一元一次方程(3)
2024年沪科版七年级数学上册 3.3 一元一次方程的应用 课时3(课件)
课堂小结
在比例问题中,合理设未知数是解题的关键,常 利用参数法间接设未知数. 如:若甲、乙的配比为m∶n, 常常设“每一份”为x,即设甲为mx,则乙可表示为nx, 然后根据等量关系建立方程模型.
随堂练习
4.今年元旦,小颖在如图所示的一张长方形宣纸上的四个正 方形格子中写下了“元旦快乐”的毛笔书法作品,已知宣纸 的长为108cm,正方形格子的边长相等,正方形格子与纸边 之间的边空宽相等,相邻两个字的字距相等,且边空宽、字 宽、字距之比为 3∶6∶2,则这张长方形宣纸的面积为 ___3__8_8_8__cm2.
新知探究 知识点 一元一次方程的应用(三)
解:设需要用到甘草、党参、苏叶的质量分别是x kg, 2x kg,4x kg. 根据题意,得x+2x+4x=210. 解得x=30. 所以2x=60,4x=120. 答:需要用到甘草、党参、苏叶的质量分别是30kg, 60kg,120kg.
随堂练习
1.为鼓励学生参加体育锻炼,学校计划购买一批篮球和排球. 已知篮球和排球的单价之比为4∶3,单价之和为84元,则篮 球的单价为__4_8__元,排球的单价为__3_6__元.
4x=80,5x=100,6x=120.
答:三支服务队分别收割小麦80 hm2,100 hm2,120 hm2.
新知探究 知识点 一元一次方程的应用(三)
练一练 某种中成药需要用到甘草、党参、 苏叶三种材料,其中
甘草、党参、苏叶三种材料的质量之比 为1∶2∶4. 求生产 210kg这种中成药,需要用到甘草、党参、 苏叶的质量分别是 多少千克?
例5 三支农机服务队共同为某镇抢收小麦300 hm2. 如果三支
人教版七年级上册第3章《一元一次方程》应用题分类练习(三)
⼈教版七年级上册第3章《⼀元⼀次⽅程》应⽤题分类练习(三)《⼀元⼀次⽅程》应⽤题分类练习(三)⼀.销售问题1.某服装店购进A,B两种新式服装,按标价售出后可获得利润1600元,已知购进B种服装的数量是A种服装数量的2倍,这两种服装的进价、标价如表所⽰:A型B型进价(元/件)60 100标价(元/件)100 160(1)这两种服装各购进了多少件?(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店的利润⽐按标价出售少收⼊多少元?2.华联超市第⼀次⽤7000元购进甲、⼄两种商品,其中甲商品的件数是⼄商品件数的2倍,甲、⼄两种商品的进价和售价如表:(注:获利=售价﹣进价)甲⼄进价(元/件)20 30售价(元/件)25 40 (1)该超市购进甲、⼄两种商品各多少件?(2)该超市将第⼀次购进的甲、⼄两种商品全部卖完后⼀共可获得多少利润?(3)该超市第⼆次以第⼀次的进价⼜购进甲、⼄两种商品,其中甲商品的件数不变,⼄商品的件数是第⼀次的3倍:甲商品按原价销售,⼄商品打折销售,第⼆次两种商品都售完以后获得的总利润⽐第⼀次获得的总利润多800元,求第⼆次⼄商品是按原价打⼏折销售?3.列⽅程解应⽤题:某⽔果店计划购进A、B两种⽔果下表是A、B这两种⽔果的进货价格:⽔果品种A B进货价格(元/kg)10 15(1)若该⽔果店要花费600元同时购进两种⽔果共50kg,则购进A、B两种⽔果各为多少?(2)若⽔果店将A种⽔果的售价定为14元/kg,要使购进的这批⽔果在完全售出后达到50%的利润率,B种⽔果的售价应该定为多少?4.武汉⼤洋百货经销甲、⼄两种服装,甲种服装每件进价500元,售价800元;⼄种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,⼄种服装每件进价为元;(2)若该商场同时购进甲、⼄两种服装共40件,恰好总进价⽤去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉⼤洋百货实⾏“满1000元减500元的优惠”(⽐如:某顾客购物1200元,他只需付款700元).到了晚上⼋点后,⼜推出“先打折”,再参与“满1000元减500元”的活动.张先⽣买了⼀件标价为3200元的⽻绒服,张先⽣发现竟然⽐没打折前多付了20元钱问⼤洋百货商场晚上⼋点后推出的活动是先打多少折之后再参加活动?5.⼀种商品按销售量分三部分制定销售单价,如下表:销售量单价不超过100件部分 2.6元/件超过100件不超过300件部分 2.2元/件超过300件部分2元/件(1)若买100件花元,买300件花元;买380件花元;(2)⼩明买这种商品花了568元,列⽅程求购买这种商品多少件?(3)若⼩明花了n元(n>260),恰好购买0.45n件这种商品,求n的值.⼆.配套问题6.列⽅程解应⽤题:油桶制造⼚的某车间主要负责⽣产制造油桶⽤的圆形铁⽚和长⽅形铁⽚,该车间有⼯⼈42⼈,每个⼯⼈平均每⼩时可以⽣产圆形铁⽚120⽚或者长⽅形铁⽚80⽚.如图,⼀个油桶由两个圆形铁⽚和⼀个长⽅形铁⽚相配套.⽣产圆形铁⽚和长⽅形铁⽚的⼯⼈各为多少⼈时,才能使⽣产的铁⽚恰好配套?7.星光服装⼚接受⽣产⼀些某种型号的学⽣服的订单,已知每3m长的某种布料可做上⾐2件或裤⼦3条,⼀件上⾐和⼀条裤⼦为⼀套,计划⽤750m长的这种布料⽣产学⽣服,应分别⽤多少布料⽣产上⾐和裤⼦才能恰好配套?共能⽣产多少套?8.⾜球表⾯是由若⼲个⿊⾊五边形和⽩⾊六边形⽪块围成的,⿊、⽩⽪块数⽬⽐为3:5,⼀个⾜球表⾯⼀共有32个⽪块,⿊⾊⽪块和⽩⾊⽪块各有多少个?9.包装⼚有⼯⼈42⼈,每个⼯⼈平均每⼩时可以⽣产圆形铁⽚120⽚,或长⽅形铁⽚80⽚,两张圆形铁⽚与⼀张长⽅形铁⽚可配套成⼀个密封圆桶,问每天如何安排⼯⼈⽣产圆形和长⽅形铁⽚能合理地将铁⽚配套?10.⽤铝⽚做听装易拉饮料瓶,每张铝⽚可制瓶⾝16个或瓶底43个,⼀个瓶⾝配两个瓶底.现有150张铝⽚,⽤多少张制瓶⾝,多少张制瓶底,可以正好制成成套的饮料瓶?三.相遇与追击问题11.甲、⼄两⼈同时从A地出发去25km远的B地,甲骑车,⼄步⾏,甲的速度是⼄的速度的3倍,甲到达B地停留40min,然后从B地返回A地,在途中遇见⼄,这时距他们出发的时间恰好为3h.(1)若设⼄的速度为xkm/h,则甲的速度为km/h,甲遇见⼄时,⼄⾛的路程可以表⽰为km,甲⾛的路程可以表⽰为km.(2)两⼈的速度分别是多少?(请⽤⽅程来解决问题)12.“五?⼀”长假⽇,弟弟和妈妈从家⾥出发⼀同去外婆家,他们⾛了1⼩时后,哥哥发现带给外婆的礼品忘在家⾥,便⽴刻带上礼品以每⼩时6千⽶的速度去追,如果弟弟和妈妈每⼩时⾏2千⽶,他们从家⾥到外婆家需要1⼩时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?13.甲、⼄两站相距275千⽶,⼀辆慢车以每⼩时50千⽶的速度从甲站出发开往⼄站.1⼩时后,⼀辆快车以每⼩时75千⽶的速度从⼄站开往甲站.那么快车开出后⼏⼩时与慢车相遇?14.已知甲⼄两⼈在⼀个200⽶的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4⽶,⼄平均每秒跑6⽶,若甲⼄两⼈分别从A、C两处同时相向出发(如图),则:(1)⼏秒后两⼈⾸次相遇?请说出此时他们在跑道上的具体位置;(2)⾸次相遇后,⼜经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪⼀条段跑道上?15.⼩刚和⼩强从A、B两地同时出发,⼩刚骑⾃⾏车,⼩强步⾏,沿同⼀条路线相向匀速⽽⾏,出发后2h两⼈相遇,相遇时⼩刚⽐⼩强多⾏进24km,相遇后0.5h⼩刚到达B 地,两⼈的⾏进速度分别是多少?相遇后经过多少时间⼩强到达A地?四.年龄问题16.古希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他⽣命的六分之⼀是幸福的童年;再活了他⽣命的⼗⼆分之⼀,两颊长起了细细的胡须;他结了婚,⼜度过了⼀⽣的七分之⼀;再过五年,他有了⼉⼦,感到很幸福;可是⼉⼦只活了他⽗亲全部年龄的⼀半;⼉⼦死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出:(1)丢番图的寿命;(2)丢番图开始当爸爸时的年龄;(3)⼉⼦死时丢番图的年龄.17.今年⼩李的年龄是他爷爷年龄的五分之⼀,⼩李发现:12年之后,他的年龄变成爷爷的年龄三分之⼀.求⼩李爷爷今年的年龄.参考答案1.解:(1)设A种服装购进x件,则B种服装购进2x件,(100﹣60)x+2x(160﹣100)=1600,解得:x=10,∴2x=20,答:A种服装购进10件,B种服装购进20件;(2)打折后利润为:10×(100×0.8﹣60)+20×(160×0.7﹣100)=200+240=440(元),少收⼊⾦额为:1600﹣440=1160(元),答:服装店的利润⽐按标价出售少收⼊1160元.2.解:(1)设第⼀次购进⼄种商品x件,则购进甲种商品2x件,根据题意得:20×2x+30x=7000,解得:x=100,∴2x=200件,答:该超市第⼀次购进甲种商品200件,⼄种商品100件.(2)(25﹣20)×200+(40﹣30)×100=2000(元)答:该超市将第⼀次购进的甲、⼄两种商品全部卖完后⼀共可获得利润2000元.(3)⽅法⼀:设第⼆次⼄种商品是按原价打y折销售根据题意得:(25﹣20)×200+(40×﹣30)×100×3=2000+800,解得:y=9答:第⼆次⼄商品是按原价打9折销售.⽅法⼆:设第⼆次⼄种商品每件售价为y元,根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800,解得:y=36×100%=90%答:第⼆次⼄商品是按原价打9折销售.⽅法三:2000+800﹣100×3=1800元∴=6,∴×100%=90%,答:第⼆次⼄商品是按原价打9折销售.3.解:(1)设购进A⽔果x千克,则购进B⽔果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A⽔果30千克,购进B⽔果20千克;(2)设B种⽔果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种⽔果的售价应该定为24元/千克.4.解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为=60%.∵⼄种服装商品每件售价1200元,可盈利50%.∴⼄种服装每件进价为=800(元),故答案为:60%,800;(2)设甲种服装进了x件,则⼄种服装进了(40﹣x)件,由题意得,500x+800(40﹣x)=27500,解得:x=15.商场销售完这批服装,共盈利15×(800﹣500)+25×(1200﹣800)=14500(元).答:商场销售完这批服装,共盈利14500元.(3)设打了y折之后再参加活动.①打折后价格满2000元少于3000元=3200﹣3×500+20.解得:y=8.5.②打折后价格满1000元少于2000元,解得y=6.9(不合题意,舍去).③打折后价格不满1000元3200×,解得y=5.3(不合题意,舍去).答:先打⼋五折再参加活动.5.解:(1)买100件花:2.6×100=260(元)买300件花:2.6×100+2.2×200=700(元)买380件花:2.6×100+2.2×200+2×80=860(元)故答案为:260,700,860(2)设购买这种商品x件因为花费568<700,所以购买的件数少于300件.260+2.2(x﹣100)=568解得:x=240答:购买这种商品240件(3)①当260<n≤700时260+2.2(0.45n﹣100)=n解得:n=4000(不符合题意,舍去)②当n>700时700+2(0.45n﹣300)=n解得:n=1000综上所述:n的值为10006.解:设⽣产圆形铁⽚的⼯⼈为x⼈,则⽣产长⽅形铁⽚的⼯⼈为42﹣x⼈,根据题意可列⽅程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:⽣产圆形铁⽚的有24⼈,⽣产长⽅形铁⽚的有18⼈.7.解:设做上⾐需要xm,则做裤⼦为(750﹣x)m,故可做上⾐×2,做裤⼦×3,由题意得,=750﹣x,解得:x=450,答:⽤450m做上⾐,300m做裤⼦恰好配套.=300(套),因此共做300套.8.解:设⿊⾊⽪块有3x个,则⽩⾊⽪块有5x 个,根据题意列⽅程:3x+5x=32,解得:x=4,则⿊⾊⽪块有:3x=12个,⽩⾊⽪块有:5x=20个.答:⿊⾊⽪块有12个,⽩⾊⽪块有20个.9.解:设安排x⼈⽣产长⽅形铁⽚,则⽣产圆形铁⽚的⼈数为(42﹣x)⼈,由题意得:120(42﹣x)=2×80x,去括号,得5040﹣120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42﹣18=24(⼈);答:安排24⼈⽣产圆形铁⽚,18⼈⽣产长⽅形铁⽚能合理地将铁⽚配套.10.解:设⽤x张铝⽚做瓶⾝,则⽤(150﹣x)张铝⽚做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则⽤150﹣86=64张铝⽚做瓶底.答:⽤86张铝⽚做瓶⾝,则⽤64张铝⽚做瓶底.11.解:(1)若设⼄的速度为xkm/h,则甲的速度为3xkm/h,甲遇见⼄时,⼄⾛的路程可以表⽰为3xkm,甲⾛的路程可以表⽰为(3﹣)×3x=7xkm.(2)7x+3x=25×2,10x=50,x=5,3x=15.答:甲的速度是15千⽶/⼩时,⼄的速度是5千⽶/⼩时.故答案为:3x,3x,7x.12.解:设哥哥追上弟弟需要x⼩时.由题意得:6x=2+2x,解这个⽅程得:.∴弟弟⾏⾛了=1⼩时30分<1⼩时45分,未到外婆家,答:哥哥能够追上.13.解:设快车开出后x⼩时与慢车相遇.由题意得:50(1+x)+75x=275,解得:.答:快车开出后⼩时与慢车相遇.14.解:(1)设x秒后两⼈⾸次相遇,依题意得到⽅程4x+6x=100.解得x=10.甲跑的路程=4×10=40⽶,答:10秒后两⼈⾸次相遇,此时他们在直道AB上,且离B点10⽶的位置;(2)设y秒后两⼈再次相遇,依题意得到⽅程4y+6y=200.解得y=20.答:20秒后两⼈再次相遇;(3)第1次相遇,总⽤时10秒,第2次相遇,总⽤时10+20×1,即30秒,第3次相遇,总⽤时10+20×2,即50秒,第100次相遇,总⽤时10+20×99,即1990秒,则此时甲跑的圈数为1990×4÷200=39.8,200×0.8=160⽶,此时甲在AD弯道上.15.解:设⼩刚的速度为xkm/h,则相遇时⼩刚⾛了2xkm,⼩强⾛了(2x﹣24)km,由题意得,2x﹣24=0.5x,解得:x=16,则⼩强的速度为:(2×16﹣24)÷2=4(km/h),2×16÷4=8(h).答:两⼈的⾏进速度分别是16km/h,4km/h,相遇后经过8h⼩强到达A地.16.解:设丢番图的寿命为x岁,由题意得:x+x+x+5+x+4=x,解得:x=84,⽽×84+×84+×84+5=38,即他38岁时有了⼉⼦.他⼉⼦活了x=42岁.84﹣4=80岁.答:丢番图的寿命是84岁;丢番图开始当爸爸时的年龄是38;⼉⼦死时丢番图的年龄是80岁.17.解:设爷爷今年的年龄是x岁,则今年⼩李的年龄是x岁,依题意,得:x+12=(x+12),解得:x=60.答:爷爷今年60岁.。
一元一次方程应用题3
一元一次方程应用题(3)学习目标:进一步学习实际问题与一元一次方程的应用问题,深入全面探究行程问题,还有年龄问题、浓度问题、利息问题、数字问题等。
学习重难点:掌握不同类型问题的数量关系和相等关系,熟练解一元一次方程应用题的一般步骤。
行程问题一、一般行程问题(相遇与追击问题)例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2、甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后又奔向乙……直到甲、乙相遇,求小狗所走的路程。
例3、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为17.5千米/时,乙的速度为15千米/时,经过几小时两人相距32.5千米?练习1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。
3、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?4、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?5、甲、乙两人环湖竞走比赛,环湖一周400米,乙每分钟走80米,甲的速度是乙的速度的,现甲、乙两人相距100米,多少分钟后两人首次相遇?二、环行跑道与时钟问题:例1、在6点和7点之间,什么时刻时钟的分针和时针重合?例2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?练习1、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵成平角;⑶成直角;4、某钟表每小时比标准时间慢3分钟。
第13讲 一元一次方程(3)
第13讲一元一次方程(3)—行程问题专题【知识点清单】1、解行程问题中所用到的基本数量关系:路程= ×时间;速度=路程÷;时间=÷速度。
2、行程问题的四种基本类型:★(1)相遇问题★(2)追及问题(3)航行问题(4)火车过桥问题(1)相遇问题中的等量关系:甲的行程 + = 甲、乙起始间的全程;×相遇时间=路程和。
S甲+S乙=C环形(2)追及问题的等量关系:追及时间× =追及路程,S快者―S慢者=(3)、航行问题:V顺水=V静水+V水流; V逆水=V静水―V水流;V顺风=V无风+V风速; V逆风=V无风―V风速;(4)、火车过桥问题:【典例精讲】考点1: 相遇问题【例1】(1)甲、乙两站之间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米,两车同时开出相向而行,_________小时后相遇。
(2)甲、乙两人骑着自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的速度是_________。
【例2】甲乙两人同时从A地前往相距为1252千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时间为3小时,求两人的速度。
变式议练:1、上午8点,李华和张涛两同学分别从A、B两地同时出发,相向而行,已知李华的速度每小时比张涛快2千米,上午十点两人还距36千米,到中午十二点时,两人又相距36千米,试求:A、B两地的距离。
2、A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,求t的值是?考点2: 追及问题【例3】开心填一填(1)A、B两地间的路程为450千米,一列慢车从A地出发,每小时行驶60千米,一列快车从B地出发,每小时行驶90千米,若两车同时开出,相向而行,_________小时相遇;若慢车先开1小时,快车在同地同向开出,快车经过了_______小时可追上慢车。
人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)
人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)1.数轴是学习初中数学的一个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点A、点B表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为;AB=a﹣b线段AB的中点M表示的数为.如图,已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位长度的速度沿数轴向右匀速运动,点B以每秒2个单位长度向左匀速运动,设运动时间为t 秒(t>0).(1)运动开始前,A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A、B按上述方式运动,A、B两点经过多少秒,线段AB的中点M与原点重合?2.已知两点A、B在数轴上,AB=9,点A表示的数是a,且a与(﹣1)3互为相反数.(1)写出点B表示的数;(2)如图1,当点A、B位于原点O的同侧时,动点P、Q分别从点A、B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P、Q所表示的数;(3)如图2,当点A、B位于原点O的异侧时,动点P、Q分别从点A、B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当|OM﹣ON|=2时,求动点P、Q运动的速度.3.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).4.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.5.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:(1)动点Q从点C运动至点A需要秒;(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍(即P点运动的路程=Q点运动的路程).6.【阅读理解】点A、B在数轴上对应的数分别是a,b,且|a+2|+(b﹣8)2=0.A、B两点的中点表示的数为;当b>a时,A、B两点间的距离为AB=b﹣a.(1)求AB的长.(2)点C在数轴上对应的数为x,且x是方程2x+8=x﹣2的解,在数轴上是否存在点P,使PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.(3)点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒8个单位的速度向左运动,点N从点B出发,以每秒5个单位的速度向右运动,P、Q 分别为ME、ON的中点,求证:在运动过程中,的值不变,并求出这个值.7.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?8.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②x为何值时OM=2BN.9.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.10.已知,数轴上两点A,B表示的数分别是9和﹣6,动点P从点A出发,以每秒3个单位的速度沿数轴向点B运动,运动到点B停止;(1)在数轴上表示出A,B两点,并直接回答:线段AB的长度是;(2)若满足BP=2AP,求点P的运动时间;(3)在点P运动过程中,若点M为线段AP的中点,点N为线段BP的中点,请计算线段MN的长度,并说出线段MN与线段AB的数量关系;(4)若另一动点Q同时从B点出发,运动的速度是每秒2个单位,几秒钟后,线段PQ 长度等于5?参考答案1.解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示数为.故答案是:18;﹣1(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t.故答案是:﹣10+3t;8﹣2t(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度.根据题意得3x+2x=18﹣4,解得x=2.8;3x+2x=18+4,解得x=4.4.答:A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)由题意得解得t=2.答:经过2秒A、B两点的中点M会与原点重合.2.解:(1)∵a与(﹣1)3互为相反数∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示,②当点A、点B在原点的异侧时,点B所表示的数为1﹣9=﹣8,如图2所示,故点B所表示的数为10或﹣8;(2)当点A、B位于原点O的同侧时,点B表示的数是10设点Q的运动速度为x,则点P的速度为2x∵3秒后两动点相遇∴3(x+2x)=9解得:x=1∴点Q的运动速度为1,则点P的速度为2运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9解得:t=;∴点P表示的数为:1+2×=,点Q表示的数为:10﹣=;②相遇后,再运动y秒,P、Q两点相距2,由题意有:y+2y=2解得:y=∴点P表示的数为:1+3×2+×2=,点Q表示的数为:10﹣3×1﹣×1=;(3)根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度∴点Q的运动速度为:9÷5=1.8设点P的速度为v,∵|OM﹣ON|=2∴|9+1﹣(5v+1)|=2解得:v=或∴点P的速度为或.3.解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时,依题意列式,得3t+2t=18﹣4,解得t=2.8;当点A在点B右侧时,3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合,根据题意列方程,可得=0,解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点,由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.4.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.5.解:(1)点Q运动至点A时,所需时间t=(20﹣12)÷1+12÷2+12÷1=26(秒).答:动点Q从点C运动至点A需要26秒;(2)由题可知,P、Q两点相遇在线段OB上M处,设OM=x.则12÷2+x÷1=(20﹣12)÷1+(12﹣x)÷2,解得x=,12÷2+÷1=6+5=11.答:t的值是11,相遇点M所对应的数是.(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍有2种可能:①动点Q在OB上,动点P在BO上,相遇前,则:12+(t﹣12÷2)=[20﹣12+2(t﹣8÷1)],解得:t=.②动点Q在OA上,动点P在BC上,相遇后,则:12+12+2(t﹣18)=[8+12+(t﹣8÷1﹣12÷2)],解得:t=26.综上所述:当t为或26时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍.故答案为:26.6.(1)解:∵|a+2|+(b﹣8)2=0,∴a=﹣2,b=8,∴AB=8﹣(﹣2)=10;(2)解:2x+8=x﹣2,∴x=﹣10,∴C在数轴上对应的数为﹣10,设点P对应的数为y,由题意可知,点P不可能位于点A的左侧,所以存在以下两种情况:①点P在点B的右侧,∴(y﹣8)+[y﹣(﹣2)]=y﹣(﹣10),∴y=16,②当点P在A、B之间,∴(8﹣y)+[y﹣(﹣2)]=y﹣(﹣10),∴y=0,综上所述,点P对应的数是16或0;(3)证明:设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣8t,点N对应的数是8+5t,∵P是ME的中点,∴P点对应的数是=﹣1﹣t,又∵Q是ON的中点,∴Q点对应的数是=4+t,∴MN=(8+5t)﹣(﹣2﹣8t)=10+13t,OE=t,PQ=(4+t)﹣(﹣1﹣t)=5+6t,∴===2(定值).∴在运动过程中,的值不变,这个值是2.7.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.8.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.9.解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.10.解:(1)如图所示:线段AB的长度是9﹣(﹣6)=9+6=15,故答案为:15;(2)设AP=3t,则BP=6t,可得3t+6t=15,∴t=;(3)∵AP=3t,∴BP=15﹣3t,∵点M为线段AP的中点,点N为线段BP的中点,∴MP=AP=t,PN=(15﹣3t),则MN=MP+PN=t+(15﹣3t)=,∴MN=AB;(4)设BQ=2t,当Q在AB上时,①15﹣2t﹣3t=5,解得t=2;②2t+3t﹣15=5,解得t=4;当Q在AB外时,2t+(15﹣3t)=5,解得t=4;此时,点P不在线段AB外(舍去)综上所述,当2秒或4秒时,线段PQ的长度等于5.。
北师大版(2024)七年级数学上册 第五章 习题课件 第9课 一元一次方程的应用(3)——行程问题
4. (BS七上P151改编)一天早晨,乐乐以80米/分的速度 上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸 爸立即骑自行车以280米/分的速度去追乐乐,并且 在途中追上了他,请解决以下问题: (1)爸爸追上乐乐用了多长时间?
解:(1)设爸爸追上乐乐用了x分钟,则此时乐乐出门
(x+5)分钟.依题意,得280x=80(x+5),解得x=2.
答:爸爸追上乐乐用了2分钟.
(2) 爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,
结果提前了10分钟到校,若爸爸搭上乐乐后的骑行
速度为240米/分,求乐乐家离学校有多远. 解:(2)设爸爸搭上乐乐到学校共骑行了s米. 依题意,得 s s 10 ,解得s=1 200.
3 答:11张用A方法裁剪,8张用B方法裁剪,可使裁剪出 的侧面和底面恰好全部用完,能做20个盒子.
300 m的隧道需要20 s的时间.隧道的顶上有一盏灯,
垂直向下发光,灯泡照在火车上的时间是10 s. 求这
列火车的长度. 解:设这列火车的长度为x m.依题意,得 300 x x ,解得x=300.
20 10
答:这列火车的长度为300 m.
7.用长方形硬纸板做三棱柱盒子,每个盒子由3个矩形 侧面和2个正三角形底面组成,硬纸板可以按如图两 种方法进行裁剪.(裁剪后边角料不再利用)
第五章 一元一次方程 第9课 一元一次方程的应用(3)——
行程问题
1. 甲、乙两人从相距18千米的两地同时出发相向而行, 若甲的平均速度是4千米/时,乙的平均速度是5千米/ 时,则两人骑__2__小时后相遇.
2. 一辆慢车的速度为80千米/时,一辆快车的速度为100 千米/时,慢车在前,快车在后,两车之间的距离为 60千米,快车几小时追上慢车?
第5课 解一元一次方程(3)——去分母
,解得x=-
3 2
.
所以方程正确的解为x=- 3 .
2
7
4.当x为何值时,x
3
2
比
x8 12
大2?
解:依题意,得 x 2 x 8 =2.
3 12
去分母,得4(x-2)-(x-8)=24.
去括号,得4x-8-x+8=24. 合并同类项,得3x=24.
ቤተ መጻሕፍቲ ባይዱ
系数化为1,得x=8.
5.(BS七上P161T15改编)把96拆成4个数的和,使得第
一个数加3,第二个数减3,第三个数乘3,第四个数
第五章 一元一次方程 第5课 解一元一次方程(3)——去分母
1.
解方程 x 1 2 x,去分母时方程两边应同乘
43
( D)
A.3
B.4
C.6
D.12
2.解下列方程: 解 (1):2x去=分3x母+,5;得x=2(3x+5). 去括号,得x=6x+10. 移项,得x-6x=10. 合并同类项,得-5x =10. 系数化为1,得x=-2.
方程
2x a 3
2x 1 6
1
,去分母时,-1没有乘6,得到
方程的解为x=1.
(1)求a的值;
解:(1)依题意,得
x=1是方程2(2x-a)=2x+1-1的解.
将x=1代入方程2(2x-a)=2x+1-1,解得a=1.
(2)求方程正确的解.
解:(2)将a=1代入原方程,
得
2x 1 3
2
x 6
1
1
(2) x x 1 1;
26
解:去分母,得3x-(x-1)=6.
去括号,得3x-x+1=6.
移项,得3x-x=6-1.
第9课 一元一次方程与实际问题(3)(配套问题)
6-4=2(立方米) 40×4=160(套) 答:应用4立方米钢材做A部件,2立方米钢材做B部件. 能做成这种仪器160套.
11. 某服装厂要生产一批某种学生服,已知每3米长的布料可 做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划 用600米长的这种布料生产学生服,应分别用多少布料生 产上衣和裤子,才能恰好配套?共能生产多少套?
4. 某车间每天能生产甲种零件180个或乙种零件120个,甲、
乙两种零件分别取3个、2个才能配成一套,那么要在30
天内生产最多的成套产品,问怎样安排生产甲、乙两种
零件的天数? 每天生产个数
天数
总数
甲
180
x
180x
乙
120
30-x 120(30-x)
解:设安排生产甲零件的天数为x,则安排生产乙零件的 天数为(30-x).要使生产的甲、乙两种零件刚好配套,依 题意得180x:120(30-x)=3:2 解方程,得3×120×(30-x)=2×180x 3×120×30-3×120x=2×180x -3×120x-2×180x=-3×120×30 -720x=-10 800 x=15 30-15=15(天) 答:应安排甲、乙两种零件各生产15天.
6. 某车间22名工人生产螺钉和螺母,每人每小时平均生产螺
钉30个或螺母50个,一个螺钉要配两个螺母.为了使产品
刚好配套,应该分配多少名工人生产螺钉,多少名工人生
产螺母?
每人每时生产个数
人数
总量
螺钉
30
螺母
50
x 22-x
30x 50(22-x)
解:设应分配x名工人生产螺钉,则分配(22-x)名工人生 产螺母.要使螺钉与螺母刚好配套,依题意得 30x:50(22-x)=1:2 解方程,得50(22-x)=2×30x 1 100-50x=60x -50x-60x=-1 100 -110x=-1 100 x=10 22-10=12(名) 答:应该分配10名工人生产螺钉,12名工人生产螺母.
一元一次方程的应用高频考题训练(3)---方案选择及配套问题(含解析)
5.4《一元一次方程的应用》高频考题训练(3)---方案选择及配套问题配套问题1.某车间有28名工人生产螺丝和螺母,每人每天生产1200个螺丝或1800个螺母,现有x个工人生产螺丝,恰好每天生产的螺母和螺丝按2:1配套.为求x,可列方程()A.1200x=1800(28﹣x)B.2×1200x=1800(28﹣x)C.2×1800=1200(28﹣x)D.1800x=1200(28﹣x)2.某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,根据题意可列方程为()A.800x=2×1000(26﹣x)B.2×800x=1000(26﹣x)C.2×800(26﹣x)=1000x D.800(26﹣x)=2×1000x3.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x4.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x5.20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A部件和两个B部件组成.在规定时间内,每人可以组装好10个A部件或20个B部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.1506.某工厂有技术工20人,平均每天每人可加工甲种零件12个或乙种零件10个,已知2个甲种零件和5个乙种零件可以配成一套,若每天生产的甲乙零件刚好配套,则安排生产甲种零件的技术人员人数是()A.4B.5C.6D.37.用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有100张铁皮,用张铁皮制作盒身,正好使得这100张铁皮制作出来的盒身和盒底全部配套.8.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x只鸽子,则可列方程.9.为保障一线医护人员的健康安全,某防护服厂加班生产防护服和防护面罩.已知工厂共54人,每人每天可加工防护服80件或防护面罩100个,已知一套防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排人生产防护服.10.某厂生产一批纸盒,2米硬纸板可以做3个盒盖或者4个盒身,现有硬纸板140米,为了使盒盖和盒身正好配套,制作盒盖需要米硬纸板.11.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,4个甲种部件和6个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?12.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?13.某车间共有36名工人生产桌子和椅子,每人每天平均可生产桌子20张或椅子50把,一张桌子要配两把椅子.已知车间每天安排x名工人生产桌子.(1)车间每天生产桌子张,生产椅子把.(用含x的代数式表示)(2)问如何安排可使每天生产的桌子和椅子刚好配套?14.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?方案选择问题15.某书城开展学生优惠购书活动,凡一次性购书不超200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款为()A.204 元B.230元C.256元D.264元16.某校七年级三个班级联合开展户外研学活动,此次活动由一班班长负责购买车票,票价每张20元.有如图两种优惠方案:班长思考一会儿说,无论选择哪种方案所要付的车费是一样的,则七年级三个班级共有()A.60人B.61人C.62人D.63人17.七年级某班准备组织同学们观看电影,由班长负责买票,已知电影票价每张50元,对观影人数超过40人的团体票有两个优惠方案可选择:方案一:全体人员可打8折;方案二:若有5人免票,则其他人可以打9折.班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的.若这个班级观影人数超过40人,则该班共有___________人观看电影.18.某新华书店暑假期间推出售书优惠方案:①一次性购书不超过200元,不享受优惠;②一次性购书超过200元但不超过400元一律打九折;③一次性购书400元以上一律打八折.如果小聪同学一次性购书共付款324元,那么小聪所购书的原价是.19.在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?20.某公园门票规定如下:若办金卡,需200元,则全年进入公园无需再付钱;若办银卡,需100元,进入公园每次还需付5元;若不办卡,则每次进入公园需购票12元.(1)若小东每年去公园15次,那么应选择哪一种购票方式较为优惠?请说明理由;(2)若小明进入公园的全年预算门票费用为150元,按公园门票规定,求小明全年进入公园次数n的最大值.21.2021年“双十一”期间,很多国货品牌受到人们的青睐,销量大幅增长.某平台的体育用品旗舰店实行优惠销售,规定如下:对原价160元/件的某款运动速干衣和20元/双的某款运动棉袜开展促销活动,活动期间向客户提供两种优惠方案.方案A:买一件运动速干衣送一双运动棉袜;方案B:运动速干衣和运动棉袜均按9折付款.某户外俱乐部准备购买运动速干衣30件,运动棉袜x双(x≥30).(1)若该户外俱乐部按方案A购买,需付款元(用含x的式子表示);若该户外俱乐部按方案B购买,需付款元(用含x的式子表示);(2)若x=40,通过计算说明此时按哪种方案购买较为合算;(3)当购买运动棉袜多少双时两种方案付款相同.22.某市两超市在元旦期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过300元,不给与优惠;超过300元而不超过600元一律打九折;超过600元时,其中的600元优惠10%,超过的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是500元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客购物总额相同,其在乙超市实付款584元,问其在甲超市需实付款多少元?23.随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择.某市有出租车、滴滴快车和神州专车三种网约年,收费标准见图(该市规定网约车行驶的平均速度为40公里/时).TAXI起步价:14元超公里费:超过3公里2.4元/公里滴滴快车起步价:12元里程费:2.5元/公里时长费:0.4元/分钟神州专车起步价:10元里程安:2.8元/公里时长要:0.5元/分钟不足1公里按1公里计(1)如果里程为10公里,出租车的费用为元;(2)已知甲,乙两地的路程超过3公里,从甲地到乙地,乘坐出租车比滴滴快车节省17.8元,求甲、乙两地间的里程数;(3)神州专车和滴滴快车对第一次下单的乘客有如下优惠活动:神州专车收费打八折,另外加5.3元的空车费;滴滴快车超过10公里总费用立减9.1元.如果两位顾容,都是第一次下单且乘车里程数相同,他们分别乘坐神州专车、滴滴快车且收费相同,求这两位顾客乘车的里程数.参考答案配套问题1.【解答】解:∵该车间有28名工人生产螺丝和螺母,且有x个工人生产螺丝,∴有(28﹣x)个工人生产螺母,又∵每人每天生产1200个螺丝或1800个螺母,且恰好每天生产的螺母和螺丝按2:1配套,∴2×1200x=1800(28﹣x).故选:B.2.【解答】解:设安排x名工人生产口罩面,则(26﹣x)人生产耳绳,由题意得2×800x=1000(26﹣x).故选:B.3.【解答】解:设用x立方米的木料做桌子,则用(90﹣x)立方米的木料做椅子,依题意,得:4x=5(90﹣x).故选:A.4.【解答】解:设安排x名工人生产镜片,由题意得,90x=2×60(28﹣x).故选:C.5.【解答】解:设x名学生组装A部件,则(20﹣x)名学生组装B部件,则=.解得x=15.在规定的时间内,最多可以组装出实验仪器的套数为=50(套).故选:A.6.【解答】解:设安排x名技术人员生产甲种零件,则安排(20﹣x)名技术人员生产乙种零件,依题意得:=,解得:x=5,即安排生产甲种零件的技术人员人数是5.故选:B.7.【解答】解:设用x张铁皮制作盒身,则用(100﹣x)铁皮制作盒底,依题意得:2×16x=48(100﹣x),解得:x=60,∴用60张铁皮制作盒身,正好使得这100张铁皮制作出来的盒身和盒底全部配套.故答案为:60.8.【解答】解:设原有x只鸽子,则可列方程:=.故答案为:=.9.【解答】解:设需要安排x人生产防护服,则安排(54﹣x)人生产防护面罩,依题意得:80x=100(54﹣x),解得:x=30.故答案为:30.10.【解答】解:设制作盒盖需要x米硬纸板,则制作盒身需要(140﹣x)米硬纸板,根据题意得:×3=×4,解得:x=80,故答案为:80.11.【解答】解:设安排x人加工甲种部件,则安排(85﹣x)人加工乙种部件,依题意得:=,解得:x=25,∴85﹣x=85﹣25=60.答:安排25人加工甲种部件,60人加工乙种部件,才能使每天加工的甲、乙两种部件刚好配套.12.【解答】解:设分配x个工人生产塑料棒,则分配(34﹣x)个工人生产金属球,依题意得:=,解得:x=18,∴34﹣x=34﹣18=16.答:应分配18个工人生产塑料棒,16个工人生产金属球.13.【解答】解:(1)∵该车间共有36名工人生产桌子和椅子,且车间每天安排x名工人生产桌子,∴车间每天安排(36﹣x)名工人生产椅子.又∵每人每天平均可生产桌子20张或椅子50把,∴车间每天生产桌子20x张,椅子50(36﹣x)把.故答案为:20x;50(36﹣x).(2)依题意得:2×20x=50(36﹣x),解得:x=20,∴36﹣x=36﹣20=16.答:车间每天安排20名工人生产桌子、16名工人生产椅子刚好配套.14.【解答】解:(1)设蓝布料买了x米,则黑布料买了(136﹣x)米.根据题意,得30x+50(136﹣x)=5400.解这个方程,得x=70.∴136﹣x=66.答:蓝布料买了70米,黑布料买了66米;(2)设蓝布料买了y米,则黑布料买了(162﹣y)米.根据题意,得=.解这个方程,得y=90.∴30×90+50(162﹣90)=6300.答:购买这162米布料花了6300元.方案选择问题15.【解答】解:∵第一次购书付款72元,享受了九折优惠,∴实际定价为72÷0.9=80元,省去了8元钱.依题意,第二次节省了26元.设第二次所购书的定价为x元.由题意得(x﹣200)×0.8+200×0.9=x﹣26,解得x=230.故第二次购书实际付款为:230﹣26=204(元).故选:A.16.【解答】解:设七年级三个班级共有x人,根据题意得:20×0.8x=20×0.9(x﹣7),解得:x=63,∴七年级三个班级共有63人.故选:D.17.【解答】解:设该班共有x人观看电影,根据题意,得x×50×0.8=(x﹣5)×0.9×50,解得x=45,即该班共有45人观看电影.故答案是:45.18.【解答】解:设黄聪购书的原价是x元,当200<x≤400元时,0.9x=324,解得x=360,当x>400时,0.8x=324,解得,x=405,由上可得,小聪所购书的原价是360元或405元,故答案是:360元或405元.19.【解答】解:设小冯班人数为x人,根据题意列方程得:2x+2x×+x+1=100,2x+x=99,x=99,x=36,答:小冯班上有学生36人.20.【解答】解:(1)若办金卡则需200元;若办银卡则需100+15×5=175(元);若不办卡则需12×15=180(元);故办银卡较为优惠;(2)若办银卡:100+5n=150,解得n=10,若不办卡:12n=150,解得n=12.5,∵n为正整数,∴n取最大值为12.21.【解答】解:(1)按方案A购买,需付款:30×1600+20(x﹣30)=20x+4200,即需要付款(20x+4200)元;按方案B购买,需付款:30×160×0.9+20×0.9x=18x+4320,即需要付款(18x+4320)元.故答案是:(20x+4200),(18x+4320);(2)当x=40时,方案A:20×40+4200=5000(元).方案B:18×40+4320=5040(元).因为5000<5040,所以按方案A购买较为合算;(3)根据题意,得20x+4200=18x+4320.解得x=60.答:当购买运动棉袜60双时,两种方案付款相同.22.【解答】解:(1)在甲超市实付款为:500×0.88=440(元);在乙超市实付款为:500×0.9=450(元).∴在甲超市购买实付款为440元,在乙超市购买实付款为450元;(2)设当购物总额为x元时,两家超市实付款相同,根据题意得:0.88x=600×0.9+0.8(x﹣600),解之得,x=750.∴当购物总额为750元时,两家超市实付款相同.(3)设该顾客购物总额为y元,根据题意得:600×0.9+0.8(y﹣600)=584,解之得,y=655;∴0.88y=0.88×655=576.4(元),∴其在甲超市需实付款576.4元.23.【解答】解:(1)14+2.4×(10﹣3)=30.8(元),答:出租车的费用为30.8元.故答案为:30.8;(2)设甲、乙两地间的里程数是x公里,由题意得,14+2.4(x﹣3)+17.8=12+2.5x+×60×0.4,解得x=18.答:甲、乙两地间的里程数是18公里;(3)设这两位顾客乘车的里程数是y公里,当0<y≤10时,12+2.5y+×60×0.4=0.8(10+2.8y+×60×0.5)+5.3,解得y=5,当>10时,12+2.5y+×60×0.4﹣9.1=0.8(10+2.8y+×60×0.5)+5.3,解得y=40,答:这两位顾客乘车的里程数是5公里或40公里.。
一元一次方程(找规律例3)
验证解的正确性
将求得的解代入原方程,检查是否成 立。
通过实际应用或进一步计算,验证解 的正确性和实用性。
05 总结与反思
解题方法总结
方程解析法
通过对方程进行解析,找出未知 数的值。
代数法
利用代数的基本性质和运算法则, 对方程进行变形,简化求解过程。
图像法
通过绘制方程的图像,观察图像交 点,确定未知数的值。
解题思路反思
理解题目要求
检验解的合理性
在解题前,需要仔细阅读题目,明确 题目要求,理解题目的背景和意义。
在得出解后,需要检验解的合理性, 确保解符合题目的实际情况。
分析方程特性
在解题过程中,需要分析方程的特性, 找出方程的解法。
学习收获与启示
掌握基础
通过学习一元一次方程,掌握了 代数的基础知识和基本技能。
培养思维
学习一元一次方程有助于培养逻 辑思维能力、推理能力和解决问
题的能力。
应用实践
一元一次方程在实际生活中有着 广泛的应用,通过学习可以更好
地理解和解决实际问题。
ห้องสมุดไป่ตู้
THANKS FOR WATCHING
感谢您的观看
一元一次方程(找规律例3)
contents
目录
• 一元一次方程的定义和性质 • 找规律例3的题目解析 • 一元一次方程的应用 • 找规律例3的解题过程 • 总结与反思
01 一元一次方程的定义和性 质
一元一次方程的定义
总结词
一元一次方程是只含有一个未知数, 且该未知数的次数为1的方程。
详细描述
一元一次方程的标准形式是 ax + b = 0, 其中 a 和 b 是常数,a ≠ 0。它只有一 个未知数 x,且 x 的最高次数为1。
《一元一次方程》练习题3(有答案)
《一元一次方程》练习题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1、平面内两两相交的3条直线,其交点个数最少为m个,最多为n个,则m+n等于()A. 4B. 5C. 6D. 以上都不对参考答案: A【思路分析】这道题是考查直线相交,由题意可得3条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,从而得出答案.【解题过程】根据题意可得:3条直线相交于一点时交点最少,此时交点为1个,即m=1;任意两直线相交都产生一个交点时交点最多,3条直线相交,交点最多为3个,即n=3;则m+n=1+3=4. 故选A.2、某班原分成两个小组进行课外体育活动,第一组28人,第二组20人,根据学校活动题材的数量,要将第一组的人数调整为第二组的一半,应从第一组调()人到第二组去.A. 10B. 11C. 12D. 13参考答案: C【思路分析】这道题是考查应用一元一次方程解决调配问题,根据调配前后的两量之间的数量关系列方程求解.【解题过程】解:设应从第一组调x人到第二组去,由题意,得28−x=12(20+x),解得x=12.故选C.3、如果方程3x−42−2x+13=6的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,则a的值为()A. 3B. -3C. 4D. -4参考答案: D【思路分析】这道题是考查同解方程,先求出第一个方程的解,然后代入第二个方程得到关于a的一元一次方程,再根据一元一次方程的解法进行求解即可.【解题过程】解:方程3x−42−2x+13=6的解为x=10,由题意:4x-(3a+1)=6x+2a-1的解为x=10,∴40-3a-1=60+2a-1整理得:5a=-20,解得:a=-4..故选D.4、小李在解方程5a-x=13(x为未知数)时,误将-x看作+x,得方程的解为x=-2,则原方程的解为()A. x=-3B. x=0C. x=2D. x=1参考答案: C【思路分析】此题考查的是合并同类项解一元一次方程,(解一元一次方程—合并同类项用)用移项法解一元一次方程(解一元一次方程移项)。
第三章一元一次方程单元试题(3)含答案解析
答案与解析绝密★启用前第三章一元一次方程(3)考试范围:第三章一元一次方程;考试时间:100分钟;命题人:天涯剑客QQ :2403336035注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题 共42分)一、选择题(1--6题每题2分,7--16每题3分,共计42分)1.下列运用等式的性质对等式进行的变形中,正确的是( ). A .若x y =,则55x y -=+ B ,则ac bc =C ,则23a b =D .若x y =,则2.下列方程①②x=0,③y +3=0,④x +2y =3,⑤x 2=2x,( ).A .2个B .3个C .4个D .5个3.若 与kx -1=15的解相同则k 的值为( ).A.2B.8C.-2D.6 4A .)1(3-18)1-2(218+=+x x xB .)1(3)12(3+-=-+x x xC.)1(18)12(18+-=-+x x x D .)1(33)12(23+-=-+x x x5.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电标价是( )A .3200元B .3429元C .2667元D .3168元6 ). A B D .7.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A .120元;B .125元;C .135元;D .140元.8.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .5 9.若与互为相反数,则a=( )A .B .10C .D .﹣1010.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【 】 A .7岁 B .8岁 C .9岁 D .10岁 11.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件赔25%,那么这两件衣服售出后商店是( ). A .不赚不赔 B .赚8元 C .亏8元 D .赚15元 12.(2012•重庆)已知关于x 的方程2x+a ﹣9=0的解是x=2,则a 的值为( ) A.2 B.3 C.4 D.5 13.(2013•东阳市模拟)如图a 和图b 分别表示两架处于平衡状态的简易天平,对a ,b ,c 三种物体的质量判断正确的是( )A.a <c <bB.a <b <cC.c <b <aD.b <a <c 14.已知3:2:=y x ,下列等式中正确的是( ). (A )3:1:)-(=y y x ;(B )1:2:)-(=y y x ; (C )3:)1-(:)-(=y y x ;(D )2:)1-(:)-(=y y x .15.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了 A .70元 B .120元 C .150元 D .300元16.地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%-15%范围内,由此预测,2013年底剩下江豚的数量可能为( )头.A .970B .860C .750D .720答案与解析第II 卷(非选择题 共计78分)二、填空题(每题3分,共计12分)17.“诚意一百”商场将一件家用电器加价40﹪后打9折,商场获利390元,这件家用电器的进价是 元.18“□”是被污染的内容,他很着急,翻开书后面的答案,知道这题的解是x=3。
人教版解一元一次方程——去括号与去分母(3)
解方程:2(2x-1)-3(x-1)=6 里的每一项
解:去括号,得 4x-2-3x+3=6
注意
变号
移项,得 4x-3x=6+2-3
合并同类项,得 x=5
2
合作学习
丢番图的墓志铭:
“坟中安葬着丢番图,多么令人惊讶,它忠实地记录 了所经历的道路.上帝给予的童年占六分之一.又 过十二分之一,两颊长胡.再过七分之一,点燃结婚 的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享 年仅及其父之半,便进入冰冷的墓.悲伤只有用数论 的研究去弥补,又过四年,他也走完了人生的旅途.”
6
质疑导学
变式1、
2.5
+
3X
2
1
=
2X
14 ﹣ X
3
- 32 6
解:去分母,得
解:去分母,得
2.52X.56 +X36X 2+13XX
62=
21X(X3不61能4漏=X乘62项XX )-6332
14
X
X6
6
15 + 3 (3X+1) = 2 (2X+14)﹣(X-32)
7
大家有疑问的,可以询问和交流
驶向胜利 的彼岸
答:丢番图的年龄为84岁. 4
学海无涯 唯勤是岸
方程两边同时乘以
3、2的最小公倍
数6,消去分母
例1、 分的数作线用3有,X括注号意1 = 2X 14
加上括号2
解:去分母,得
3X 1 3 2X
2 X6=
14 3
X6
去括号,得 移项 ,得
合并同类项,得 系数化为1,得
3 (3X+1) = 2 (2X+14) 9X + 3 = 4X + 28(不能漏乘) 9X -4X = 28 - 3(移项要变号) 5X = 25 X= 5
一元一次方程应用题(3)
一、解答题(共30小题)1、(2005•安徽)张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.2、(2004•玉溪)某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?3、(2004•宜昌)小资料煤炭属于紧缺的不可再生资源,我国电能大部分来源于用煤炭火力发电,每吨煤平均可发2500度(千瓦时)电.全国2003年发电量约为19000亿度,从发电到用电的过程大约有1%的电能损耗.问题:(1)若全国2003年比2002年的发电量增长了15%,则通过计算可知2002年发电量约为多少亿度?(结果保留5个有效数字)(2)有资料介绍全国2002年发电量约为165百亿度,对比由(1)得到的结果,这两个值是否有一个错误?请简要说明你的认识;(3)假设全国2004年预估社会用电需求比上年的用电量增加m亿度,若采取节电限电措施减少预估用电需求的4%后,恰好与2004年的计划发电量相等,而2004年的计划发电量比上年的发电量增加了m亿度,请你测算2004年因节减用电量(不再考虑电能损耗)而减少的用煤量最多可能达到多少?4、(2004•徐州)我市某乡规定:种粮的农户均按每亩年产量750公斤、每公斤售价1.1元来计算每亩的年产值.年产值乘农业税的税率就是应缴的农业税,另外还要按农业税的20%上缴“农业税附加”(“农业税附加”主要用于村级组织的正常运转需要).(1)去年我市农业税的税率为7%,王老汉一家种了10亩水稻,他一共要上缴多少元?(2)今年,国家为了减轻农民负担,鼓励种粮,降低了农业税税率,并且每亩水稻由国家直接补贴20元(可抵缴税款).王老汉今年仍种10亩水稻,他掰着手指一算,高兴地说:“这样一减一补,今年可以比去年少缴497元.”请你求出今年我市的农业税的税率是多少?(要有解题过程)5、(2004•潍坊)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?6、(2004•遂宁)阅读以下材料:滨江市区内的出租车从2004年“5•1”节后开始调整价格.“5•1”前的价格是:起步价3元,行驶2千米后,每增加1千米加收1.4元,不足1千米的按1千米计算.如顾客乘车2.5千米,需付款3+1.4=4.4元;“5•1”后的价格是:起步价2元,行驶1.4千米后,每增加600米加收1元,不足600米的按600米计算,如顾客乘车2.5千米,需付款2+1+1=4元.(1)以上材料,填写下表:(2)小方从家里坐出租车到A地郊游,“5•1”前需10元钱,“5•1”后仍需10元钱,那么小方的家距A地路程大约_________.(从下列四个答案中选取,填入序号)①5.5千米②6.1千米③6.7千米④7.3千米.7、(2004•黄冈)(1)在2004年6月的日历中(见图),任意圈出一竖列上相邻的三个数,设中间的一个为a,则用含a的代数式表示这三个数(从小到大排列)分别是_________;(2)连续的自然数1至2004按图中的方式派成一个长方形阵列,用一个正方形框出16个数(如图)①图中框出的这16个数之和是_________;②在上图中,要使一个正方形框出的16个数之和分别等于2000、2004,是否可能?若不可能,试说明理由.若有可能,请求出该正方形框出的16个数中的最小数与最大数.8、(2004•海淀区)2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提9、(2004•常州)某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?10、(2004•长春)小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.11、(2003•资阳)已知有12名旅客要从A地赶往40千米外的火车站B乘车外出旅游,列车还有3个小时从B站出站,且他们只有一辆准载4人的小汽车可以利用.设他们的步行速度是每小时4千米,汽车的行驶速度为每小时60千米.(1)若只用汽车接送,12人都不步行,他们能完全同时乘上这次列车吗?(2)试设计一种由A地赶往B站的方案,使这些旅客都能同时乘上这次列车.按此方案,这12名旅客全部到达B 站时,列车还有多少时间就要出站?(所设方案若能使全部旅客同时乘上这次列车即可.若能使全部旅客提前20分钟以上时间到达B站,可得2分加分,但全卷总分不超过100分.)注:用汽车接送旅客时,不计旅客上下车时间.12、(2003•盐城)到2002年底,沿海某市共有未被开发的滩涂约510万亩,在海潮的作用下,如果今后二十年内,滩涂平均每年以2万亩的速度向东淤长增加.为了达到既保护环境,又发展经济的目的,从2003年初起,每年开发0.8万亩.(1)问多少年后,该市未被开发的滩涂总面积可超过528万亩?(2)由于环境得到了保护,预计该市的滩涂旅游业每年将比上一年增加收入200万元;开发的滩涂,从第三年起开始收益,每年每亩可获收入400元.问:要经过多少年,仅这两项收入将使该市全年的收入比2002年多3520万元?13、(2003•无锡)某商场为提高彩电销售人员的积极性,制定了新的工资分配方案.方案规定:每位销售人员的工资总额=基本工资+奖励工资.每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资,奖励工资发放比例如表1所示.(1)已知销售员甲本月领到的工资总额为800元,请问销售员甲本月的销售额为多少元?(2)依法纳税是每个公民应尽的义务,根据我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”.表2是缴纳个人所得税税率表,若销售员乙本月共销售A、B两种型号的彩电21台,缴纳个人所得税后实际得到的工资为1275元,又知A型彩电的销售价为每台1000元,B型彩电的销售价为每台1500元,请问销售员乙本月销售A型彩电多少台?14、(2003•宁夏)列方程(组)解下列应用题:(1)一种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?(2)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么该厂六、七两月产量平均增长的百分率是多少?15、(2003•湖州)“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利_________元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利_________元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.16、(2003•桂林)阅读下列材料:十六大提出全面建设小康社会.国际上常用恩格尔系数(记作n)来衡量一个国家和地区人民生活水平的状况,它的计算公式为:n=×100%,各类家庭的恩格尔系数如下表所示:根据上述材料,解答下列问题:某校初三学生对我市一个乡的农民家庭进行抽样调查.从1997年至2002年间,该乡每户家庭消费支出总额每年平均增加500元,其中食品消费支出总额每年平均增加200元.1997年该乡农民家庭平均刚达到温饱水平,已知该年每户家庭消费支出总额平均为8000元.(1)1997年该乡平均每户家庭食品消费支出总额为多少元?(2)设从1997年起m年后该乡平均每户的恩格尔系数为n m(m为正整数),请用m的代数式表示该乡平均每户当年的恩格尔系数n m,并利用这个公式计算2003年该乡平均每户的恩格尔系数.(百分号前保留整数)(3)按这样的发展,该乡将于哪年开始进入小康家庭生活?该乡农民能否实现十六大提出的2020年我国全面进入小康社会的目标?17、(2003•广东)某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价﹣进货价).问该文具每件的进货价是多少元?18、(2003•北京)在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“一环路车流量为每小时4000辆”;乙同学说:“三环路比二环路车流量每小时多800辆”;丙同学说:“二环路车流量的3倍与三环路车流量的差是一环路车流量的2倍”.请你根据他们所提供的信息,求出高峰时段二环路、三环路的车流量分别是多少辆?19、(2002•漳州)为赴韩国观看中国足球队参加世界杯比赛,8名球迷分别乘坐两辆小汽车一起赶入飞机场.其中一辆小汽车在距机场15千米的地方出了故障,此时,距规定到达机场的时间仅剩42分钟,但唯一可以使用的交通工具只有一辆小汽车,连司机在内限乘坐5人.这辆汽车分两批送这8人去机场,平均速度60千米/时.现拟两种方案,问是否都能使8名球迷在规定的时间内赶到机场?请通过计算说明理由.方案一:小汽车送走第一批人后,第二批人在原地等待汽车返回接送;方案二:小汽车送走第一批人的同时,第二批人以5千米/时的平均速度往机场方向步行,等途中遇返回的汽车时上车前行.(此问必须用一元一次方程来解)20、(2002•宜昌)在“三峡明珠”宜昌市蕴含着丰富的水电、旅游资源,建有三峡工程等多座大型水电站,随着2003年三峡工程首批机组发电,估计当年将有200万人次来参观三峡大坝(参观门票按每张50元计)由此获得的旅游总收入可达到7.02亿元,相当于当年三峡工程发电总收入的26%,(每度电收入按0.1元计),据测算,每度电可创产值5元,而每10万元产值就可以提供一个就业岗位,待三峡工程全部建成后,其年发电量比2003年宜昌市所有水电站的年发电总量还多了75%,并且是2003年宜昌市除三峡工程以外的其它水电站的年发电量总和的4倍,(1)旅游部门测算旅游总收入是以门票为基础,再按一定比值确定其它收入(吃、住、行、购物、娱乐的收入),两者之和即为旅游总收入,请你确定其它收入与门票收入的比值;(2)请你评估三峡工程全部完工后,由三峡工程年发电量而提供的就业岗位每年有多少个?21、(2002•宜昌)近年来,宜宾市教育技术装备水平迅速提高,特别是以计算机为核心的现代化装备取得了突破性发展,中小学每百人计算机拥有量在全省处于领先位置,全市中小学装备领先的总台数由1996年的1040台直线上升到2000年的11600台,若1997到2000年每年比上一年增加的计算机台数都相同,按此速度继续增加,到2003年宜宾市中小学装备计算机的总台数是多少?22、(2002•深圳)我国很多城市水资源缺乏,为了加强居民的节水意识,合理利用水资源,很多城市制定了用水收费标准.A市规定了每户每月的标准用水量,不超过标准用水量的部分按每立方米1.2元收费,超过标准用水量的部分按每立方米3元收费.该市张大爷家5月份用水9立方米,需交费16.2元.A市规定的每户每月标准用水量是多少立方米?23、(2002•汕头)“水是生命之源”,某市自来水公司为鼓励企业节结用水,按以下规定收取水费:若每户每月用水不超过40吨,则每吨水按1元收费,若每户用水超过40吨,则超过部分按每吨1.5元收费.另外,每吨用水加收0.2元的城市污水处理费.自来水公司收费处规定用户每两个月交一次用水费用(注:用水费用=水费+城市污水处理费).某企业每月用水都超过40吨,已知今年三、四两个月一共交水费640元,问:(1)该企业三、四两个月共用水多少吨?(2)这两个月平均用水费用每吨多少元?24、(2002•陕西)某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价﹣成本价)保持不变,该产品每件的成本价应降低多少元?25、(2002•宁德)为了鼓舞中国国奥队在2008年奥运会上取得好成绩,曙光体育器材厂赠送给中国国奥队一批足球.若足球队每人领一个则少6个球,每二人领一个则余6个球,问这批足球共有多少个?某队员领到足球后十分高兴,就仔细研究起足球上的黑白块(如图),结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?26、(2002•南昌)有一个只许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.(1)此时,若绕道而行,要15分钟到达学校,从节省时考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?27、(2002•泸州)某校组织师生去参观三峡工程建设,如果单独租用30座客车若干辆,则好坐满;如果单独租用40坐客车,可少租一辆,且余20个坐位,求该校参观三峡建设的人数.28、(2002•金华)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加.(1)根据图中所提供的信息,回答下列问题:2006年底的绿地面积为_________公顷,比2005年底增加了_________公顷;在2004年,2005年,2006年这三年中,绿地面积增加最多的是_________年;(2)为满足城市发展的需要,计划到2008年底使城区绿地总面积达到72.6公顷,试求2008年底绿地面积对2006年底的增长率.29、(2002•河北)如下图,在矩形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?30、(2001•宁夏)列方程解应用题:某工程公司要在银川市铺设一条地下天然气管道,为使工程提前5天完成,需将原定的工作效率提高10%,那么原计划完成这项工程需要多少天?答案与评分标准一、解答题(共30小题)1、(2005•安徽)张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.考点:一元一次方程的应用。
苏教版七年级数学:解一元一次方程40题(三)含答案
解一元一次方程40题(三)含答案一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值.2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.3.若代数式33x +比344x -的值大4,求x 的值.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程. (1)判断934x -=是否是和解方程,说明理由;(2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-;6.解方程 (1)23132x x --+= (2)2321{[1(1)]9}1320.32x x x +----=-7.解方程:(1)2557x x +=- (2)3(2)25(2)x x -=-+ (3)14223x x +-+= (4)12311463x x x -++-=+8.解下列方程:(1)5379x x +=-+ (2)43(20)40x x --+= (3)3157146y y ---= (4)1213323x x x --+=-9.解方程(1)0.50.7 6.5 1.3x x -=- (2)758143x x -+-=10.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.11.(1)计算:225(210)4-⨯--÷ (2)计算:2313()(24)(3)12468-+⨯-+-÷(3)解方程:3221211245x x x +++-=-12.解方程: (1)0.10.2130.020.5x x -+-= (2)312143x x -+-=-13.解方程:(1)2343x x -=- (2)13(1)2x x --=(3)85(1)2x x +-= (4)4320.20.5x x +--=14.解方程:(1)34(25)4x x x -+=+; (2)12226x x x -+-=-.15.一元一次方程解答题:已知关于x 的方程23x m mx -=-与12(2)x x l -=-的解互为倒数,求m 的值.16.解方程:211236x x -+-=17.解下列方程或方程组(1)219x x -=+ (2)52(1)x x +=- (3)43135x x --=- (4)3717245x x -+-=-18.解方程:126125y y--=-.19.311(54)1535x-+=22531277714x+-=20.解方程:(1)132xx--=(2)0.6310.20.4x x--=21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=22.解方程21911 36x x++-=23.已知52x+-与445x+互为相反数,求x的值.24.(1)计算:4321(2)4[5(3)]-+-÷⨯-- (2)解方程4372153x x ---=25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+-(3)解方程:211134x x +--=26.解方程(1)43(2)52(12)y y y -+=-- (2)11136x xx ---=-27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.28.解方程:52(1)x x +=-29.解方程:221134x x +-=+.30.解下列方程:(1)22x -=-; (2)355(2)x x x -=-+; (3)2532168x x +--=; (4)312[2()]6223x x -+=.31.解方程:3252x x -=-32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x =-,试求a 的值.33.解方程(1)321x x -=-+ (2)18(1)32(21)x x x -+=-- (3)31571104y y ---=34.解方程:(1)2(100.5)(1.52)x x -=-+; (2)5415523412y y y +--+=-35.先阅读下列解题过程,然后解答后面两个问题. 解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =; 当30x -<时,原方程可化为32x -=-,解得1x =. 所以原方程的解是5x =或1x =. (1)解方程:|32|40x --=. (2)解关于x 的方程:|2|1x b -=+36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-; (2)2152122362x x x-+--=-.37.(1)684(1)x x -=-+ (2)20.30.410.50.3x x -+-=38.解方程:123173x x -+-=.39.解方程:104(3)22x x --=-.40.已知关于x 的方程2(1)31x m -=-与324x +=-的解互为相反数,求m 的值.解一元一次方程40题(三)含答案参考答案与试题解析一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值. 【分析】把12x =代入方程,求出m 的值,再把代数式进行化简,最后代入求出即可. 【解答】解:把12x =代入方程21423x m x m---=得:1112423mm ---=, 解得:5m =,211(428)(1)42m m m -+-+- 21112222m m m =-+-+-2122m =--21522=--1272=-.【点评】本题考查了解一元一次方程,一元一次方程的解,整式的混合运算和求值等知识点,能求出m 的值是解此题的关键. 2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.【分析】分别求出两个方程的解,然后根据解相同,列出关于m 的方程,求出m 的值,再将m 的值代入200920103(2)()2m m ---,计算即可求解.【解答】解:解方程13(23)322x x +-=,得:2363x x +-=, 0x ∴=,方程13(23)322x x +-=和3261x m x +=+的解相同,21m ∴=解得:12m =, 所以202020193(2)()2m m --- 20202019113(2)()222=-⨯-- 1(1)=--2=.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x 的方程,要正确理解方程解的含义.3.若代数式33x +比344x -的值大4,求x 的值. 【分析】根据题意列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:334434x x +--=, 去分母得:41291248x x +-+=,移项合并得:524x -=,解得: 4.8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程.(1)判断934x -=是否是和解方程,说明理由; (2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.【分析】(1)求出方程的解,再根据和解方程的意义得出即可;(2)根据和解方程得出关于m 的方程,求出方程的解即可.【解答】解:(1)934x -=, 34x ∴=-, 93344-=-, 934x ∴-=是和解方程;(2)关于x 的一元一次方程52x m =-是和解方程,2255m m -∴-+=, 解得:174m =-. 故m 的值为174-. 【点评】本题考查了一元一次方程的解的应用,能理解和解方程的意义是解此题的关键.5.解方程:(1)37322x x +=-;(2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-; 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)37322x x +=-,32327x x +=-,525x =,5x =;(2)43(20)40x x --+=,460340x x -++=,43604x x +=-,756x =,8x =;(3)去分母得:3(35)2(21)x x +=-,91542x x +=-,94215x x -=--,517x =-,3.4x=-;(4)去分母得:4(54)3(1)24(53)y y y++-=--,2016332453y y y++-=-+,2035243163y y y++=+-+,2814y=,12y=.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.6.解方程(1)231 32x x--+=(2)2321{[1(1)]9}1 320.32x x x+----=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:42396x x-+-=,移项合并得:11x=;(2)去括号得:2010116132x xx+--+-=-,去分母得:66402063663x x x---+-=-,移项合并得:3162x-=,解得:2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.解方程:(1)2557x x+=-(2)3(2)25(2)x x-=-+(3)142 23x x+-+=(4)12311463 x x x-++-=+【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2557x x +=-,2575x x -=--,312x -=-,4x =;(2)3(2)25(2)x x -=-+,362510x x -=--,352106x x +=-+,82x =-,0.25x =-;(3)14223x x +-+=, 3(1)2(4)12x x ++-=,332812x x ++-=,321238x x +=-+,517x =,5.4x =;(4)去分母得:3(1)122(23)4(1)x x x --=+++,33124644x x x --=+++,34464312x x x --=+++,525x -=,5x =-.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.解下列方程:(1)5379x x +=-+(2)43(20)40x x --+=(3)3157146y y ---=(4)121 3323x xx--+=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:126x=,解得:0.5x=;(2)去括号得:460340x x-++=,移项合并得:756x=,解得:8x=;(3)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-;(4)去分母得:18331842x x x+-=-+,移项合并得:2523x=,解得:2325x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.解方程(1)0.50.7 6.5 1.3x x-=-(2)7581 43x x-+-=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:1.87.2x=,解得:4x=-;(2)去分母得:321203212x x---=,移项合并得:1765x-=,解得:6517x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.某同学在解方程21233x x a -+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.【分析】由题意可知2x =是方程212x x a -=+-的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【解答】解:将1x =代入212x x a -=+-得:112a =+-.解得:2a =,将2a =代入216x x a -=+-得:2126x x -=+-.解得:3x =-.【点评】本题主要考查的是一元一次方程的解,明确2x =是方程2(21)3()2x x a -=+-的解是解题的关键.11.(1)计算:225(210)4-⨯--÷(2)计算:2313()(24)(3)12468-+⨯-+-÷ (3)解方程:3221211245x x x +++-=- 【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据去分母、去括号、移项、合并同类项、系数化为1解答.【解答】解:(1)225(210)4-⨯--÷45(8)4=-⨯--÷202=-+18=-;(2)2313()(24)(3)12468-+⨯-+-÷ 1849912=-+-+÷318494=-+-+ 1224=-; (3)10(32)205(21)4(21)x x x +-=+-+30202010584x x x +-=+--3010854x x x -+=-281x =128x=【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.12.解方程:(1)0.10.213 0.020.5x x-+-=(2)3121 43x x-+-=-【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程整理得:510223x x---=,移项合并得:315x=,解得:5x=;(2)去分母得:934812x x---=-,移项合并得:51x=-,解得:15x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.解方程:(1)2343x x-=-(2)1 3(1)2xx--=(3)85(1)2x x+-=(4)432 0.20.5x x+--=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2343x x+=+,合并得:57x=,解得:75x=;(2)去分母得:6(1)1x x -=-,去括号得:661x x -=-,移项合并得:55x =,解得:1x =;(3)去括号得:8552x x +-=,移项合并得:33x =-,解得:1x =-;(4)方程整理得:520262x x +-+=,移项合并得:324x =-,解得:8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.解方程:(1)34(25)4x x x -+=+;(2)12226x x x -+-=-. 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:38204x x x --=+,移项合并得:624x -=,解得:4x =-;(2)去分母得:633122x x x -+=--,移项合并得:47x =, 解得:74x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.一元一次方程解答题:已知关于x 的方程23x m m x -=-与12(2)x x l -=-的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m 的值.【解答】解:方程12(21)x x -=-,去括号得:142x x -=-,解得:13x =, 将3x =代入方程23x m m x -=-得,3323m m -=-, 去分母得:93182m m -=-,解得:9m =-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.解方程:211236x x -+-= 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母得:42112x x ---=,移项合并得:315x =,解得:5x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.解下列方程或方程组(1)219x x -=+(2)52(1)x x +=-(3)43135x x --=- (4)3717245x x -+-=- 【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)移项合并得:10x =;(2)去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =;(3)去分母得:2053915x x -=--,移项合并得:844x -=-,解得: 5.5x =;(4)去分母得:401535468x x -+=--,移项合并得:11143x-=-,解得:13x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.解方程:126125y y--=-.【分析】方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:去分母得:5510412y y-=-+,移项合并得:927y=,解得:3y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.311(54)1 535 x-+=22531277714x+-=【分析】方程移项合并,把x系数化为1,即可求出解;方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3158 515x=,解得:1589x=;去分母得:418383x+-=,移项合并得:423x=,解得:234x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.解方程:(1)132xx--=(2)0.6310.20.4 x x--=【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:216x x-+=,解得:5x=;(2)方程整理得:315512xx--=,去分母得:102315x x-=-,移项合并得:255x=,解得:0.2x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2833x x x-+=-,移项合并得:25x=-,解得: 2.5x=-;(2)去分母得:43162x x-+=+,移项合并得:51x-=,解得:0.2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.解方程21911 36x x++-=【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:21911 36x x++-=2(21)(91)6x x+-+=42916x x+--=49612x x-=+-55x-=1x=-【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.23.已知52x+-与445x+互为相反数,求x的值.【分析】利用相反数的性质列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:544025x x +-++=, 去分母得:5258400x x --++=,移项合并得:315x =-,解得:5x =-.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.24.(1)计算:4321(2)4[5(3)]-+-÷⨯--(2)解方程4372153x x ---= 【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式184(4)187=--÷⨯-=-+=;(2)去分母得:129153510x x --=-,移项合并得:2314x =-, 解得:1423x =-. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+- (3)解方程:211134x x +--= 【分析】(1)原式利用减法法则,以及绝对值的代数意义计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式150.7570.758=-++-=-;(2)原式188818=+-=;(3)去分母得:843312x x +-+=,移项合并得:55x =,解得:1x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.解方程(1)43(2)52(12)y y y -+=--(2)11136x x x ---=- 【分析】(1)根据一元一次方程的解法即可求出答案;(2)根据一元一次方程的解法即可求出答案.【解答】解:(1)43(2)52(12)y y y -+=--,463524y y y ∴--=-+,634y y ∴-=+,3y ∴=-;(2)11136x x x ---=-, 62(1)16x x x ∴--=--,6225x x x ∴-+=--,825x x ∴-=--,13x ∴=-; 【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.【分析】(1)先求出方程21622x x +=-的解,这个解的倒数也是方程123x m x -=+的解,根据方程的解的定义,把这个解的倒数代入就可以求出m 的值;(2)把y m =代入31ay by ++得到m 和n 的式子,然后把y m =-代入31ay by ++,利用前边的式子即可代入求解.【解答】解:解方程21622x x +=-得:12x =. 因为方程的解互为倒数,所以把12x =的倒数2代入方程123x m x -=+,得:21223m -=+, 解得:83m =-. 故所求m 的值为83-;(2)把y m =代入31ay by ++得315am bm ++=,则34am bm +=,当y m =-时,331()1413ay by am bm ++=-++=-+=-.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.28.解方程:52(1)x x +=-【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.解方程:221134x x +-=+. 【分析】去分母、去括号、移项、合并同类项,系数化成1即可求解.【解答】解:去分母,得4(2)123(21)x x +=+-,去括号,得481263x x +=+-,移项,得461238x x -=--,合并同类项,得21x -=,系数化成1得12x =-. 【点评】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.30.解下列方程:(1)22x -=-;(2)355(2)x x x -=-+;(3)2532168x x +--=; (4)312[2()]6223x x -+=. 【分析】(1)依次移项、合并同类项即可得;(2)依次去括号、移项、合并同类项、系数化为1可得;(3)依次去分母、去括号、移项、合并同类项、系数化为1可得;(4)依次去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)22x =-+,0x =;(2)3552x x x -=--,3525x x x -+=-+,3x -=,3x =-;(3)4(25)3(32)24x x +--=,8209624x x +-+=,8924206x x -=--,2x -=-,2x =;(4)13()162x x -+= 33162x x -+=, 33612x x -=-, 132x -=, 16x =-. 【点评】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.31.解方程:3252x x -=-【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3522x x-=-+,合并得:20x-=,解得:0x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x=-,试求a的值.【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:2x=-是方程2110110 52x x a+-⨯+=⨯,(41)215(2)a∴-+⨯+=--,61105a∴-+=--,5105a∴-=--,5105a∴=-+,55a∴=-,1a∴=-;【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.33.解方程(1)321x x-=-+(2)18(1)32(21)x x x-+=--(3)31571104 y y---=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)方程移项合并得:34x=,解得:43x=;(2)去括号得:1818342x x x-+=-+,移项合并得:2520x=,解得:45x =; (3)去分母得:62202535y y --=-,移项合并得:1913y -=-, 解得:1319y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.34.解方程:(1)2(100.5)(1.52)x x -=-+;(2)5415523412y y y +--+=- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)去括号得:20 1.52x x -=--,移项合并得:0.522x =-,解得:44x =-;(2)去分母得:2016332455y y y ++-=-+,移项合并得:2816y =, 解得:47y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.35.先阅读下列解题过程,然后解答后面两个问题.解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.(1)解方程:|32|40x --=.(2)解关于x 的方程:|2|1x b -=+【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】解:(1)当320x -…时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为(32)40x ---=,解得23x =-. 所以原方程的解是2x =或23x =-. (2)①当10b +<,即1b <-时,原方程无解,②当10b +=,即1b =-时:原方程可化为:20x -=,解得2x =;③当10b +>,即1b >-时:当20x -…时,原方程可化为21x b -=+,解得3x b =+;当20x -<时,原方程可化为2(1)x b -=-+,解得1x b =-+.【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-;(2)2152122362x x x -+--=-. 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:2412399x x x --+=-,移项得:2129943x x x -+=+-,合并同类项得:10x -=,系数化为1得:10x =-,(2)去分母得:2(21)(52)3(12)12x x x --+=--,去括号得:42523612x x x ---=--,移项得:45631222x x x -+=-++,合并同类项得:55x =-,系数化为1得:1x =-.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.37.(1)684(1)x x -=-+(2)20.30.410.50.3x x -+-= 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)原方程可整理得:203104153x x -+-=,依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:6844x x -=--,移项得:4846x x +=-+,合并同类项得:510x =,系数化为1得:2x =,(2)原方程可整理得:203104153x x -+-=, 方程两边同时乘以15得:3(203)5(104)15x x --+=,去括号得:609502015x x ---=,移项得:605015209x x -=++,合并同类项得:1044x =,系数化为1得: 4.4x =.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.38.解方程:123173x x -+-=. 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母,得3(12)217(3)x x --=+,去括号,得3621721x x --=+,移项,得6721321x x --=-+,合并,得1339x -=,系数化1,得3x =-,则原方程的解是3x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.39.解方程:104(3)22x x --=-.【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:1041222x x -+=-,移项合并得:624x -=-,解得:4x =.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.40.已知关于x的方程2(1)31x m-=-与324x+=-的解互为相反数,求m的值.【分析】求出第二个方程的解,根据两方程解互为相反数求出第一个方程的解,即可求出m 的值.【解答】解:方程324x+=-,解得:2x=-,把2x=-代入第一个方程得:631m-=-,解得:53m=-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.。
2022年数学精品初中教学设计《一元一次方程 (3)》特色教案
第三章一元一次方程从算式到方程一元一次方程一、新课导入1.课题导入:同学们, 我们在小学数学学习中见过像2x=50,3x+1=4,5x-7=8这样的简易方程, 那么它叫什么方程?方程有什么作用?怎样列方程和解方程呢?这是本章要研究的主要问题, 这节课我们通过具体问题感受方程这一重要数学工具的作用.(板书课题)2.三维目标:〔1〕知识与技能①理解一元一次方程、方程的解等概念.②掌握检验某个值是不是方程的解的方法.〔2〕过程与方法培养学生寻找相等关系、根据相等关系列出方程的能力.〔3〕情感态度体验用估算方法寻求方程的解的过程, 培养学生求实的态度.3.学习重、难点:重点:方程、一元一次方程的概念以及方程思想.难点:从列算式到列方程的思维习惯的转变.二、分层学习1.自学指导:〔1〕自学内容:教材第78页到第79页例1之前的内容.〔2〕自学时间:8分钟.〔3〕自学要求:认真阅读课本, 了解如何通过列含未知数的等式来表示问题中的等量关系.同时, 同学之间可以展开讨论, 从算式到方程对解决问题有什么作用或好处?〔4〕自学参考提纲:①课本“问题〞中涉及到路程、时间和速度三个关系量, 它们之间存在以下关系:路程=时间×速度, 或时间=路程÷速度或速度=路程÷时间.②请你用算术方法解决这个“问题〞.70×607060=420 km ③a.如果设A, B 两地相距x km, 客车的行驶速度是70 km/h, 卡车的行驶速度是60 km/h, 那么从A 地到B 地客车和卡车所用时间可用式子70x 和60x 来表示. b.因为客车比卡车早1 h 经过B 地, 所以卡车行驶的时间-客车行驶的时间=1, 于是可列等式:60x -70x =1, 只要通过这个等式解出未知数x 的值 , 就得到问题的答案.④③中的解法与②中的解法有什么不同?你更喜欢哪种解法? ②中为算术法, ③中为方程法, 一种直接计算, 另一种通过设未知数列等式关系进行计算.更喜欢方程法.⑤什么叫方程?等式一定是方程吗?方程和等式有什么关系? 含有未知数的等式叫做方程, 等式不一定是方程, 但方程一定是等式, 方程包含于等式.⑥如果设从A 地到B 地客车所用的时间为x h, 那么从A 地到B 地卡车所用的时间为7060x h,依据相等关系:7060x -x=1, 你还能列出别的方程吗?⑦你能归纳出列方程的步骤吗?先设出未知数, 分析题意得出其中的等量关系, 再列方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂了解学生在自学过程中存在的问题.②差异指导:对学习有困难的学生进行点拨和指导.〔2〕生助生:小组内同学们互相交流、研讨, 共同解决疑难问题.4.强化:〔1〕方程的定义及等式和方程的关系.〔2〕列方程的步骤:①用字母表示未知数.②找出问题中的相等关系.③写出含有未知数的等式, 即列出方程.〔3〕设未知数的方法:有“直接设未知数〞和“间接设未知数〞两种.〔4〕从课本问题中, 同学们看到了列方程比拟方便, 而列算式很困难, 所以从算式到方程是数学的进步.1.自学指导:(1)自学内容:教材第79页从例1开始的所有内容.(2)自学时间:6分钟.(3)自学方法:认真阅读课文, 分析例1中所列方程的等号两边式子表示的实际意义, 学会找列方程所需要的等量关系, 并分析归纳这些方程的特点.(4)自学参考提纲:①解释例1所列的每个方程的等号两边的式子的意义, 寻找列出这些方程时所依据的相等关系分别是什么?4x=24, 等号左边表示正方形四条边长的和, 等号右边表示正方形的周长.1700+150x=2450, 等号左边表示这台计算机已使用的时间与在x 月里使用的时间和, 等号右边表示x月后计算机的使用总时间.0.52x-(1-0.52)x=80, 等号左边表示女生人数与男生人数的差, 等号右边表示女生比男生多的人数.列方程时等号左右两边表示的量相等.②例1中三个方程都只含有一个未知数(元), 未知数的次数都是1, 并且等号两边都是整式, 这样的方程叫做一元一次方程.③以下式子哪些是方程?哪些是一元一次方程?A.2x+1B.2m+15=3C.3x-5=5x+4 2+2x-6=0 E.-3x+1.8=3y F.3a+9>15B、C、D、E是方程, B、C是一元一次方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂, 充分了解学生自学的情况.②差异指导:对学习困难的学生进行点拨和指导.〔2〕生助生:小组内同学进行相互展示交流、研讨纠错.4.强化:〔1〕一元一次方程的概念, 明确其三要素.〔2〕归纳列方程的方法.〔即教材第80页“归纳〞的内容〕〔3〕练习.①方程〔1-a〕x2+2x-3=2是关于x的一元一次方程, 那么a=1.②教材第80页“练习〞的第1、2、3、4题.1.设沿跑道跑x周, 由题意, 得400x=3000.2.设购置甲种铅笔x支, 那么购置乙种铅笔〔20-x〕支, 根据题意得0.3x+0.6〔20-x〕=9.〔x+2+x〕3.设上底为x cm,那么下底为〔x+2〕cm,由题意, 得12×5=40.4.方法一:设小水杯的单价是x元, 那么大水杯的单价是〔x+5〕元, 由题意10〔x+5〕=15x.方法二:设大水杯的单价是y元, 那么小水杯的单价是〔y-5〕元, 由题意, 得10y=15(y-5).1.自学指导:(1)自学内容:教材第80页“归纳〞下方至“练习〞之前的内容.(2)自学时间:3分钟.(3)自学方法:阅读课文, 明确什么是解方程, 什么叫方程的解, 以及如何检验一个数是不是方程的解.(4)自学参考提纲:①阅读下面方程的解的检验方法〔注意格式〕:当x=5时, 方程1700+150x=2450的左边=1700+150×5=1700+750=2450.右边=2450.∴左边=右边.∴x=5是方程1700+150x=2450的解.仿照此方法检验:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?×1000-(1-0.52)×1000=40.×2000-(1-0.52)×2000=80.∴x=2000是方程的解.②由上面过程可知:使方程中等号左右两边相等的未知数的值, 叫做方程的解.求出方程的解的过程叫做解方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:明了学生会不会检验一个数是不是方程的解.②差异指导:对自学中存在的问题进行点拨和指导.〔2〕生助生:小组内学生相互展示交流, 共同研讨提高.4.强化:〔1〕解方程和方程的解的意义.〔2〕方程的解的检验方法.三、评价1.学生的自我评价:由学生谈自己如何进行自学和合作交流的, 对自己的学习成果和表现进行自我评价.2.教师对学生的评价:〔1〕表现性评价:教师对本节课学习中同学们的表现、成效和缺乏之处进行总结点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时教学要整体贯穿以下数学思想:〔1〕突出数学的应用意识, 可由学生感兴趣的问题引入课题;〔2〕强调学生自主探索新知识, 利用交流完善对新知识的理解;〔3〕表达思维的层次性, 教师先引导学生用算术方法解题, 再引导他们列方程表示, 在比拟中体会方程的作用;〔4〕渗透建模思想, 指导学生通过设未知数, 列代数式, 寻找等量关系列方程, 形成抽象能力.一、根底稳固1.〔10分〕以下等式中, 是方程的是〔D〕x+1=5④3x+4y=12⑤5x2+x=3①3+6=9②2x-1③13A.①②③④⑤B.①③④⑤C.②③④⑤D.③④⑤2.〔10分〕以下各式中, 是一元一次方程的是〔C〕A.3x-2=y 2-1=0 3=2 D.3x=23.〔30分〕根据条件列出等式:〔1〕比a大5的数等于8 a+5=8b=9〔2〕b的三分之一等于9 13〔3〕x的2倍与10的和等于18 2x+10=18x-y=6〔4〕x的三分之一减y的差等于63〔5〕比a的3倍大5的数等于a的4倍3a+5=4ab-7=a+b 〔6〕比b的一半小7的数等于a与b的和124.〔10分〕x=3,x=0,x=-2,各是以下哪个方程的解?〔1〕5x+7=7-2x;〔2〕6x-8=8x-4;〔3〕3x-2=4+x.解:x=3是方程〔3〕的解, x=0是方程〔1〕的解, x=-2是方程〔2〕的解.二、综合应用〔每题15分, 共30分〕5.〔30分〕列方程:〔1〕某校七年级〔1〕班共有学生48人, 其中女生人数比男生多3人, 这个班有男生多少人?人数的45〔2〕把1400元奖学金按照两种奖项奖给22名学生, 其中一等奖每人200元, 二等奖每人50元, 获得一等奖的学生有多少人?解:〔1〕设这个班有男生x 人, 那么女生人数为〔45“男生人数+女生人数=总人数〞列方程得: x+〔45x+3〕=48.〔2〕设获得一等奖的学生有x 人, 那么200x+50〔22-x 〕=1400.三、拓展延伸〔20分〕6.〔10分〕小明从家到学校时, 每小时行5千米, 按原路返回家时, 每小时行4千米, 结果返回的时间比去学校的时间多花10分钟, 小明家到学校有多远?〔用两种方法列方程〕解:方案一:设小明家离学校x 千米, 由题意, 得4x -5x=1060 方法二:设小明去学校时花了y 小时, 那么小明家到学校的距离为5y 千米.由题意, 得5y 4-y=1060第1课时 弧长和扇形面积1.经历弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.一、情境导入在我们日常生活中, 弧形随处可见, 大到星体运行轨道, 小到水管弯管, 操场跑道, 高速立交的环形入口等等, 你有没有想过, 这些弧形的长度怎么计算呢?二、合作探究探究点一:弧长【类型一】求弧长在半径为1cm 的圆中, 圆心角为120°的扇形的弧长是________cm.解析:根据弧长公式l =n πr 180, 这里r =1, n =120, 将相关数据代入弧长公式求解.即l =120·π·1180=23π. 方法总结:半径为r 的圆中, n °的圆心角所对的弧长为l =n πR 180, 要求出弧长关键弄清公式中各项字母的含义.如图, ⊙O 的半径为6cm, 直线AB 是⊙O 的切线, 切点为点B , 弦BC ∥AO .假设∠A=30°, 那么劣弧BC ︵的长为________cm.解析:连接OB 、OC , ∵AB 是⊙O 的切线, ∴AB ⊥BO .∵∠A =30°, ∴∠AOB =60°.∵BC ∥AO , ∴∠OBC =∠AOB =60°.在等腰△OBC 中, ∠BOC =180°-2∠OBC =180°-2×60°=60°.∴BC ︵的长为60×π×6180=2π. 方法总结:根据弧长公式l =n πR 180, 求弧长应先确定圆弧所在圆的半径R 和它所对的圆心角n 的大小.【类型二】利用弧长求半径或圆心角(1)扇形的圆心角为45°, 弧长等于π2, 那么该扇形的半径是________; (2)如果一个扇形的半径是1, 弧长是π3, 那么此扇形的圆心角的大小为________. 解析:(1)假设设扇形的半径为R , 那么根据题意, 得45×π×R 180=π2, 解得R =2. (2)根据弧长公式得n ×π×1180=π3, 解得n =60, 故扇形圆心角的大小为60°. 方法总结:逆用弧长的计算公式可求出相应扇形的圆心角和半径.【类型三】求动点运行的弧形轨迹如图, Rt △ABC 的边BC 位于直线l 上, AC =3, ∠ACB =90°, ∠A =30°.假设Rt △ABC 由现在的位置向右无滑动地翻转, 当点A 第3次落在直线l 上时, 点A 所经过的路线的长为________(结果用含π的式子表示).解析:点A 所经过的路线的长为三个半径为2, 圆心角为120°的扇形弧长与两个半径为3, 圆心角为90°的扇形弧长之和, 即l =3×120π×2180+2×90π×3180=4π+3π.故填(4+3)π.方法总结:此类翻转求路线长的问题, 通过归纳探究出这个点经过的路线情况, 并以此推断整个运动途径, 从而利用弧长公式求出运动的路线长.探究点二:扇形面积【类型一】求扇形面积一个扇形的圆心角为120°, 半径为3, 那么这个扇形的面积为________.(结果保存π)解析:把圆心角和半径代入扇形面积公式S =n πr 2360=120×32π360=3π. 方法总结:公式中涉及三个字母, 只要知道其中两个, 就可以求出第三个.扇形面积还有另外一种求法S =12lr , 其中l 是弧长, r 是半径. 【类型二】求运动形成的扇形面积如图, 把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C 顺时针旋转90°到△A 1B 1C , 那么在旋转过程中这个三角板扫过图形的面积是( )A .π B. 3C.3π4+32D.11π12+34解析:在Rt △ABC 中, ∵∠A =30°, ∴BC =12AB =1, 由于这个三角板扫过的图形为扇形BCB 1和扇形ACA 1, ∴S 扇形BCB 1=90·π·12360=π4, S 扇形ACA 1=90·π·〔3〕2360=3π4,∴S 总=π4+3π4=π.应选A. 【类型三】求阴影局部的面积如图, 半径为1cm 、圆心角为90°的扇形OAB 中, 分别以OA 、OB 为直径作半圆, 那么图中阴影局部的面积为( )A .πcm 2 B.23πcm 2 C.12cm 2 D.23cm 2 解析:设两个半圆的交点为C , 连接OC , AB , 根据题意可知点C 是半圆OA ︵, OB ︵的中点,所以BC ︵=OC ︵=AC ︵, 所以BC =OC =AC , 即四个弓形的面积都相等, 所以图中阴影局部的面积等于Rt △AOB 的面积, 又OA =OB =1cm , 即图中阴影局部的面积为12cm 2, 应选C. 方法总结:求图形面积的方法一般有两种:规那么图形直接使用面积公式计算;不规那么图形那么进行割补, 拼成规那么图形再进行计算.三、板书设计教学过程中, 强调学生应熟记相关公式并灵活运用, 特别是求阴影局部的面积时, 要灵活割补法、转换法等.。
人教版新课标七年级上册3.3解一元一次方程(3)课件(共14张PPT)
我思考,我纠错
• 去分母时要注意什么问题?
• (1)方程两边各项都要乘以分母的最小公倍 数(公分母)(不含分母的项也要乘), 即“不漏乘”。
• (2)分子是多项式时,去掉分母的同时分 子要 打括号
我自学,我能行
2、解下列方程:
(1) x 1 x 3
4
6
(2)
x 1 3
2x
3
2
2
x
解:去分母得:
• 去括号得:_4_x__4__5x__20__6_0______
• 移项,合并同类项得__9x___3_6_____
• 两边同除以9得:_x___4____
• 因此,两人合绣4天就可以完成这件作品。
你能告诉我用去分母法解一元一次方程的步骤吗?
• 认真阅读P94例题3,找出题目中分母的最小公倍 数(最简公分母),掌握解题格式和基本步骤。
x
10 3
与代数式
1 4
x
2 的值相等? 3
• 【必做题】p96 A组T3(2)、(4), • T4, T7(2)
• 【选做题】P97 B组T10 , T12
课后思考
• 1、已知关于x的方程 m 2x m 1 5 0 是
一元一次方程,求方程 5x 3m mx 3 1 的
解
3
2m
2、已知关于x的方程 3x a 1 5x 1 和
• (1)用文字写出本问题中的等量关系:
• ___甲_完__成_的__工_作__量__+已__完__成_的__工_作__量_=_总__工_作__量___
• (1 2)设总工作量为1,则甲1每天完成工作总量的 1_5_,乙每天完成工作总量的_1_2.
• (3)若剩下的工作两人合绣 x天可完成,则甲共
一元一次方程的运用3(鸡兔同笼问题)
数学
7
练习(课本第11页)第1题 1.学校田径队的小刚在400米跑测试时,先以6米/秒 的速度跑完了大部分路程,最后以8米/秒的速度冲刺 到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多 少时间?
路程
前一段 后一段 总数
400
速度
6 8
时间(秒)
65 x
x
65
解:设小刚在冲刺阶段花了
6(65 x)
x 5.
秒时间.
经检验, 符合题意 .
答:小刚在冲刺阶段花了 5
习题(课本第12页)第4、5、6题 4.足球的表面是由一些呈多边形的黑、白皮块缝而成的,共计 有32块,已知黑色皮块比白色皮块数的一半多2,问两种皮块各 有多少? 解1:设黑色皮块有 根据题意,则
x 块,则白色皮块有
1 (32 x) 2 2
①如果一个学生得90分,那么他选对几道题?
②有得83分的同学吗?
选对
数 量 x
解:设他选对了x道题,由题意得: 4x -(25-x) = 90
不选或选错
(25-x)
x = 23
若4x-(25-x)= 83 x=21.6 ∵题目选对的数量x是整数 ∴ x=21.6 不符合题意 答:如果一个学生得90分,那么他选对 23道题,没有得83分的同学.
解方程得:X=30 经检验X=30是方程的 解并符合题意 答:这些新团员中有30 名男同学
参加人数 每人共搬砖数 共搬砖数
X
65-X
65
8× 4
6× 4
32X 24(65-X) 1800
一份试卷共25题,每道题都给出四个答案,其中只有一个是正确的,
要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
级
初一 一元一次方程 3 巩建兵
学科
数学
内容标题 编稿老师
一、学习目标:
1. 掌握解一元一次方程的一般步骤,能够熟练灵活地解一元一次方程. 2. 了解解一元一次方程应用题的一般步骤.
二、重点、难点:
重点:一元一次方程的解法. 难点:对一元一次方程求解过程的理解以及灵活运用解法步骤求解 .
ห้องสมุดไป่ตู้
三、考点分析:
一元一次方程是学习其他方程、方程组的基础,是中考的必考内容.一般都以填空、选 择题的形式出现,难度不大,容易得分.
1. 解一元一次方程的一般步骤以及注意事项 变形名称 去分母 去括号 移项 合并同类项 系数化成 1 2. 列方程解应用题的一般步骤 (1)审:弄清题意和数量关系,弄清已知量和未知量,找到一个能包含题目全部数量 关系的相等关系. (2)设:设未知数(可设直接或间接未知数) (3)列:列方程(使用题中原始数据或已经计算出的数据) (4)解:解方程 (5)验:检验结果是否是原方程的解,检验是否符合题意 (6)答:回答全面,注意单位 说明: (1)书写出来的是:设、列、解、答; ( 2) “审”是关键, “验”是保证. 注意事项 防止漏乘(尤其是整数项) ,注意分子要添括号 注意变号,防止漏乘 移项要变号 计算要仔细,不要出差错 计算要仔细,分子分母不要颠倒
第 2 页 版权所有
不得复制
思路分析: 题意分析:这个方程很复杂,有小数,有分数,还有括号. 0.5x+2 0.3(0.5x+2) 解题思路:首先根据分数的性质把 和 中的小数化为整数,再解方程. 0.03 0.2 解答过程:方程可变形为: 50x+200 15x+60 131 -x= - . 3 20 12
第 3 页 版权所有 不得复制
思路分析: 题意分析:无限循环小数都可以化为分数. ·· ·· 解题思路:0. 1 4 是无限循环小数,循环节是 14,所以把它扩大 100 倍,变为 14. 1 4 ,其 ·· ·· 中 14. 1 4 的小数部分与 0. 1 4 相等,利用这一点可列方程. ·· ·· 解答过程:设 0. 1 4 =x,则 14. 1 4 =100x, ·· ·· 所以 100x-x=14. 1 4 -0. 1 4 , 14 即 99x=14,x= , 99 ·· 14 即 0. 1 4 = . 99 解题后的思考: 无限循环小数可以表示为分数形式, 用一元一次方程可以推导出具体表示方 法.列方程时要依据无限循环小数的特点,抓住 10nx-x(x 是纯循环小数,其循环节为 n 位 数)是一个 n 位整数(即循环节)的规律. 例 6:有两袋玉米,第一袋比第二袋少 40 千克,如果从第二袋中取出 5 千克玉米倒入 1 第一袋中,这时第一袋玉米的质量是第二袋玉米质量的 ,求原来两袋玉米各多少千克. 3 思路分析: 题意分析:本题有两个未知数要求,题目中必然含有两个等量关系,一个用来求未知数,另 一个用来列方程. 解题思路:本题中含有的两个等量关系: (1)第一袋玉米比第二袋玉米少 40 千克,即第一 袋玉米质量=第二袋玉米质量-40; (2)从第二袋取出玉米倒入第一袋中后,第一袋玉米质 1 1 量是第二袋玉米质量的 ,即第一袋玉米质量=第二袋玉米质量× .如果设第二袋玉米质量 3 3 为 x 千克,列表如下: 取出玉米 前 第 一袋 第 二袋 (x-40) 千克 x 千克 取出玉米后 (x-40+5) 千克 (x-5)千克
第 1 页 版权所有
不得复制
知识点一:解一元一次方程 x-1 x+2 例 1:解方程:x- =2- . 2 5 思路分析: 题意分析:这个方程中含有两个分数项,两个整数项.注意去分母时不要漏乘. 1 1 解题思路:注意到 =0.5, =0.2,此题也可以把分数化为小数. 2 5 解答过程: 方法一:去分母、去括号,得 10x-5x+5=20-2x-4, 移项及合并同类项,得 7x=11, 11 解得 x= . 7 方法二:原方程可化为 x-0.5(x-1)=2-0.2(x+2) , 去括号,得 x-0.5x+0.5=2-0.2x-0.4. 移项及合并同类项,得 0.7x=1.1, 11 解得 x= . 7 1 1 解题后的思考:比较这两种方法,方法一中的数据都是整数;方法二中,把 看成 0.5,把 2 5 看成 0.2,直接去括号,没有去分母这个过程,计算稍微简便一些. 4x-1.5 5x-0.8 1.2-x 例 2:解方程: - = . 0.5 0.2 0.1 思路分析: 题意分析:这个方程的各项都是分数,且分母都是小数. 解题思路:一见到此方程,许多同学立即想到把分母化成整数,即各分数的分子、分母都乘 10,再设法去分母.其实,仔细观察这个方程,我们可以将分母化成整数与去分母两步一起 完成,第一个分数的分子、分母都乘 2,第二个分数的分子、分母都乘 5,第三个分数的分 子、分母都乘 10. 解答过程:方程可以化为: (4x-1.5)×2 (5x-0.8)×5 (1.2-x)×10 - = . 0.5×2 0.2×5 0.1×10 整理,得 2(4x-1.5)-5(5x-0.8)=10(1.2-x). 去括号、移项、合并同类项,得-7x=11. 11 所以 x=- . 7 解题后的思考: 解这个方程时, 第一步的转化起到了去分母的作用, 但利用的是分数的性质, 而不是等式的性质. 0.5x+2 0.3(0.5x+2) 11 例 3:解方程: -x= -10 0.03 0.2 12
于是他把被遮盖的数字求了出来,请把小强的计算过程写出来. 思路分析: 题意分析:对这个方程来说,相当于有两个未知数,已知 x=5,求另一个未知数△. 解题思路:解答这道题有两种思路:一是把△看成已知数,解方程,通过方程的解是 x=5 求得△;二是把 x=5 代入原方程得到一个关于△的方程,解这个方程. x-1 x-△ 1 解答过程: (- +x)=1- 3 2 5 x-1 1 x-△ 去括号,得- + x=1- , 6 3 5 去分母,得-5(x-1)+10x=30-6(x-△). 去括号,得-5x+5+10x=30-6x+6△. 移项及合并同类项得 11x=25+6△. 把 x=5 代入 11x=25+6△, 得△=5. 解题后的思考:此类问题是创新题型,我们应从变化中找到问题的“本来面目”. 小结:去分母、去括号、移项、合并同类项、系数化为 1 是解方程的一般步骤.解某些方程 时可能会用到每一步,也可能只用到其中某几步即可求出方程的解.在解方程过程中要灵活 掌握,认真细致地运用.应该注意的是在求出方程的解后,应养成检验的习惯,这样可避免 出现错误.解题中应当注意认真审题、观察方程的结构特点,利用整体合并、逆用分数通分 法则、逆用乘法分配律等方法进行简便运算. 知识点二:一元一次方程的综合应用 ·· 例 5:将循环小数 0. 1 4 化为分数.
50x+200 3x+12 131 即: -x= - . 3 4 12 去分母得,4(50x+200)-12x=3(3x+12)-131, 去括号得,200x+800-12x=9x+36-131, 移项,得 200x-12x-9x=36-131-800, 合并同类项,得 179x=-895, 系数化为 1,得 x=-5. 解题后的思考:像这样较为复杂的一元一次方程,先观察、整理,再解方程. x-1 1 例 4:小强的练习册上有一道方程题,其中一个数字被墨水遮盖了,成了 (- +x) 3 2 =1- x-△ ( “△”表示被遮盖的数字) ,他翻了书后的答案,知道这个方程的解为 x=5, 5