实验4多普勒效应

实验4多普勒效应
实验4多普勒效应

多普勒效应综合实验

当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。

【实验目的】

1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究:

①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。

②自由落体运动,并由V-t关系直线的斜率求重力加速度。

③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。

④其它变速直线运动。

【实验原理】

1、超声的多普勒效应

根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:

f = f0(u+V1cosα1)/(u–V2cosα2)(1)

式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:

f = f0(1+V/u)(2)

当接收器向着声源运动时,V取正,反之取负。

若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为 k=f0/u ,由此可计算出声速 u=f0/k 。

由(2)式可解出:

V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

2、超声的红外调制与接收

早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。

【实验仪器及简介】

多普勒效应综合实验仪由实验仪,超声发射/接收器,红外发射/接收器,导轨,运动小车,支架,光电门,电磁铁,弹簧,滑轮,砝码等组成。实验仪内置微处理器,带有液晶显示屏,图1为实验仪的面板图。

实验仪采用菜单式操作,显示屏显示菜单及操作提示,由???◆键选择菜单或修改参数,

按“确认”键后仪器执行。可在“查询”页面,查询到在实验时已保存的实验的数据。操作者只

须按提示即可完成操作,学生可把时间和精力用于物理概念和研究对象,不必花大量时间熟悉特定的仪器使用,提高了课时利用率。

实验一验证多普勒效应并由测量数据计算声速

让小车以不同速度通过光电门,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率。由仪器显示的f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。用作图法或线性回归法计算f-V直线的斜率k,由k计算声速u并与声速的理论值比较,计算其百分误差。

一.仪器安装

如图2所示。所有需固定的附件均安装在导轨上,并在两侧的安装槽上固定。调节水平超声传感发生器的高度,使其与超声接收器(已固定在小车上)在同一个平面上,再调整红外接收传感器高度和方向,使其与红外发射器(已固定在小车上)在同一轴线上。将组件电缆接入实验仪的对应接口上。安装完毕后,让电磁铁吸住小车,给小车上的传感器充电,第一次充电时间约6~8秒,充满后(仪器面板充电灯变绿色)可以持续使用4~5分钟。在充电时要注意,必须让小车上的充电板和电磁铁上的充电针接图2 多普勒效应验证实验及测量小车水平运动安装示意图

图1 多普勒实验仪面板图

触良好。

【注意事项】

①安装时要尽量保证红外接收器、小车

上的红外发射器和超声接收器、超声

发射器三者之间在同一轴线上,以保

证信号传输良好;

②安装时不可挤压连接电缆,以免导线折断;

③小车不使用时应立放,避免小车滚轮沾上污物,影响实验进行。

二.测量准备

1.实验仪开机后,首先要求输入室温。因为计算物体运动速度时要代入声速,而声速是温度的函数。

利用?◆将室温T值调到实际值,按“确认”。

2.第二个界面要求对超声发生器的驱动频率进行调谐。在超声应用中,需要将发生器与接收器的频率匹配,并将驱动频率调到谐振频率f0,这样接收器获得的信号幅度才最强,才能有效的发射与接收超声波。一般f0在40KHz左右。调谐好后,面板上的锁定灯将熄灭。

3.电流调至最大值后,按“确认”。本仪器所有操作,均要按“确认”键后,数据才被写入仪器。

【注意事项】

①调谐及实验进行时,须保证超声发生器和接收器之间无任何阻挡物;

②为保证使用安全,三芯电源线须可靠接地。

三.测量步骤

1.在液晶显示屏上,选中“多普勒效应验证实验”,并按“确认”;

2.利用◆键修改测试总次数(选择范围5~10,一般选5次),按▼,选中“开始测试”;

3.准备好后,按“确认”,电磁铁释放,测试开始进行,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率;

改变小车的运动速度,可用以下两种方式:

a.砝码牵引:利用砝码的不同组合实现;

b.用手推动:沿水平方向对小车施以变力,使其通过光电门。

为便于操作,一般由小到大改变小车的运动速度。

4.每一次测试完成,都有“存入”或“重测”的提示,可根据实际情况选择,“确认”后回到测试状态,并显示测试总次数及已完成的测试次数;

5.改变砝码质量(砝码牵引方式),并退回小车让磁铁吸住,按“开始”,进行第二次测试;

6.完成设定的测量次数后,仪器自动存储数据,并显示f-V关系图及测量数据。

【注意事项】

小车速度不可太快,以防小车脱轨跌落损坏。

四.数据记录与处理

由f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。用◆键选中“数据”,?键翻阅数据并记入表1中,用作图法或线性回归法计算f-V关系直线的斜率k。公式(4)为线性回归法计算k值的公式,其中测量次数i=5 ~ n,n≤10。

2 2

i i i

i

i

i

V V f

V

f

V

k

-?

-

?

=(4)

由k计算声速u = f0/k,并与声速的理论值比较,声速理论值由u0 = 331(1+t/273)1/2 (米/秒)计算,t表示室温。测量数据的记录是仪器自动进行的。在测量完成后,只需在出现的显示界面上,用◆

键选中“数据”,?键翻阅数据并记入表1中,然后按照上述公式计算出相关结果并填入表格。

表1 多普勒效应的验证与声速的测量 f0 =

测量数据

直线斜率

k (1/m) 声速测量

u=f0/k

(m/s)

声速理

论值

u0(m/s

)

百分误

(u-u0)/

u0

次数i 1 2 3 4 5 6

V i(m/s

)

f i (Hz)

实验二研究匀变速直线运动,验证牛顿第二运动定律

质量为 M的接收器组件,与质量为m的砝码托及砝码悬挂于滑轮的两端,运动系统的总质量为 M+m,所受合外力为 (M-m)g(滑轮转动惯量与摩擦力忽略不计)。

根据牛顿第二定律,系统的加速度应为:

a = g (M-m) /(M+m) (5)

采样结束后会显示 V-t曲线,将显示的采样次数及对应速度记入表2中。由记录的t ,V数据求得V-t直线的斜率即为此次实验的加速度a。将表2得出的加速度a作纵轴,(M-m)/(M+m)作横轴作图,若为线性关系,符合(5)式描述的规律,即验证了牛顿第二定律,且直线的斜率应为重力加速度。

一.仪器安装与测量准备

1.仪器安装如图4所示,让电磁阀吸住

自由落体接收器,并让该接收器上充电部分和

电磁阀上的充电针接触良好。

2.用天平称量接收器组件的质量M,砝

码托及砝码质量,每次取不同质量的砝码放于

砝码托上,记录每次实验对应的m。

3.由于超声发生器和接收器已经改变了,

因此需要对超声发生器的驱动频率重新调谐。

【注意事项】

①须将“自由落体接收器保护盒”套于发

射器上,避免发射器在非正常操作时受

到冲击而损坏;

②安装时切不可挤压电磁阀上的电缆;

③调谐时需将自由落体接收组件用细绳

拴住,置于超声发射器和红外接收器得

中间,如此兼顾信号强度,便于调谐。

④安装滑轮时,滑轮支杆不能遮住红外接

收和自由落体组件之间信号传输。

二.测量步骤

1.在液晶显示屏上,用▼选中“变速运动测量实验”,并按“确认”;

2.利用◆键修改测量点总数为8(选择范围8~150),▼选择采样步距,并修改为50 ms(选择范围50~100ms),选中“开始测试”;

图4 匀变速直线运动安装示意图

3.按“确认”后,磁铁释放,接收器组件拉动砝码作垂直方向的运动。测量完成后,显示屏上出现测量结果。

4.在结果显示界面中用 ◆ 键选择“返回”,“确认”后重新回到测量设置界面。改变砝码质量,按以上程序进行新的测量。

【注意事项】

需保证自由落体组件内电池充满电后(即实验仪面板上的充电指示灯为绿色)开始测量。

三.数据记录与处理

采样结束后显示 V -t 直线,用 ◆ 键选择“数据”,将显示的采样次数及相应速度记入表2中,t i

为采样次数与采样步距的乘积。由记录的t ,V 数据求得V -t 直线的斜率,就是此次实验的加速度a 。

将表2得出的加速度a 作纵轴,(M -m)/(M +m)作横轴作图,若为

线性关系,符合(5)式描述的规律,即验证了牛顿第二定律,且直线

的斜率应为重力加速度。

【注意事项】

① 为避免电磁铁剩磁的影响,第1组数据不记;

② 接收器组件下落时,若其运动方向不是严格的在声源与接收器的

连线方向,则α1(为声源与接收器连线与接收器运动方向之间的夹角,右图是其示意图)在运动过程中增加,此时公式(2)不再严格成立,由(3)式计算的速度误差也随之增加。故在数

据处理时,可根据情况对最后2个采样点进行取舍。

表2 匀变速直线运动的测量

实验三 研究自由落体运动,求自由落体加速度

一.仪器安装

仪器安装如图6所示,注意事项同实验二。 二.测量步骤

1.在液晶显示屏上,用 ▼ 选中“变速运动测量实验”,并按“确认”;

接收器位置 图5 运动过程中 α1角度变化示意图

2.利用◆键修改测量点总数为8(选择范围8~150),▼选择采样步距,并修改为50 ms(选择范围50~100ms),选中“开始测试”;

3.按“确认”后,电磁铁释放,接收器组件自由下落1段距离后被细绳拉住。测量完成后,显示屏上出现测量结果。

4.在结果显示界面中用◆键选择“返回”,“确认”后重新回到测量设置界面。可按以上程序进行新的测量。

三.数据记录与处理

将测量数据记入表3中,由测量数据求得V-t直线的斜率即为重力加速度g。

为减小偶然误差,可作多次测量,将测量的平均值作为测量值,并将测量值与理论值比较,求百分误差。

表3 自由落体运动的测量

【注意事项】

测量时必须保证接收器与发射器之间无任何阻挡物,其他实验注意事项及数据记录方法同实验二。

实验四、研究简谐振动

当质量为m的物体受到大小与位移成正比,而方向指向平衡位置的力的作用时,若以物体的运动方向为x轴,其运动方程为:

2

2

d x

m kx

dt

=-(6)

由(6)式描述的运动称为简谐振动,当初始条件为t = 0时,x = -A0,V = dx/dt = 0,则方程(6)的解为:

x = -A0cosω0t (7)

将(7)式对时间求导,可得速度方程:

V = ω0A0sinω0t (8)

由(7)(8)式可见物体作简谐振动时,位移和速度都随时间周期变化,式中ω0= (k/m)1/2,为振动的角频率。

测量时仪器的安装如图7,若忽略空气阻力,根据胡克定律,作用力与位移成正比,悬挂在弹簧上的物体应作简谐振动,而(6)式中的k为弹簧的倔强系数。

一.仪器安装与测量准备

仪器的安装如图7所示。将弹簧悬挂于电磁铁上方的挂钩孔中,接收器组件的尾翼悬挂在弹簧上。

用天平称量垂直运动超声接收器接收器组件的质量M,测量接收器悬挂上之后弹簧的伸长量Δx,记图6 自由落体运动安装示意图图7 垂直谐振安装示意图

沉淀反应实验研究报告

实验蛋白质地沉淀反应与颜色反应 一、实验目地 掌握鉴定蛋白质地原理和方法.熟悉蛋白质地沉淀反应,进一步熟悉蛋白质地有关反应. 二、实验原理 蛋白质分子中某种或某些集团可与显色剂作用,产生颜色.不同地蛋白质由于所含地氨基酸不完全相同,颜色反应亦不完全相同.颜色反应不是蛋白质地专一反应,一些非蛋白物质也可产生同样地颜色反应,因此不能根据颜色反应地结果来决定被测物是否为蛋白质.另外,颜色反应也可作为一些常用蛋白质定量测定地依据.蛋白质是亲水性胶体,在溶液中地稳定性与质点大小、电荷、水化作用有关,但其稳定性是有条件地,相对地.如果条件发生了变化,破坏了蛋白质地稳定性,蛋白质就会从溶液中沉淀出来. 三、实验仪器 、吸管、滴管、试管、电炉、试纸、水浴锅、移液管 四、实验试剂 、卵清蛋白液:鸡蛋清用蒸馏水稀释倍,层纱布过滤,滤液放在冰箱里冷藏备用. 、苯酚:苯酚加蒸馏水稀释至. 、’试剂:汞溶于浓硝酸(水浴加温助溶)溶解后,冷却,加二倍体积地蒸馏水,混匀,取上清夜备用.此试剂可长期保存. 、尿素晶体 、:晶体溶于蒸馏水,稀释至 、:溶于蒸馏水,稀释至 、浓硝酸 、茚三酮溶液:茚三酮溶于地乙醇并稀释至. 、冰醋酸 、浓硫酸 、饱和硫酸铵溶液:蒸馏水中加硫酸铵至饱和. 、硫酸铵晶体:用研钵研成碎末. 、乙醇. 、醋酸铅溶液:醋酸铅溶于蒸馏水并稀释至 、氯化钠晶体 、三氯乙酸溶液:三氯乙酸溶于蒸馏水中并稀释至 、饱和苦味酸溶液:蒸馏水中加苦味酸至饱和. 、醋酸溶液. 五、实验步骤 蛋白质地颜色反应 (一)米伦(’)反应 、苯酚实验:取苯酚溶液于试管中,加’试剂,电炉小心加热观察颜色变化. 、蛋白质实验:取蛋白液,加’试剂,出现白色地蛋白质沉淀,小心加热,观察现象. (二)双缩脲反应 、取少量尿素晶体放在干燥地试管中,微火加热熔化,至重新结晶时冷却.然后加溶液,摇匀,再加滴溶液,混匀,观察现象. 、取蛋白液,加溶液,摇匀,再加滴溶液,混匀,观察现象. (三)黄色反应 取一支试管,加入蛋白液及浓硝酸滴.加热,冷却后注意颜色变化.然后再加入溶液,观察颜色有什么变化. (四)茚三酮反应 取蛋白液于试管中,加滴茚三酮溶液,加热至沸,即有蓝紫色出现. 蛋白质地沉淀 (一)蛋白质地盐析作用

多普勒效应综合实验

多普勒效应综合实验 摘要: 关键词: 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0 – 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号

多普勒综合试验仪

ZKY-DPL-2 多普勒效应综合实验仪实验指导说明书

多普勒效应综合实验 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。

大学物理实验多普勒效应

多普勒效应实验报告 学院化学与生物工程学院班级化学1701 学号姓名 一、实验目的与实验仪器 实验目的 1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。 2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械 能转化的规律。 实验仪器 ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1、声波的多普勒效应 当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为 f0=U0/λ0 则观测频率f、观测波长λ和观测波速U的关系 f=U/λ 当接收器以一定的速率向声源移动时U=U0+V0,则 f=(U0+V0)/λ0 联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0 当声源以一定的速率向接收器移动时V =U0-V0,则 f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f 当声源与接收器运动如图时 f=(U0+V1COSθ1)/( U0-V2 COSθ2) 2、马赫锥 a=arcsin(U0/V0)=arcsin(1/M) U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数

3、天文学中的多普勒效应 观察两波面的时间 t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2) =(1-V2c/C2c)1/2/((1+Vc/Cc)fc) 三、实验步骤 (要求与提示:限400字以内) 1、超声波的多普勒效应 (1)、组装仪器 (2)、打开实验控制箱,调至室温,记录共振频率f0 (3)、选择多普勒效应验证实验 (4)、修改测试总数 (5)、为仪器充电,确定失锁指示灯处于灯灭状态 (6)、选定滑车速率,开始测试 (7)、选择存入或者重测 (8)、重新选择速度,重复(6)、(7) (9)、记录实验数据 2、用多普勒效应研究恒力下物体的运动规律 (1)、测量钩码质量和滑车质量 (2)、连接仪器 (3)、选中变速运动测量 (4)、修改测量总次数 (5)、选中开始测试,立即松开钩码 (6)、记录测量数据 (7)、改变砝码质量,重复(1)到(6) 四、数据处理 (要求与提示:对于必要的数据处理过程要贴手算照片) 表4.12-1 多普勒效应的验证与声速的测量 t c = 24 ℃f0 = 40001 Hz 次数i 1 2 3 4 5 v/(m/s) 0.41 0.59 0.75 0.87 0.98 Fi/Hz 40049 40070 40089 40103 40116

多普勒效应综合实验

多普勒效应综合实验 【引言】 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f -V 关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V -t 关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: (1)自由落体运动,并由V -t 关系直线的斜率求重力加速度。 (2)简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 (3)匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 (4)其它变速直线运动。 【实验原理】 1、超声的多普勒效应 图1 超声的多普勒效应示意图 源 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f 为: 22110cos -cos ααV u V u f f +?= (1) 式中f 0为声源发射频率,u 为声速,V 1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V 2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角(如图1)。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向(α=0)以速度V 运动,则从(1)式可得接收器接收到的频率应为: ??? ??+?=u V f f 10 (2) 当接收器向着声源运动时,V 取正,反之取负。 若f 0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f -V 关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为 k =f 0/u ,由此可计算出声速 u =f 0/k 。 由(2)式可解出: ???? ???=1-0f f u V (3) 若已知声速u 及声源频率f 0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V -t 关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

免疫学——沉淀反应

实验报告 课程名称:病原生物学与免疫学实验 指导老师:陈玮__ _____成绩:______________ 实验名称:沉淀反应和补体参与的免疫反应 实验类型:___________同组学生姓名:钟一鸣 1.沉淀反应——双向琼脂扩散试验 【实验原理】 双向扩散是将可溶性抗原和抗体分别加到琼脂板相对应的孔中,两者各自向四周扩散,如果抗体和抗原相对应,则在两者比例适当处形成白色沉淀线。若同时含有若干对抗原抗体系统,因其扩散速度不同,可在琼脂中出现多条沉淀线。观察沉淀线的位置、形状等可对抗原或抗体作出定性分析。本试验常用于检测抗原抗体的纯度,滴定抗体的效价以及用已知抗体(抗原)检测和分析未知抗体(抗原)。临床上用此法检测患者血清中的甲胎球蛋白AFP ,作为原发性肝癌的重要诊断指标。双向扩散实验所需时间较长(24h ),灵敏度不高。 【实验现象】 沉淀线 Ag 对照 Ag 对照 Ag 待测 Ag 待测 Ag 对照 Ab Ab

1).六边形排列孔中,六条沉淀线在抗体孔周围衔接成一个完整的圆形 2).三角形排列孔中,出现两条沉淀线,且二者相交顶端相连 【实验结果】 待测样本AFP阳性,与阳性对照含有浓度基本相同的AFP 【讨论】 1).六边形排列孔中出现完整的圆形,说明阳性对照抗原和待测样本抗原浓度基本接近,使得六个孔中各沉淀线离中央孔的距离接近,围成完整的圆形 2).三角形和六边形排列孔的沉淀线均较接近中央孔,说明待测抗原和阳性对照抗原的浓度略大于抗体浓度。 3).制琼脂板时,不能太薄,且因要打六边形孔,尽量保证边上的孔不能太浅 4).沉淀线不明显可能和抗原抗体浓度以及放置时间有关,放置时间过短则沉淀线不明显,过长则会使已经形成的沉淀线解离或散开而出现假阴性 2.免疫电泳试验——对流免疫电泳试验 【实验原理】 带电的胶体颗粒可在电场中移动,移动的方向与胶体颗粒所带的电荷有关,蛋白质抗原在PH8.6的缓冲液中带负电荷,故由阴极向阳极移动,抗体球蛋白的等电点为PH6-7,故在PH8.6的缓冲液中带负电荷少,且分子较大,移动缓慢,同时因电渗作用,反向阴极移动,于是形成抗原与抗体相对移动的情况,在二者相遇的最适比例处产生白色沉淀。此种在双向免疫扩散的基础上加电泳的方法称为对流免疫电泳。由于抗原、抗体在电场中做定向移动,限制了琼脂双向扩散时抗原、抗体朝各方向自由扩散,因而提高了实验的敏感度,同时缩短试验时间,故可作快速诊断。 【实验现象】 Ag Ab Ab Ag

多普勒效应综合实验

多普勒效应综合实验 【摘要】:多普勒效应是一基本的物理现象,当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【关键词】:超声波多普勒效应匀加速简谐振动 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f 0(u+V 1 cosα 1 )/(u–V 2 cosα 2 )(1) 式中f 0为声源发射频率,u为声速,V 1 为接收器运动速率,α 1 为声源与接收器连线与接 收器运动方向之间的夹角,V 2为声源运动速率,α 2 为声源与接收器连线与声源运动方向之 间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f (1+V/u)(2)当接收器向着声源运动时,V取正,反之取负。 若f 保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应 为 k=f 0/u ,由此可计算出声速 u=f /k 。 由(2)式可解出: V = u(f/f – 1)(3) 若已知声速u及声源频率f ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装

多普勒效应综合实验报告及数据处理图

多普勒效应综合实验 (附数据处理图) (注:由于上传后文库中数据图看不清楚,须下载后才能看清楚) 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽

多普勒声速实验--实验报告

DH-DPL系列多普勒效应及声速综合实验 实验报告 一:实验目的 多普勒效应是一种与波动紧密相关的物理现象.利用多普勒效应可以测量运动物体的速度,但目前许多高校使用的多普勒效应实验仪集成化和智能化程度太高,实验时需要学生动手操作的环节太少;信号的转换、传输和处理过程不透明,不利于学生在实验过程中细致观察各种物理现象,分析测量误差的来源等,难以满足深入培养学生自主动手能力和观察分析能力的需要.本实验以商用超声多普勒实验系统(杭州大华DH -DPL1)的导轨模块作为开发平台,以模拟乘法器作为测量系统的核心单元;实验过程中学生需自行搭建信号拾取和处理电路,并利用示波器观察各个环节的信号波形,有助于培养学生得动手能力,并加深对多普勒效应及对模拟电子实验的理解。 二:实验原理 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器收到的信号频率f为: f = f0 (u + v1 cosα1 ) / (u - v2 cosα2 ) (1) 式中f0为声源发射频率, u为声速, v1 为接收器运动速率, v2 为声源运动速率,α1 是声源与接收器连线与接收器运动方向之间的夹角,α2 是声源与接收器连线与声源运动方向之间的夹角. 在实验过程中,声源保持不动,接收换能器在导轨上沿声源与接收换能器连线方向上运动,则从式(1)可以得到接收换能器上得到的信号频率为: f = f0 (1 + v/u) (2) 式中v为接收换能器的运动速度,当向着声源运动时, v取正,反之取负.利用式(2)可以得到接收换能器的运动速度为:

v = u(f - f0 ) /f0 = uΔf/f0 ………..(3) 式中Δf = f - f0为多普勒频移. 在本研究中,采用的信号处理电路如图1所示, 其中模拟乘法器采用了AD633,其信号的输入输出 关系为: W =(x1 - x2 ) (y1 - y2 )/10+ z (4) 若输入到AD633的信号为x1 = E1 cos(2πf0 t +φ1 ) , y1 = E2 cos(2πft +φ2 ) , x2、y2 以及z均接地,则AD633的输出为: W =E1 E2{cos[2π(f + f0 ) t +φ2 +φ1 ] /20+cos[2π(f - f0 ) t +φ2 -φ1 ]} (5) 其中包含了两路信号的和频分量与差频分量. 利用低通滤波器可以提取出其中的差频分量,即多普勒频移,从而计算出接收换能器的运动速度. 在实际测量过程中,由于接收换能器与声源(发射换能器)的距离在不断变化过程中,因此接收换能器输出信号的幅度不是恒定值. 为了保证乘法器的输出信号幅度稳定,本研究中采用OA1组成的限幅放大电路,使输入到乘法器的信号幅度保持恒定值,以便于观察.因为本实验中只关心输出信号的频率,因此对接收换能器输出信号幅度的处理不会影响到实验结果.利用OA2构建的有源低通滤波器,可以有效提取出多普勒频移信号.

多普勒效应测量超声声速

北京航空航天大学 物理研究性实验报告 实验项目名称: 对多普勒效应测量超声声速实验的扩展 多普勒效应测量超声声速 摘要:本实验通过学习多普勒效益的相关原理,利用BHWL-Ⅱ多普勒超声测速仪测量超声声速,结合光电门测速的方法验证多普勒超声测速仪测量小车速度的精准程度。在本次试验报告中,将探讨多普勒勒效应试验数据的误差分析;将对试验仪器进行改进;利用多普勒超声测速仪进行更多实验的操作。

一、实验重点: (1)通过该实验进一步了解多普勒效应原理及其应用; (2)熟悉BHWL-Ⅱ多普勒超声测速仪的使用; (3)熟悉数字示波器的使用。 二、仪器相关原理简介与相应计算: 在无色散情况下,波在介质中的传播速度是恒定的,不会因波源运动而改变,也不会因观察者运动而改变。但当波源(或观察者)相对介质运动时,观察者所接收到的频率却可以改变。当我们站在铁路旁,有火车高速经过时,汽笛声会由高亢变得低沉,就是这个缘故。如果观察者运动,而火车静止,也有类似的现象。这种由于波源或观察者(或两者)相对介质运动而造成的观察者接收频率发生改变的现象,称为多普勒效应。 (一)实验原理: 多普勒超声测速仪是一套综合性的超声测速仪器,该仪器利用多普勒频移效应实现对运动物体速度的测量,并可与光电方式测速进行比较。实验装置如图1所示,电机与超声头固定于导轨上面,小车可以由电机牵引沿导轨左右运动,超声发射头与接收头固定于导轨右端,若超声发射频率为接收回波频率为f,超声波在静止介质中传播速度为u,小车运动速度为v(向右为正)。 依据多普勒频移公式,回波频率、多普勒频移和小车运动的速度分别为: 由于电路中不能表征负频移(即不论靠近还是远离超声头Δf恒为正),所以在该系统中采用了标量表示(Δf不区分正负,以靠近或远离超声头进行标识)。

肥达试验和沉淀反应实验报告

实验报告

二者均在正常值内,患伤寒的可能性小; H抗体效价超过正常值,O抗体效价正常,可能是接种了伤寒菌苗或者是接种的回忆反应;O抗体效价超过正常值,H抗体效价正常,可能是伤寒早期或者其他沙门氏菌感染; 一般间隔1~2周复查,若抗体效价比前次结果增高2~4倍,则具有诊断价值。 实验报告

任务二:打孔 1.待琼脂板凝固后在琼脂板中间部分打四个孔,孔径3mm,孔距10mm。在左上角打一个孔作为标记。用胶头滴管吸去空上废液。 提示: (1)打孔时要小心,勿使琼脂层脱离载玻片或琼脂板底层开裂,以免加样时顺裂缝或底部散失。一旦出现裂缝或脱离现象,可向孔内滴加少许温琼脂加以弥补或将琼脂板在火焰高处来回通过几次补底。 (2)在琼脂板左上角打上标记孔,有助于确定正负极方向和样本上样位置,通常情况下,有标记孔侧,放置于正极端。 任务三:加样 1.如下图所示加样,用移液枪每个孔加10微升对应液体: C:人待测血清;D:人阳性血清;E:抗人血清抗体/诊断血清 提示: (1)抗原和抗体在一定的pH条件下,由于带电荷量的多少及分子量大小不同,在电场中以不同的速度作定向移动。在pH8.6的缓冲液中,多数蛋白质抗原物质带负电荷,在电场作用下向阳极移动,而其抗体大多为Y球蛋白,等电点较高,带负电荷较少,且分子量较大,电泳速度慢,受电渗作用影响向负极移动。 (2)加样时勿使样品外溢或在边缘残存小气泡,以免影响扩散结果。 (3)抗原、抗体的量应相接近时容易出现沉淀带,反之不易发生,如抗原过多,可造成假阴性结果,可通过稀释抗原加以解决。 任务四:正确放置琼脂板至电泳槽 1.向电泳槽中加入约2/3体积的pH8.6 0.05mol/L巴比妥溶液,将加好样的琼脂板放入电泳槽,有标记孔的一侧放在正极端。 2.用纱布条搭在琼脂板两侧,以便电泳。 提示: (1)电泳时抗原、抗体电极方向不可放反。 (2)搭桥时应注意与凝胶接触紧密,否则会使电流不均匀,致使沉淀线歪斜、不均匀。 任务五:确定电泳电压 1.设置电泳仪Us=6V,Is=4mA,Ts=60:00 提示: 电压、电流增大时,电泳时间可更短。但电压过高则孔径变形,可将琼脂融化,电流过大抗原抗体蛋自易变性,干扰实验结果;电压过低时沉淀线出现的时间会延长。

多普勒综合实验报告

四川理工学院实验报告 成绩 学号:11101030233 班级:网络工程一班 实验班编号: 姓名:赵鸿平 实验名称: 多普勒效应综合实验 实验目的: 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关 系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或 调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较 实验仪器: 多普勒效应综合实验仪由实验仪 实验原理: 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 数据记录:(要求在实验前画出实验表格) 实验步骤 1. 自由落体运动验证牛顿第二定律:

沉淀反应实验报告

实验蛋白质的沉淀反应与颜色反应 一、实验目的 掌握鉴定蛋白质的原理和方法。熟悉蛋白质的沉淀反应,进一步熟悉蛋白质的有关反应。 二、实验原理 蛋白质分子中某种或某些集团可与显色剂作用,产生颜色。不同的蛋白质由于所含的氨 基酸不完全相同,颜色反应亦不完全相同。颜色反应不是蛋白质的专一反应,一些非蛋白物 质也可产生同样的颜色反应,因此不能根据颜色反应的结果来决定被测物是否为蛋白质。另 外,颜色反应也可作为一些常用蛋白质定量测定的依据。蛋白质是亲水性胶体,在溶液中的 稳定性与质点大小、电荷、水化作用有关,但其稳定性是有条件的,相对的。如果条件发生 了变化,破坏了蛋白质的稳定性,蛋白质就会从溶液中沉淀出来。 三、实验仪器 1、吸管 2、滴管 3、试管 4、电炉 5、ph试纸 6、水浴锅 7、移液管 四、实验试剂 1、卵清蛋白液:鸡蛋清用蒸馏水稀释10-20倍,3-4层纱布过滤,滤液放在冰箱里冷藏 备用。 2、 0.5%苯酚:1g苯酚加蒸馏水稀释至200ml。 3、millon’s试剂:40g汞溶于60ml浓硝酸(水浴加温助溶)溶解后,冷却,加二倍体 积的蒸馏水,混匀,取上清夜备用。此试剂可长期保存。 4、尿素晶体 5、1%cuso:1g cuso晶体溶于蒸馏水,稀释至100ml 44 6、10%naoh:10g naoh溶于蒸馏水,稀释至100ml 7、浓硝酸 8、0.1%茚三酮溶液:0.1g茚三酮溶于95%的乙醇并稀释至100ml. 9、冰醋酸 10、浓硫酸 11、饱和硫酸铵溶液:100ml蒸馏水中加硫酸铵至饱和。 12、硫酸铵晶体:用研钵研成碎末。 13、95%乙醇。 14、醋酸铅溶液:1g醋酸铅溶于蒸馏水并稀释至100ml 15、氯化钠晶体 16、10%三氯乙酸溶液:10g三氯乙酸溶于蒸馏水中并稀释至100ml 17、饱和苦味酸溶液:100ml蒸馏水中加苦味酸至饱和。 18、1%醋酸溶液。 五、实验步骤 蛋白质的颜色反应 (一)米伦(millon’s)反应 1、苯酚实验:取0.5%苯酚溶液1ml于试管中,加millon’s试剂0.5ml,电炉小心加热 观察颜色变化。 2、蛋白质实验:取2ml蛋白液,加millon’s试剂0.5ml,出现白色的蛋白质沉淀,小 心加热,观察现象。 (二)双缩脲反应 1、取少量尿素晶体放在干燥的试管中,微火加热熔化,至重新结晶时冷却。然后加 10%naoh溶液1ml,摇匀,再加2-4滴1% cuso4溶液,混匀,观察现象。 2、取蛋白液1ml,加10%naoh溶液1ml,摇匀,再加2-4滴1% cuso4溶液,混匀,观察 现象。

[北科大]无机化学实验:1 酸碱反应和沉淀反应 (实验报告)

无机化学实验报告 【实验名称】实验一:酸碱反应和沉淀反应 【班级】 【日期】 【姓名】 【学号】 一、实验目的 ○1通过实验证实水溶液中的酸碱反应、沉淀反应存在着化学平衡及平衡移动的规则——同离子效应、溶度积规则等。 ○2学习验证性实验的设计方法。 ○3学习对实验现象进行解释,从实验现象得出结论等逻辑手段。 二、实验原理 (1)按质子理论,酸、碱在水溶液中的解离和金属离子、弱酸根离子在水溶液中的水解均为酸碱反应。弱酸、弱碱的解离和金属离子、弱酸根离子的水解均存在着化学平衡。如一元弱酸的解离HA == H + + A -,其平衡常数称弱酸的解离常数,记作K θa ,其表达式为: [c (H +)/c θ][c(Ac -)/ c θ] K θa (HAc) = ————————————— (3-1) [c(HAc)/ c θ] c (H +) c(A -) 解离度 α = ——— ? 100% = ——— ? 100% (3-2) c(HA) c(HA) 从平衡移动的观点,可以了解当溶液增加c(A -)或c(H +),使平衡向左移动,使弱酸的解离度降低,即当增加c(H +),使c(A -)降低,当增加c(A -)则c(H +)降低。 金属离子与水的酸碱反应,即水解反应,就像多元酸的解离是分步进行的。例如Al 3+(aq)的水解: Al 3+(aq) + H 20 === Al(OH)2+(aq) + H +(aq) Al(OH)2+(aq) + H 20 === Al(OH)2+(aq) + H +(aq) Al(OH)2+(aq) + H 20 === Al(OH)3(s) + H +(aq) 值得注意的是有的金属离子的水解,并不是要水解到相应的氢氧化物才生成沉淀,而是水解到某一中间步骤,就生成了碱式盐沉淀。如Sb 3+(aq)的水解: 第一步 Sb 3+(aq) + H 20 === Sb(OH)2+(aq) + H + 第二步 Sb(OH)2+(aq) + Cl -(aq) === SbOH 2+(s) + H + 这类反应同样也存在平衡,当增加溶液中c(H +),则可抑制水解,当减少溶液中c(H +)(pH 增大),则可促进其水解。 一般来说,酸碱反应的反应速率是相当快的,极易到达平衡。所以从平衡角度来考察这类反应就行了。 (2)难溶电解质在水溶液中存在着溶解沉淀平衡。对于难溶的AB 型电解质,有下列平衡: AB(s) ======溶解/沉淀 A n+(aq) + B n-(aq)

多普勒效应综合实验预习材料

ZKY-DPL-3 多普勒效应综合实验仪 (电机拖动型) 实验指导及操作说明书

多普勒效应综合实验 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。

多普勒效应综合实验

多普勒效应综合实验 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。

相关文档
最新文档