机械原理作业
地大20新上《机械原理》在线作业二_4106
(单选题)1: 在曲柄摇杆机构中;若曲柄为主动件;且作等速转动时;其从动件摇杆作___。
A: 往复等速运动
B: 往复变速运动
C: 往复变速摆动
D: 往复等速摆动
正确答案: C
(单选题)2: 从平衡条件可知,动平衡转子___静平衡的。
A: 一定是
B: 不一定是
C: 一定不是
正确答案: A
(单选题)3: 渐开线标准齿轮是指m、α、ha* 、c*均为标准值,且分度圆齿厚___齿槽宽的齿轮。
A: 小于
B: 大于
C: 等于
D: 小于且等于
正确答案: C
(单选题)4: 一对渐开线标准直齿圆柱齿轮要正确啮合,它们的___必须相等
A: 直径
B: 宽度
C: 齿数
D: 模数
正确答案: D
(单选题)5: 在两轴的交错角∑=90°的蜗杆蜗轮传动中,蜗杆与蜗轮的螺旋线旋向必须___。
A: 相反
B: 相异
C: 相同
D: 相对
正确答案: C
(单选题)6: ___盘形凸轮机构的压力角恒等于常数
A: 摆动尖顶推杆
B: 直动滚子推杆
C: 摆动平底推杆
D: 摆动滚子推杆
正确答案: C
(单选题)7: 曲柄滑块机构有死点存在时,其主动件是___。
A: 曲柄。
机械原理课后答案十作业
.
2
10-3 试问渐开线标准齿轮的齿根圆与基圆重合时,其齿数z′应为多 少?又当齿数大于以上求得的齿数时,基圆与齿根圆哪个大?
解: db = d cosα= m z′cosα df = d -2 hf=(z′-2ha*-2 c*)m
由df ≥db ,有: z′≥2(ha*+2 c*) / (1 - cosα) =41.45(不能圆整)
i12= z2 / z1 = 9/5
联立解得: z1 = 25
z2 = 45
.
4
2)计算两轮的几何尺寸
分度圆直径:d1 = m z1 = 250
d2 = m z2 = 450
齿顶圆直径:da1= m(z1+2ha*) = 270
da2= m(z2+2ha*) = 470
齿根圆直径:df1= m(z1 -2ha*-2 c*) = 225 df2= m(z2 -2ha*-2 c*) = 425
.
9
10-9 已知一对外啮合变位齿轮传动,z1 = z2 = 12, m=10mm, α= 20° ,m=5mm,ha* = 1 , a′= 130mm,试设计这对齿轮传动, 并验算重合度及齿顶厚( sa 应大于0.25m,取x1 = x2 )。
解:1)确定传动类型
a = m ( z1+z2 ) /2 = 10 ( 12+12 ) /2 =120 < a′= 130mm 故此传动应为 正 传动。 2)确定两轮变位系数 α′ = arccos(a cosα/ a′) = arccos(120 cos20°/ 130) = 29.83° x1 + x2 = (z1+z2) (invα′-invα) / (2tanα)
《机械原理》作业一
《机械原理》作业一1.[单选题]从平衡条件可知,动平衡转子___静平衡的。
A.一定是B.不一定是C.一定不是正确答案:——A——2.[单选题]已知一渐开线标准斜齿圆柱齿轮与斜齿条传动,法面模数mn=8mm,法面压力角an=20°,斜齿轮的齿数Z=20,分度圆上的螺旋角β=20°,则斜齿轮上的节圆直径等于___mm。
A.170.27B.169.27C.171.27D.172.27正确答案:——A——3.[单选题]在两轴的交错角∑=90°的蜗杆蜗轮传动中,蜗杆与蜗轮的螺旋线旋向必须___。
A.相反B.相异C.相同D.相对正确答案:——C——4.[单选题]一对渐开线标准直齿圆柱齿轮要正确啮合,它们的___必须相等A.直径B.宽度C.齿数D.模数正确答案:————5.[单选题]渐开线上某点的压力角是指该点所受压力的方向与该点___方向线之间所夹的锐角。
A.绝对速度B.相对速度C.滑动速度D.牵连速度正确答案:————6.[单选题]曲柄摇杆机构,____为主动件是存在死点的条件。
A.曲柄B.摇杆C.连杆正确答案:————7.[单选题]曲柄滑块机构通过___可演化成偏心轮机构。
A.改变构件相对尺寸B.改变运动副尺C.改变构件形状正确答案:————8.[单选题]渐开线直齿圆柱齿轮与齿条啮合时,其啮合角恒等于齿轮___上的压力角B.齿顶圆C.分度圆D.齿根圆正确答案:————9.[单选题]机构具有确定运动的条件是___。
A.机构的自由度大于零B.机构的自由度大于零且自由度数等于原动件数C.机构的自由度大于零且自由度数大于原动件数D.前面的答案都不对正确答案:————10.[单选题]齿轮传动中___,重合度越大。
A.模数越大B.齿数越多C.中心距越小正确答案:————11.[多选题]当采用滚子从动件时,如发现凸轮实际廓线造成从动件运动规律失真,则应采取( )措施加以避免。
A.增大基圆半径B.正确的偏置从动件C.减小滚子半径D.减小基圆半径正确答案:————12.[多选题]凸轮机构的组成包括()A.凸轮B.从动件C.机架D.凸轮轴正确答案:————13.[多选题]机构中的运动副的元素包括( )。
机械原理作业集共10页
第二章机构的结构分析作业题:1.图示为一简易冲床的初拟方案。
设计思路是:动力由齿轮1输入,轴A连续转动,固联与轴A上的凸轮推动杠杆3使冲头4上下往复运动实现冲压工艺,试绘出其机构运动简图,分析能否实现上述构思,并提出两种修改意见(以机构运动简图表示)。
2.如图所示为一小型压力机。
图中齿轮1与偏心轮1ˊ为同一构件,绕固定轴心O连续转动。
在齿轮5上开有凸轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕轴C上下摆动;同时又通过偏心轮1ˊ、连杆2、滑槽3使C轴上下移动。
最后通过在摆杆4的叉槽中的滑块7和铰链G使冲头8实现冲压运动。
试绘制其机构运动简图,计算其自由度。
3.图示是一为高位截肢的人所设计的一种假肢膝关节机构。
该机构能保持人行走的稳定性。
若以胫骨1为机架,试绘制其机构运动简图和计算其自由度,并作出大腿弯曲90°时的机构运动简图。
4.试绘出下列各机构的机构示意图,计算其自由度,并说明运动是否确定。
5.计算下列各机构的自由度,若存在复合铰链,局部自由度,虚约束请明确指出。
6.计算图示机构的自由度,并分析基本杆组,确定机构的级别。
第八章平面连杆机构及其设计作业题:1.图示四杆机构中各杆件长度已知:a=150mm,b=500mm,c=300mm,d=400mm。
试问:1)若取杆件d为机架是否存在曲柄?如存在,哪一杆件为曲柄?2)若分别取其它杆件为机架,可得到什么类型的机构?2.图示铰链四杆机构ABCD中,各构件长度如图所示(μl=10mm/mm),AB主动,试求:1)两连架杆AB、CD为何类构件?2)该机构有无急回性质?若有,其行程速比系数K为多少?3)在图中作出最小传动角γmin对应的机构位置ABCD;4)若改为以CD杆为主动,该机构有无死点?若有,请用虚线画出死点位置。
3.图示铰链四杆机构作为加热炉炉门的启闭机构。
炉门上两铰链相距50cm(图中单位为:cm),炉门打开后成水平位置且要求外侧向上,固定铰链装在yy轴线上,相应位置尺寸如图。
机械原理大作业范文
机械原理大作业范文摘要:机械传动是机械学中的基础内容之一,广泛应用于各个行业和领域。
本文将对机械传动的原理、类型以及应用进行系统的介绍和探讨。
首先介绍了机械传动的定义和作用,然后详细介绍了各种常见的机械传动类型,包括齿轮传动、皮带传动、链传动等,并分别对其工作原理进行了分析。
最后列举了一些机械传动的应用案例,证明了机械传动在现实生活中的重要性和广泛性。
一、引言机械传动是将动力从一个地方传递到另一个地方的机械装置。
它作为机械工程学的基础内容,广泛应用于工业、农业、建筑等各个领域。
机械传动具有传递力量的功能,并能实现运动的改变、平衡、变速等目的。
本文将对机械传动的类型、原理以及应用进行详细介绍。
二、机械传动的类型机械传动可以分为多种类型,常见的有齿轮传动、皮带传动、链传动等。
齿轮传动是利用齿轮间的啮合来传递扭矩和运动的一种传动方式,具有传动效率高、传动比稳定等优点。
皮带传动则是通过绕在两个轮子上的带子来传递力量,常用于需要减速的场合。
链传动与皮带传动类似,但是链传动的传动效率更高,扭矩传递更稳定。
三、机械传动的工作原理1.齿轮传动:齿轮传动采用齿轮之间的啮合来实现传动的目的。
主要通过齿轮的大小、齿数来调整传递的速度和扭矩。
其中,齿轮的齿数比称为传动比,可以实现速度的改变。
齿轮传动通常包括齿轮轴、轴承、齿轮齿廓等组成部分。
2.皮带传动:皮带传动通过绕在轮子上的带子来传递力量。
常见的皮带传动有平行轴带传动和交叉轴带传动。
通过调整轮子的直径和材料来改变传递效果。
皮带传动具有传递动力平稳、减震效果好的特点。
3.链传动:链传动与皮带传动类似,也是通过绕在轮子上的链条来传递力量。
链传动具有噪音低、传动效率高等优点,广泛应用于自行车、摩托车等交通工具中。
四、机械传动的应用1.工业应用:机械传动在工业制造中有广泛的应用。
例如,齿轮传动被广泛应用于机床、起重机械、输送设备等,实现力量的传递和工作的协调。
皮带传动常用于风机、泵等需要平稳传递动力的设备中。
西南交通大学机械原理B基础作业及答案
机械原理B线下作业第一次作业一、判断题(判断正误,共2道小题)1. 机构是具有确定运动的运动链正确答案:说法正确2. 平面四杆机构的曲柄存在条件为最长杆与最短杆的杆长之和不大于其余两杆长之和正确答案:说法错误二、主观题(共7道小题)3. 齿轮的定传动比传动条件是什么?答:不论两齿廓在何位置接触,过接触点所作的齿廓公法线必须与两齿轮的连心线相交于一固定点。
4. 计算图7-2所示大减速比减速器的传动比。
答:将轮系分为两个周转轮系①齿轮A、B、E和系杆C组成的行星轮系;②齿轮A、E、F、G和系杆C组成的差动轮系。
因为,所以将代入上式,最后得5. 图7-4中,,为轮系的输入运动,C为轮系的运动输出构件。
已知确定转速的大小和转向。
答:该轮系是由定轴轮系(1-2)和周转轮系(2-3-4-4’-5)组成的混合轮系。
对定轴轮系(1-2),有即对周转轮系(2-3-4-4’-5),有将,,代入上式,最后得,其中“-”表示齿轮5的转向与相同,方向“↓”,如下图所示。
6. 在图8-3中凸轮为半径为R的圆盘,凸轮为主动件。
(1)写出机构的压力角α与凸轮从图示位置转过的角度δ之间的关系;(2)讨论如果a ≥[a],应采用什么改进设计的措施?答:当凸轮转动任意角时,其压力角a如下图所示。
由图中几何关系有所以机构的压力角 a与凸轮转角之间的关系为(1)如果,则应减小偏距e,增大圆盘半径R和滚子半径r r。
(2)7. 机械系统的等效驱动力矩和等效阻力矩的变化如图9-2所示。
等效构件的平均角速度为。
求该系统的最大盈亏功。
答:由下图中的几何关系可以求出各个盈、亏功的值如下其中“+”表示盈功,“—”表示亏功。
画出示功图,如下图(b),先画出一条水平线,从点a开始,盈功向上画,亏功向下画。
示功图中的最低点对应,最高点对应。
图 (b)可以看出,点b最高,则在该点系统的角速度最大;点c最低,系统的角速度最小。
则的积分下限和上限应为下图(a)中的点b和点c。
机械原理作业总结报告
机械原理作业总结报告
在本次机械原理作业中,我通过学习和实践,对机械原理的基本概念和应用有了更深入的理解。
以下是我对作业内容的总结报告。
首先,在机械原理的学习过程中,我深入了解了机械的基本原理和运动规律。
我熟悉了平衡条件、力的作用规律、杠杆原理、滑动摩擦和动态平衡等概念。
通过分析实际问题,我能够应用这些知识解决机械的平衡和运动问题。
其次,我在实践中掌握了机械原理的应用方法。
作为机械原理作业的一部分,我需要对给定的机械系统进行分析和设计。
通过计算和模拟,我能够确定系统的力和力矩平衡,并预测系统的运动趋势。
这让我对机械设计有了更深入的认识,并学会了如何应用机械原理解决实际问题。
此外,通过作业的完成,我进一步提高了解决问题的能力和团队合作意识。
在完成作业过程中,我主动与同学们进行讨论和交流,分享我们对问题的分析和解决方法。
这不仅加深了对机械原理的理解,还培养了我们的团队合作能力和沟通技巧。
在未来,我会继续加强对机械原理的学习和实践。
我会深入研究机械原理的更高级内容,并应用到实际的机械设计和问题求解中。
我也计划通过参与机械工程项目和竞赛等实践活动,进一步提升自己的能力和专业技术水平。
总而言之,通过本次机械原理作业的学习和实践,我对机械原
理的基本概念和应用有了更深入的理解。
通过分析和解决实际问题,我提高了解决问题的能力和团队合作意识。
我将继续深入学习和应用机械原理,以进一步发展自己的机械工程能力。
机械原理作业册答案
第二章机构的结构分析-一、填空与选择题1、B、A2、由两构件直接接触而产生的具有某种相对运动3、低副,高副,2,14、后者有作为机架的固定构件5、自由度的数目等于原动件的数目;运动不确定或机构被破坏6、√7、8、m-19、受力情况10、原动件、机架、若干个基本杆组11、A、B 12、C 13、C二、绘制机构简图1、计算自由度n=7, P L=9,P H=2 F=3n-2P L-P H=3×7-2×9-2=12、3、 4、三、自由度计算(a)E处为局部自由度;F处(或G处)为虚约束计算自由度n=4,P L=5,P H=1 F=3n-2P L-P H=3×4-2×5-1=1自由度的数目等于原动件的数目所以该机构具有确定的运动。
(b)E处(或F处)为虚约束计算自由度n=5,P L=7,P H=0 F=3n-2P L-P H=3×5-2×7=1自由度的数目等于原动件的数目所以该机构具有确定的运动。
(c) B处为局部自由度;F处为复合铰链;J处(或K处)为虚约束计算自由度n=9,P L=12,P H=2 F=3n-2P L-P H=3×9-2×12-2=1自由度的数目等于原动件的数目所以该机构具有确定的运动。
(d) B处为局部自由度;C处为复合铰链;G处(或I处)为虚约束计算自由度n=7,P L=9,P H=1 F=3n-2P L-P H=3×7-2×9-1=2自由度的数目大于原动件的数目所以该机构不具有确定的运动。
(e) 构件CD(或EF)及其两端的转动副引入一个虚约束计算自由度n=3,P L=4,P H=0 F=3n-2P L-P H=3×3-2×4=1自由度的数目等于原动件的数目所以该机构具有确定的运动。
(f) C处为复合铰链;计算自由度n=7,P L=10,P H=0 F=3n-2P L-P H=3×7-2×10=1自由度的数目等于原动件的数目所以该机构具有确定的运动。
机械原理作业资料
一、填空题1、计算机构自由度时需注意的问题包括:正确计算运动副的数目、除去局部自由度、除去虚约束。
2、机构具有确定运动的条件是机构的自由度数等于原动件数目。
3、机构中的相对静止构件称为机架,机构中按照给定运动规律运动的构件称原动件。
4、两构件直接接触并能产生相对运动的联接称为运动链。
5、机构若在运动过程中其自由度、活动构件数或机构的结构能发生变化,这样的机构称为变胞机构。
6、在一个平面六杆机构中,相对瞬心的数目是15(N(N-1)/2)。
7、在平面连杆机构中,假定有N个构件(含机架),则机构共有N(N-1)/2个速度瞬心,其中N-1个是绝对瞬心。
8、在一个平面五杆机构中,相对瞬心的数目是10。
9、两构件组成转动副时,则它们的瞬心位置在转动中心处。
两构件组成移动副,则它们的瞬心位置在垂直于导路方向的无穷远处。
10、两构件组成高副,且作纯滚动时,则它们的瞬心位置在接触点处。
两构件组成高副,且构件之间有相对滑动,则它们的瞬心位置在接触点高副元素的公法线11、铰链四杆机构中,若最短杆与最长杆长度和小于其它两杆长度之和,则以最短杆相邻杆为机架时,可得曲柄摇杆机构。
12、铰链四杆机构中,当最短杆与最长杆长度之和大于其它两杆长度之和时,则一定是双摇杆机构。
13、铰链四杆机构中,若最短杆与最长杆长度和小于其它两杆长度之和,则以最短杆为机架时,可得双曲柄机构。
14、铰链四杆机构中,若最短杆与最长杆长度和小于其它两杆长度之和,则以最短杆对面杆为机架时,可得双摇杆机构。
15、四杆机构中,已知行程速比系数K,则极位夹角的计算公式为θ=180°(K-1)/(K+1)四杆机构中,已知极位夹角θ,则行程速比系数K的计算公式为K=(180°+θ)/(180°-θ)15、平面连杆机构中,同一位置的传动角与压力角之和等于90°。
16、凸轮机构中,推杆的形状有尖顶推杆、滚子推杆、平底推杆三种。
(完整word版)机械原理大作业2-1120810417-凸轮
机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:1208104完成者:学号:1120810417指导教师:林琳刘福利设计时间:2014年6月2日哈尔滨工业大学一、设计题目如下图所示为直动从动件盘形凸轮机构,据此设计该凸轮机构:二、原始参数 序号升程升程运动角 升程运动规律 升程许用压力角 回程运动角 回程运动规律 回程许用压力角 远休止角 近休止角 15 90mm150°正弦加速度30°100°余弦加速度60°55°55°三、推杆升程方程和推杆回程方程: 在这里取ω=1rad/s. (1)推杆升程方程:650,)512sin(215690)(πφφππφφ≤≤⎥⎦⎤⎢⎣⎡-=s650),512cos(108)(πφφφπφν≤≤-=650,512sin 2.259)(πφφπφ≤≤=a(2)推杆回程方程:36613641,)05.059cos(145)(πφππφφ≤≤⎥⎦⎤⎢⎣⎡-+=sω36613641,)05.059sin(181)(πφππφφν≤≤⎥⎦⎤⎢⎣⎡---= 36613641),05.059cos(8.145)(≤≤--=φππφφa四、matlab 程序及曲线图像注:每一段都为完整程序,可直接运行。
1.推杆位移曲线clear allp1=0:pi/360:(5*pi/6-pi/360); w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360); s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360); s3=45*(1+cos(9*p3/5-1*pi/20)); p4=61*pi/36:pi/360:2*pi; s4=0*p4;p=[p1,p2,p3,p4]; s=[s1,s2,s3,s4];plot(p,s)xlabel('Φ(角度)');ylabel('S(位移)'); title('推杆位移曲线');2.推杆速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4];v=[v1,v2,v3,v4];plot(p,v)xlabel('Φ(角度)');ylabel('V(速度)'); title('推杆速度曲线');3.推杆加速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;a1=36*36*w^2/5/pi*sin(12*p1/5);p2=5*pi/6:pi/360:(41*pi/36-pi/360);a2=0*p2p3=41*pi/36:pi/360:(61*pi/36-pi/360);a3=-18*81*w^2/10*cos(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;a4=0*p4;p=[p1,p2,p3,p4];a=[a1,a2,a3,a4];plot(p,a)xlabel('Φ(角度)');ylabel('a(加速度)'); title('推杆加速度曲线');4.凸轮机构的ds/dφ-s线图clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];p1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4]; v=[v1,v2,v3,v4]; vx=-v; hold on plot(vx,s)%直线Dtdty=-100:0.01:100; x=-69; hold onplot(x,y,'-r'); % 直线Dt’dt’ x=-100:0.01:100; y=-0; hold onplot(x,y,'-r'); grid on hold offtitle('ds/d φ-s 曲线');曲线为升程阶段的类速度-位移图,根据升程压力角与回城压力角做直线与其相切,, 其直线斜率分别为:K 1=)30150tan(+=0 K 2=)60150tan(-为∞;两直线方程为:}{0,69=-=y x进而确定凸轮偏距和基圆半径:在轴心公共许用区内取轴心位置,能够满足压力角要求,由图可得:取s0=200mm ,e=30;r0=(2002 +502)1/2=206.2mmclear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];s0=200;e=30;x=(s0+s).*cos(p)-e*sin(p);y=(s0+s).*sin(p)+e*cos(p);plot(x,y)title('凸轮理论轮廓');6.凸轮实际轮廓工作轮廓曲率半径ρ、理论轮廓曲率半径ρ与滚子半径r三者存在如下关系aρa=ρ+r,不妨最终设定滚子半径为30mm,这时滚子与凸轮间接触应力最小,可提高凸轮寿命。
机械原理作业答案1-8-A4
+
解:
F
3
D
3
C
D
C
6 2
4
E
5 +
2
B
4
G E
5 1
B
1
A
构的级别。 低代前: 低代后:
A
构件 2、3、4、6 为 III 级杆组,机构为 III 级机构。 2—12 计算图示机构的自由度,将其中的高副用低副代替,并分析机构所含的基本杆组,确定机 构的级别。 解:
D 3
4
5
3
E
5
4
A
C n = 4,p l = 5,p1 h =1 2 F = 3n − 2 p l − p h A = 3× 4 − 2 × 5 −1 B =1
(1) ( 2) (3)
vC = ω2 CP24 = 2.548 × 78.985 × 0.002 = 0.40 m / s v E = ω2 ECP24 = 2.548 × 70.62 × 0.002 = 0.36m / s
当vC = 0时, A、B、C三点共线, 对应有两个极限位置, 如图所示:
4
∞ P34 ∞ P24
3
A
4
P14
( aII ) 级杆组 RRR
P34、P 13 D
A
P14
(b)
∞ P 12
∞ P23
p13
P24
1
2
3
P23 B
P24
1 14 A P
B
2 P 12
A
∞ P34
3
P 14
4
C
P 13 C P 34 4
(c )
(d)
P24
3
机械原理网上作业
机械原理题号:1 题型:单选题(请在以下几个选项中选择唯一正确答案)增大凸轮机构的推程压力角,则该凸轮机构的凸轮基圆半径将()A、增大B、减小C、不变标准答案:B题号:2 题型:单选题(请在以下几个选项中选择唯一正确答案)平面运动副所提供的约束是().A、1B、2C、3D、1或2. 标准答案:D题号:3 题型:单选题(请在以下几个选项中选择唯一正确答案)蜗杆的标准模数是指()模数。
A、端面B、法面C、轴面。
标准答案:C题号:4 题型:单选题(请在以下几个选项中选择唯一正确答案)对于单自由度的机构系统,假想用一个移动构件等效时其等效质量按等效前后()相等的条件进行计算。
A、动能B、瞬时功率C、转动惯量。
标准答案:A题号:5 题型:单选题(请在以下几个选项中选择唯一正确答案)在某一瞬时,从动件运动规律不变的情况下,要减小凸轮的基圆半径,则压力角()A、减小B、增大C、保持不变。
标准答案:B题号:6 题型:单选题(请在以下几个选项中选择唯一正确答案)但自由度机构的等效转动惯量()>0。
A、一定B、不一定C、一定不。
标准答案:B题号:7 题型:单选题(请在以下几个选项中选择唯一正确答案)四杆机构的急回特性是针对主动件作()而言的.A、等速运动B、等速移动C、与构件尺寸有关. 标准答案:A题号:8 题型:单选题(请在以下几个选项中选择唯一正确答案)将作用于机器中所有驱动里,阻力,惯性力,重力都转化到等效构件上,求得的等效力矩和机构动态静力分析中求得的在等效构件上的平衡力矩,两者的关系应是()。
A、数值相同,方向一致B、数值相同,方向相反C、数值不同,方向一致D、数值不同,方向相反。
标准答案:B题号:9 题型:单选题(请在以下几个选项中选择唯一正确答案)在减速蜗杆传动中,用()来计算传动比i是错误的。
A、i=1/2B、i=z1/z2C、i=n1/n2D、i=d2/d1. 标准答案:D题号:10 题型:单选题(请在以下几个选项中选择唯一正确答案)在曲柄摇杆机构中,若增大曲柄长度,则摇杆摆角将()A、加大B、减小C、不变D、加大或不变. 标准答案:A题号:11 题型:单选题(请在以下几个选项中选择唯一正确答案)铰链四杆机构有曲柄存在的必要条件是()A、最短杆与最长杆长度之和小于或等于其他两杆长度之和B、最短杆与最长杆长度之和大于其他两杆长度之和C、以最短杆为机架或以最短杆相邻的杆为机架标准答案:A题号:12 题型:单选题(请在以下几个选项中选择唯一正确答案)等效力矩的值()。
机械原理第3章作业
1
P12
P13
P23
从图上量出长度尺寸并按作图比例系数换算成实际长度: P12A=28.54,则:P12C=28.54+80=108.54 因为P12是构件1与构件2的瞬心,所以:
1 P A 2 P C 12 12
2 1 P A 10 28.54 12
PC 12 108.54 2.63 rad / s
第3章 连 杆 机 构
一、填空题
1、在四杆机构中,取与 最短杆 相对的杆为机
架,则可得到双摇杆机构。 2、平面连杆机构具有急回特征在于 极位夹角 不为零。 3、在曲柄摇杆机构中,只有在 摇杆为主动件 的 情况下,才会现现死点位置 。在死点位置,机 构会出现 从动曲柄不能转动 现象。
4、判断平面连杆机构的传动性能时,机构的传 动角γ越大,则传动性能越 好 。 5、工程上常用 行程速比系数K 表示机构的急回 性质,其大小可由计算式 K (180 ) /(180 ) 求 出。 6、曲柄摇杆机构中,最小传动角出现的位置是 曲柄与机架两次共线的位置 。 7、曲柄摇杆机构可演化成偏心轮机构,其演化 途径为 扩大转动副 。
四、作业详解
3-1 在图示凸轮机构中,已知r = 50mm,lOA=22mm, lAC=80mm, 1 90 ,凸轮1的等角速度ω1=10rad/s, 逆时针方向转动。试用瞬心法求从动件2的角速度ω2。 解:先观察得出瞬心P13和P23 再用瞬心法瞬心P12
,
根据三心定理,P12应在 P13与P23的连线上, 根据瞬心法,P12应在过B 点垂直于构件2的直线上。
注意比 例换算
3-5 如图,设计一曲柄滑块机构。已知滑块的行程s=50mm, 偏距e=16mm,行程速比系数K=1.2,求曲柄与连杆长度。
机械原理作业集第二版
机械原理作业集第二版1. 题目: 弹簧的工作原理及应用弹簧是一种具有弹性变形特性的机械元件,广泛应用于各种机械装置和工业设备中。
它的工作原理主要基于胡克定律,即弹簧所受的力与其变形量成正比。
2. 题目: 齿轮传动的原理与优势齿轮传动是一种常见且重要的机械传动方式,可实现不同转速和转矩的传递。
其工作原理主要是通过齿轮之间的啮合,实现动力的传输和转换。
3. 题目: 滑轮系统在起重装置中的应用滑轮系统是一种常见的机械传动装置,在起重装置中发挥重要作用。
它通过改变绳索或链条的方向,并利用滑轮的固定支点原理,实现重物的升降和运输。
4. 题目: 锁紧螺母的原理及应用锁紧螺母是一种用于防止螺母松动的机械元件,广泛应用于需要稳固连接的设备中。
其工作原理主要是利用摩擦力和弹性变形,在受到外力作用时保持螺纹的紧固状态。
5. 题目: 液压传动系统的工作原理与优点液压传动系统是一种利用流体压力传递动力的机械传动方式,具有传力平稳、传递距离远等优点。
其工作原理主要是通过液体的流动和压力传递来实现机械装置的工作。
6. 题目: 摩擦离合器的结构和工作原理摩擦离合器是一种常见的机械离合装置,主要用于实现不同旋转部件的连接与分离。
其工作原理主要基于摩擦力的传递和控制,通过两个摩擦片之间的接触与离开来实现动力的传递。
7. 题目: 传动链条的结构和工作原理传动链条是一种常见的机械传动装置,主要用于实现旋转运动的传递。
其工作原理基于链条与齿轮之间的啮合,通过链条的轮齿与主动轮齿的啮合来实现动力的传递。
8. 题目: 锥齿轮的工作原理与应用锥齿轮是一种常见的传动装置,主要用于转速和转矩传递的变换。
其工作原理基于两个倾斜的齿轮啮合,通过齿轮的转动和啮合角的变化实现动力的传递和转换。
9. 题目: 离合器的结构和工作原理离合器是一种常见的机械装置,主要用于实现不同部件的连接与分离。
其工作原理基于摩擦力的控制和转动部件之间的接触与离开,通过离合器的操作实现动力的传递与中断。
朱理版机械原理课后作业全部答案
2 是双曲柄机构,C、D两个转动副 是摆转副 3 是双摇杆机构,A、B两个转动副 是周转副
1极位夹角θ=18.562度,最大摆角Ψ=70.558度 最小传动角γmin=180-157.266=22.734度,k=1.23
) 2 )
Fr
F 21 cos
Fd
sin( 90 ) cos sin( 2 )
(1) 11223d0062d0823086得0020d0520
本章考点
①.绘制平面连杆机构运动简图,并确定该机构类型;
②.根据机构中给定的各杆长度或尺寸范围来确定属于何种铰 链四杆机构;
③.根据机构中给定的各杆长度判定机构有无急回特性和死点 位置,确定行程速比系数K和最小传动角;
解:
(2)
d36 1 02 2 080 12 d 028 3 060 得 4 0d200 52 d 0760 12 3 06 d 0280
(3) d3610208得 00d40
4.2 4.3 如图所示为转动翼板式油泵,由四个四杆机构组成,主动盘绕固定轴A转动,试画出 其中一个四杆机构的运动简图画图时按图上尺寸,并选取比例尺μl = 0.0005 m / mm,即 按图上尺寸放大一倍,并说明它们是哪一种四杆机构.
加速度分析:
aB
aA
a
n BA
a
t BA
a
n BA
2 2
l
AB
21 .1 2 0 .3 2 1 42 .5 m / s 2
a 142 .5 / 40 3 .56
a
t BA
a n 2 b ' 3 . 56 31.55
机械原理大作业凸轮结构设计
机械原理大作业(二) 作业名称:机械原理设计题目:凸轮机构设计院系: 机电工程学院班级:设计者:学号:指导教师:丁刚陈明设计时间:哈尔滨工业大学机械设计1、设计题目如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。
表一:凸轮机构原始参数序号升程(mm) 升程运动角(º)升程运动规律升程许用压力角(º)回程运动角(º)回程运动规律回程许用压力角(º)远休止角(º)近休止角(º)12 80 150正弦加速度30 100 正弦加速度60 60 502、凸轮推杆运动规律(1)推杆升程运动方程S=h[φ/Φ0-sin(2πφ/Φ0)]V=hω1/Φ0[1-cos(2πφ/Φ0)]a=2πhω12sin(2πφ/Φ0)/Φ02式中:h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算)(2)推杆回程运动方程S=h[1-T/Φ1+sin(2πT/Φ1)/2π]V= -hω1/Φ1[1-cos(2πT/Φ1)]a=-2πhω12sin(2πT/Φ1)/Φ12式中:h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/63、运动线图及凸轮线图运动线图:用Matlab编程所得源程序如下:t=0:pi/500:2*pi;w1=1;h=150;leng=length(t);for m=1:leng;if t(m)<=5*pi/6S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi));v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6);a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6));% 求退程位移,速度,加速度elseift(m)<=7*pi/6S(m)=h;v(m)=0;a(m)=0;% 求远休止位移,速度,加速度elseif t(m)<=31*pi/18T(m)=t(m)-21*pi/18;S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi));v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9)));a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9));%求回程位移,速度,加速度elseS(m)=0;v(m)=0;a(m)=0;% 求近休止位移,速度,加速度endend推杆位移图推杆速度图推杆加速度图4、确定凸轮基圆半径与偏距在凸轮机构得ds/dφ-s线图里再作斜直线Dt dt与升程得[ds/dφ-s(φ)]曲线相切并使与纵坐标夹角为升程许用压力角[α],则D t d t线得右下方为选择凸轮轴心得许用区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械原理习题2013.02第2章平面机构的结构分析2-1 绘制图示机构的运动简图。
(a) (b)题2-1图2-2 计算图示机构的自由度,并指出复合铰链、局部自由度和虚约束。
ABCDE(a)ABDCE(b)ABCDE(c)(e)(f)题2-2图2-3 计算刹车机构在刹车过程中的自由度。
H(g)题2-3图2-4计算图示机构的自由度,并判断机构运动是否确定。
若存在复合铰链、局部自由度或虚约束,请指出。
(a) (b)题2-4图2-5 判断图示机构设计是否正确。
若不正确,提出修改方案。
题2-5图2-6 填空题1)在平面机构中具有一个约束的运动副是 副。
2)使两构件直接接触并能产生一定相对运动的连接称为 。
3)平面机构中的低副有 副和 副两种。
4)机构中的构件可分为三类:固定构件(机架)、原动件(主动件)、 件。
5)在平面机构中若引入一个高副将引入 个约束。
6)在平面机构中若引入一个低副将引入 个约束。
7)在平面机构中具有两个约束的运动副是 副和 副。
2-7 判断题1)具有局部自由度的机构,在计算机构的自由度时,应当首先除去局部自由度。
( )2)具有虚约束的机构,在计算机构的自由度时,应当首先除去虚约束。
()3)虚约束对运动不起作用,因此是多余的。
()4)若两构件之间组成两个导路平行的移动副,在计算自由度时应算作两个移动副。
()5)若两构件之间组成两个轴线重合的转动副,在计算自由度时应算作两个转动副。
()6)六个构件组成同一回转轴线的转动副,则该处共有五个转动副。
()7)当机构的自由度F>0,且等于原动件数,则该机构具有确定的相对运动。
()8)虚约束对机构的运动有限制作用。
()2-8 选择题1)机构中的构件是由一个或多个零件所组成,这些零件间()产生相对运动。
A. 可以B. 不能C. 不一定能2)原动件的自由度应为()。
A. 0B. 1C. 23)在机构中原动件数目()机构的自由度数且大于0时,该机构具有确定的运动。
A. 大于B. 等于C. 小于4)由K 个构件汇交而成的复合铰链应具有()个转动副。
A. K-1B. KC. K+15)一个作平面运动的自由构件有()个自由度。
A. 1B. 3C. 66)通过点、线接触构成的平面运动副称为()。
A. 转动副B. 移动副C. 平面高副7)通过面接触构成的平面运动副称为()。
A. 低副B. 高副C. 移动副8)平面运动副的最大约束数是()。
A. 1B. 2C. 3第3章平面机构的运动分析3-1 试确定图示各机构在图示位置的瞬心位置。
题3-1图3-2 在图示四杆机构中,AB l =60mm ,CD l =90mm ,AD l =BC l =120mm ,1ω=10rad/s ,试用瞬心法求: (1)当ϕ=45°时,点C 的速度C v;(2)当ϕ=165°时,构件2的BC 线上(或其延长线上)速度最小的一点E 的位置及其速度大小;(3)当C v =0时,ϕ角之值(有两个解)。
题3-2图3-3 试用瞬心法求齿轮1与齿轮3的传动比ω1/ω3。
题3-3图3-4 试判断图示两机构中构件的 B 点是否都存在哥氏加速度?又在何位置时哥氏加速度为零?(a ) (b)题3-4图3-5 如图所示机构中,各构件尺寸已知,构件1以角速度1ω匀速回转,求 ?=B v ?=B a 要求写出必要的矢量方向式,并画出速度与加速度多边形(比例尺自定)。
题3-5图3-6 如图所示机构中,各构件尺寸已知,构件1以角速度1ω匀速回转。
求 ?=C v ?=c a 要求写出必要的矢量方向式,并画出速度与加速度多边形(比例尺自定)。
题3-6图3-7 图示机构中1为原动件,1ω=常数,各构件尺寸已知。
试求3α及5a 。
要求列出矢量方程式,画出速度图和加速度图(比例尺任选)。
题3-7图3-8对图示机构进行运动分析。
已知:301=ωrad/s ,20=AB l mm ,60=AC l mm ,30===DE BE BD l l l mm 。
(1) 绘制︒=90ϕ时的速度多边形,并求?2=c v ?=E v (1) 绘制︒=90ϕ时的加速度多边形,并求?2=c a ?=E a题3-8图3-9 填空题1)速度瞬心是两刚体上 为零的重合点。
2)当两构件组成回转副时,其相对速度瞬心在 。
3)当两构件不直接组成运动副时,其瞬心位置用 确定。
3-10 判断题1)瞬心是两构件上瞬时绝对速度为零的重合点。
( ) 2)利用瞬心既可以求机构的速度,又可以求加速度。
( ) 3-11 选择题1)构件2和构件3组成移动副,则有关系( )。
A. 3232C C B B v v =,32ωω=B. 3232C C B B v v ≠,32ωω=C. 3232C C B B v v =, 32ωω≠D. 3232C C B B v v ≠,32ωω≠ 2)在两构件的相对速度瞬心处,瞬时重合点间的速度应有( )。
A. 两点间相对速度为零,但两点绝对速度不等于零B. 两点间相对速度不等于零,但其中一点的绝对速度等于零C. 两点间相对速度不等于零且两点的绝对速度也不等于零D. 两点间的相对速度和绝对速度都等于零3-12 简答题1)什么叫速度瞬心?绝对速度瞬心和相对速度瞬心有什么区别?2)机构运动分析包括哪些内容?对机构进行运动分析的目的是什么? 3)在进行机构运动分析时,速度瞬心法的优点及局限是什么? 4)什么叫三心定理?5)速度瞬心法一般适用于什么场合?能否利用速度瞬心法对机构进行加速度分析? 6)哥氏加速度在什么情况下产生?其方向任何确定?第4章 平面机构的力分析4-1 图示为一颚式破碎机在破碎矿石时要矿石不至被向上挤出,试问a 角应满足什么条件?题4-1图4-2 填空题1)槽面摩擦比平面摩擦力大是因为( )。
2)从受力观点分析,移动副的自锁条件是( );转动副的自锁条件是( )。
3)三角形螺纹比矩形螺纹摩擦( ),故三角形螺纹多用于( ),矩形螺纹多应用于( )。
4-3 问答题1)什么是自锁机构?2)所谓自锁机构是否就是不能运动的机构? 3)什么是摩擦角?移动副中总反力是如何定的?4)什么是当量摩擦系数及当量摩擦角?引入它们的目的是什么? 5)矩形螺纹和三角形螺纹螺纹副各有何特点?各适用于何种场合? 6)何谓摩擦圆?摩擦圆的大小与哪些因素有关? 7)为什么实际设计中采用空心的轴端?8)什么叫自锁?在什么情况下移动副、转动副会发生自锁?第5章 平面连杆机构及其设计5-1 在图示铰链四杆机构中,各杆长度分别为AB l =28mm ,BC l =52mm ,CD l =50mm ,AD l =72mm 。
(1) 若取AD 为机架,求该机构的极位夹角θ,杆CD 的最大摆角ϕ和最小传动角min γ;(2) 若取AB 为机架,该机构将演化成何种类型的机构?为什么?请说明这时C 、D 两个转动副是周转副还是摆转副?D题5-1图5-2 如图示,设已知破碎机的行程速比系数K =1.2,颚板长度CD l =300mm ,颚板摆角35ϕ=︒,曲柄长度AB l =80mm ,求连杆的长度,并检验最小传动角min γ是否符合要求。
题5-2图5-3 曲柄滑块机构的行程H=60mm ,偏距e =20mm ,行程速度变化系数=1.5,求曲柄和连杆的长度。
5-4 一摆动导杆机构的行程速度变化系数=1.5,机架的长度L=100 mm ,试设计此机构。
5-5 在图示的四杆机构中,已知a =20mm ,b =60mm ,e =10mm ,试确定:1) 此机构有无急回运动?若有,试以作图法确定极位夹角θ,并求行程速比系数K 的值; 2) 当以AB 为原动件时,标出此机构的最小传动角γmin 和最小压力角αmin ; 3) 作出当以滑块为原动件时机构的死点位置。
题5-5图5-6 如图所示,欲设计一铰链四杆机构,已知其摇杆CD的长度L CD=75mm,行程速比系数K=1.5,机架AD的长度为L AD=100mm,又知摇杆的一个极限位置与机架间的夹角为ψ=45º,试求曲柄的长度L AB 和连杆的长度L BC。
(只需求出两解中的一个)5-7 填空题1)平面连杆机构是由一些刚性构件用()副和()副连接组成的。
2)某些平面连杆机构具有急回特性。
从动件的急回性质一般用()系数表示。
3)对心曲柄滑快机构()急回特性。
4)偏置曲柄滑快机构()急回特性。
5)机构处于死点时,其传动角等于()。
6)机构的压力角越()对传动越有利。
7)曲柄滑块机构,当取()为原动件时,可能有死点。
5-8 判断题1)平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。
()2)有死点的机构不能产生运动。
()3)机构的压力角越大,传力越费劲,传动效率越低。
()4)双曲柄机构中,曲柄一定是最短杆。
()5)平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。
()6)平面连杆机构中,压力角的补角称为传动角。
()5-9 选择题1)铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和()其他两杆之和。
A <=;B >=;C > 。
2)铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以()为机架时,有两个曲柄。
A 最短杆相邻边;B 最短杆;C 最短杆对边。
3)一曲柄摇杆机构,若曲柄与连杆处于共线位置。
则当()为原动件时,称为机构的死点位置。
A 曲柄;B 连杆;C 摇杆。
4)当极位夹角θ()时,机构就具有急回特性。
A <0;B >0;C =0。
5)当行程速度变化系数k()时,机构就具有急回特性。
A <1;B >1;C =1。
6)若以()为目的,则机构的死点位置可以加以利用。
A 加紧和增力;B传动。
7)压力角与传动角的关系是α+γ=()。
A 180º ;B 45º;C 90º。
5-10 简答题1)何谓“死点”?它在什么情况下发生?它与“自锁”在本质上有无区别?说明“死点”的危害及其克服方法,以及“死点”在机械工程中的应用情况。
2)什么叫连杆机构的急回特性?它用什么来表达? 3)什么叫极位夹角?它与机构的急回特性有什么关系? 4)什么叫死点?它与机构的自由度F<=0有什么区别?5)何谓曲柄?四杆机构具有曲柄的条件是什么?曲柄是否就是最短杆?6)何谓行程速比系数?何谓急回作用?何谓极位夹角?三者之间的关系如何?第6章 凸轮机构及其设计6-1 设计一偏置移动滚子从动件盘形凸轮机构。
凸轮回转方向和从动件初始位置如图所示。
已知偏距mm e 10=,基圆半径mm r 400=,滚子半径mm r r 10=。
从动件的运动规律如下:︒=180φ,︒=30s φ,︒=120'φ,︒=30's φ,从动件在推程中以简谐运动规律上升,升程h =30mm ;回程以等加速等减速运动规律返回原处。