解出的气体形成气泡在油里经对流、扩散,不断溶解在油中。
采用气相色谱法在设备运行过程中定期分析溶于油中的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况和采取必要的措施。
1.2电力绝缘油特点绝缘油放在变压器里又叫变压器油,他的作用是在把变压器的热量传给散热片,起到传导热量、散热的作用。
如果变压器油漏电了,不好直接拆开变压器去测,而是取变压器油来检测,如果漏电,油遇电会电解,产生气体,就是我们要检测的气体,如果气体含量超标,肯定变压器油就是漏电的了。
新的变压器油里面是纯的油,不含气体的。
绝缘油具有以下五个特性1.高介电强度。
.2.较低的粘度。
3.较高的闪点温度。
4.足够的低温特性。
5.良好的抗氧化性能。
变压器油分析气相色谱法简介(湖南创特科技分析仪器)1.3国家标准绝缘油中溶解气体组分含量的测定,对充油电气设备制造,运行部门是十分重要的检测项目之一,是充油电气设备出厂检验和运行监督过程中判断设备潜伏性故障的有效手段.随中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。
以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。
着在各行业应用的不断扩大和大容量,高电压充油设备的增多,为了保证测定结果准确可靠,亟需建立统一的绝缘油中溶解气体组分含量测定方法.下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文.本标准出版时,所示版本均为有效.所有标准都会被修订,使用本标准的各方应探计使用下列标准最新版全的可能性.变压器油分析气相色谱法简介(湖南创特科技分析仪器)GB/T6683-1997石油产品试验方法精密度数据确定法GB/T7252-1987变压器油中溶解气体分析与判断导则GB/T7597-1987电力用油(变压器油,汽轮机油)取样方法采用气相色谱方法分析绝缘油内气体的成分和含量,可以不停电就能发现设备内部是否存在潜伏性故障,特别对发现局部过热和局部放电比较灵敏,它已经成为充油电力设备预防性试验重要的一项。
变压器油中溶解气体色谱分析
变压器油中溶解气体色谱分析引言:变压器油是变压器循环冷却系统中的重要介质,其中溶解气体的含量和类型对变压器的性能和可靠性具有重要影响。
因此,对变压器油中溶解气体的分析和监测是变压器维护和故障诊断的关键一环。
色谱分析是一种常用的分析方法,对变压器油中溶解气体的分析具有高灵敏度和高分辨率的优势。
本文将介绍变压器油中溶解气体的色谱分析方法及其应用。
一、色谱分析原理色谱分析的基本原理是利用色谱柱对混合物中的组分进行分离。
在变压器油中,溶解气体的组分较复杂,包括氧气、氮气、二氧化碳、甲烷、乙烷等,其含量较低。
为了实现对这些溶解气体的分离和检测,通常使用气相色谱(GC)或气相色谱-质谱联用(GC-MS)技术。
1.气相色谱(GC):气相色谱是一种基于物质在气相载体流动下在色谱柱中的分离速率差异而实现分离的技术。
在变压器油中,溶解气体首先通过预处理步骤被抽取到气相载体中,然后通过色谱柱的各种理化性质进行分离,最后通过检测器进行定性和定量分析。
2.气相色谱-质谱联用(GC-MS):气相色谱-质谱联用是将气相色谱和质谱联用在一起,使两种技术的优势相结合,提高溶解气体分析的灵敏度和特异性。
在变压器油中,溶解气体经过气相色谱分离后,进入质谱仪进行逐个组分的鉴定和定量。
二、实验方法1.样品制备:将变压器油样品与一定量的油溶解剂混合,在恒温条件下超声处理一定时间,使溶解气体从油相转移到油溶解剂相。
然后,用高速离心分离出油溶解剂相,并用注射器取样备用。
2.样品进样:将取得的样品注入气相色谱仪或气相色谱-质谱联用仪的自动进样器中。
3.分离分析:在色谱柱中,通过控制温度和流速等条件,使溶解气体分离和逐渐通过柱子。
不同组分根据其在柱中的保留时间进行分离。
4.定量测定:根据溶解气体在柱中的峰面积与标准品的峰面积之间的比较,进行定量测定。
同时,通过质谱仪的鉴定,确保溶解气体的组分准确。
三、应用案例1.气体生成规律研究:通过对不同变压器油样品中溶解气体的分析,可以研究变压器油中气体的生成规律,从而判断变压器的正常运行状态和油的质量状况。
变压器油气相色谱分析方法
变压器油气相色谱分析方法
2、根据总烃产气速率判断有无故障
根据相对产气速率公式:
r =
C2−C1C1
×1
∆t ×100 公式1
式中:r ——相对产气速率,%/月;
C2——第二次取样测得油中某气体浓度,ul/L ; C1——第一次取样测得油中某气体浓度,ul/L ; △t ——两次取样间隔中实际运行时间,月。
相对产气速率大于10%时,应引起注意。
3、三比值法
这里三比值依据DL/T722-2014《变压器油中溶解气体分析和判断导则》,可以计算后对照表格分析。
但需要注意三点:1)此方法应在气体含量达到注意值或产气速率达到注意值时,才可使用。
2)气相色谱分析的各种气体都有,没有为0的气体时,才可使用。
3)气相色谱分析存在误差,要反复测试,确认气体含量的准确性。
电力变压器的油色谱分析
电力变压器的油色谱分析目前,在变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。
油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度的变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度的升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。
这也证明在故障温度与溶解气体含量之间存在着对应的关系。
而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。
变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。
当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。
对应这些故障所增加含量的气体成分见表5-9。
表5-9 不同绝缘故障气体成分的变化根据色谱分析进行变压器内部故障诊断时,应包括:(1)分析气体产生的原因及变化。
(2)判断有无故障及故障类型。
如过热、电弧放电、火花放电和局部放电等。
(3)判断故障的状况。
如热点温度、故障回路严重程度及发展趋势等。
(4)提出相应的处理措施。
如能否继续进行,以及运行期间的技术安全措施和监视手段,或是否需要吊心检修等。
若需加强监视,则应缩短下次试验的周期。
这些气体大部分溶解在绝缘油中,少部分上升至绝缘油表面,并进入气体继电器。
经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。
因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经验积累取得了显著的成效。
变压器油的色谱分析
• (2).取气样 . • 气体继电器动作时,除取油样外,应同时取气样分析。 气体继电器动作时,除取油样外,应同时取气样分析。 取气样的容器一般为20ml的玻璃注射器。取样前应先用 的玻璃注射器。 取气样的容器一般为 的玻璃注射器 本体油湿润注射器,在继电器的放气嘴上套上乳胶管, 本体油湿润注射器,在继电器的放气嘴上套上乳胶管, 参照取油样的方法取气样。 参照取油样的方法取气样。 • (3).样品的保存 . • 油样和气样的保存期不超过 天,保存时应避光、防尘。 油样和气样的保存期不超过4天 保存时应避光、防尘。 运输时应避免剧烈震动。 运输时应避免剧烈震动。 • 3. 气样的制备 • 油中溶解气体的脱出方法主要有顶空取气法、真空全脱 油中溶解气体的脱出方法主要有顶空取气法、 气法、水银真空脱气法。 气法、水银真空脱气法。
• ②氢焰检测器(FID)。主 )。主 氢焰检测器( )。 要应用于含碳有机化合物 的分析。它具有灵敏度高、 的分析。它具有灵敏度高、 线性范围宽等优点, 线性范围宽等优点,其最 小检测量可达10 小检测量可达 -12g。 。 • 氢焰检测器以氢气与空气 中的氧气燃烧生成的火焰 为能源, 为能源,当有机物进入火 焰时, 焰时,在火焰的高能作用 被激发而产生离子。 下,被激发而产生离子。
• 3. 色谱仪的定性与定量分析 • (1).定性分析 . • 气相色谱定性分析就是鉴别所分离出来的色谱峰 组分的性质。 组分的性质。主要是利用保留参数对已知混合物 中的各组分进行定性。 中的各组分进行定性。 • 利用绝对保留值定性和利用相对保留值定性。 利用绝对保留值定性和利用相对保留值定性。 • ①利用绝对保留值定性。 利用绝对保留值定性。 • ②利用相对保留值定性。 利用相对保留值定性。
• 4. 气样的分析 • (1).对色谱仪的要求 . • 应具备分析至少 种溶解气体的检测器和转化仪器的最小检测浓度应达 应具备分析至少7种溶解气体的检测器和转化仪器的最小检测浓度应达 到国标及行标的规定。 到国标及行标的规定。 • 色谱柱固定相的选择:分析油中溶解气体用的固定相主要是碳分子筛 色谱柱固定相的选择: 常用TDX-01)分子多孔小球(GDX502)。前者主要分离永久性气 )。前者主要分离永久性气 (常用 )分子多孔小球( )。 后者主要分析气态烃类。 体,后者主要分析气态烃类。 • (2).仪器标定 . • 仪器运行稳定后,用标准混合气体标定,测量各组分的峰高或峰面积, 仪器运行稳定后,用标准混合气体标定,测量各组分的峰高或峰面积, 记录保留时间。标定2次 重复性合格后取平均值。 记录保留时间。标定 次,重复性合格后取平均值。 • (3).试样分析 . • 同标定的方法及进样量进行注样测定,测量各组分的峰高或峰面积。 同标定的方法及进样量进行注样测定,测量各组分的峰高或峰面积。Wi = f i AiA Nhomakorabea或
变压器油的气象色谱分析
变压器油的气象色谱分析#25变压器油是从石油中分离出来的一种矿物抽,其主要成分是烷烃(C n H2n+2)、环烷烃(C n H2n)、芳香烃(C n H 2n-2)等化合物。
在正常运行状态下,由于油和固体绝缘逐渐老化、变质,会分解出少量的气体(主要有H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO,二氧化碳C02等7种)。
我公司升压站变压器、CT、PT都是用的#25变压器油。
早期发现变压器、CT、PT内部故障征兆,掌握故障的发展情况,要用脱气装置将采样的#25变压器油中气体物理分析出,用气象色谱仪进行色谱分析,以检测变压器油中的气体的组成和含量。
这是判断设备故障类型的重要手段。
一:油中气体成分与油的关系变压器、CT、PT在正常的情况下,油及固体有机绝缘材料在热和电的作用下,会逐渐老化和分解,并缓慢地产生少量的氢、低分子碳化氢(烃类)、CO和CO2气体。
这些气体大部分被溶解在油中。
当变压器存在故障时,产气速度加快而且溶解在油中的气体种类和含量与故障的类型和严重程度密切相关。
不同性质的故障,油及固体绝缘材料将产生不同的特征气体。
对于同一性质的故障,如果程度不同,产生气体的速度和数量也不同,各种气体的比例关系也发生变化。
如1为各种异常及故障下产生的气体成分及特征。
气体名称放电局部过热(°C)弧光放电火花放电局部放电高于1000 300-1000 低于300 H2 A A A C D D CH4 B C C B C C C2H6 D D D D D A C2H4 B C D A A C C2H2 A A C、E C D -注:A-本故障的主要气体;B-特征气体(高含量);C-特征气体(低含量);D-非特征气体;E-只有在高能量密度时才产生的气体二:油中气体含量的正确值和注意值变压器内部是否正常和存在故障,常用气象色谱分析结果的三项主要指标(总烃、乙炔、氢来判断。
当变压器内部一切正常时,油中气体含量一般不大于表2所列的正常值。
变压器油色谱分析报告
变压器油色谱分析报告1. 引言变压器作为电力系统中的重要设备,其正常运行对电力供应的稳定性和可靠性至关重要。
变压器油是变压器的重要媒介,对变压器的绝缘性能和热稳定性起着关键作用。
油中的杂质和老化产物会直接影响变压器的工作性能,因此对变压器油进行定期的检测和分析非常重要。
2. 背景变压器油色谱分析是一种通过分析油中化合物的成分和含量来评估油的性质和质量的方法。
通过变压器油色谱分析,可以检测到油中的有机酸、酚类、醛类、烃类等化合物,从而判断变压器油的新鲜程度、老化程度和污染程度,为变压器的维护提供重要依据。
3. 实验方法本次变压器油色谱分析采用气相色谱法(Gas Chromatography, GC)进行。
具体实验步骤如下:1.样品准备:从变压器中取得一定量的油样,并进行预处理,去除杂质和水分。
2.样品进样:将样品注入色谱仪中的进样装置中。
3.色谱条件设置:设置适当的色谱柱、流动相和温度条件,以保证分离和检测的准确性。
4.色谱分析:打开色谱仪,进行样品的分析,记录峰值面积和保留时间。
5.数据处理:根据峰值面积和保留时间,计算各组分的相对含量。
4. 实验结果经过变压器油色谱分析,得到了以下结果:组分相对含量 (%)有机酸25.6酚类13.2醛类8.9烃类52.3根据上表可见,变压器油中主要含有有机酸和烃类物质,其相对含量分别为25.6%和52.3%。
而酚类和醛类物质的相对含量分别为13.2%和8.9%。
5. 结论根据本次变压器油色谱分析的结果,可以得出以下结论:1.变压器油中含有较高比例的有机酸和烃类物质,可能是由于变压器的老化和污染所致。
2.酚类和醛类物质的含量较低,说明变压器油的热稳定性和绝缘性能相对较好。
3.针对有机酸和烃类物质的高含量,建议进行变压器油的更换和维护,以保证变压器的正常运行和延长其使用寿命。
6. 参考文献1.Smith, J. (2005). Analysis of Transformer Oil by Gas Chromatography.Journal of Analytical Chemistry, 39(2), 123-135.2.Liu, C., & Zhang, H. (2010). Application of Gas Chromatography inTransformer Oil Analysis. Chinese Journal of Analytical Chemistry, 45(3), 321-330.以上是本次变压器油色谱分析报告的简要内容,通过对变压器油中各组分的分析,可以评估油的性质和质量,并为变压器的维护提供重要参考。
变压器油中含气量气相色谱分析方案
变压器油中含气量气相色谱分析方案GC-2010变压器油专用色谱仪是我公司最新推出的一款专用于电力用绝缘油中溶解气体组份含量测定的专用气相色谱仪,仪器采用先进三检测器流程,配TCD检测器和两个FID检测器,一次进样,10分钟内即可完成绝缘油中溶解的7种气体组分含量的全分析。
其中H2通过TCD检测;烃类气体(CH4、C2H4、C2H6、C2H2)通过FID1检测,CO、CO2通过FID2检测,克服了大量CO、CO2对烃类气体的影响,特别是对C2H2的影响,缩短检测时间的同时也大大提高了检测灵敏度。
技术参数:1、最小检测浓度(单位µL/L):H2 CO CO2 CH4 C2H4 C2H6 C2H22 2 2 0.1 0.1 0.1 0.12、定性重复性:偏差≤1%3、定量重复性:偏差≤3%执行标准:1、GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》2、GB/T 7252-2001《变压器油中溶解气体分析和判断导则》流程图:自动故障诊断:分析结束自动超标提示、提供符合国标的三比值诊断、TD图示、组份浓度图示,大卫三角形等多种故障诊断方式。
数据图示:根据已经入库的历史记录,直观显示某设备历史数据中各组分的浓度趋势图。
GC-2010变压器油专用色谱仪配置清单1 色谱主机GC-2010气相色谱仪1套2 进样器填充柱液体进样口(PIP)2个3 转化器甲烷化转化器1个4 检测器1 氢火焰检测器(FID)2套5 检测器2 热导检测器(TCD)1套6 色谱柱φ3×1m 不锈钢3根7 气源氮空氢气体发生器1套8 振荡仪自动加热振荡仪1套9 色谱工作站变压器油分析专用1套GC-2010变压器油专用色谱仪广泛应用于铁路电力系统、国家电网,学校教学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器油气相色谱分析方法
2、根据总烃产气速率判断有无故障
根据相对产气速率公式:
r =
C2−C1C1
×1
∆t ×100 公式1
式中:r ——相对产气速率,%/月;
C2——第二次取样测得油中某气体浓度,ul/L ; C1——第一次取样测得油中某气体浓度,ul/L ; △t ——两次取样间隔中实际运行时间,月。
相对产气速率大于10%时,应引起注意。
3、三比值法
这里三比值依据DL/T722-2014《变压器油中溶解气体分析和判断导则》,可以计算后对照表格分析。
但需要注意三点:1)此方法应在气体含量达到注意值或产气速率达到注意值时,才可使用。
2)气相色谱分析的各种气体都有,没有为0的气体时,才可使用。
3)气相色谱分析存在误差,要反复测试,确认气体含量的准确性。