硅片清洗与制绒

合集下载

硅片制绒和清洗

硅片制绒和清洗

利用接触角测量仪测量硅 片表面的接触角,评估表 面的润湿性和清洁度。
使用反射率测量仪测量硅 片表面的反射率,判断绒 面质量和减反射效果。
使用颗粒计数器检测清洗 后硅片表面的颗粒数量和 大小,评估清洗效果。
05 环境因素与安全生产管理
环境因素对制绒和清洗影响分析
01
温度
温度的变化会影响化学反应的速 率和效果,需要控制在适宜的范 围内。
硅片制绒和清洗
目录
• 硅片制绒概述 • 硅片清洗技术 • 制绒与清洗工艺参数优化 • 质量控制与检测方法 • 环境因素与安全生产管理 • 总结与展望
01 硅片制绒概述
制绒目的与意义
提高硅片对光的吸收能力
改善硅片表面的润湿性
通过制绒在硅片表面形成一层具有陷光作 用的绒面结构,增加光在硅片表面的反射 次数,从而提高硅片对光的吸收能力。
全。
工艺参数对清洗效果影响
清洗液种类
不同种类的清洗液对硅片 的清洗效果不同,需要根 据硅片表面的污染物种类 选择合适的清洗液。
清洗液浓度
浓度过高可能对硅片表面 造成损伤,浓度过低则可 能使清洗效果不佳。
清洗时间
时间过长可能浪费资源, 时间过短则可能使清洗不 彻底。
参数优化策略及实施
01
02
03
04
智能制造与自动化
随着工业4.0和智能制造的推进,硅片制ห้องสมุดไป่ตู้和清洗生产线将更加智能 化和自动化,提高生产效率和降低成本。
行业挑战与机遇
环保政策压力
随着全球对环保问题的关注度不断提高,光伏行业面临的环保政策压力也将加大,企业需要采取 更加环保的生产方式和技术。
市场竞争加剧
光伏市场竞争日益激烈,企业需要不断提高产品质量和降低成本,才能在市场中立于不败之地。

清洗制绒生产

清洗制绒生产

16
任务一、认识硅片的清洗制绒
任务实施
(2).湿法腐蚀制绒面
.各向异性腐蚀(碱腐蚀) 单晶硅电池的绒面通常是利用某些化学腐蚀剂对 硅片表面进行腐蚀而形成,常用腐蚀剂一般分为两类: 一类是有机腐蚀剂,包括EPW(乙二胺、邻苯二酸和 水)和联胺等;另一类是无机腐蚀剂,包括碱性腐蚀 液,如KOH、NaOH、LiOH、CsOH和NH4OH等。
6
任务一、认识硅片的清洗制绒
任务实施
1.去除损伤层
多线切割的硅片机械损伤层大概有10um左右,光 伏企业一般采用NaOH溶液在80~90℃温度腐蚀数分 钟来除去晶体硅片表面的机械损伤层,如图3-1所 示。
7
任务一、认识硅片的清洗制绒
任务实施
硅片
机械损伤层(10微米)
采用NaOH溶液腐蚀去除
图3-1 去除硅片损伤层示意图
22
清洗制绒生产
目录
任务1.认识硅片的清洗制绒 任务2.单晶硅清洗制绒流程 任务3.操作清洗制绒机 任务4.清洗制绒生产 任务5.操作甩干机 任务6.使用D8积分反射仪检测硅片
2
项目目标
1.知道硅片清洗制绒原理。 2.掌握清洗制绒的流程。
3.会操作清洗制绒生产设备。
3
项目描述
硅片清洗制绒的主要目的是去除硅片表面 的损伤层及在硅片表面制成绒面。本项目的 学习是让同学们掌握硅片清洗制绒的流程、 清洗制绒机的操作、甩干机的操作、金相显 微镜和D8积分反射仪和电子天平的操作。
19
任务一、认识硅片的清洗制绒
任务实施
(2).湿法腐蚀制绒面
.各向同性腐蚀(酸腐蚀) 多晶硅表面的晶向是随意分布的,因此碱溶液的 各向异性腐蚀现象对于多晶硅来说并不理想,而且由 于碱性腐蚀液对多晶硅表面不同晶粒之间的方向速度 不一样,会产生台阶和裂缝,不能形成均匀的绒面。 酸腐蚀法的工作原理也是利用某些化学腐蚀剂对 硅片表面进行腐蚀而形成绒面,常用一定比例的HF和 HNO3的酸混合液。这种腐蚀对硅的不同晶面有相同的 腐蚀速度,因此也称各向同性腐蚀法。

perc电池工序流程

perc电池工序流程

perc电池工序流程一、硅片清洗。

这是第一步呢,就像是给硅片洗个澡,把它身上那些脏东西都给弄掉。

硅片从生产出来可能带着一些杂质啊灰尘啥的,要是不清理干净,后面的工序可就会有大麻烦。

这个清洗可不能马虎,得用专门的清洗剂,还要控制好清洗的时间、温度和清洗的方式。

就好比咱自己洗脸,得用合适的洗面奶,在温水里好好洗一洗,这样脸才能干净又舒服,硅片清洗好了才能精神饱满地迎接后面的挑战。

二、制绒。

制绒这一步就像是给硅片穿上一层毛茸茸的小衣服。

通过化学腐蚀的办法,让硅片表面形成那种绒面结构。

这有啥用呢?这就像是给光准备了好多小陷阱,光一照过来就不容易跑掉啦,能更多地被硅片吸收。

这个过程得小心翼翼的,化学溶液的浓度得调好,反应的时间也得掐准了。

要是制绒没制好,那硅片吸收光的能力就会大打折扣,就像一个人没穿对衣服,在外面受冻一样。

三、扩散。

扩散这个工序啊,就像是给硅片注入魔法一样。

把磷啊这些杂质扩散到硅片里面去,这样就能形成PN结啦。

这个过程就像在一个大集体里,突然加入了一些新成员,然后大家重新调整布局。

扩散的温度、时间还有杂质源的流量都是关键因素。

要是哪个没弄好,这个PN结可能就不健康,就像一个团队里人员安排不合理,工作就开展不顺利。

四、刻蚀。

刻蚀这一步呢,就像是个雕刻大师在硅片上精雕细琢。

把硅片上一些不需要的部分给去除掉,让硅片的结构更加完美。

这个时候得精确控制刻蚀的深度和范围,就像雕刻的时候得知道从哪儿下刀,下多深一样。

如果刻蚀过度或者不够,那硅片的性能又会受到影响,就像雕刻作品一不小心刻坏了,那就前功尽弃啦。

五、去磷硅玻璃。

这就像是把硅片上的小垃圾给清理掉。

磷硅玻璃在之前的工序中产生,它留在硅片上可不好,会影响电池的性能。

这个过程得用专门的方法把它去除得干干净净,就像打扫房间,要把角落里的灰尘都扫走一样。

六、镀减反射膜。

这就像是给硅片戴了个隐形的帽子。

这个膜可以减少光的反射,让更多的光留在硅片里。

镀这个膜的时候,膜的厚度啊质量啊都得把控好,就像做帽子,尺寸得合适,质量得过关,不然这个隐形帽子就起不到应有的作用啦。

光伏电池片各种工艺代名词

光伏电池片各种工艺代名词

光伏电池片各种工艺代名词
1.清洗制绒:通过化学腐蚀的方法,在硅片表面形成金字塔状绒面,
增加硅片对太阳光的吸收。

2.扩散制结:在硅片表面扩散磷原子,形成 P-N 结,从而将光能转
化为电能。

3.刻蚀:利用化学溶液或物理方法,将硅片表面的扩散层去除,形
成电池片的正负电极。

4.去磷硅玻璃:去除硅片表面的磷硅玻璃,以提高电池片的表面质
量和转换效率。

5.PECVD 镀膜:在硅片表面沉积氮化硅薄膜,以提高电池片的抗反
射性能和表面钝化效果。

6.丝网印刷:通过丝网印刷技术,在硅片表面印刷银浆或铝浆,形
成电池片的正负电极。

7.烧结:将印刷好的硅片放入烧结炉中进行烧结,使电极与硅片形
成良好的欧姆接触。

8.测试分选:对电池片进行电性能测试和外观检查,将合格的电池
片进行分选和包装。

晶硅片制绒与清洗

晶硅片制绒与清洗
制绒液质量监控
定期检测制绒液的成分和质量,确保其符合工艺 要求,及时更换不合格的制绒液,避免对硅片造 成不良影响。
制绒设备维护与校准
定期对制绒设备进行维护和校准,确保设备运行 正常,制绒槽、喷头等部件无磨损、堵塞等现象。
清洗质量控制
清洗流程监控
对清洗流程进行严格监控,确保每一步骤都按照规定的工艺要求 进行,防止遗漏或错误操作。
半自动清洗
02
03全自动清洗源自采用机械或简单的自动化设备进 行清洗,提高了效率和清洗质量。
利用先进的自动化设备和控制系 统,实现高效、高精度的清洗, 是目前主流的清洗技术。
清洗技术的应用场景
光伏产业
晶硅片是光伏电池的主要原料,清洗技术用于制 备高质量的光伏电池。
半导体产业
晶硅片用于制造集成电路、微电子器件等,清洗 技术用于制备高纯度、高精度的半导体器件。
制绒技术的应用场景
制绒技术主要应用于太阳能电池制造领域,特别是晶体硅 太阳能电池制造领域。通过制绒技术可以提高太阳能电池 的光电转换效率,从而提高整个光伏系统的发电效率。
制绒技术还可以应用于其他需要增加光散射和吸收的领域 ,如光电子、光通信、照明等领域。
02 晶硅片清洗技术介绍
清洗技术原理
物理清洗
新型制绒技术
制绒工艺优化
通过不断优化制绒工艺参数,提高制 绒效果和降低成本,以满足光伏产业 对晶硅片质量、效率和经济性的要求。
为了提高晶硅片的表面质量和效率, 新型制绒技术的研究和开发将不断涌 现,如离子注入、激光刻蚀等。
清洗技术未来发展趋势
环保清洗技术
随着环保意识的提高,环保清洗 技术将成为未来的发展趋势,如 超声波清洗、激光清洗等。
高效清洗设备

硅片制绒和清洗

硅片制绒和清洗

400
500
600
700 Wavelength (nm) smooth texture
800
900
1000
1100
单晶硅片表面反射率
8
绒面腐蚀原理
利用低浓度碱溶液对晶体硅在不同晶体取向上具 有不同腐蚀速率的各向异性腐蚀特性,在硅片表面腐 蚀形成角锥体密布的表面形貌 ,就称为表面织构化。 角锥体四面全是由〈111〉面包围形成。
Si+2NaOH+H2O →Na2SiO3 +2H2 ↑
9
单晶的各种形貌
单晶原始形貌(500倍) 单晶绒面 (500倍)
单晶粗抛(500倍)
单晶绒面(SEM)
10
化学腐蚀液的配制
单晶硅片的清洗和制绒
超声波清洗
单晶硅片的表面油污比较严重,需要在60℃清洗剂的水溶液中, 利用超声波震荡清洗15分钟。 九槽清洗机
乙醇的含量在3vol%至20vol%的范围内变化时,制绒
反应的变化不大,都可以得到比较理想的绒面,而5 vol%至10vol%的环境最佳。
25
关键因素的分析 ——乙醇或异丙醇的影响
制绒液中NaOH的浓度为15克/升,反应温度85 ℃。无乙醇时的绒面形貌:
26
关键因素的分析 ——乙醇或异丙醇的影响
0.16
Average Reflectance
0.15
0.14
0.13 0 5 10 15 20 25 30 35 40 45 50 55 60
Concentration of NaOH (g/l)
22
关键因素的分析 ——硅酸钠的影响
硅酸钠在溶液中呈胶体状态,大大的增加了溶液的粘

清洗和制绒工艺共50页文档

清洗和制绒工艺共50页文档
的量时,腐蚀产生的热量超过从溶液表面和
容器侧面所散发的热量,使溶液的温度持续
升高。所以初抛液必须定期更换或排出部分
溶液。
9
金属杂质对电池性能的影响
10
制绒:表面织构化
0.7
0.6
Reflectance
0.5
0.4
0.3
0.2
单晶硅片表面的
金字塔状绒面
0.1
0
300
400
500
600
700
Wavelength (nm)
状。
当NaOH处于合适范围内时,乙醇或异丙醇的
浓度的上升会使腐蚀速率大幅度下降。
17
关键因素的分析
——NaOH的影响
维持制绒液中乙醇的含量为10 vol%,
温度85 ℃,时间30分钟条件下:
NaOH浓度5g/l时绒面形貌
18
关键因素的分析
——NaOH的影响
NaOH浓度15g/l时绒面形貌
19
4. 制绒腐蚀的温度
5. 制绒腐蚀时间的长短
6. 6
关键因素的分析
——NaOH的影响
制绒液中的乙醇或异丙醇、NaOH、硅酸纳三
者浓度比例决定着溶液的腐蚀速率和角锥体
形成情况。
溶液温度恒定在80℃时发现腐蚀液NaOH浓度
在1.5~4%范围之外将会破坏角锥体的几何形
制备绒面的目的:
减少光的反射率,提高短路电流(Isc),
最终提高电池的光电转换效率。
陷光原理:当光入射到一定角度的斜面,光
会反射到另一角度的斜面,形成二次或者多
次吸收,从而增加吸收率。
14
绒面光学原理
陷光原理图示:
15

多晶硅片的表面清洗与制绒

多晶硅片的表面清洗与制绒

多晶硅片的表面清洗与制绒摘要:太阳能电池生产过程中采用硅片作为基底,对硅片的制绒清洗属于第一道工序,主要目的有两个:①去除硅片表面杂志损伤层,②在硅片表面腐蚀出微观绒面结构。

本文在不同生产参数变化情况下对减薄量、反射率、电池效率等参数进行跟踪,通过D8反射仪、Haml测试仪进行测试和表征。

通过多组试验数据可得到最优链式多晶硅清洗制绒工艺。

关键词:太阳能电池;清洗制绒;减薄量;反射率0.引言清洗制绒是多晶硅生产的首要环节,在清洗制绒过程中形成微观蠕虫状绒面结构,通过此结构减少光的反射,提高短路电流,增加PN结面积,提升开路电压,是提高太阳能电池转换效率的重要途径。

多晶硅的晶向属于多向性,常采用的清洗制绒方式为酸性溶液各向同性腐蚀,也是目前最常用的批量生产方案[[1].2]。

在酸性溶液中主要是是HF与HNO3两种,其中HF主要取其酸性作用,HNO3主要是取其氧化性强的作用,两者结合形成强氧化性酸溶液对硅片进行腐蚀[[]3.4.5]。

主要反映过程如下:3Si+4HNO3→3SiO2+2H2O+4NO ↑ (1)SiO2+4HF→SiF4+2H2O (2)SiF4+4HF→H2SiF6 (3)本文所有技术跟踪全部在链式酸制绒设备上进行,多晶硅片进入设备后,酸腐蚀反应开始在硅片表面发生,因损伤层的深浅不一形成不规则的蠕虫状绒面结构。

为得到较低的反射率,本文通过对不同影响因素的调整来进行验证,争取得到最优清洗制绒工艺。

1.实验流程设计选取同锭切割硅片进行分组,共分2组,每组选取1000片,进行如下实验安排:1)对制绒槽药温度的确定在制绒槽药液寿命中段,分别采取20℃、22℃、24℃、26℃、28℃温度进行硅片腐蚀,然后每组选5片进行腐蚀量及反射率测试,记录其平均值。

2)对HF/HNO3配比的确定选取1)试验中最优组制绒温度,然后进行HF:HNO3=1:1/3:2/2:1/5:2/3:1不同浓度下腐蚀,然后每组选5片进行腐蚀量及反射率测试,记录其平均值。

太阳能电池片生产流程解析

太阳能电池片生产流程解析

太阳能电池片生产流程解析一、概念太阳能电池:就是将太阳能转化为电能的半导体器件。

二、工艺流程太阳能电池工艺流程:清洗制绒→扩散→刻蚀→去PSG→ PECVD→丝网印刷→烧结→测试分档→分选→包装(一)、制绒和清洗硅片表面处理的目的:去除硅片表面的机械损伤层,清除表面油污和金属杂质,形成起伏不平的绒面,增加硅片对太阳光的吸收效率。

绒面腐蚀原理:利用低浓度碱溶液对晶体硅在不同晶体取向上具有不同腐蚀速率的各向异性腐蚀特性,在硅片表面腐蚀形成角锥体密布的表面形貌,就称为表面织构化。

角锥体四面全是由〈111〉面包围形成,反应式为:Si+2NaOH+H2O →NaSiO3+2H2↑制备绒面的目的:减少光的反射率,提高短路电流(Isc),最终提高电池的光电转换效率。

陷光原理:当光入射到一定角度的斜面,光会反射到另一角度的斜面,形成二次或者多次吸收,从而增加吸收率。

影响绒面质量的关键因素:1.NaOH浓度 2.异丙醇浓度 3.制绒槽内硅酸钠的累计量 4. 制绒腐蚀的温度 5.制绒腐蚀时间的长短 6.槽体密封程度7.异丙醇的挥发程度化学清洗原理HF去除硅片表面氧化层:SiO2 + 6HF → H2[SiF6] + 2H2OHCl去除硅片表面金属杂质:盐酸具有酸和络合剂的双重作用,氯离子能与Pt2+、Au3+、 Ag+、Cu+、Cd2+、Hg2+等金属离子形成可溶于水的络合物。

★注意事项NaOH、HCl、HF都是强腐蚀性的化学药品,其固体颗粒、溶液、蒸汽会伤害到人的皮肤、眼睛、呼吸道,所以操作人员要按照规定穿戴防护服、防护面具、防护眼镜、长袖胶皮手套。

一旦有化学试剂伤害了员工的身体,马上用纯水冲洗30分钟,送医院就医。

(二)、扩散太阳电池制造的核心工序——PN结(太阳电池的心脏)扩散的目的:形成PN结太阳能电池磷扩散方法1.三氯氧磷(POCl3)液态源扩散2.喷涂磷酸水溶液后链式扩散3.丝网印刷磷浆料后链式扩散,现大多采用的是第一种方法。

清洗制绒操作规程

清洗制绒操作规程

前清洗&制绒作业指导书前清洗&制绒作业指导书1.目的硅片表面制绒。

2 原理在低浓度NaOH水溶液中,硅片表面发生各向异性腐蚀,产生密集的金字塔型角锥体结构。

化学反应方程式:Si+2NaOH+H2O=Na2SiO3+2H2↑。

3.职责3.1 生产准备3.1.1 穿上工作服,戴上PVC/乳胶手套,加药操作人员需要戴上安全眼镜、防护面具、防酸碱围裙、长袖防酸手套。

3.1.2 确保手套没有粘有油脂性物质,在插片过程中请使用真空吸笔,如有其他取片需要,严禁直接接触硅片的表面,只允许接触硅片的两侧.手套若接触过皮肤、头发或者是带有油脂的物品,请更换手套。

3.1.3 在“工艺流程卡”上准确记录硅片批号、生产厂家、硅片类型,电阻率和投入数。

3.1.4 检查抽风是否正常,检查DI水的电阻率,实际观察值需>2MΩ·cm,上班前并做好相应记录,低于规定数值,立即通知工艺人员。

3.2 生产操作过程A:制绒槽的操作过程3.2.1 把DI水装入制绒槽中,使水位到达预定的刻度,盖上槽盖,开启加热。

3.2.2 当屏幕显示制绒槽温度达到,先按工艺规定的配液比例加入 NaOH, 盖上盖子,无篮循环,鼓泡数分钟,使溶液混合均匀。

3.2.3 制绒槽持续加热溶液,直到控制屏幕实际显示温度达到工艺规定要求。

3.2.4 按工艺配液比例要求加入IPA、添加剂,盖上盖子。

3.2.5 当温度稳定后,开始投料生产,改为有篮鼓泡。

3.2.6 正式生产时,当硅片从制绒槽中提出后,在漂洗槽检查硅片质量(外观与重量检查,标准见质量检查一项)。

3.2.7在每个槽中做完一批后,需要定量补料,补料范围为:根据实际生产出片制绒效果结合工艺参数。

3.2.8 如果当班在下班时制绒槽如果没有做满20批,则不需要将药液放掉,下个班次可以继续使用10个批次。

B:其它辅助槽的操作过程3.2.9 预清洗、HF、HCL槽将水位加到预定刻度处(在相应的槽中有标定刻度),溢流槽加满水。

topcon工艺流程详细解读

topcon工艺流程详细解读

TOPCon工艺流程详细解读一、清洗制绒1.1 清洗目的去除硅片表面的污垢和杂质,保证硅片表面的洁净度和均匀性,以便后续工艺的正常进行。

1.2 制绒原理利用硝酸和氢氟酸的混合溶液对硅片进行腐蚀,形成绒面结构,以增加硅片表面的陷光效应,提高太阳能电池的光电转换效率。

二、正面硼扩散2.1 硼扩散目的将硼元素注入硅片正面,形成P型半导体层,为后续的电极接触和钝化层沉积做准备。

2.2 硼扩散原理利用高温条件下的硼源扩散作用,将硼元素注入硅片正面。

三、BSG去除3.1 BSG去除目的去除硅片正面和背面的BSG(硼硅酸盐玻璃),以暴露出硅片的晶体结构,便于进行后续的工艺处理。

3.2 BSG去除原理利用化学腐蚀或机械研磨的方式,去除硅片正面和背面的BSG。

四、背面刻蚀4.1 背面刻蚀目的对硅片的背面进行机械研磨或化学腐蚀,以形成背面场结构,降低电池片的串联电阻,提高电池片的电流输出。

4.2 背面刻蚀原理利用机械研磨或化学腐蚀的方式,对硅片的背面进行减薄处理,形成背面场结构。

五、氧化层钝化接触制备5.1 氧化层钝化接触制备目的在硅片的正面形成氧化层,以钝化接触表面,同时增加一层绝缘层,防止电流短路。

5.2 氧化层钝化接触制备原理利用高温氧化作用,在硅片的正面形成一层氧化层,实现钝化接触表面的目的。

六、正面氧化铝沉积6.1 正面氧化铝沉积目的在硅片的正面沉积一层氧化铝薄膜,以提高硅片的抗反射能力和耐候性,同时保护硅片不受环境因素的影响。

6.2 正面氧化铝沉积原理物理气相沉积(PVD)或化学气相沉积(CVD)的方式,在硅片的正面沉积一层氧化铝薄膜。

七、正背面氮化硅沉积 7.1 正背面氮化硅沉积目的在硅片的正面和背面沉积一层氮化硅薄膜,以提高硅片的抗反射能力和耐候性八、丝网印刷8.1 丝网印刷目的利用丝网印刷技术将电极材料印涂在硅片表面,形成电极结构九、烧结 9.1 烧结目的通过高温烧结过程使电极材料与硅片表面形成良好的欧姆接触十、测试分选10.1 测试分选目的对太阳能电池片进行电性能测试和分选,保证产品的质量和性能一致性十一、其他注意事项在整个TOPCon工艺流程中,需要注意以下几点:1.严格控制各道工序的工艺参数和环境条件,确保工艺的稳定性和重复性;2.对于关键工艺步骤需进行严格的质量控制和检测,防止出现质量问题;3.不断优化工艺流程和设备配置,提高生产效率和产品质量;4.重视环境保护和安全生产,确保生产过程对环境不产生污染,同时保证员工的健康和安全。

多晶硅太阳电池清洗制绒过程中物料的用量控制

多晶硅太阳电池清洗制绒过程中物料的用量控制

多晶硅太阳电池清洗制绒过程中物料的用量控制太阳能是未来清洁能源的重要来源之一,而太阳电池则是太阳能利用的核心技术。

多晶硅太阳电池是目前市场上最常见的一种太阳电池,其制造过程中需要进行多道工序,其中清洗制绒过程尤为重要,而物料的用量控制也是制造过程中的关键因素之一。

清洗制绒过程介绍清洗制绒是多晶硅太阳电池制造过程中的一个关键环节,主要包括多道工序:清洗首先需要对硅片进行清洗处理,以去除表面的杂质和污垢,确保后续工序的顺利进行。

清洗过程中需要用到清洗溶液,其主要成分包括:去离子水、氢氧化钠和氢氟酸,其用量需要控制在一定范围内,以保证清洗效果的稳定性。

抛光对硅片进行抛光处理,以去除表面的微小凸起和瑕疵,提高硅片表面的平整度和光洁度。

抛光需要用到抛光液,其主要成分包括:氢氧化钠、氢氟酸等,其用量也需要控制在一定范围内。

制绒制绒是将硅片表面放置一层粗糙的硅质辊,通过旋转硅片使辊表面的硅颗粒划伤掉硅片表面上一部分的表现,从而形成一个微弧形的图形,以提高硅片的光电转换效率。

制绒需要用到划伤液和硅质辊,其用量也需要控制在一定范围内。

物料用量的控制在多晶硅太阳电池的制造过程中,各个环节所用到的物料都需要在一定的范围内进行控制,以确保产品质量和稳定性,并且控制过程也需要遵循以下规律:学习运用两型社会的思想当前国家全面贯彻“两型社会”建设,即资源节约型、环境友好型社会建设,企业在进行物料用量控制时有必要学习和运用两型社会的思想,提倡资源节约,减少浪费。

精益生产精益生产是指在制造过程中减少不必要的资源和步骤,提高生产效率和品质的一种生产管理方法,企业应学习和运用精益生产的思想,尝试减少不必要的物料用量及其成本,实现资源最大化利用。

有针对性的用量控制企业应该针对不同的制造环节,分析其用料特性及其对产品的影响程度,有针对性地对物料用量进行控制。

回收再利用一些物料可以进行回收再利用,如清洗溶液中的去离子水等。

企业应该尝试实现资源的再利用,提高资源的再生利用率。

硅片的清洗与制绒

硅片的清洗与制绒

硅片的清洗与制绒导语:硅片在经过一系列的加工程序之后需要进行清洗,清洗的目的是要消除吸附在硅片表面的各类污染物,并制做能够减少表面太阳光反射的绒面结构(制绒),且清洗的洁净程度直接影响着电池片的成品率和可靠率。

制绒是制造晶硅电池的第一道工艺,又称“表面织构化”。

有效的绒面结构使得入射光在硅片表面多次反射和折射,增加了光的吸收,降低了反射率,有助于提高电池的性能。

一.清洗二.制绒1.制绒的目的和原理目的:减少光的反射率,提高短路电流(Isc ),最终提高电池的光电转换效率。

原理:①单晶硅:制绒是晶硅电池的第一道工艺,又②多晶硅:利用硝酸的强氧化性和氢氟酸的络合性,对硅进行氧化和络合剥离,导致硅表面发生各向同性非均匀性腐蚀,从而形成类似“凹陷坑”状的绒面,如图3所示。

理想的绒面效果,应该是金字塔大小均匀,覆盖整个表面。

金子塔的高度在3~5μm 之间,相邻金字塔之间没有空隙,具有较低的表面反射率,如图6所示。

有效的绒面结构,有助于提高电池的性能。

由于入射光在硅片表面的多次反射和折射,增加了光的吸收,其反射率很低,主要体现在短路电流的提高。

3.影响绒面质量的关键因素(1) 无水乙醇或异丙醇浓度气泡的直径、密度和腐蚀反应的速率限定了硅片表面织构的几何特征。

气泡的大小以及在硅片表面停留的时间,与溶液的粘度、表面张力有关系。

所以需要乙醇或异丙醇来调节溶液的粘滞特性。

乙醇的含量在3 vol%至20 vol%的范围内变化时,制绒反应的变化不大,都可以得到比较理想的绒面,而5 vol%至10 vol%的环境最佳。

(2) 制绒槽内硅酸钠的累计量硅酸钠在溶液中呈胶体状态,大大的增加了溶液的粘稠度。

对腐蚀液中OH 离子从腐蚀液向反应界面的输运过程具有缓冲作用,使得大批量腐蚀加工单晶硅绒面时,溶液中NaOH 含量具有较宽的工艺容差范围,提高了产品工艺加工质量的稳定性和溶液的可重复性。

硅酸钠在制绒溶液中的含量从2.5%~30%wt 的图9 不同时间制绒后,硅片的反射谱(5)制绒腐蚀的温度 根据阿伦尼乌斯方程(k=Aexp (-Ea/RT )),温度升高,反应速度常数会成指数增大。

硅片制绒工艺

硅片制绒工艺

单晶制绒
温度影响:
温度过高,IPA挥发加剧,晶面择优性下降,绒面连 续性降低;同时腐蚀速率过快,控制困难;
温度过低,腐蚀速率过慢,制绒周期延长; 制绒温度范围:75-90oC。
单晶制绒
IPA影响:
1、降低硅片表面张力,减少气泡在硅片表面的粘附,使金 字塔更加均匀一致;
2、气泡直径、密度对绒面结构及腐蚀速率有重要影响。气 泡大小及在硅片表面的停留时间,与溶液粘度、表面张 力有关,所以需要异丙醇来调节溶液粘滞特性。
表面有机物进行去除。
单晶绒面: 单晶制绒
单晶绒面显微结构(左:金相显微镜;右:扫描电镜)
绒面一般要求:制绒后,硅片表面无明显色差;绒 面小而均匀。
单晶制绒
制绒原理:
简言之,即利用硅在低浓度碱液中的各向异性腐蚀 ,即硅在(110)及(100)晶面的腐蚀速率远大于(111)晶面的 腐蚀速率。经一定时间腐蚀后,在(100)单晶硅片表面留 下四个由(111)面组成的金字塔,即上图所示金字塔。
影响硅片腐蚀速率及绒面显微结构的因素众多,主 要包括如下因子:NaOH浓度;溶液温度;异丙醇浓度 ;制绒时间;硅酸钠含量;槽体密封程度;异丙醇挥发 ;搅拌及鼓泡等。
多晶制绒
多晶制绒工艺:
由于多晶硅片由大小不一的多个晶粒组成,多晶面 的共同存在导致多晶制绒不能采用单晶的各向异性碱腐 蚀 (Orientation Dependent Etching)方法完成。 已有研究的多晶制绒工艺:
制绒温度6-10℃,制绒时间120-300sec。 反应方程式:HNO3+Si=SiO2+NOx+H2O
SiO2+6HF=H2[SiF6]+2H2O
多晶制绒
多晶制绒工艺:

硅片的清洗与制绒

硅片的清洗与制绒

8
硅片化学清洗
HF和DHF 作用: 去除硅表面氧化物,清洗后的表面形成Si-H键荷层。 配制方法: 40%HF与去离子水(DI Water)以1:10-1:1000比例混 合。当比例为1:50-1:1000时,溶液又成为DHF。 清洗方法: 室温条件下,将硅片置于酸液中浸泡1至数分钟。
9
硅片化学清洗
14
硅片化学清洗
DI Water (De-Ionized Water Rinse) 作用: 在常规RCA清洗过程中,在室温下,利用超净高阻 的DI Water对硅片进行冲洗是十分重要的步骤。 在常规RCA清洗过程中,在前一个步骤完成后,进 行第二个步骤前都需要用去离子水对硅片进行清洗,一 个作用是冲洗硅片表面已经脱附的杂质,另外一个作用 是冲洗掉硅片表面的残余洗液,防止对接下来的洗液产 生负面影响。
24
硅片清洗与制绒
单晶制绒
单晶制绒工艺:
NaOH,Na2SiO3,IPA混合体系进行硅片制绒。 配比要求: NaOH浓度0.8wt%-2wt%; Na2SiO3浓度0.8wt%2wt%;IPA浓度5vol%-8vol%。 制绒时间:25-35min,制绒温度75-90oC。
25
硅片清洗与制绒
13
硅片化学清洗
RCA Ⅱ作用机理 作用机理: SCⅡ洗液并不能腐蚀氧化层以及硅,经SCⅡ洗液处 理,会在硅片表面产生一层氢化氧化层。 SCⅡ洗液尽管 可以有效去除硅片中的金属杂质离子,但是它并不能使 硅片的表面粗糙程度得到改善,相反地,由于电位势的 相互作用,硅片表面的粗糙程度将变得更差。 与SCⅠ洗液中H2O2的分解由金属催化不同,在 SCⅡ洗液中的H2O2分解非常迅速,在80℃下,约20min 左右,H2O2就已全部分解。只有在硅片表面含有金等 其他贵重金属元素时,H2O2的存在才非常必需。

硅片清洗过程

硅片清洗过程

太阳能电池硅片清洗过程制绒-扩散-刻蚀-清先(去PSG)-沉积减反射膜-丝网印刷-烧结-分选-组装以下为制绒工艺1、去损伤层目的:用高温NaOH或KOH去除硅表面的切割损伤层,划痕、手印、杂质等要求:浓度20%,温度80C,时间5min达到:硅片表面减薄10-20μm注意事项:1、浓度保证为20%,要求有补液槽,补充每次清洗的消耗。

2、80C温度要有加热管。

3、30S时间准确控制。

4、有自动盖,减少挥发。

2、温水隔离目的:稀释硅表面或洗篮上残留的碱液。

要求:水50C,时间5min达到:浓碱被稀释注意事项:1、要有鼓泡2、鼓泡要均匀3、换水:a、溢流:1-2方/小时,快排7S,30S上水,补水管口径1寸,水压2kg。

3、A单晶制绒面目的:通过高温低浓度的NaOH/KOH将硅表面腐蚀出均匀的金字塔型表面,减少硅片对光的反射。

要求:在浓度为3%左右时,在80C上下的温度,约25min增加一定量的乙醇,加快溶液反应,起到消除气泡的作用。

达到:硅片表面形成金字塔,大小均匀,单体尺寸2-10μm之间,相邻金字塔之间没有空隙的完整绒面。

工艺要求:有鼓泡,有加热管,循环泵,使溶液均匀,温度均匀,浓度均匀。

注意事项:a、浓度、温度和清洗时间有一定的比例。

b、在制绒过程中不能有鼓泡。

c、测温点靠近硅片中部。

d、从制绒槽到水洗槽的时间控制在20s以内。

(否则在高温状态下残留的碱液会挥发留下硅表面。

B多晶制绒目的:通过恒定温度,较高浓度的酸液制绒(HNO3+HF)要求:浓度60%左右温度:15-20C,时间3-4min达到:硅片表面形成金字塔,大小均匀,单体尺寸2-10μm之间,相邻金字塔之间没有空隙的完整绒面。

注意事项:a、硅与酸反应是放热过程,需要降温,制冷。

b、有循环泵和溢流,保证温度。

工艺流程:注酸——放料——排酸——注水喷淋——鼓泡——提料——排水——注酸c、加自动盖和喷淋:HNO3+HF在高温下有很强的挥发性,有害酸气会会腐蚀设备和损害人体,加盖保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13
硅片化学清洗
RCA Ⅱ作用机理
作用机理: RCAⅡ洗液并不能腐蚀氧化层以及硅,经RCAⅡ洗液 处理,会在硅片表面产生一层氢化氧化层。 RCAⅡ洗液 尽管可以有效去除硅片中的金属杂质离子,但是它并不 能使硅片的表面粗糙程度得到改善,相反地,由于电位 势的相互作用,硅片表面的粗糙程度将变得更差。 与RCAⅠ洗液中H2O2的分解由金属催化不同 ,在RCAⅡ洗液中的H2O2分解非常迅速,在80℃下,约 20min左右,H2O2就已全部分解。只有在硅片表面含有 金等其他贵重金属元素时,H2O2的存在才非常必需。
绒面陷光示意
20
硅片清洗与制绒
单晶制绒
单晶制绒流程:预清洗+制绒
预清洗目的: 通过预清洗去除硅片表面脏污,以及部分损伤层。
硅片 机械损伤层(5-7微米)
21
硅片清洗与制绒
单晶制绒 1、10%NaOH,78oC,50sec; 2、① 1000gNaOH,65-70oC(超声),3min;②1000g Na2SiO3+4L IPA(异丙醇),65oC,2min。 2NaOH+Si+H2O=Na2SiO3+2H2 SiO32-+3H2O=H4SiO4+2OH-
16
硅片化学清洗
新型清洗技术
H2SO4/O3或H2O/O3
氧化物的生成及有机物的去除 氧化物、金属杂质及表面微粒去除; 硅片表面氢钝化
DHF/HCl或DHF
Rinse+O3/HCl/megasonic或去掉O3
清洗氧化物形成层,或清洗亲水性硅片表面
PH控制Magragoni型烘干
硅片表面烘干
17
15
硅片化学清洗
硅片的烘干 硅片清洗的最后一个步骤就是硅片的烘干。烘干的 目的主要是防止硅片再污染及在硅片表面产生印记。 仅仅在去离子水冲洗后,在空气中风干是 远远不够的。一般可以通过旋转烘干,或通过热空气或 热氮气使硅片变干。另外的方法是通过在硅片表面涂拭 易于挥发的液体,如异丙醇等,通过液体的快速挥发来 干燥硅片表面。
单晶制绒
单晶绒面:
单晶绒面显微结构(左:金相显微镜;右:扫描电镜)
绒面一般要求:制绒后,硅片表面无明显色差;绒 面小而均匀。
26
硅片清洗与制绒
单晶制绒
制绒原理: 简言之,即利用硅在低浓度碱液中的各向异性腐蚀, 即硅在(110)及(100)晶面的腐蚀速率远大于(111)晶面的 腐蚀速率。经一定时间腐蚀后,在(100)单晶硅片表面留 下四个由(111)面组成的金字塔,即上图所示金字塔。 根据文献报道,在较低浓度下,硅片腐蚀速率差异最 大可达V (110): V(100) : V(111) =400:200:1。 尽管NaOH(KOH),Na2SiO3,IPA(或乙醇)混合体系制 绒在工业中的应用已有近二十年,但制绒过程中各向异性 腐蚀以及绒面形成机理解释仍存争议,下面将列出部分机 理解释。
6
硅片化学清洗
IC行业硅片常规RCA清洗
H2SO4/H2O2 DI Water Rising RCA Ⅱ DI Water Rising RCA Ⅰ DI Water Rising HF/DHF DI Water Rising Dry
7
硅片化学清洗
H2SO4/H2O2
作用:硫酸、过氧化氢溶液通过氧化作用对有机薄膜进行 分解,从而完成有机物去除。清洗过程,金属杂质不能 去除,继续残留在硅片表面或进入氧化层。 溶液配比:H2SO4(98%):H2O2(30%)=2:1-4:1。 清洗方法:将溶液温度加热到100oC以上(130oC),将硅片 置于溶液中,浸泡10-15分钟,浸泡后的硅片先用大量 去离子冲洗,随后采用HF进行清洗。
5
硅片化学清洗
(3)RCA洗液 (碱性和酸性过氧化氢溶液) RCAⅠ号(碱性过氧化氢溶液),配比如下(体积比): DI H2O:H2O2:NH4OH=5:1:1-5:2:1 RCAⅡ号(酸性过氧化氢溶液),配比如下(体积比): DI H2O:H2O2:HCl=6:1:1-8:2:1 RCA洗液使用方法:75-85oC,清洗时间10-20分钟,清 洗顺序为先Ⅰ号后Ⅱ号。
第二章 硅片的清洗与制绒
1
硅片的化学清洗
硅片表面沾污的杂质
由硅棒、硅锭或硅带所切割的硅片,表面可能沾污的杂 质可归纳为三类: ①油脂、松香、蜡、环氧树脂、聚乙二醇等有机物; ②金属、金属离子及一些无机化合物; ③尘埃及其他颗粒(硅,碳化硅)等。
2
硅片的化学清洗
超声清洗 颗粒沾污:运用物理方法,可采取机械擦洗或超声 波清洗技术来去除。 超声波清洗时,由于空洞现象,只能去除 ≥ 0.4 μm 颗粒。兆声清洗时,由于0.8Mhz的加速度作用,能 去除 ≥ 0.2 μm 颗粒,即使液温下降到40℃也能得到 与80℃超声清洗去除颗粒的效果,而且又可避免超声洗 硅片产生损伤。
28
各向异性腐蚀机理:
硅片清洗与制绒
单晶制绒 1990年,Seidel提出了目前最具说服力的电化学模 型,模型认为各向异性腐蚀是由硅表面的悬挂键密度和 背键结构,能级不同而引起的; 1991年,Glembocki和Palik考虑水和作用提出了水 和模型,即各向异性腐蚀由腐蚀剂中自由水和OH-同时参 与反应; 最近,Elwenspolk等人试着用晶体生长理论来解释 单晶硅的各向异性腐蚀,即不同晶向上的结位 (kinksites)数目不同; 另一种晶体学理论则认为(111)面属于光滑表面, (100)面属于粗糙表面。
14
硅片化学清洗
DI Water (De-Ionized Water Rinse)
作用: 在常规RCA清洗过程中,在室温下,利用超 净高阻的DI Water对硅片进行冲洗是十分重要的步骤。 在常规RCA清洗过程中,在前一个步骤完成 后,进行第二个步骤前都需要用去离子水对硅片进行清 洗,一个作用是冲洗硅片表面已经脱附的杂质,另外一 个作用是冲洗掉硅片表面的残余洗液,防止对接下来的 洗液产生负面影响。
24
硅片清洗与制绒
单晶制绒
单晶制绒工艺:
NaOH,Na2SiO3,IPA(异丙醇)混合体系进行硅片制绒。 配比要求: NaOH浓度0.8wt%-2wt%; Na2SiO3浓度0.8wt%2wt%;IPA浓度5vol%-8vol%。 制绒时间:25-35min,制绒温度75-90oC。
25
硅片清洗与制绒
预清洗原理:
硅片清洗与制绒
单晶பைடு நூலகம்绒
预清洗原理: 2、① 1000gNaOH,65-70oC(超声),3min;②1000g Na2SiO3+4L IPA,65oC,2min。 ① 利用NaOH腐蚀配合超声对硅片表面颗粒进行去除; ② 通过SiO32-水解生成的H4SiO4(原硅酸),以及IPA对硅 片表面有机物进行去除。
8
硅片化学清洗
HF和DHF( HF、 H2O2、 H2O的混合液) 作用: 去除硅表面氧化物,清洗后的表面形成Si-H键荷层。 配制方法: 40%HF与去离子水(DI Water)以1:10-1:1000比例 混合。当比例为1:50-1:1000时,溶液又成为DHF。 清洗方法: 室温条件下,将硅片置于酸液中浸泡1至数分钟。
27
硅片清洗与制绒
单晶制绒 1967年,Finne和Klein第一次提出了由OH-,H2O与 硅反应的各向异性反应过程的氧化还原方程式: Si+2OH-+4H2O→Si(OH)62-+2H2; 1973年,Price提出硅的不同晶面的悬挂键密度可 能在各项异性腐蚀中起主要作用; 1975年,Kendall提出湿法腐蚀过程中,(111)较 (100)面易生长钝化层; 1985年,Palik提出硅的各向异性腐蚀与各晶面的 激活能和背键结构两种因素相关,并提出SiO2(OH)22是基本的反应产物;
3
硅片的化学清洗
常用的化学清洗剂 硅片化学清洗的主要目的是针对上述可能存在的硅 片表面杂质进行去除。常用的化学清洗剂有高纯水、有 机溶剂(如甲苯、二甲苯、丙酮、三氯乙烯、四氯化碳 等)、浓酸、强碱以及高纯中性洗涤剂等。
4
硅片的化学清洗
几种常用化学清洗剂的去污作用
(1)硫酸 热的浓硫酸对有机物有强烈的脱水炭化作用,采用 浓硫酸能有效去除硅片表面有机物; (2)王水 王水具有极强的氧化性、腐蚀性和强酸性,在清洗 中主要利用王水的强氧化性; 王水能溶解金等不活泼金属是由于王水溶液中生成 了氧化能力很强的初生态氯[Cl]和氯化亚硝酰; HNO3+HCl=NOCl+2[Cl]+2H2O
11
硅片化学清洗
RCA Ⅰ作用机理 作用机理: RCAⅠ洗液还能去除硅片表面的部分金属 杂质,如ⅠB族,ⅡB族,及Au,Cu,Ni,Cd,Co和Cr等 。金属杂质的去除是通过金属离子与NH3形成络合物的 形式去除。 经RCA Ⅰ洗液处理,硅片的表面粗糙度并不 会得到改善。降低洗液中NH4OH的含量可以在保证清洗 效果的同时,提高硅片的表面的光滑程度。通过超声处 理可以增强洗液对微粒的去除能力,同时,对硅片表面 粗糙度的改善也具备一定的促进作用,而这种促进作用 在洗液温度较高时更为明显。
各向异性腐蚀机理:
29
硅片清洗与制绒
单晶制绒 Seidel电化学模型:
各向异性腐蚀机理:
30
硅片清洗与制绒
单晶制绒 A、金字塔从硅片缺陷处产生; B、缺陷和表面沾污造成金字塔形成; C、化学反应产生的硅水合物不易溶解,从而导致 金字塔形成; D、异丙醇和硅酸钠是产生金字塔的原因。 硅对碱的择优腐蚀是金字塔形成的本质,缺陷、沾 污、异丙醇及硅酸钠含量会影响金字塔的连续性及金字 塔大小。
预清洗方法:
22
硅片清洗与制绒
单晶制绒 1、10%NaOH,78oC,50sec; 利用浓碱液在高温下对硅片进行快速腐蚀。损伤层存在 时,采用上述工艺,硅片腐蚀速率可达5μm/min;损伤去除 完全后,硅片腐蚀速率约为1.2μm/min。经腐蚀,硅片表面 脏污及表面颗粒脱离硅片表面进入溶液,从而完成硅片的表 面清洗。 经50sec腐蚀处理,硅片单面减薄量约3μm。采用上述配 比,不考虑损伤层影响,硅片不同晶面的腐蚀速率比为: (110): (100): (111)=25:15:1,硅片不会因各向异性产生 预出绒,从而获得理想的预清洗结果。 缺点:油污片处理困难,清洗后原片脏污残留去除困难。 23
相关文档
最新文档