高频电子线路重点知识总结3

合集下载

电子行业高频电子线路

电子行业高频电子线路

电子行业高频电子线路简介高频电子线路在电子行业中扮演着重要的角色。

它们被广泛应用于无线通信、雷达、卫星通信、医疗诊断设备等领域。

在本文中,将介绍高频电子线路的基础知识、设计原理以及常见应用。

基础知识1.高频信号高频信号是指频率高于1MHz的信号。

在高频电子线路中,频率通常在几十MHz到几百GHz 之间。

高频信号的特点是波长短、频率高、传输能力强。

2.电子线路元件高频电子线路中使用的元件与低频电子线路略有不同。

常见的高频元件包括电感、电容、晶体管、集成电路等。

这些元件在高频电子线路中起到重要的作用,具体将在后文中详细介绍。

设计原理1.传输线理论传输线理论是高频电子线路设计的基础。

传输线是一种将信号从一个点传输到另一个点的导线。

常见的传输线包括微带线、同轴电缆等。

了解传输线理论可以帮助设计师正确地选择传输线的特性阻抗、长度和宽度,以确保信号传输的质量。

2.匹配网络高频信号在传输过程中容易发生反射和衰减。

匹配网络的作用是使信号在传输过程中能够得到最大的功率传输,并尽量避免信号的反射。

匹配网络常用的类型包括L型匹配网络、T型匹配网络等。

3.滤波器滤波器用于过滤高频信号中的噪声和干扰,使得信号在特定频段上得到放大或衰减。

常见的滤波器类型包括低通滤波器、带通滤波器和带阻滤波器。

4.放大器放大器是高频电子线路中常见的元件之一。

放大器的作用是放大输入信号的幅度。

常见的放大器类型包括晶体管放大器、集成电路放大器等。

常见应用1.无线通信高频电子线路在无线通信领域中被广泛应用。

无线通信系统包括手机、无线电和卫星通信系统等。

高频电子线路在这些系统中起到信号调制、放大和解调等重要作用。

2.雷达雷达系统也是高频电子线路的典型应用之一。

雷达系统通过发送和接收无线信号来检测和跟踪目标。

高频电子线路在雷达系统中的作用是发射和接收高频信号,并进行信号处理。

3.医疗诊断设备高频电子线路在医疗诊断设备中也有重要的应用。

例如,X射线机、核磁共振仪等设备使用高频电子线路进行信号放大和处理,以实现准确的诊断结果。

高频电子线路重点..

高频电子线路重点..

高频电子线路重点内容第一章1.1通信与通信系统1. 信息技术两大重要组成部分——信息传输和信息处理信息传输的要求主要是提高可靠性和有效性。

信息处理的目的就是为了更有效、更可靠地传递信息。

2. 高频的概念所谓“高频”,广义上讲就是适于无线电传播的无线电频率,通常又称为“射频”。

一、基本概念1. 通信:将信息从发送者传到接收者的过程2. 通信系统:实现传送过程的系统3. 通信系统基本组成框图信息源是指需要传送的原始信息,如语言、音乐、图像、文字等,一般是非电物理量。

原始信息经换能器转换成电信号(称为基带信号)后,送入发送设备,将其变成适合于信道传输的信号,然后送入信道。

信道是信号传输的通道,也就是传输媒介。

有线信道,如:架空明线,电缆,波导,光纤等。

无线信道,如:海水,地球表面,自由空间等。

不同信道有不同的传输特性,同一信道对不同频率信号的传输特性也是不同的。

接收设备把有用信号从众多信号和噪声中选取出来,经换能器恢复出原始信息。

4.通信系统的分类按传输的信息的物理特征,可以分为电话、电报、传真通信系统,广播电视通信系统,数据通信系统等;按信道传输的信号传送类型,可以分为模拟和数字通信系统;而按传输媒介(信道)的物理特征,可以分为有线通信系统和无线通信系统。

二、无线电发送与接收设备1. 无线通信系统的发射设备(1)振荡器:产生f osc 的高频振荡信号,几十 kHz 以上。

(2)高频放大器:一或多级小信号谐振放大器,放大振荡信号,使频率倍增至f c,并提供足够大的载波功率。

(3)调制信号放大器:多级放大器组成,前几级为小信号放大器,用于放大微音器的电信号;后几级为功放,提供功率足够的调制信号。

(4)振幅调制器:实现调幅功能,将输入的载波信号和调制信号变换为所需的调幅波信号,并加到天线上。

2. 无线通信系统的接收设备(1)高频放大器:由一级或多级小信号谐振放大器组成,放大天线上感生的有用信号;并利用放大器中的谐振系统抑制天线上感生的其它频率的干扰信号。

高频电子电路复习要点

高频电子电路复习要点

分类:
•按输出波形分
正弦波振荡器 非正弦波振荡器
•按选频回路元件分 R C 振 荡 器
L
C



•按原理、性质分 反 馈 振 荡 器 负 阻 振 荡 器
一、振荡的建立
各信号电压具有如下关系
《高频电子线路》
A(
j
)
Vo Vi
A( )e jA ( )
k
f
(
j
)
Vf Vo
k f ( )e jk
5、噪声系数
2.2 高频小信号调谐放大器
《高频电子线路》
高频小信号调谐放大器的电路组成: 晶体管和LC谐振回路。
晶体管高频等效电路
一是物理模拟(混合 )等效电路。
y 另一是形式等效电路( 参数等效电路)。
2.2
单管单调谐放大器 一、电路组成及工作原理
《高频电子线路》
《高频电子线路》
二、电路性能分析
其中 为由调制电路决定的比例系数。
ka
(2)波形图和频谱图
《高频电子线路》
图4.1.5 单频调制的DSB信号的波形图和频谱图 (a) DSB波形图 (b) DSB频谱图
(3)双边带调幅信号的产生
《高频电子线路》
D SB(t)ka (t)c(t)
带通滤波器的中心频率为 f c ,带宽为 BW AM
试计算回路电感L和 Q e 的值。若电感线圈的
Q 0 =100,问在回路上应并联多大的电阻
才能满足要求?
常见典型滤波器 石英晶体滤波器 陶瓷滤波器 表面声波滤波器
《高频电子线路》
1.3
《高频电子线路》
高频小信号调谐放大器的主要质量指标 1、增益 2.通频带 B W 0.7 3、选择性 4、工作稳定性

基础知识-高频电子线路

基础知识-高频电子线路
高频电子线路的稳定性和可靠性对于 雷达系统的探测精度和抗干扰能力至 关重要。
卫星通信系统中的高频电子线路
卫星通信系统中的高频电子线路主要负责信号的发射和 接收。
同时,高频电子线路也负责接收卫星转发器下行的信号, 进行变频和放大后发送给地面终端。
在卫星转发器中,高频电子线路将地面终端发射的信号 进行变频和放大,再通过天线发射到卫星上。
高频电子线路的性能直接影响到卫星通信系统的覆盖范 围和传输质量。
THANKS FOR WATCHING
感谢您的观看
基础知识-高频电子线路
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路基本元件 • 高频电子线路中的噪声与干扰 • 高频电子线路的设计与优化 • 高频电子线路的应用实例
01 高频电子线路概述
高频电子线路的定义与特点
定义
高频电子线路是指工作频率在较 高频率范围的电子线路,通常指 工作频率在10kHz以上的电子线 路。
特点
高频电子线路具有较高的工作频 率,信号传输速度快,信号失真 小,能够实现信号的高效传输和 处理。
高频电子线路的应用领域
通信领域
高频电子线路广泛应用于 通信领域,如无线通信、 卫星通信、移动通信等。
雷达与导航领域
雷达与导航系统需要高 频电子线路来实现信号 的发射、接收和处理。
广播与电视领域
广播和电视信号的传输 和处理需要高频电子线
集成电路技术
集成电路技术的发展使得高频电子线 路能够更加紧凑和高效地实现各种功 能。
02 高频电子线路基础知识
信号与系统
信号的分类
信号可以根据其特性分为连续信 号和离散信号。连续信号在时间 上连续变化,而离散信号在时间

高频电子线路考试重点

高频电子线路考试重点

阻抗变换:Q=||||p p s S X R R X =s p R Q R )1(2+=;s p X QX )11(2+= 并联LC 谐振回路:回路总导纳:)1(0LC j g Y e ωω-+= 谐振频率:LCf π210=回路空载Q 值:000001e e g CLg Q ωω==通频带:07.0Q f BW =矩形系数:7.01.01.0BW BW K =串联LC 谐振回路:回路总阻抗:)1(CL j r Z ωω-+= 谐振频率:LCf π210=回路空载Q 值:Cr rLQ 0001ωω==通频带:07.0Q f BW =矩形系数:7.01.01.0BW BW K =有载e Q 值:Lg Q e 01ω∑=(并联);eQ f BW 07.0=变压器阻抗变换:接入系数n (次级比初级,次级向初级变换)L L R nR 21'=电容分压式:211C C C n +=;L L R nR 21'=电感分压式:212L L L n +=;L L R nR 21'=L 型选频匹配:(Rs>RL)11-=L S S R R R C ω;1-=LSL R R R L ω (Rs<RL)11-=S L L R R R C ω;1-=SLS R R R L ω高频小信号放大:(将负载和晶体管均匹配到LC 并联谐振回路中分析)谐振回路总导纳:ie e L y n Lj C j g Y 220)1(+++=ωω电压放大倍数:Lj C j g y n n A feu ωω121++-=∑∑谐振电压放大倍数:∑-=g y n n A feu 21谐振回路总电导:02221e ie oe g g n g n g ++=∑谐振回路总电容:C C n C n C ie oe ++=∑2221 谐振频率:∑=LC f π210有载Q 值:∑∑∑==g C Lg Q e 001ωω通频带带宽:e Q f BW 07.0==∑∑C g π2 多级单调谐放大器:总电压增益:un u u u A A A A ...21= n 级通频带:7.0112BW BW n n ⋅-=展宽放大器频带的方法:1.组合电路法 2.负反馈法 3.电感串并联补偿法丙类(on BB U U <)谐振功率放大电路: 导通角:bmonBB U U U -=arccosθ)cos 1(θ-=g I U cmbm (g 为晶体管受控电流源系数)分解系数:)cos 1(cos sin )(0θπθθθθα--=;)cos 1(cos sin )(1θπθθθθα--=集电极电流分量:)(00θαCm C I I = ; )(11θαCm m C I I =效率:CC C cm m c c U I U I 0121=η 输出功率:∑=R I P Cm )(212120θα负载特性:随着∑R 的逐渐增大,动态线斜率逐渐减小,由欠压状态-临界状态-过压状态,在临界状态时,输出功率最大,集电极效率接近最大,为最佳工作状态。

高频电子线路(知识点整理).doc

高频电子线路(知识点整理).doc

高频电子线路(知识点整理).doc
高频电子线路是指在射频或超高频范围内工作的电子线路,通常涉及到信号的传输、
处理和放大。

这种电子线路在通信、雷达、卫星通信、无线电等领域中被广泛应用,它有
着复杂的工作原理和设计技术。

下面就是对于高频电子线路的几个知识点整理和介绍。

1.谐振器:谐振器是高频电子线路中经常用到的一个组件,其作用是让电路产生特定
的共振频率,以便信号能够在电路中传输。

谐振器通常由其结构和材料决定,比如管型谐
振器、光纤谐振器、奇异谐振器等。

2.混频器:混频器是将两个输入频率进行混合,产生出一个输出频率的高频电子组件。

混频器主要用于转换信号的频率和增强信号的强度,比如在雷达和无线电通信中,混频器
通常用于将信号从中频转换到基带。

3.射频放大器:射频放大器是一种将低功率信号转化为高功率信号的电子器件,主要
用于放大和传输高频信号。

射频放大器的工作原理是通过对输入信号进行放大使得输出信
号的功率增大,它可以是单通道或多通道的,通常由功率放大器、隔离器等组成。

4.发射机:发射机是将信号转换成无线电波并进行发送的高频电子设备。

发射机通常
包括调制器、调谐器、放大器、射频发生器、天线等组件。

它主要将信号转化成无线电波
传输到接收机,以便实现通信或雷达探测等功能。

以上就是对于高频电子线路的几个知识点简要介绍,高频电子线路在通信、雷达、卫
星通信、无线电等领域中轮廓巨大,其涉及到很多的基础理论和设计技术,需要深入钻
研。

高频电子线路重点公式总结3

高频电子线路重点公式总结3

高频电子线路重点公式总结3:公式重点电子线路单边带调制公式高频电子线路谈文心高频电子线路试题库篇一:高频电子线路重点知识总结学习高频电路的知识点总结12级3班王语赫120310631、什么是非线性电子线路。

利用电子器件的非线性来完成振荡,频率变换等功能。

完成这些功能的电路统称为非线性电子线路。

2、简述非线性器件的基本特点。

非线性器件有多种含义不同的参数,而且这些参数都是随激励量的大小而变化的,以非线性电阻器件为例,常用的有直流电导、交流电导、平均电导三种参数。

分析非线性器件的响应特性时,必须注明它的控制变量,控制变量不同,描写非线性器件特性的函数也不同。

例如,晶体二极管,当控制变量为电压时,流过晶体二极管的电流对电压的关系是指数律的;而当控制变量为电流时,在晶体二极管两端产生的电压对电流的关系则是对数律的。

分析非线性器件对输入信号的响应时,不能采用线性器件中行之有效的叠加原理。

3、简述功率放大器的性能要求。

功率放大器的性能要求是安全、高效率和不失真(确切地说,失真在允许范围内)地输出所需信号功率(小到零点几瓦,大到几十千瓦)。

4、简述乙类推挽电路中的交叉失真现象以及如何防止交叉失真。

在乙类推挽电路中,考虑到晶体管发射结导通电压的影响,在零偏置的情况下,输出合成电压波型将在衔接处出现严重失真,这种失真叫交叉失真。

为了克服这种失真,必须在输入端为两管加合适的正偏电压,使它们工作在甲乙类状态。

常见的偏置电路有二极管偏置、倍增偏置。

5、简述谐振功率放大器的准静态分析法。

准静态分析法的二个假设:假设一:谐振回路具有理想的滤波特性,其上只能产生基波电压(在倍频器中,只能产生特定次数的谐波电压),而其它分量的电压均可忽略。

vBE=VBB+ VbmcosωtvCE=VCC- Vcmcosωt 假设二:功率管的特性用输入和输出静态特性曲线表示,其高频效应可忽略。

谐振功率放大器的动态线在上述两个假设下,分析谐振功率放大器性能时,可先设定VBB、Vbm、VCC、Vcm四个电量的数值,并将ωt按等间隔给定不同的数值,则vBE和vCE便是确定的数值,而后,根据不同间隔上的vBE和vCE值在以vBE为参变量的输出特性曲线上找到对应的动态点和由此确定的iC值。

高频电子线路

高频电子线路
图2.2.3 双口网络
2.2.1
I1 (S ) y11 V1 V 0 2 y I1 ( S ) 12 V2 V 0 1
I1 y11V1 y12V2 I 2 y21V1 y22V2
y21 y22
《高频电子线路》
I2 V1 I2 V2
《高频电子线路》
第二章
本章重点:
高频小信号放大器
高频小信号谐振放大器的工作原理及
性能指标计算。 难 点:谐振放大器的性能分析。
《高频电子线路》
2.1
概述
一、高频放大器的作用与分类
高频放大器的作用:放大高频信号。
工作频率范围:(300K-300M)Hz 。 高频放大器的分类 1、按信号大小分: 高频功率放大器,(大信号,通常用于发射机中); 高频小信号放大器(接收机前端的主要部分); 2、按负载分 谐 振 放大器:LC谐振回路作负载。 非谐振放大器:以传输线变压器作负载。
3. 最高振荡频率fmax
晶体管的功率增益 GP 1时的最高工作频率。
f ≥fmax后, Gp<1,晶体管已经不能得到功率放大。
由于晶体管输出功率恰好等于其输入功率是保证它作为 自激振荡器的必要条件,所以也不能使晶体管产生振荡。
频率参数的关系:f T fβ
《高频电子线路》
2.2.2
单管单调谐放大器
图解分析
B ib + ube - ic + uce - C B + ube - ib rbe
β ib
ic
C + uce -
E (a) 三极管
E (b) 三极管的微变等效电路
《高频电子线路》
放大电路:

高频电子线路知识点

高频电子线路知识点

1-4接收设备的结构通常采用超外差形式 2超外差结构的接收设备在接收过程中,将射频输入信号与本地振荡器产生的信号混频或差拍,由混频器后的中频滤波器选出射频信号与本振信号频率两者的和频或差频。

3在现代高性能宽带超外差接收机中,通常采用向上变频方式,并至少需要两次频率变换。

4在超外差接收机中,中频频率是固定的,当信号频率改变时,只要相应地改变本地振荡信号频率即可。

5高频电路的基本内容(高频前端)包括:5个 (1)高频振荡器(信号源、载波信号或本地振荡信号) (2)放大器(高频小信号放大器及高频功率放大器) (3)混频或变频(高频信号变换或处理) (4)调制与解调(高频信号变换或处理) (5)自动相位控制(APC)电路(也称锁相环PLL) 6调制特性:3个 (1)便于发射 (2)频分复用 (3)改善信噪比(SNR) 7表面贴装(SMD)电阻比引线电阻的高频特性要好。

SMD 表面贴装器件 8品质因数Q 定义为高频电感器的感抗与其串联损耗电阻之比。

Q 值越高,表明该电感器的储能作用越强,损耗越小。

9晶体谐振器与一般振荡回路比较,有几个明显的特点:4个 (1)晶体的谐振频率fq 和f0(下标)非常稳定。

这是因为Lq 、Cq 、C0(下标)由晶体尺寸决定,由于晶体的物理特性,它们受外界因素(如温度、震动等)影响小。

(2)晶体谐振器有非常高的品质因数。

一般很容易得到数值上万的Q 值,而普通的线圈和回路Q 值只能到一二百。

(3)晶体谐振器的接入系数非常小,一般为10^-3数量级,甚至更小。

(4)晶体在工作频率附近阻抗变化率大,有很高的并联谐振阻抗。

所有这些特点决定了晶体谐振器的频率稳定度比一般振荡回路要高。

10阻抗变换的目标是实现阻抗匹配,阻抗匹配时负载可以得到最大传输功率,滤波器达到最佳性能,接收机的灵敏度得以改善,发射机的效率得以提高。

11S 串R 并,电阻R ,电抗X )11(X )1(R 222222Q X X X R Q R R X R S S S S p S SS S p +=+=+=+=12电阻R 两端噪声电压的均方值kTBR dt e T E T n T N 41022lim ==⎰∞→ 17随着n 的增加,总带宽将减小,矩形系数有所改善。

高频电子线路总结

高频电子线路总结

第一章:载波:高频率的电流发射天线:载有载波电流,使电磁能以电磁波形式向空间发射的导体调制分为:连续波调制(调幅、调频、调相),脉冲调制(数字调制、二次调制)脉冲调制:1用信号调制脉冲。

2用已调脉冲对载波进行调制检波:与调制的过程相反调制过程:本地高频震荡→缓冲器→倍频器→中间放大→功率放大器→受调放大器话筒→低频电压放大级→低频功率放大级→调制器↑超外差收音机工作原理:通过混频器将不同的高频信号转化为固定的中频信号,使得收音机的工作选择性和灵敏度提高超外差工作过程:高频小信号放大器→自激式变频器→中频放大→检波→低频放大→输出有线通信媒介:双线对电缆、同轴电缆、光纤。

无线通信媒介:自由空间地波:分为地面波和天波,地面波,电磁波沿地面传播。

空间波,要求天线与接受天线离地面较高,接受点的电磁波由直射波与地面反射波合成天波:是经过电离层反射的电磁波第二章(选频网络)选频网路:1是由电感和电容元件组成的震荡回路(但震荡回路、耦合震荡回路)。

2各种滤波器组成的Q值:Q值越高,谐振曲线越尖锐,对外加电压的选频作用越显著,回路的选择性就越好。

串联谐振(电压谐振)回路适用于低内阻电源,内阻越低,则电路的选择性越好。

并联谐振(电流谐振)回路适用于大内阻的电源串联与并联谐振回路的对偶性:串联谐振回路谐振时回路电阻最小,而并联谐振回路谐振时回路电阻最大纯耦合:只有纯电阻或者是纯电抗复合耦合:有两种或两种以上种类的元件构成第三章(高频小信号放大器)高频放大器与低频放大器的主要区别是:1工作频率范围不同;2频带宽度不同高频放大器是由选频网路组成的谐振或非谐振放大器高频小信号放大器的主要质量指标:1增益(电压、功率)2通频带3选择性(矩形系数、抑制比)4工作稳定性(工作状态、晶体管参数、电路元件参数)5噪声系数等效电路参数:yi/yr/yf/yo晶体管的高频参数:1截至频率:β降为原来的β01/√22特征频率:│β│下降为13最高震荡频率:功率的增益为1时的频率谐振放大器稳定性的破坏原因:存在反馈导纳由反馈导纳产生的自激震荡可以通过1中和法:通过引入外部反馈网络来抵消晶体管内部y fe的反馈作用;2失配法:晶体管输出端负载阻抗不与本级晶体管的输出阻抗匹配第四章(非线性电路、时变参量电路和变频器)无线电元件:1线性元件2非线性元件3时变参量元件非线性电路的分析方法:1幂级数分析法(通过泰勒级数展开,【输入小信号】)2折线分析法(输入大信号)3开关函数分析法(控制信号为大信号,输入信号为小信号)非线性元件的特性:1特性曲线不是直线2变频作用3不满足叠加定理变频器(混频器):就是把高频信号经过频率变换,变为一个固定的频率变频器的主要质量指标:1变频增益:变频器中频输出电压振幅与高频输入信号电压振幅之比2失真和干扰:频率失真和非线性失真;组合频率、交叉频率与互相调制、阻塞和倒易混频等干扰3选择性:接受有用信号(中频),排除干扰信号的能力取决于中频输出回路的选择性是否良好4噪声系数使用较多的混频器是:输入信号从基极输入,本振电压从发射极输入。

(完整版)高频电子线路(知识点整理)

(完整版)高频电子线路(知识点整理)

127.02ωωω-=∆高频电子线路重点第二章 选频网络一. 基本概念所谓选频(滤波),就是选出需要的频率分量和滤除不需要的频率分量。

电抗(X)=容抗( )+感抗(wL) 阻抗=电阻(R)+j 电抗 阻抗的模把阻抗看成虚数求模 二.串联谐振电路 1.谐振时,(电抗) ,电容、电感消失了,相角等于0,谐振频率: ,此时|Z|最小=R ,电流最大2.当w<w 0时,电流超前电压,相角小于0,X<0阻抗是容性;当w>w 0时,电压超前电流,相角大于0,X>0阻抗是感性;3.回路的品质因素数 (除R ),增大回路电阻,品质因数下降,谐振时,电感和电容两端的电位差大小等于外加电压的Q 倍,相位相反4.回路电流与谐振时回路电流之比 (幅频),品质因数越高,谐振时的电流越大,比值越大,曲线越尖,选频作用越明显,选择性越好5.失谐△w=w (再加电压的频率)-w 0(回路谐振频率),当w 和w 0很相近时, ,ξ=X/R=Q ×2△w/w 0是广义失谐,回路电流与谐振时回路电流之比6.当外加电压不变,w=w 1=w 2时,其值为1/√2,w 2-w 1为通频带,w 2,w 1为边界频率/半功率点,广义失谐为±17. ,品质因数越高,选择性越好,通频带越窄 8.通频带绝对值 通频带相对值 9.相位特性Q 越大,相位曲线在w 0处越陡峭10.能量关系电抗元件电感和电容不消耗外加电动势的能量,消耗能量的只有损耗电阻。

回路总瞬时储能 回路一个周期的损耗 , 表示回路或线圈中的损耗。

就能量关系而言,所谓“谐振”,是指:回路中储存的能量是不变的,只是在电感与电容之间相互转换;外加电动势只提供回路电阻所消耗的能量,以维持回路的等幅振荡,而且谐振回路中电流最大。

11. 电源内阻与负载电阻的影响Q L 三. 并联谐振回路 1.一般无特殊说明都考虑wL>>R ,Z 反之w p =√[1/LC-(R/L)2]=1/√RC ·√1-Q2 2.Y(导纳)= 电导(G)= 电纳(B)= . 与串联不同 )1(CL ωω-010=-=C L X ωωLC 10=ωCR R L Q 001ωω==)(j 0)()(j 11ωψωωωωωe N Q =-+=Q702ωω=∆⋅21)(2=+=ξξN Q f f 0702=∆⋅Qf f 1207.0=∆ξωωωωψ arctan arctan 00-=⎪⎪⎭⎫⎝⎛-⋅-=Q ⎪⎭⎫ ⎝⎛-+≈C L R C L ωω1j ⎪⎭⎫ ⎝⎛-+=C CR ω1j ⎪⎭⎫ ⎝⎛-+L C LCRωω1j LCR ⎪⎭⎫ ⎝⎛-L C ωω1C ω1-+ –CV sLRI s C L R22222221cos 21sin 21sm sm sm V CQ t V CQ t V CQ w w w C L 22=+=+=ωω2sm 02sm 21π2121π2CQV R V w R⋅=⋅⋅=ωQCQV V CQ w w w R C L ⋅=⋅=+π2121π2212sm sm每周期耗能回路储能π2 =Q 所以RR R R Q LS 0=3.谐振时,回路谐振电阻R p= =Q p w p L=Q p/w p C4.品质因数(乘R p)5.当w<w p时,B>0导纳是感性;当w>w p时,B<0导纳是容性(看电纳)电感和电容支路的电流等于外加电流的Q倍,相位相反并联电阻减小品质因数下降通频带加宽,选择性变坏6.信号源内阻和负载电阻的影响由此看出,考虑信号源内阻及负载电阻后,品质因数下降,并联谐振回路的选择性变坏,通频带加宽。

高频电子线路重点

高频电子线路重点

高频电子线路重点————————————————————————————————作者:————————————————————————————————日期:高频电子线路重点内容第一章1.1通信与通信系统1. 信息技术两大重要组成部分——信息传输和信息处理信息传输的要求主要是提高可靠性和有效性。

信息处理的目的就是为了更有效、更可靠地传递信息。

2. 高频的概念所谓“高频”,广义上讲就是适于无线电传播的无线电频率,通常又称为“射频”。

一、基本概念1. 通信:将信息从发送者传到接收者的过程2. 通信系统:实现传送过程的系统3. 通信系统基本组成框图信息源是指需要传送的原始信息,如语言、音乐、图像、文字等,一般是非电物理量。

原始信息经换能器转换成电信号(称为基带信号)后,送入发送设备,将其变成适合于信道传输的信号,然后送入信道。

信道是信号传输的通道,也就是传输媒介。

有线信道,如:架空明线,电缆,波导,光纤等。

无线信道,如:海水,地球表面,自由空间等。

不同信道有不同的传输特性,同一信道对不同频率信号的传输特性也是不同的。

接收设备把有用信号从众多信号和噪声中选取出来,经换能器恢复出原始信息。

4.通信系统的分类按传输的信息的物理特征,可以分为电话、电报、传真通信系统,广播电视通信系统,数据通信系统等;按信道传输的信号传送类型,可以分为模拟和数字通信系统;而按传输媒介(信道)的物理特征,可以分为有线通信系统和无线通信系统。

二、无线电发送与接收设备1. 无线通信系统的发射设备(1)振荡器:产生f osc 的高频振荡信号,几十 kHz 以上。

(2)高频放大器:一或多级小信号谐振放大器,放大振荡信号,使频率倍增至f c,并提供足够大的载波功率。

(3)调制信号放大器:多级放大器组成,前几级为小信号放大器,用于放大微音器的电信号;后几级为功放,提供功率足够的调制信号。

(4)振幅调制器:实现调幅功能,将输入的载波信号和调制信号变换为所需的调幅波信号,并加到天线上。

高频电子线路知识要点

高频电子线路知识要点
通信电子线路
知识要点
2010-11-29
2-1 元件
(1)电感:理想电感器L的感抗为jωL,其中ω为工作 角频率。 R=Q02r
r=R/Q02
电流相等
P无 L R 其中: Q0 P有 r L
电压相等
注意: 1)理想电感,r=0、R=∞、Q0=∞; 2)工艺,导线表面镀金或银,加粗线径。
4-3 混频
(1)变频
(2)混频
5-1 调角
(1)表达式
u (t ) U cos t,uC (t ) UC cos(0t 0 )
调频: uFM (t ) UC cos[(0 S f u )t 0 ]
调相: uPM (t ) UC cos(0t S pu 0 )
典型习题
1)瞬时极性法判定反馈 极性
2)求振荡频率
(1)3点式起振条件
X ce 和 X be符号相同
X cb和
, X be 符号相反 X ce
振荡频率的求法:
1)除掉晶体管 2)先确定总电容和电感,再求频率,如例3.2.1(a)、 (b)、(c) 或求环路阻抗等于0时的频率例3.2.1(d)
(2)双边带调幅波检波电路
uo (t ) 1 Kd K F K M U L cos us (t ) 2
(3)二极管峰值包络检波器
不产生惰性失真临界时间常数:
2 1 ma RC ma
不产生底部切割失真调制信号的下限工作角频率应 满足:
1 1 min Cd 3
1 Rd 5
0
t
U C cos[0t
f
U C cos[0t m f sin dt 0 ]
0

大学高频电路知识点总结

大学高频电路知识点总结

大学高频电路知识点总结一、电路基本概念1.1 电路的定义电路是由电学元件(如电阻、电容、电感)和电气源(如电压源、电流源)按一定规律连接而成的结构,通过电学元件传递电流、电压和功率的一种物理结构。

1.2 电路的分类根据不同的连接方式和性质,电路可以分为串联电路、并联电路、混合电路等。

1.3 电路的基本定律基尔霍夫定律(节点电流定律和回路电压定律)和欧姆定律是电路分析和设计中的基本定律。

1.4 电路分析方法电路分析常用的方法包括节点分析法、回路分析法、等效电路分析法等。

二、高频电路的基础知识点2.1 电容和电感电容是存储电荷的器件,电感是存储能量的器件,它们在高频电路中扮演着重要的角色。

2.2 阻抗和复数在高频电路中,我们通常使用复数来描述电路元件的阻抗、电压和电流等。

2.3 传输线传输线是高频电路中的重要组成部分,其特性阻抗、传输功率等对电路性能有重要影响。

2.4 振荡电路振荡电路可以产生稳定的频率信号,是无线通信、射频识别等领域中必不可少的电路。

2.5 放大电路在高频电路中,放大电路能够放大信号,是无线通信、雷达等领域中的核心技术。

三、高频电路的分析和设计3.1 基本分析方法在高频电路中,基尔霍夫定律和欧姆定律依然适用,但在分析中需要考虑元件的频率特性。

3.2 传输线特性传输线的特性参数如特性阻抗、传输时间等需要在设计中进行考虑,影响信号的传输质量。

3.3 滤波器设计滤波器在高频电路中的应用非常广泛,包括低通滤波器、高通滤波器、带通滤波器等。

3.4 放大器设计高频放大器的设计需要考虑稳定性、频率响应、噪声等因素,是高频电路设计中的关键环节。

3.5 振荡器设计振荡器的设计需要考虑频率稳定性、谐波抑制等因素,对振荡器电路中的非线性元件的设计也有很高的要求。

四、高频电路的应用4.1 无线通信系统高频电路在无线通信系统中有着广泛的应用,包括射频放大器、混频器、频率合成器等。

4.2 雷达系统雷达系统是高频电路技术的典型应用,其核心技术包括高频信号的发射、接收、处理等。

高频电子线路知识点总结

高频电子线路知识点总结
2
互感耦合LC振荡电路
3
三点式LC振荡电路 频率稳定度 晶体振荡器
第三章 正弦波振荡器
非线性器件的基本特性
01
非线性器件的工程分析 幂级数分析法 线性时变电路分析法 开关函数分析法
02
模拟相乘器
03
第四章 频率变换电路基础
AM信号的表达式、波形、频谱、功率分配
01
DSB的表达式、波形、频谱

第一章 高频小信号谐振放大器
信号源内阻及负载对LC回路的影响
LC阻抗变换网络 串并阻抗等效互换 变压器阻抗变换电路 部分接入回路的阻抗变换
第一章 高频小信号谐振放大器
高频小信号调谐放大器 特点、电路结构、晶体管等效模型、高频参数、性能参数分析(输入输出导纳、电压增益、功率增益)
谐振放大器的稳定性(定义、方法)
02
振幅调制电路
03
解调(性能指标计算)
04
混频(原理、与调制和检波的关系)
05
第五章 振幅调制、解调及混频
解调频(鉴频特性曲线)
3
调角信号的表达式、波形、频谱、带宽
1
调频电路
2
第六章 角度调制与解调
电噪声(电阻热噪声的计算)
第一章 高频小信号谐振放大器
工作原理(电路结构、iC的傅立叶分析、电压与电流波形图、功率和效率)
1
动态分析(动态特性曲线、负载特性、调制特性、放大特性)
2
实用电路(直流馈电电路、滤波匹配网络)
3
第二章 高频功率放大器
1
工作原理(方框图、振荡条件、判断) LC正弦波振荡电路
高频电子线路的定义、高频的范围 现代通信系统由哪些部分组成?各组成部分的作用是什么? 发送设备的任务? 无线通信为什么要进行调制? 接收设备的任务? 超外差接收机结构有什么特点?

(完整版)高频电子线路.总结

(完整版)高频电子线路.总结

第一章思考题与习题1-1 无线电通信系统由哪几部分组成?各部分的功能如何?答:典型的点对点无线电通信系统的基本组成:图示的无线电通信系统由信源、调制器、发信机、信道、收信机、解调器和信宿七部分组成。

信源将原始的语音、图像信息变化为电信号,如麦克风将声音转化为语音电信号、各种传感器获得的电信号等。

这种原始的电信号,在频谱上表现为低频信号,称为基带信号。

基带信号通过调制器转化为高频的已调波信号,使之适合信道中的传输,已调波信号大多为带通信号。

高频的已调波信号经过发信机进行功率放大,由发送天线产生电磁波辐射出去;电磁波经过自由空间传播,到达接收天线,在接收天线上感应电流,再通过收信机进行信号放大等处理恢复已调波信号;由接收端的解调器对已调波信号进行解调,恢复原基带信号,并经过信息处理获得信息。

1—2无线电通信为什么需要采用调制解调技术?其作用是什么?答:由于无线信道的各种影响,无线电通信必须选择可靠的传输信道,将基带信号调制到指定的信道上传输,降低天线要求,适应多路传输的要求等,无线电传输均采用调制技术。

在模拟调制技术中,主要是用基带信号去控制载波信号的振幅、频率或相位的变化,即幅度调制、频率调制和相位调制。

1-3 无线电通信的接收方式有哪几种?超外差接收机有何优点?答:通常,由于信号的衰落,接收天线获得的电磁波信号微弱,需要先进行信号放大,再进行解调,这种接收机的结构称为直接放大式接收机,该接收机结构对不同的接收频率,其接收机的灵敏度(接收微弱信号的能力)和选择性(选择不同电台的能力)不同,已经较少实用.目前大多采用超外差接收机的结构,接收天线获得感应信号,经过高频小信号放大器进行放大,并与本地振荡器进行混频,获得两个高频信号的频率之和信号或频率之差信号,这两个信号的包络仍保持已调波信号的包络不变,称为中频,和频称为高中频,差频称为低中频,后续的中频放大器选择和频信号(或差频信号)进行放大和检波,恢复原始的调制信号。

高频电子线路知识点

高频电子线路知识点

高频电子线路知识点高频电子线路在现代通信和无线电技术中起着至关重要的作用。

它们被广泛应用于手机、无线电、卫星通信、雷达等设备中。

理解高频电子线路的基本原理和常见知识点是从事相关领域工作的基础。

本文将介绍一些高频电子线路的重要知识点。

1. 传输线理论传输线是高频电子线路中常用的元件,它用于将信号从发射端传输到接收端。

了解传输线的特性对于设计和分析高频电子线路至关重要。

传输线理论涉及电缆、微带线和同轴电缆等不同类型的传输线。

了解它们的特性阻抗、传播常数和损耗等等是必要的。

2. 双端口网络理论双端口网络是高频电子线路中用于表示电路、分析和设计的重要工具。

双端口网络表示复杂电路的传输特性,如滤波器、功率放大器等。

对双端口网络的理解包括参数矩阵、S参数和Y参数等。

这些参数描述了双端口网络的敏感度和功率传输性能。

3. 高频电源和信号分布在高频电子线路中,电源和信号分布是必不可少的。

了解高频电源的供电要求和电容、电感元件的选择是保证电路功能稳定和性能优异的关键。

同时,信号分布的设计和布线决定了电路中信号的准确传输和最小损耗。

4. 高频放大器设计高频放大器是用于增强电路中信号的电子设备。

设计高频放大器需要考虑信号输入输出的匹配性、增益、稳定性和线性度等因素。

传统的放大器电路设计方法需要和高频电路设计结合起来,通过使用适当的元件和电路结构来提高线路的性能。

5. 射频阻抗匹配在高频电子线路中,阻抗匹配非常重要,以确保信号的能量传输和最小损耗。

对于恒定驻波比的高频线路,正确的阻抗匹配可以使传输更有效。

阻抗匹配的方法包括L型匹配和T型匹配电路等。

6. 射频滤波器设计射频滤波器用于对特定频率范围的信号进行选择性的通过或衰减。

设计和分析射频滤波器需要考虑频率响应、带宽、阻带衰减等参数。

滤波器的类型包括带通滤波器、低通滤波器和高通滤波器等。

7. 射频混频器设计射频混频器是用于将不同频率的信号混合产生新频率的装置。

混频器广泛应用于信号调制和解调、频率合成等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1.1 主要设计内容1. 无线通信系统的组成2. 无线通信系统的类型3. 无线通信系统的要求和指标4. 无线电信号的主要特性1.2 关键名词解释1. 基带信号:未调制的信号2. 调制信号:调制后的信号3. 载波:单一频率的正弦信号或脉冲信号4. 调制:用调制信号去控制高频载波的参数,是载波信号的某一个或者几个参数(振幅、频率或相位)按照调制信号的规律变化。

1.3 知识点1. 无线通信系统的组成(P1框图)详细了解一下无线通信系统的促成部分和每个部分的作用1)高频振荡器(信号源、载波信号、本地振荡信号)2)放大器(高频小信号放大器及高频放大器)3)混频和变频(高频信号变换和处理)4)调制和解调(高频信号变换和处理)2. 无线通信系统的分类1)按照工作频率和传输手段分为:中波信号、短波信号、超短波信号、微波信号、卫星通信2)按照通信方式分:全双工、半双工、单工方式3)按照调制方式分:调幅、调频、调相、混合调制4)按照传输发送信息的类型:模拟通信、数字通信3. 无线信号的特性:时间特性、频率特性、频谱特性、调制特性、传播特性4. 无线通信采用高频信号的原因:1) 频率越高,可利用的频带宽度越宽,可以容纳更多许多互不干扰的信道,实现频分复用或频分多址,方便某些宽频带的消息信号(如图像信号 2) 同时适合于天线辐射和无线传播。

5. 调制的作用:1) 通过调制将信号频谱搬至高频载波频率,使收发天线的尺寸大可缩小 2) 实现信道的复用,提高信道利用率。

第二章 高频电路基础与系统问题2.1 主要设计内容1. 高频电路中的元器件2. 高频率电路中的组件2.2 关键名词解释1. 参数效应:在高频信号中,随着信号的提高,元件(包括导线)产生的分布参数效应和由此产生的寄生参数(如导体间、导体或元件与地之间、元件之间的杂散电容,连接元件的导线的垫高和元件自身的寄生电感)。

2. 趋肤效应:在频率升高时,电流只集中在导体的表面,导致有效导电面积减小,交流电阻可能远大于直流电阻,从而是导体损耗增加,电路性能恶化。

3. 辐射效应:信号泄漏到空间中,就使得信号源或要传输的信号能量不能全部传输带负载上,产生能量损失和电磁干扰。

4. 品质因素Q :谐振电路中所储能量同每周期损耗能量之比。

5. 谐振频率:简单振荡回路的阻抗在某一特性的频率上具有最大或最小值得特性(电抗为零时的频率)。

6. 失谐(ω∆):表示频率偏离谐振的程度,0ωωω∆=-。

7. 广义失谐(ε): 022fQQf ωεω∆∆== 8. 回路带宽(B ):保持外加信号幅值不变改变其频率,将回路电流值下降为谐对应的频率范围成为回路的通频带,00.72=f B f Q =∆。

9. 抽头并联振荡回路:激励源或负载回路电感或电容部分连接的并联振荡回路。

10. 抽头系数 (p ):与外电路相连的那部分电抗与本回路参与分压的同性质的总电抗之比。

(外电路:等效电源分析法是分析复杂电路的一种方法,具体做法是把复杂电路分为电源电路部分、外电路部分,即复杂电路=电源电路部分+外电路.目的是为了方便分析外电路,先把电源电路部分简化一下,用一个简单的电源来代替,这样就不用考虑电源电路部分的内部各分支电路、各元件电流电压随外电路参数变化,从而降低的电路分析难度.因此说:“电源等效是对外电路而言的”.) 11. 耦合振荡回路(双调回路):两个互相耦合的振荡回路。

12. 耦合系数(k ):两电感元件间实际的互感(绝对值)与其最大极限值之比(k =13. 矩形系数:(矩形系数描述了滤波器在截止频率附近响应曲线变化的陡峭程度,滤波器选择性好坏的一个参量)0.10.10.7r B K B =,矩形系数越接近1越好。

2.3 知识点(P19例2-1、P22例2-2)1. 高频中的无源器件:电阻(器)、电容(器)、电感(器)。

2. 高频中的有源器件:二极管、三极管、集成电路。

3. 高频中的无源组件(无源网络):高频振荡回路(应用最广泛)、高频变压器、谐振器(完成信号的传输、频率选择、阻抗变换)4. 电阻(器)在高频中使用时,不仅表现出电阻特性,还表现出电抗特性(高频特性)。

5. 高频特性:金属膜电阻 > 碳膜电阻 > 线绕电阻。

6. 电容器:当工作频率小于自身谐振频率是,电容器呈现电容特性;当工作频率大于自身谐振频率,电容器等效一个电感。

7. 在电感中,Q 值越高,表明电感器的储能能力越强,损耗越小。

8. 二极管在高频电路的主要作用:检波、调制、解调、混频。

9. 简单谐振回路具有频率谐振特性和频率选择特性。

10. 串联谐振回路:1) 串联谐振角频率0ω=,当0ωω<,回路成电容性,||s Z r >(r 为电感线圈L 中的损耗电阻);当0ωω>,回路呈电感特性;||s Z r >;当0ωω=,回路呈电阻特性2) 001L Q rLCωω==,Q 为品质因数(远大于1),Q 越高,回路的选择特性越好(矩形系数也是反映回路选择性好坏的另一个参数)。

3) 串联谐振回路电阻、电感、电容上的电压值与阻抗值成正比,串联谐振时电感及电容上的电压为最大,其值为电阻上的电压值的Q 倍,也就是恒流源的Q 倍。

4) 发生谐振的物理意义:电容中的存储的能量和电感中的磁能周期性变换,并且存储的最大能量相等。

11. 并联谐振回路:1)并联谐振角频率:0ω=,001L Q r LC ωω==;当1Q >>,0ω=,回路在谐振时的阻抗最大,为一电阻0R ,000L Q R Q L Cr C ωω=== 2) 并联回路通常用于窄带系统,此时0ωω与相差不大,则有:01121()p LR R Cr Z j jQ jQ ωωωεωωω===∆+++- 3) Q 值越大,选频性就越好,所以注意P18图2-7的几幅图中对比Q 不同,对应的||~,~p z Z R ωϕω的图像。

4) 谐振时,有L C I I QI ==5) 当0ωω<,回路成电感性;当0ωω>,回路呈电容性;当0ωω=,回路呈电阻特性12. 抽头并联振荡回路1) 抽头系数为p :TU p U =2) 谐振时,输入端呈现的电阻为R 从功率相等来看,22022T U U R R=,2200()TU R R p R U ==;同理在失谐不大的情况下,有2212T R Z p Z p jQ ωω==∆+。

3) 根据功率相等,有T T UI U I = T T I Up U I== 4) 在抽头回路中,谐振回路的回路电流(L C I I )比I 要小些,所以有00,,=T T L T L U U Q I U U RI I Q L R R I U R ω===,可得:L I pQI =。

13. 耦合振荡回路1) 耦合振荡回路的作用:一是用来进行阻抗变换以完成高频信号的传输,二是形成简单振荡回路更好的频率特性。

2) 通常应用时满足两个条件:两个回路都对信号进行频率调谐;另一个是都为高Q 电路。

3) 耦合因子A=kQ ,A>1,k>k 0过耦合;A<1,k<k 0,欠耦合;A=1,k=k 0,临界耦合,此时的耦合系数为临界耦合系数;在临界耦合时有:2121max||||Z Z =(注意P24图2-13的图形) 4) 反射阻抗反应的是刺激线圈对初级线圈的反作用,所以为22222m f Z M Z Z Z ω=-=15. 高频晶体管有两大类型:一类是作小信号放大的高频小功率管,对他们的主要要求是高增益和低噪声;另一类是高频功率放大管,除了增益之外,要求其在高频有较大的输出功率。

16. 阻抗变换的目的是实现阻抗匹配,阻抗匹配时负载可以得到更大的功率。

第三章 高频谐振放大器3.1 主要设计内容1. 高频小信号谐振放大器2. 高频谐振功率放大器3.2 关键名词解释1. 相对频带宽度:信号的带宽与中心频率宽度之比3.3 知识点高频小信号:1. 高频小信号放大器基本类型是频带放大器,频带放大器是以选频电路作为负载,兼具阻抗变化和选频滤波的功能。

(并联谐振电路、耦合回路)2. 高频小信号的基本要求:1) 增益要高2) 频率选择性要好(选择性是描述所需信号和抑制无用信号的能力,放大器的频率的两个重要参数是频带宽带和矩形系数) 3) 工作稳定可靠。

3. 高频小信号放大器的工作原理:与低频小信号放大器是一样的原理,负载电路用选频电路替代了4. 性能分析1) Y 参数模型2) 提高稳定性的方法:一是减小晶体管的反向传输导纳Y re ,而是从电路上设法消除晶体管的反向作用,使它单向化,具体有中和法和适配法。

高频功率放大器: 5. 简单介绍:1) 高频功率放大器的构成:电源、偏置电路、晶体管、谐振回路、输入回路2) 高频功率放大器选用谐振回路作为负载,保证了输出电压相对于输入电压不失真,还具有阻抗变换的作用(阻抗变换的目的是为了阻抗匹配,使负载得到更大的功率);同时使用谐振回路可以保留有用信号,滤除无用分量6. 高频功放的能量关系在集电极中,谐振回路得到的高频功率(高频一周的平均功率)即输出功率P 122111111222c c c c L LU P I U I R R ===集电极电源供给的直流输入功率为00c c P I E =集电极损耗功率P c :01c P P P =-集电极效率11001122c c c c I U P P I E ηλξ===(1100()()c c I I αθλαθ==波形系数,=ccU E ξ,集电极电压利用率)提高 集电极效率的目的是为了提高晶体管的输出功率负载特性: 临界状态的输出功率最大,效率也最高,通常应选择这状态;过压状态的特点是效率高,损耗小,并且输出电压受负载电阻R L 的影响小,近似恒压源的特性;欠压状态的特点是电流受负载电阻R L 的影响小,今夕交流恒流源特性,但次状态的效率太低。

7. 高频功放的工作原理和动态特性详细见P75-P79以及例题3-18. 高频功放的外部特性:放大器负载L R 、激励电压b U ,偏置电压b E 和c E 。

9. 高频功率放大器的高频效应(P85) 10. 高频功率放大的实际线路(P87)直流馈电线路1) 集电极馈电线路:串联馈电路、并联馈电路2) 在串联馈电路中:b L 的作用是阻止高频电流流过电源,防止产生不希望的寄生反馈;b C 的作用是提供交流通路(b C 的值应使它的阻抗远小于回路的高频阻抗,为有效地阻止高频电流流过电源,b L 呈现的阻抗应远大于b C 的阻抗)3) 并联和串联馈的电线路的优缺点比较:串联馈电线路的有点是c E 、b b L C 处于高频地电位,分布电容不影响回路;并联馈电线路的优点是回路一端处于直流地电位,回路L C 元件一端可以接地,安装方便。

相关文档
最新文档