变压器油的色谱分析

合集下载

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断
变压器油色谱分析是一种常用的变压器故障判断方法,它通过分析变压器油中的有机和无机成分,来判断变压器的运行状况和可能存在的故障。

变压器油色谱分析主要是通过将变压器油样品进行化学分离和定性分析,以及对分离得到的有机化合物进行定量分析,来得到变压器油中存在的有机和无机成分的含量和相对变化情况。

在变压器油中,常见的有机成分主要包括酚类化合物、醛类化合物、酮类化合物、苯类化合物等。

这些有机成分的存在可以表明变压器可能存在绝缘材料老化、绝缘层击穿、过热等故障情况。

而无机成分主要包括金属元素和硫元素等。

金属元素的含量可以反映变压器内部的绝缘层、线圈等元件的磨损程度。

硫元素的含量则可以表明变压器内部可能存在绝缘材料的硫化反应,这是一个常见的变压器故障情况。

通过对变压器油样品进行色谱分析,可以通过分析有机和无机成分的含量和相对变化情况来判断变压器的运行状况和可能存在的故障。

如果发现变压器油中有机成分的含量和相对变化较大,可以判断变压器的绝缘材料可能存在老化、击穿等故障情况。

如果发现变压器油中金属元素和硫元素的含量较高,可以判断变压器内部的元件可能存在磨损和硫化等故障情况。

变压器油气相色谱分析

变压器油气相色谱分析

变压器油气相色谱分析一、基本原理正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。

这些气体大部分溶解在油中。

当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。

随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。

例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。

故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。

因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。

当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。

二、用气相色谱仪进行气体分析的对象氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。

三、试验结果的判断1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。

设备在故障下产生的气体主要也是来源于油和纸的热裂解。

2、变压器内产生的气体:变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。

其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。

在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。

在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。

在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。

随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。

在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。

如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。

有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。

变压器油色谱分析试验步骤与方法 变压器操作规程

变压器油色谱分析试验步骤与方法 变压器操作规程

变压器油色谱分析试验步骤与方法变压器操作规程压器油色谱分析技术已经成为发觉油浸变压器早期故障隐患、故障后分析故障性质与部位等的有效手段之一,油浸变压器的状态检修完全能够以油色谱数据作为依据。

试验对压器油色谱分析技术已经成为发觉油浸变压器早期故障隐患、故障后分析故障性质与部位等的有效手段之一,油浸变压器的状态检修完全能够以油色谱数据作为依据。

试验对变压器定期进行油色谱分析是特别必要也是特别紧要的,它可以在不停电的情况下快速有效地发觉变压器内部的潜匿性故障及缺陷。

特别是对过热性、放电性和绝缘破坏性故障等,不管故障发生在变压器的什么部位,都能很好地反映出来。

气相色谱法也有确定的局限性,如很难判定故障的精准部位,甚至还会由于误判而造成不必要的检修。

油色谱分析的原理变压器大多接受油纸复合绝缘,当内部发生潜匿性故障时,油纸会因受热分解产生烃类气体。

含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度上升依次裂解产生烷烃、烯烃和炔烃。

在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会渐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。

当充油电气设备内部存在潜匿性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的进展,分解出的气体形成气泡在油中对流、扩散,并不断溶解在油中。

故障气体的构成及含量与故障类型和故障严重程度关系紧密。

因此,在变压器、互感器等充油设备运行过程中,定期做油的色谱分析,能尽早发觉设备内部的潜匿性故障,以避开设备发生故障或造成更大的损失。

变压器油色谱分析试验步骤与方法1.取油样方法一般对于变压器油色谱分析试验可在设备运行时进行取油样。

取样前要保证设备不存在负压的情形。

取油样使用的玻璃注射器必需经密封检查试验合格,取样时从设备下部的取样阀门取油样,在特别情况下,也可以从其他取样部位取样,但是所取的油样必需能够代表油箱本体的油。

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断变压器作为电力系统中重要的设备,在运行过程中需要使用绝缘油来保证其正常运行,同时也需要通过对变压器油进行色谱分析来判断设备是否存在故障。

本文将从变压器油色谱分析的基本原理、常见的色谱分析技术以及通过色谱分析判断变压器故障等方面进行分析介绍。

一、变压器油色谱分析的基本原理变压器油色谱分析是通过检测变压器油中的各种化学成分,以及这些成分的含量和分布情况,来判断变压器的运行状态是否正常,以及是否存在潜在的故障隐患。

变压器油中的化学成分主要包括烃类、脂肪醇、芳烃、芳香烃、有机酸和其它杂质等。

通过对这些成分的检测和分析,可以获得变压器油的化学组成和其运行状态的信息。

二、常见的色谱分析技术对变压器油进行色谱分析常见的技术主要包括气相色谱(GC)、液相色谱(LC)、红外光谱(IR)、质谱(MS)等。

这些技术都有各自的特点和适用范围。

1. 气相色谱(GC)气相色谱是一种对气体和液体中的化合物进行分离和分析的技术,它主要用于对变压器油中的有机成分进行分析。

通过气相色谱可以获得变压器油中各种有机成分的含量和分布情况,如烃类、脂肪醇、芳烃等。

三、通过色谱分析判断变压器故障通过对变压器油进行色谱分析可以获得大量的化学信息,这些信息可以帮助我们判断变压器的运行状态是否正常,以及是否存在潜在的故障隐患。

1. 温度异常变压器在运行过程中,如果发生内部局部放电、过载、短路等故障,会导致变压器油中的有机成分的含量和分布发生变化,通过对变压器油进行色谱分析可以获得这些化学成分的含量和分布情况,从而判断变压器是否存在故障。

四、结语变压器油色谱分析是一种重要的变压器监测技术,通过对变压器油进行色谱分析可以获得大量的化学信息,从而帮助我们判断变压器的运行状态是否正常,以及是否存在潜在的故障隐患。

在变压器运行过程中,我们应当充分利用色谱分析技术,对变压器油进行定期的检测和分析,及时发现并排除变压器的故障,确保电力系统的安全稳定运行。

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断变压器油是变压器重要的绝缘介质和冷却介质,通过监测变压器油的色谱可以及时发现变压器的内部故障,确保变压器的安全运行。

本文将介绍变压器油色谱分析的原理、方法以及故障判断的相关知识。

一、变压器油色谱分析的原理变压器油色谱分析是通过检测变压器油中的有机物质和气体成分,对变压器的运行状态进行评估和监测。

其原理是利用油中有机物质和气体成分的种类、含量、比例等信息,来判断变压器的运行状态和可能存在的故障。

变压器油色谱分析的主要原理包括气相色谱(Gas Chromatography, GC)和液相色谱(High Performance Liquid Chromatography, HPLC)两种方法。

气相色谱主要用于检测变压器油中的气体成分,如甲烷、乙烷、乙烯、丙烷、丙烯等;液相色谱则主要用于检测变压器油中的有机物质成分,如苯、酚、醚、醇等。

1. 样品采集:首先需要采集变压器油样品,一般可以通过变压器油位计或油温计的取样孔进行采样。

在采样之前需要确保取样容器和工具的清洁,以避免外部杂质的污染。

2. 样品制备:将采集到的变压器油样品进行预处理,包括脱水、脱气等操作。

脱水可以通过加热和真空脱水的方式进行,脱气则可以通过超声波或真空抽滤的方式进行。

3. 色谱分析:将预处理后的变压器油样品进行气相色谱和液相色谱分析。

通过色谱仪器可以得到变压器油中的有机物质和气体成分的含量、种类、比例等信息。

1. 气体成分分析:变压器油中的气体成分主要包括甲烷、乙烷、乙烯、丙烷、丙烯等。

当油中的气体含量超过正常范围时,通常表明变压器内部存在故障,如油纸绝缘的老化、局部放电等。

气体的种类和比例也可以帮助判断故障的类型和位置。

2. 有机物质分析:变压器油中的有机物质主要包括苯、酚、醚、醇等。

这些有机物质的含量和种类也可以反映变压器的运行状态和可能存在的故障。

苯和酚的含量增加可能表明变压器中存在局部放电、绝缘老化等问题;醇的增加可能表明变压器内部存在绝缘油的氧化和老化等问题。

变压器油色谱分析

变压器油色谱分析

变压器油色谱分析摘要:当变压器内部发生过热、放电等故障时,势必导致故障附近的绝缘物分解。

分解产生的气体会不断地溶解在油中的,不同性质的故障所产生的气体成分也不同,即使同一性质的故障,由于故障的程度不同,产生的气体数量也不相等。

因此,对油中溶解气体的色谱分析,可以早期发现潜伏性故障的性质、程度和部位,以便及时处理故障,避免事故的发生。

关键词:变压器油;油色谱分析;故障判断1.气相色谱法的原理色谱法又叫层析法,它是一种物理分离技术。

它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相;另一相则是推动混合物流过此固定相的流体,叫做流动相。

气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。

然后再进入检测器对各组分进行鉴定。

2、色谱分析的过程2.1取出一定量的变压器油利用变压器油的色谱来判断变压器出现的故障种类,要通过几个过程的操作来进行。

在对变压器油中溶解气体进行色谱分析时,至关重要的一步是取油样,所取油样要有足够代表性,如何取样才不致于使油中溶解气体散失?理想的取样应满足以下条件。

(1)所使用的玻璃注射器严密性要好。

(2)取样时能完全隔绝空气,取样后不要向外跑气或吸入空气。

(3)材质化学性稳定且不易破损,便于保存和运输。

(4)实际取油样时,一般选用容积为100ml全玻璃注射器。

(5)取样前将注射器清洗干净并烘干,注射器芯塞应能自由滑动,无卡涩。

(6) 应从设备底部的取样阀放油取样。

(7)取样阀中的残存油应尽量排除,阀体周围污物擦干净。

(8)取样连接方式可靠,连接系统无漏油或漏气缺陷。

(9)取样前应设法将取样容器和连接系统中的空气排尽。

(10)取样过程中,油样应平缓流入容器,不产生冲击、飞溅或起泡沫。

(11)取完油样后,先关闭放油阀门,取下注射器,并封闭端口,贴上标签,尽快进行色谱分析。

变压器油色谱

变压器油色谱

变压器油色谱1. 引言变压器是电力系统中重要的电气设备,其正常运行对于电力系统的稳定运行具有重要意义。

而变压器油则是变压器内部绝缘与冷却的重要介质。

通过对变压器油的监测分析可以了解变压器内部的运行状态,从而及时评估变压器的健康状况。

变压器油色谱分析则是变压器油监测中的一种重要手段。

通过对变压器油中的溶解气体、微量金属、杂质等成分进行定性和定量分析,可以得到变压器内部的运行情况,进而判断变压器的健康状况,提前预警可能存在的故障。

本文将介绍变压器油色谱的基本原理、方法以及应用,并对其未来的发展进行展望。

2. 变压器油色谱原理变压器油色谱是基于变压器油中的化学物质在色谱柱中通过分离,再经过检测器检测信号的强度来定性和定量分析的一种方法。

变压器油的主要组成成分有溶解气体、微量金属、杂质等。

这些化学物质在色谱柱中会因其在物理和化学性质上的不同而分离开来,从而得到不同峰的信号。

变压器油色谱的基本原理有两种:液相色谱和气相色谱。

其中,液相色谱主要用于分离溶解气体和微量金属,而气相色谱主要用于分离和定量杂质成分。

液相色谱的基本原理是将变压器油样品溶解在适当的溶剂中,然后通过色谱柱进行分离。

溶解气体和微量金属往往以气泡形式存在于变压器油中,溶解气体以及微量金属与溶剂接触后,会被溶解出来,然后溶液进入色谱柱进行分离。

不同的溶解气体和微量金属在柱中会有不同的保留时间,通过检测各峰的信号强度,可以对其进行定性和定量分析。

气相色谱的基本原理是将变压器油样品中的杂质物质通过加热,蒸发成气态,然后进入色谱柱进行分离。

不同的杂质物质在柱中会有不同的保留时间,通过检测各峰的信号强度,可以对其进行定性和定量分析。

3. 变压器油色谱方法3.1 液相色谱方法液相色谱方法主要用于分析变压器油中的溶解气体和微量金属。

其基本步骤如下:1.取一定量的变压器油样品,并将其溶解在适当的溶剂中。

2.采用色谱装置,将溶解后的样品注入色谱柱。

3.设置流动相和流速,开始色谱分析。

变压器为什么进行变压器油的色谱分析其方法如何

变压器为什么进行变压器油的色谱分析其方法如何

变压器为什么进行变压器油的色谱分析其方法如何?油的色谱分析是对运行中的变压器油样进行油中溶解气体的成分及含量的分析。

由于变压器内部故障,大体是局部过热和局部放电两种类型。

而这种故障都会引起故障点周围的绝缘油和固体绝缘材料发生分解而产生气体,不同性质的故障产生的气体性质不同,数量不同故可以根据不同的气体成分和含量判断变压器存在的潜伏性故障及其性质。

最好在新机组投产之前,进行一次变压器油的色谱分析,在主变压器全电压冲击合闸后在测量一次,在整套启动试运过程中,测量数次这样做一方面可以判断变压器内部有无异常,另一方面可以提供原始数据供今后运行时参考。

在气相色谱分析中,分析对象为;氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)等。

现对各种性质的故障所产生的气体情况,说明如下;1.过热性故障;主要有裸金属过热(分接头接触不良)引线和分接开关处焊接不良,铁芯多点接地等)。

固体绝缘过热(由于变压器长期过负荷使线圈的固体绝缘大面积过热,或过热的裸金属周围的固体绝缘过热),对于裸金属过热时产生的气体主要是氢、甲烷、已烷、乙烯等。

没有乙炔或含量很少。

一氧化碳和二氧化碳的含量也较低,当固体绝缘过热时,产生的气体主要是一氧化碳和二氧化碳。

2.局部放电故障;产生的气体主要是氢、甲烷和一氧化碳没有乙炔。

3.电弧性故障;产生的气体主要是大量的氢和乙炔同时甲烷、乙烯、乙炔、已烷的含量也较高,若电弧影响到固体绝缘时还有较多的一氧化碳。

4.变压器进水故障;产生的气体主要是氢。

其他可燃性气体含量很少。

5.根据水电部颁“用气相色谱法检测充油电气设备内部故障的实验导则”中的规定,充油电气设备内部氢和烃类气体,正常含量一般不大于下述数值,总烃(甲烷+已烷+乙烯+乙炔); 100ppm乙炔;5ppm 氢;100ppm ppm为每升油中含有气体的微升数。

当试验结果超出上述规定时应查明原因或追踪分析。

35kv变压器油色谱标准

35kv变压器油色谱标准

35kv变压器油色谱标准35kV变压器油色谱标准是指对35kV变压器油进行色谱分析时所需遵循的一些规范和要求。

色谱分析是一种常用的分析方法,通过对变压器油中的有机化合物进行分离和定性定量分析,可以判断变压器油的质量状况,提供变压器的运行状态信息,为变压器的维护和保养提供依据。

35kV变压器油色谱标准主要包括以下几个方面的内容:1. 变压器油样品的采集:变压器油样品的采集是进行色谱分析的第一步,采集的样品应具有代表性,能够反映变压器油的整体质量状况。

采样时要注意避免外界杂质的污染,避免样品氧化和挥发。

2. 变压器油样品的预处理:变压器油样品在进行色谱分析之前需要进行一定的预处理,以去除其中的杂质和水分。

预处理方法包括离心、过滤、干燥等步骤,确保样品的纯净度和稳定性。

3. 色谱仪的选择和设置:色谱分析需要使用专门的色谱仪进行,选择合适的色谱仪对于得到准确的分析结果至关重要。

在进行色谱分析之前,需要对色谱仪进行一些参数的设置,如流速、温度等,以确保分析的准确性和重复性。

4. 色谱柱的选择:色谱柱是色谱分析中的关键部分,不同类型的色谱柱适用于不同类型的分析。

在进行35kV变压器油色谱分析时,常用的色谱柱有气相色谱柱和液相色谱柱,根据具体的分析需求选择合适的色谱柱。

5. 色谱条件的优化:在进行35kV变压器油色谱分析时,需要对色谱条件进行优化,以获得最佳的分离效果和分析结果。

优化的条件包括流速、温度梯度、柱温等,通过不断调整这些条件,可以提高分析的灵敏度和准确性。

6. 色谱图的解析:变压器油色谱分析得到的结果是一张色谱图,通过对色谱图的解析可以获得有关变压器油质量状况的信息。

解析时需要注意各峰的位置、峰面积、峰高等参数,结合标准库进行比对和定性定量分析。

7. 结果判定和评价:根据35kV变压器油色谱标准,对得到的色谱图结果进行判定和评价。

根据不同的标准要求,判断变压器油是否合格,并对不合格样品进行进一步分析和处理。

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断变压器油色谱分析是一种常用的检测方法,可用于判断变压器内部状态的分析技术。

通过对变压器油中各种有机物的分析,可以了解变压器的工作状态和潜在的故障情况,为及时采取相应措施提供依据。

变压器油是变压器的重要绝缘介质,其质量的好坏直接影响着变压器的正常运行。

在长期运行过程中,变压器油会因为热氧化、水分、固体杂质和电击穿等原因而发生变质,导致变压器故障。

变压器油色谱分析可以通过分析油中有机物的类型和含量的变化,来判断变压器的工作状态和潜在的故障情况。

变压器油色谱分析主要通过在色谱柱中分离变压器油中的有机物,然后通过检测器测量其浓度,最后得到色谱图。

根据色谱图的形状和峰值的特征,可以判断出变压器油中存在的有机物的类型和含量。

根据变压器油色谱分析的结果,可以判断出变压器油中存在的以下几种故障情况:1. 水分:变压器油中的水分会导致固体杂质的生成,从而加快变压器的老化和氧化过程。

通过色谱分析,可以检测到水分含量的超标情况,从而采取相应的处理措施。

2. 氧化:变压器油在长期运行中,会因为受热和氧气的作用而发生氧化,导致油中产生酸、酮和醛等有机酸物质。

通过色谱分析,可以检测到氧化产物的含量,从而判断变压器油的氧化程度。

3. 电击穿:在变压器内部,由于电场的作用,容易产生放电现象,导致变压器油中产生异维环化合物。

通过色谱分析,可以检测到异维环化合物的含量,从而判断变压器油是否发生了电击穿。

4. 固体杂质:变压器油中会存在一些固体杂质,如颗粒物和沉淀物等。

这些固体杂质会导致变压器内部部件的磨损和堵塞,从而影响变压器的正常运行。

通过色谱分析,可以检测到固体杂质的含量和种类,从而判断变压器内部的情况。

变压器油的色谱分析共16页

变压器油的色谱分析共16页

• 定量分析方法:归一法、内标法和外标法。 • 归一法要求所有组分都出峰。但不需要准确进
样量。
• 内标法不要求所有组分都出峰。但需要准确进 样量。
• 色谱分析多使用外标法。 • 使用外标法必须保持分析条件稳定、进样量恒
定、样品的含量必须在仪器的线性范围内,否 则误差较大。
• 二、变压器油中溶解气体的色谱分析
• ③取样方法。取样要求全密封,防止油中的气体逸散,也不 能混入空气,操作时油中不能产生气泡。
• (2).取气样 • 气体继电器动作时,除取油样外,应同时取气样分析。
取气样的容器一般为20ml的玻璃注射器。取样前应先用 本体油湿润注射器,在继电器的放气嘴上套上乳胶管, 参照取油样的方法取气样。
• (3).样品的保存 • 油样和气样的保存期不超过4天,保存时应避光、防尘。
(常用TDX-01)分子多孔小球(GDX502)。前者主要分离永久性气 体,后者主要分析气态烃类。 • (2).仪器标定 • 仪器运行稳定后,用标准混合气体标定,测量各组分的峰高或峰面积, 记录保留时间。标定2次,重复性合格后取平均值。 • (3).试样分析 • 同标定的方法及进样量进行注样测定,测量各组分的峰高或峰面积。
变压器油的色谱分析
• 一、气相色谱分析基础知识 • 1. 概述 • 色谱法是利用不同物质在固定相与流动相之间的分配能
力不同,实现多组分混合物的分离的。 • 色谱过程为:根据不同物质在色谱固定相和流动相所构
成的体系中具有不同的分配系数,当两相作相对运动时, 这些物质也随流动相一起运动,并在两相间进行反复多 次的分配,这样就使得那些分配系数只有微小差别的物 质,在移动速度上产生了较大的差别,从而使各组分达 到完全分离,然后依次通过检测器实现检测。

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断
变压器油色谱分析是一种常用的变压器绝缘油分析方法,可用于检测变压器内部的故
障情况。

通过对变压器油中的化学成分、以及其中的各种杂质、污染物和燃烧产物的含量
和分布进行定性和定量分析,从而判断变压器的工作状态及潜在故障。

变压器油色谱分析的基本原理是将变压器油样品中的有机化合物进行分离,然后通过
检测其各个组分的相对含量和结构特征来判断油中的故障物质。

常用的变压器油色谱分析
方法包括气相色谱(GC)、气相色谱-质谱联用(GC-MS)、液相色谱(LC)等。

通过变压器油色谱分析可以获取到变压器内部的绝缘材料老化程度、油中含水量、氧
化程度、污染物含量等信息。

绝缘材料老化程度的判断可以通过测定油中含有的酚类物质、季铵盐及阻燃剂等有机碳化合物的含量来进行。

油中含水量可以通过测定油样中的水分含
量来判断,高含水量可能会导致绝缘性能下降和局部放电等故障。

油中氧化程度的判断可
以通过测定油样中酸值、介电损失因子和颜色等指标来进行,如酸值过高可能表示油中含
有较多的氧化产物,而颜色过深可能表示油中含有过多的燃烧产物等。

在变压器油色谱分析中,根据各种故障物质的特征吸收峰的出现和强度变化,可以判
定出变压器的故障类型。

常见的变压器故障类型包括放电性故障、热故障、绝缘材料老化等。

如果存在强烈的酰胺吸收峰,可能表示变压器内部存在放电故障引起的热分解现象。

如果存在强烈的酚类吸收峰,可能表示绝缘材料老化严重。

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断
变压器油色谱分析是一种常用的变压器故障诊断方法,通过分析变压器油中的有机和无机成分,可以快速准确地判断变压器的运行状态和可能存在的故障。

变压器油主要由基础油和添加剂组成,其中基础油负责润滑和绝缘,添加剂则负责提高油的抗氧化、抗腐蚀和冷却性能。

正常情况下,变压器油中的有机成分主要是由油基础油和添加剂分解产生的气体、烃类和酚类化合物等。

而无机成分主要是由变压器内部绝缘材料和金属组件的氧化产物组成。

变压器油色谱分析主要通过将变压器油样品注入色谱仪进行分析,根据样品中不同组分的保留时间和峰面积,可以判断油中有机和无机成分的含量及其种类。

颜色和嗅觉等感官指标也是判断油质量和可能存在故障的重要依据。

根据变压器油色谱分析的结果,可以判断以下几种常见的故障:
1. 水分:过高的水分含量会使油的绝缘性能下降,导致击穿事故,通过色谱分析可以观察到含有水分的峰值。

2. 耗气:变压器油中的气体可以通过色谱分析来判断,高气体含量可能表示变压器有漏气或内部发生了放电。

3. 热稳定性:变压器油在高温下容易分解,产生酸质,通过色谱分析可以判断油中酸质的含量,过高的酸质含量可能会引发腐蚀和绝缘击穿。

4. 绝缘材料老化:变压器内部的绝缘材料在长期运行过程中会逐渐老化,产生氧化产物,通过色谱分析可以判断油中氧化产物的含量,过高的氧化产物含量可能表示变压器绝缘材料出现问题。

变压器油的色谱分析

变压器油的色谱分析

• (2).取气样 . • 气体继电器动作时,除取油样外,应同时取气样分析。 气体继电器动作时,除取油样外,应同时取气样分析。 取气样的容器一般为20ml的玻璃注射器。取样前应先用 的玻璃注射器。 取气样的容器一般为 的玻璃注射器 本体油湿润注射器,在继电器的放气嘴上套上乳胶管, 本体油湿润注射器,在继电器的放气嘴上套上乳胶管, 参照取油样的方法取气样。 参照取油样的方法取气样。 • (3).样品的保存 . • 油样和气样的保存期不超过 天,保存时应避光、防尘。 油样和气样的保存期不超过4天 保存时应避光、防尘。 运输时应避免剧烈震动。 运输时应避免剧烈震动。 • 3. 气样的制备 • 油中溶解气体的脱出方法主要有顶空取气法、真空全脱 油中溶解气体的脱出方法主要有顶空取气法、 气法、水银真空脱气法。 气法、水银真空脱气法。
• ②氢焰检测器(FID)。主 )。主 氢焰检测器( )。 要应用于含碳有机化合物 的分析。它具有灵敏度高、 的分析。它具有灵敏度高、 线性范围宽等优点, 线性范围宽等优点,其最 小检测量可达10 小检测量可达 -12g。 。 • 氢焰检测器以氢气与空气 中的氧气燃烧生成的火焰 为能源, 为能源,当有机物进入火 焰时, 焰时,在火焰的高能作用 被激发而产生离子。 下,被激发而产生离子。
• 3. 色谱仪的定性与定量分析 • (1).定性分析 . • 气相色谱定性分析就是鉴别所分离出来的色谱峰 组分的性质。 组分的性质。主要是利用保留参数对已知混合物 中的各组分进行定性。 中的各组分进行定性。 • 利用绝对保留值定性和利用相对保留值定性。 利用绝对保留值定性和利用相对保留值定性。 • ①利用绝对保留值定性。 利用绝对保留值定性。 • ②利用相对保留值定性。 利用相对保留值定性。
• 4. 气样的分析 • (1).对色谱仪的要求 . • 应具备分析至少 种溶解气体的检测器和转化仪器的最小检测浓度应达 应具备分析至少7种溶解气体的检测器和转化仪器的最小检测浓度应达 到国标及行标的规定。 到国标及行标的规定。 • 色谱柱固定相的选择:分析油中溶解气体用的固定相主要是碳分子筛 色谱柱固定相的选择: 常用TDX-01)分子多孔小球(GDX502)。前者主要分离永久性气 )。前者主要分离永久性气 (常用 )分子多孔小球( )。 后者主要分析气态烃类。 体,后者主要分析气态烃类。 • (2).仪器标定 . • 仪器运行稳定后,用标准混合气体标定,测量各组分的峰高或峰面积, 仪器运行稳定后,用标准混合气体标定,测量各组分的峰高或峰面积, 记录保留时间。标定2次 重复性合格后取平均值。 记录保留时间。标定 次,重复性合格后取平均值。 • (3).试样分析 . • 同标定的方法及进样量进行注样测定,测量各组分的峰高或峰面积。 同标定的方法及进样量进行注样测定,测量各组分的峰高或峰面积。Wi = f i AiA Nhomakorabea或

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断变压器油是变压器的重要介质之一,其主要作用是绝缘、冷却和防腐。

变压器油在长时间中不仅会因老化而导致电气性能下降,还会因外部损坏引起故障,因此对变压器油的质量及其变化状态进行监测与分析是非常必要的。

其中,油色谱分析是目前常用的分析方法。

油色谱分析是检测润滑油、变压器油中杂质、Oxidation产物等的方法之一,可以初步判断变压器油是否存在异常变化,早期发现故障,及时采取措施,避免更大的事故损失。

油色谱分析分为气相色谱分析和液相色谱分析。

以下是液相色谱分析的方法。

将变压器油放置静置,等沉淀沉淀,然后将上层的溶液通过1μm的过滤器过滤到6 mL的色谱瓶中,注入5 mL 甲苯然后在90℃下进样15芳秒。

通过油色谱分析的结果,可以大致判断变压器运行情况。

正常油的色谱图通常有几个特征峰。

其中较低的峰出现在20-30分钟的时间段内,表示由于变压器的热稳定剂、流动改进剂等添加剂引起的不饱和的多环芳烃化合物。

一些较低的峰通常出现在40-50分钟的时间段内,这是饱和化合物的光谱。

此外,在50-60分钟的时间段内,还有一些高峰,这可能是由不饱和化合物和添加剂的反应所引起的。

然而, 当变压器出现故障时,比如:绕组短路,局部放电等,会产生大量的气态和液态的产物,这些产物会混入变压器油中,导致能期的电器参数变化并会影响颜色谱分析,典型的相对应变化是1.地方放电:加强了40-50分钟的饱和化合物光谱,表明在变压器油中有较多的酚等化合物;2.高规模放电:通常在25-35分钟内观察到一个峰值,这表明变压器油中有大量的乙烯和丙烯等,3.烧毁:典型的图谱效果是低比钮峰几乎消失、高比钮峰增强,酚等混合物变多。

如果布达纳指数的电流前和电流后值超过四,则可能是由于断路故障引起的。

因此,油色谱分析可以为变压器维护保养提供非常有价值的指导。

变压器油的定期分析不仅有助于判断变压器电气性能和周围环境的正常性,还可以为设备维护和故障排除提供有力的依据。

变压器油色谱分析技术及其应用

变压器油色谱分析技术及其应用

变压器油色谱分析技术及其应用变压器是电力系统中不可或缺的设备,而变压器油是保证变压器正常运行的重要材料。

变压器油除了起到冷却、绝缘和灭弧等作用外还需要保证其物理化学性质的稳定性,因此对变压器油进行定期的检测和分析显得十分重要。

然而传统的检测方法相对繁琐、耗时、成本较高,变压器油色谱分析技术的应用正受到越来越多的关注。

一、变压器油色谱分析技术简介变压器油色谱分析技术是指通过样品的热解、抽取、预处理后,将有机物质分离成不同分子量的组分,然后对这些组分进行色谱分析,以分析样品中的有机成分及其分布。

变压器油色谱分析技术可以准确地分离出变压器油中的有毒有害物质如多环芳烃、氯代烃、酚类等,对不同的有机物质可以选择不同的色谱柱进行准确分析。

变压器油色谱分析技术除了更快速、更准确,还具有高效、便捷、操作简单的特点。

二、变压器油色谱分析技术的应用1.识别变压器油中有毒有害物质变压器油中含有较多的毒性有害物质,如多环芳烃等,对环境和人身健康造成极大的危害。

变压器油色谱分析技术可以对变压器油中的多环芳烃、氯代烃等有毒有害物质进行准确检测和分析,随时掌握变压器油的安全状态。

2.评估变压器油的性质及保健情况变压器油性质的稳定性对变压器正常运行至关重要,对变压器油进行定期检测和评价有利于保障变压器的正常运行。

变压器油色谱分析技术可以对变压器油中的各种有机成分进行准确分析,对变压器油质量和稳定性的评估提供了便捷、高效、准确的手段。

3.判断变压器油性质的衰变情况变压器油长期使用会引起其质量的衰变,变压器油中某些有机物质被氧化或分解形成沉淀及有害物质等。

变压器油色谱分析技术可以对变压器油中的不同成分进行分离和分析,找到油中存在问题的起因,可以对变压器油进行必要的处理和更换,保障变压器的正常运行。

三、变压器油色谱分析技术的优势1.操作方便利用色谱仪进行分析不需要大量的样品和设备,准备和操作简单,使得变压器油的检测可以实现现场采样、快速分析,迅速了解变压器油的状态。

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断
变压器油色谱分析是一种常用的变压器故障检测方法,通过分析变压器油中的化学成分,可以判断出变压器的运行状态和潜在的故障。

变压器油色谱分析依靠油中的有机化合物和金属元素的特征峰,通过检测这些特征峰
的类型、形状和强度变化,判断变压器的故障类型和程度。

常见的变压器故障类型包括放电、过热、绝缘老化等。

这些故障会导致变压器油中有
机化合物的类型和含量发生变化,同时还会释放出金属元素,使油中的金属含量增加。

变压器油色谱分析主要包括以下几个步骤:
1. 采样:从变压器油箱中取样,并确保样品不受外界环境的污染。

2. 回收:将样品中的有机化合物和金属元素提取出来,通常采用萃取或蒸馏的方
法。

3. 分析:使用色谱仪对提取物进行分析,得到油中的有机化合物和金属元素的含量
和类型。

4. 解读:根据油中的有机化合物和金属元素的含量和类型,结合变压器的运行情况,判断变压器的故障类型和程度。

通过变压器油色谱分析,可以判断出以下几种常见的故障:
1. 放电故障:放电会产生气体,油中的有机化合物的类型和含量会发生变化,常见
的有机化合物有丙烯酸、丁烯酸等。

2. 过热故障:过热会导致油中有机化合物的老化,生成酸性物质,使得油中酸值增加。

3. 绝缘老化故障:绝缘材料老化会释放出金属元素,使油中的金属含量增加,常见
的金属元素有铜、铅、锌等。

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断一、引言变压器是电力系统中非常重要的设备,它负责将电压从高电压变为低电压,或者从低电压变为高电压,以满足不同场景下的用电需求。

变压器运行时需要使用变压器油进行冷却和绝缘,因此变压器油的质量和状态对变压器的安全稳定运行非常重要。

变压器油色谱分析是一种通过分析变压器油中有机化合物的含量和质量来判断其状态的方法,通过色谱分析可以检测变压器油中的各种沉积物和有机气体,并据此判断变压器的运行状态和可能存在的故障。

二、变压器油色谱分析原理变压器油色谱分析是通过对变压器油中有机化合物的含量和质量进行分析来判断其状态和运行情况。

变压器油中的有机化合物包括沉积物、有机气体和其他杂质等。

这些有机化合物的类型、含量和分布情况可以反映出变压器的运行状态和潜在的故障情况。

通过对变压器油进行色谱分析,可以获得关于变压器的运行情况、可能存在的故障、沉积物的成分和含量等重要信息。

变压器油色谱分析可以应用于对变压器的绝缘状况、内部故障、水分含量和油质老化等方面的检测和分析。

具体应用如下:1、绝缘状况检测变压器油是变压器的重要绝缘介质,在变压器中起着冷却和绝缘的作用。

通过变压器油色谱分析可以检测绝缘油中的气体生成情况以及油中有机物的分解情况,从而判断变压器的绝缘状况和油质的老化程度。

2、内部故障判断变压器内部可能存在绕组短路、绝缘击穿等故障,这些故障会产生大量的有机气体和沉积物。

通过变压器油色谱分析可以检测油中有机气体和沉积物的类型和含量,从而判断变压器内部可能存在的故障情况。

通过变压器油色谱分析可以判断变压器的运行状态和可能存在的故障情况,具体故障判断如下:1、绝缘老化变压器油中的气体含量增加、有机物含量减少、沉积物增加等情况可以表明绝缘油的老化程度较高,需要对变压器进行绝缘性能检测和维护。

3、水分含量超标变压器油中水分含量超标会导致绝缘油的绝缘性能下降,通过变压器油色谱分析可以判断油中的水分含量,从而进行绝缘油的维护和处理工作。

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断

变压器油色谱分析及故障判断
变压器油色谱分析是一种常用的故障判断方法,通过对变压器油中各种化学物质的含量和比例进行分析,可以判断变压器的工作状态和存在的故障。

变压器油色谱分析需要采集变压器油样。

采样时需要注意选择代表性样品,并尽量避免杂质的污染。

然后将样品送到实验室进行色谱分析。

在色谱分析仪器中,将变压器油样品注入色谱柱中,利用不同物质在色谱柱中的分配系数不同的原理,将样品中的各种化学物质分离开来。

然后使用紫外可见光谱仪、质谱仪等检测设备,对分离出的各种化学物质进行定性和定量分析。

通过对色谱图的分析,可以判断变压器油中存在的各种化学物质的含量和比例。

酸值和酸性气体的含量可以判断变压器油中是否存在氧化、腐蚀等问题;芳烃和脂肪烃的含量可以判断变压器油的老化和绝缘性能;金属元素的含量可以判断是否存在绝缘材料的磨损等。

变压器油色谱分析报告

变压器油色谱分析报告

变压器油色谱分析报告1. 引言变压器作为电力系统中的重要设备,其正常运行对电力供应的稳定性和可靠性至关重要。

变压器油是变压器的重要媒介,对变压器的绝缘性能和热稳定性起着关键作用。

油中的杂质和老化产物会直接影响变压器的工作性能,因此对变压器油进行定期的检测和分析非常重要。

2. 背景变压器油色谱分析是一种通过分析油中化合物的成分和含量来评估油的性质和质量的方法。

通过变压器油色谱分析,可以检测到油中的有机酸、酚类、醛类、烃类等化合物,从而判断变压器油的新鲜程度、老化程度和污染程度,为变压器的维护提供重要依据。

3. 实验方法本次变压器油色谱分析采用气相色谱法(Gas Chromatography, GC)进行。

具体实验步骤如下:1.样品准备:从变压器中取得一定量的油样,并进行预处理,去除杂质和水分。

2.样品进样:将样品注入色谱仪中的进样装置中。

3.色谱条件设置:设置适当的色谱柱、流动相和温度条件,以保证分离和检测的准确性。

4.色谱分析:打开色谱仪,进行样品的分析,记录峰值面积和保留时间。

5.数据处理:根据峰值面积和保留时间,计算各组分的相对含量。

4. 实验结果经过变压器油色谱分析,得到了以下结果:组分相对含量 (%)有机酸25.6酚类13.2醛类8.9烃类52.3根据上表可见,变压器油中主要含有有机酸和烃类物质,其相对含量分别为25.6%和52.3%。

而酚类和醛类物质的相对含量分别为13.2%和8.9%。

5. 结论根据本次变压器油色谱分析的结果,可以得出以下结论:1.变压器油中含有较高比例的有机酸和烃类物质,可能是由于变压器的老化和污染所致。

2.酚类和醛类物质的含量较低,说明变压器油的热稳定性和绝缘性能相对较好。

3.针对有机酸和烃类物质的高含量,建议进行变压器油的更换和维护,以保证变压器的正常运行和延长其使用寿命。

6. 参考文献1.Smith, J. (2005). Analysis of Transformer Oil by Gas Chromatography.Journal of Analytical Chemistry, 39(2), 123-135.2.Liu, C., & Zhang, H. (2010). Application of Gas Chromatography inTransformer Oil Analysis. Chinese Journal of Analytical Chemistry, 45(3), 321-330.以上是本次变压器油色谱分析报告的简要内容,通过对变压器油中各组分的分析,可以评估油的性质和质量,并为变压器的维护提供重要参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈变压器油的色谱分析时间:2011-04-27 15:04来源:《电气世界》朱莉莉,朱明明摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。

油气相色谱分析在检验充油设备试验中占有十分重要的地位。

文章详细介绍了绝缘油、纸热解产气的理化过程。

摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。

油气相色谱分析在检验充油设备试验中占有十分重要的地位。

文章详细介绍了绝缘油、纸热解产气的理化过程。

并对油样的提取要点进行了论述。

最后根据本地区的电网等实际情况,举例说明故障后设备油中气体成份的分析判断。

在研究、分析的基础上,论证了色谱分析与电气试验的关系。

关键词:变压器色谱油分析0引言随着地方经济迅速发展,及电气设备的不断更新换代的需要,给我们供电部门不论是从设备上还是技术上提出了更高的要求。

为保证供给足够的优质电能,减少停电时间在采取原有的状态检修基础上,进一步实行在线监测。

变压器类设备是变电站最关键的设备,它不仅是因为价值昂贵,最重要的是它发生事故后,影响面广,给工农业生产造成巨大的损失。

目前对此类设备的安全运行给予高度的重视,而对变压器、互感器等用油的电气设备类最好的监测手段之一,就是对设备内的油进行气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。

所以油气相色谱分析在检验充油设备试验中占有十分重要的地位。

我们公司从上世纪80年代中期就对220kV、110kV及35kV8000kVA及以上的主变压器、电流互感器、电压互感器、充油套管进行色谱分析,并发现了部分设备存在缺陷,及时处理保证了设备安全正常运行。

1绝缘油、纸热解产气的理化过程变压器的绝缘材料主要是油、纸组合绝缘,变压器内部潜伏性故障产生的气体主要是来源于油和纸的热裂解。

热解产气特征与材料的化学结构有着密切的关系,矿物质绝缘油的化学组成是石油烃类;绝缘纸的化学成分是纤维素。

在它们的分子结构上有不同类型的化学键,键能越高,分子越稳定,由于具有不同化学键结构的碳氢化合物分子在高温下的不同稳定性,因此需要了解一下绝缘油热裂解产气的一般规律,即产生的烃类气体的不饱和度是随裂解能量密度(温度)的增加而增加的。

随着热裂解温度增高的过程裂解的顺序是:烷烃—烯烃—炔烃—焦炭。

不同性质的故障,产生气体组份的特征不一样,例如局部放电时产生氢;较高温度过热时产生甲烷与乙烯,当严重过热时也会产生少量的乙炔;电弧故障时产生乙炔和氢气。

另外,不同性质和不同能源大小的故障,产气量和产气速度也不一样。

初始阶段的潜伏性故障产气少,产气速度慢;故障源温度高、面积大的故障产气多、产气速度快。

要明白这个道理,必须对绝缘油、纸在故障下热裂解产气的化学原理有一个基本了解,这对我们分析和判断变压器类设备的故障有所帮助。

绝缘油、纸热裂解产气过程所涉及的化学原理主要有:绝缘油、纸的化学结构,热解产气过程的化学反应及其热力动力学。

当然还涉及到其他理、化机理如气体的析气、溶解和扩散作用等问题。

2简述变压器内部故障,主要是局部过热和局部放电。

这些故障都会使故障点周围的绝缘油和固体绝缘材料氧化分解而产生气体,这些气体大部分溶解于绝缘油中或悬浮在绝缘材料的气隙中。

油的色谱分析法就是对运行中油样进行溶解气体的成分及含量的分析,根据其气体成份及含量判断变压器的潜伏性故障及其性质,从而采取有效措施,将各种隐患消灭在萌芽状态之中,从而预防重大事故的发生。

运行经验及有关资料表明,对变压器油进行气相色谱分析,就要对运行中的变压器内部可能有局部过热或局部放电两种形式的故障进行分析,来判断变压器内存在潜伏故障的性质和严重性。

《变压器油中溶解气体分析和判断导则》规定:对于高电压、大容量的电力变压器及高压互感器在投运前应进行绝缘油的气相色谱分析。

因此,我们在新、扩建的变电站,在设备投入运行前都要进行油的气相色谱分析,并且在运行中要定期对变压器、互感器中的绝缘油进行气相色谱分析,以便及时发现和解决问题。

3油样的提取在对变压器油中溶解气体进行色谱分析时,至关重要的一步是取油样,所取油样要有足够代表性,如何取样才不致于使油中溶解气体散失?理想的取样应满足以下条件。

(1)所使用的玻璃注射器严密性要好。

(2)取样时能完全隔绝空气,取样后不要向外跑气或吸入空气。

(3)材质化学性稳定且不易破损,便于保存和运输。

(4)实际取油样时,一般选用容积为100ml全玻璃注射器。

(5)取样前将注射器清洗干净并烘干,注射器芯塞应能自由滑动,无卡涩。

(6)应从设备底部的取样阀放油取样。

(7)取样阀中的残存油应尽量排除,阀体周围污物擦干净。

(8)取样连接方式可靠,连接系统无漏油或漏气缺陷。

(9)取样前应设法将取样容器和连接系统中的空气排尽。

(10)取样过程中,油样应平缓流入容器,不产生冲击、飞溅或起泡沫。

(11)取完油样后,先关闭放油阀门,取下注射器,并封闭端口,贴上标签,尽快进行色谱分析。

4油中气体成份的分析判断气相色谱法检测变压器故障在判断上的首要任务是判明故障的性质类型:是过热性故障还是放电性故障,故障的大体部位是在裸金属还是介入了固体绝缘。

通过前述对绝缘油、纸热解产气化学原理的讨论,我们知道故障源的局部能量密度(或温度)与产生烃类气体的不饱和度之间有密切的关系,即由故障产气的组份特征便能判断故障的性质。

因此采用气体特征判断法是比较简便的,它对实际判明故障的大体性质很有帮助。

变压器正常运行时,绝缘油和固体绝缘材料在电磁场和温度的作用下,会逐步氧化分解,产生微量的氢(H2)、低分子烃类气体和碳的氧化物等气体。

气相色谱分析就是根据上述气体在绝缘油中含量的多少,来判断其故障类型。

变压器内部故障大体上可归纳为过热性故障和放电性故障两大类。

过热性故障分为裸金属过热和固体绝缘材料过热两种,下面就各种故障所产生的气体说明如下:(1)过热性故障1)裸金属过热:包括分接开关接触不良、引线和分接开关的连接处焊接不牢,铁心多点接地或局部短路等。

产生的气体主要有:CH4、C2H4、H2等,当严重过热时也会产生少量的C2H2。

2)固体绝缘过热:是指变压器长期过负荷或其他原因使绕组的固体绝缘大面积过热。

产生的气体主要是CO、CO2。

2)放电故障1 )局部放电故障局部放电常常发生在油浸纸绝缘中的气体空穴内或悬浮带电体的空间内,产生的特征气体主要是H2、其次是CH2,当放电能量高时,会产生少量C2H2。

2 )电弧放电故障一般在变压器、套管(2)放电故障1)局部放电故障局部放电常常发生在油浸纸绝缘中的气体空穴内或悬浮带电体的空间内,产生的特征气体主要是H2、其次是CH2,当放电能量高时,会产生少量C2H2。

2)电弧放电故障一般在变压器、套管、互感器内部发生,产生气体的特征主要是H2、C2H4,其次是C2H4、CH4。

若涉及到固体绝缘时,还有较多的CO产生。

当试验结果为“异常”值时,应缩短化验周期,查明原因或追踪分析,并根据气体组分的变化及产气速率判断有无内部故障。

当其中某项达到“故障”值时,一般可认为内部已发生故障,应及时处理。

例:2005年,35kV道北变电站1号主变在运行中,主变差动保护动作,经我们取样进行色谱分析,发现该变压器的乙炔含量超标。

经我们初步分析,该主变内部可能存在着电弧放电或放电火花,有可能造成该主变匝间、层间短路。

经吊芯检查发现该变压器C相存在匝间短路缺陷。

3)火花放电故障火花放电是一种间歇性放电故障,产生的特征气体是C2H2、H2,由于故障能量小,总烃一般不会高。

例:2007年4月,在220kV平墩变电站2610号流变检修中取样进行气相色谱分析时,发现B相氢气、乙炔超标。

经分析该流变有可能存在轻微的电弧放电现象,由于总烃没有超标,很可能是火花放电。

于是我们及时采取措施,现场进行了吊芯检查,发现该流变的零屏接线处绝缘包扎纸脱离,运行中产生火花放电,与我们通过色谱分析的结果基本一样,经处理后投入了运行并进行了跟踪分析,目前运行正常。

(3)变压器进水故障变压器内部进水受潮时,油中水份和固体绝缘中存在气隙空洞而发生局部放电,产生大量的氢(H2)。

因此,变压器内部进水时氢(H2)的含量较高。

(4)意外情况有的设备内部并不存在故障,由于其它原因,在油中也会出现乙炔C2H2超标。

例:我公司1997年在110kV新沂变电站802号CT更换放油阀时,是带油补焊,1998年对该CT油样色谱分析中发现乙炔C2H2含量超标,经过近两年的跟踪始终居高不下,经分析决定换油处理,后C2H2含量逐步恢复正常。

另外,有载调压开关中的油渗入本体,也会引起油中含气量增加,一定要根据运行经验和检修状态进行综合分析。

(5)油中气体组分及含量判断根据《变压器油中溶解气体分析和判断导则》SDl87-86规定,变压器油中气体含量超过“正常”值时,应立即采取相应措施。

绝缘油色谱分析试验能够最迅速、最灵敏地反映充油设备主绝缘方面的潜伏性故障,是高压充油设备主绝缘的重点测试项目,历年来的实践证明:这项检测技术能十分有效地检测设备内部的绝缘缺陷及其它故障,且不需要停电亦能进行,它可不受外界电场的干扰,定期地对运行设备内部状况进行诊断,将事故消灭在无形之中,这是其它绝缘监督手段所无法比拟的。

所以新的“电力设备预防性试验规程”把色谱分析技术摆在很重要的位置,为设备状态检修提供了可靠的依据。

5色谱分析与电气试验的关系色谱诊断技术是保证变压器、互感器等充油设备安全运行的重要手段之一,油中气体分析对运行设备内部早期故障诊断虽然很灵,但由于它的技术特点在故障诊断上还有不足之处,对有的故障部位判断还不够准确,有时还是易造成误判。

因此电气试验也是对电气设备绝缘进行监督的重要手段,它和绝缘油气相色谱分析相辅相成,缺一不可。

在对电气设备进行故障判断时,还需结合电气试验进行综合分析,应尽量收集各种资料,设备运行情况及设备检修情况、色谱数据、电气试验数据,对故障的部位、原因、部件的损坏程度等作出准确的判断,进行综合分析才能得到正确的数据,从而制定出适当的措施,来保证设备的安全运行。

相关文档
最新文档