2016-2017高考数学三视图汇编(可编辑修改word版)

合集下载

三年高考2016_2018高考数学试题分项版解析专题21三视图的辨别与应用理含解析81

三年高考2016_2018高考数学试题分项版解析专题21三视图的辨别与应用理含解析81

专题21 三视图的辨别与应用考纲解读明方向等几何体的形成过程,正确把握轴截面、中截面的含义及掌握将圆柱、圆锥、圆台的空间问题转化为平面问题的方法.3.理解三视图的形成过程及掌握三视图及直观图的画法.4.注重空间想象能力的培养.5.高考对本节的考查以三视图的识别和应用为主,分值约为5分,属中档题.2018年高考全景展示1.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.2017年高考全景展示1.【2017课标1,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.2.【2017浙江,3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12+πB .32+πC .123+πD .323+π 【答案】A【解析】 试题分析:12)122121(3312+=⨯⨯+⨯⨯⨯=ππV ,选A . 【考点】 三视图【名师点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)(B)(C)(D)2【答案】B【解析】试题分析:几何体是四棱锥,如图l==,故选B.红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,【考点】三视图【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.2016年高考全景展示1.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A )18+(B )54+(C )90 (D )81【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.基本性质及推论,线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.2.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )13+ (C )13+ (D )1+ 【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.3.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin120132V=⨯⨯⨯⨯︒⨯=考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.4.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3.【答案】7232考点:1、三视图;2、空间几何体的表面积与体积.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.5.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形的底为2,高为1,因此体积为1(21)323V=⨯⨯⨯=.故答案为2.【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.。

三年高考2016_2018高考数学试题分项版解析专题21三视图的辨别与应用文含解析82.doc

三年高考2016_2018高考数学试题分项版解析专题21三视图的辨别与应用文含解析82.doc

专题21 三视图的辨别与应用文考纲解读明方向分析解读 1.理解多面体、棱柱、棱锥、棱台的概念,牢记它们的几何特征.2.理解圆柱、圆锥、圆台、球等几何体的形成过程,正确把握轴截面、中截面的含义及掌握将圆柱、圆锥、圆台的空间问题转化为平面问题的方法.3.理解三视图的形成过程及掌握三视图及直观图的画法.4.注重空间想象能力的培养.5.高考对本节的考查以三视图的识别和应用为主,分值约为5分,属中档题.2018年高考全景展示1.【2018年浙江卷】某几何体的三视图如图所示(单位: cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.2.【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解. 3.【2018年全国卷Ⅲ文】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。

2017年高考全景展示1.【2017课标II,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B.【考点】三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.2.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A )60 (B )30 (C )20 (D )10 【答案】D 【解析】试题分析:该几何体是三棱锥,如图:【考点】1.三视图;2.几何体的体积.【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面的外面,否则中间的那条线就不会是虚线.2016年高考全景展示1.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【解析】考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.。

(完整版)(经典)高考数学三视图还原方法归纳(可编辑修改word版)

(完整版)(经典)高考数学三视图还原方法归纳(可编辑修改word版)

高考数学三视图还原方法归纳方法一:还原三步曲核心内容:三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。

还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。

方法展示(1)将如图所示的三视图还原成几何体。

还原步骤:①依据俯视图,在长方体地面初绘ABCDE 如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D 处不可能有垂直拉升的线条,而在 E 处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S 的位置;如图③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD 如图所示:3经典题型:例题 1:若某几何体的三视图,如图所示,则此几何体的体积等于( )cm ³。

解答:(24)例题 2:一个多面体的三视图如图所示,则该多面体的表面积为( )答案:21+ 计算过程:步骤如下:第一步:在正方体底面初绘制ABCDEFMN 如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E、F、M、N 处不可能有垂直拉升的线条,而在点A、B、C、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G, G', B', D', E ', F ' 地位置如图;第三步:由三视图中线条的虚实,将点G 与点E、F 分别连接,将G'与点E ' 、F '分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。

例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()答案:(6)还原图形方法一:若由主视图引发,具体步骤如下: (1) 依据主视图,在长方体后侧面初绘 ABCM 如图:(2) 依据俯视图和左视图中显示的垂直关系,判断出在节点 A 、B 、C 出不可能有垂直向前拉升的线条,而在 M 出必有垂直向前拉升的线条 MD ,由俯视图和侧视图中长度,确定点 D 的位置如图:(3) 将点 D 与 A 、B 、C 分别连接,隐去所有的辅助线条便可得到还原的几何体 D —ABC 如图所示:解:置于棱长为 4 个单位的正方体中研究,该几何体为四面体 D —ABC ,且 AB=BC=4,AC=4,DB=DC=2 5 ,可得DA=6.故最长的棱长为 6.方法 2若由左视图引发,具体步骤如下: (1) 依据左视图,在长方体右侧面初绘 BCD 如图:(2) 依据正视图和俯视图中显示的垂直关系,判断出在节点 C 、D 处不可能有垂直向前拉升的线条,2而在 B 处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点 A 的位置,如图:(3)将点A 与点B、C、D 分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC 如图:方法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。

高中数学(超全面的)_三视图完整

高中数学(超全面的)_三视图完整

考考你
正视图( A ) 左视图 ( A ) 俯视图 ( B )
A
.B
C
试一试:
• 1、如下图几何体,请画出这个物体的三种视图。
主主视主主视图视视图图图
左左左左视视视视图图图图
俯俯俯俯视视视视图图图图
.
第二课时
.
9.下面所给的三视图表示什么几何体?
圆锥
.
例4 根据三视图说出立体图形的名称
.
例5 根据物体的三视图,描述物体的形状.
1
思考方法
21 2
先根据俯视图确定正视图有 列,再根据数字确定每列的方块 有 个。(取最多个数)
正视图

侧视图:
主侧视图有 23 列,第一列的方块 有 12 个,
第二列的方块有有 2 个个.。
第三列的方块有. 1 个.
4、试画出如图所示物体的三视图

视 图

侧 视


.
GO

主 视
.
从三个方向看
142244216162 2.
故选B。
4、(广东文9)
如图,某几何体的正视图(主视图),
侧视图(左视图)和俯视图分别是等边
三角形,等腰三角形和菱形,则该几何
体的体积为
4 A.4 3 B.
√ 2 C. 2 3

D.
正视图
该几何体是一个底面为菱形
2
侧视图
的四棱锥,则该几何体的体积
V1Sh123323
33
主视图
左视图
俯视图
从正面看
.
挑战自我
画出如图所示四棱锥的三视图。
.
四菱锥的三视图:
正视图

三年高考(2016-2018)数学(理)真题分项专题21 三视图的辨别与应用(Word版)

三年高考(2016-2018)数学(理)真题分项专题21 三视图的辨别与应用(Word版)

专题21 三视图的辨别与应用考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.空间几何体的结构认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构了解2016课标全国Ⅲ,10;2015课标Ⅱ,6选择题填空题★★☆2.三视图和直观图①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图;②会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式;③会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)理解2017课标全国Ⅰ,7;2017北京,7;2016课标全国Ⅰ,6;2015重庆,5;2014湖南,7;2013四川,3选择题填空题★★★等几何体的形成过程,正确把握轴截面、中截面的含义及掌握将圆柱、圆锥、圆台的空间问题转化为平面问题的方法.3.理解三视图的形成过程及掌握三视图及直观图的画法.4.注重空间想象能力的培养.5.高考对本节的考查以三视图的识别和应用为主,分值约为5分,属中档题.2018年高考全景展示1.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B. C. D. 22017年高考全景展示1.【2017课标1,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .162.【2017浙江,3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12+π B .32+π C .123+πD .323+π 3.【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )2 (B )3 (C )2 (D )22016年高考全景展示1.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A)18365+(B)54185+(C)90 (D)812.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)123+π(C)123+π(D)21+π3.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图3314.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3.5.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.。

三年高考(2015-2017)高考数学试题分项版解析 专题20 三视图的辨别与应用 理

三年高考(2015-2017)高考数学试题分项版解析 专题20 三视图的辨别与应用 理

专题20 三视图的辨别与应用1.【2017课标1,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体平面内只有两个相同的梯形的面,则含梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.2.【2017浙江,3】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A .12+πB .32+πC .123+πD .323+π【答案】A 【解析】试题分析:12)122121(3312+=⨯⨯+⨯⨯⨯=ππV ,选A . 【考点】三视图3.【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )2B )3C )2(D )2【答案】B 【解析】试题分析:几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=,故选B. 【考点】三视图【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题. 4.【2014高考北京理第7题】在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】考点:三棱锥的性质,空间中的投影,难度中等.【名师点睛】本题考查空间直角坐标系下几何体的位置和相应点的坐标以及正投影的概念,正投影的位置、形状和面积,本题属于基础题,要准确写出点的坐标,利用坐标求出三角形的面积.5.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C【解析】【名师点睛】由三视图还原几何体的方法:6.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D. 【答案】A 【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.7.【2015高考陕西,理5】一个几何体的三视图如图所示,则该几何体的表面积为()A .3πB .4πC .24π+D .34π+【答案】D【解析】由三视图知:该几何体是半个圆柱,其中底面圆的半径为,母线长为,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D .8.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+B )54185+C )90(D )81 【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.基本性质及推论,线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.9.【2015高考新课标2,理6】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】DADD 1C 1B 11【考点定位】三视图.【名师点睛】本题以正方体为背景考查三视图、几何体体积的运算,要求有一定的空间想象能力,关键是能从三视图确定截面,进而求体积比,属于中档题.10.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)1233+π(C)1236+π(D)216+π【答案】C 【解析】试题分析:由三视图可知,上面是半径为22的半球,体积为3114222326Vππ⎛⎫=⨯⨯=⎪⎪⎝⎭,下面是底面积为1,高为1的四棱锥,体积2111133V=⨯⨯=,故选C.考点:1.三视图;2.几何体的体积.11.【2014课标Ⅰ,理12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()(A)62(B)(C)62(D)【答案】B【解析】由正视图、侧视图、俯视图形状,可判断该几何体为四面体,且四面体的长、宽、高均为4个单位,故可考虑置于棱长为4个单位的正方体中研究,如图所示,该四面体为D ABC -,且4AB BC ==,42AC =,25DB DC ==,2(42)46DA =+=,故最长的棱长为6,选B .4CABD12.【2015高考浙江,理2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是() A.38cm B.312cm C.3323cm D.3403cm【答案】C. 【解析】试题分析:由题意得,该几何体为一立方体与四棱锥的组合,如下图所示,∴体积3322231223=⨯⨯+=V , 故选C.13.【2015高考重庆,理5】某几何体的三视图如图所示,则该几何体的体积为A 、13π+B 、23π+ C 、123π+ D 、223π+【答案】A【解析】这是一个三棱锥与半个圆柱的组合体,2111112(12)12323V ππ=⨯⨯+⨯⨯⨯⨯⨯=+,选A .【考点定位】组合体的体积.【名师点晴】本题涉及到三视图的认知,要求学生能由三视图画出几何体的直观图,从而分析出它是哪些基本几何体的组合,应用相应的体积公式求出几何体的体积,关键是画出直观图,本题考查了学生的空间想象能力和运算求解能力.14.【2014,安徽理7】一个多面体的三视图如图所示,则该多面体的表面积为 ()A .21+3B .18+3C .21D .18 【答案】A . 【解析】试题分析:由题意,该多面体的直观图是一个正方体''''ABCD A B C D -挖去左下角三棱锥A EFG-和右上角三棱锥''''C E F G -,如下图,则多面体的表面积113226116222213222S =⨯⨯-⨯⨯⨯+⨯⨯⋅⨯=+.故选A .15.【2014湖北卷5】在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和② 【答案】D 【解析】试题分析:设)2,2,2(),1,2,1(),0,2,2(),2,0,0(D C B A ,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.考点:空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题.16.【2015高考北京,理5】某三棱锥的三视图如图所示,则该三棱锥的表面积是()11俯视图21A .25B .45C .225+.5 【答案】C【解析】根据三视图恢复成三棱锥P-ABC ,其中PC ⊥平面ABC ,取AB 棱的中点D ,连接CD 、PD ,有,PD AB CD AB ⊥⊥,底面ABC 为等腰三角形底边AB 上的高CD 为2,AD=BD=1,PC=1,5,ABC PD S ∆=1222,2=⨯⨯=,12552PAB S ∆=⨯⨯=,AC BC =5=1512PAC PBC S S ∆∆==⨯⨯ 52=,三棱锥表面积表252S =+. 考点定位:本题考点为利用三视图还原几何体及求三棱锥的表面积,考查空间线线、线面的位置关系及有关线段长度及三角形面积数据的计算.17.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图331【答案】33【解析】试题分析:由三棱锥的正视图知,三棱锥的高为,底面边长为32,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为11322sin120132V =⨯⨯⨯⨯︒⨯=. 考点:三视图,几何体的体积.18.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.【答案】7232【解析】试题分析:几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(224)32⨯⨯+⨯⨯-⨯=2(222244)2(22)72考点:1、三视图;2、空间几何体的表面积与体积.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.19.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2.考点:三视图20.【2015高考天津,理10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .1侧视图俯视图正视图11112111111【答案】83π【解析】由三视图可知,该几何体是中间为一个底面半径为,高为的圆柱,两端是底面半径为,高为的圆锥,所以该几何体的体积22181221133V πππ=⨯⨯+⨯⨯⨯⨯=.。

三年高考2016_2018高考数学试题分项版解析专题21三视图的辨别与应用文含解析82-新整理

三年高考2016_2018高考数学试题分项版解析专题21三视图的辨别与应用文含解析82-新整理

专题21 三视图的辨别与应用文考纲解读明方向考点内容解读要求常考题型预测热度1.空间几何体的结构认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构了解选择题填空题★★☆2.三视图和直观图①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图;②会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式;③会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)理解选择题填空题★★★分析解读 1.理解多面体、棱柱、棱锥、棱台的概念,牢记它们的几何特征.2.理解圆柱、圆锥、圆台、球等几何体的形成过程,正确把握轴截面、中截面的含义及掌握将圆柱、圆锥、圆台的空间问题转化为平面问题的方法.3.理解三视图的形成过程及掌握三视图及直观图的画法.4.注重空间想象能力的培养.5.高考对本节的考查以三视图的识别和应用为主,分值约为5分,属中档题.2018年高考全景展示1.【2018年浙江卷】某几何体的三视图如图所示(单位: cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等. 2.【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.。

三年高考2015_2017高考数学试题分项版解析专题18立体几何中三视图及其应用文201711011

三年高考2015_2017高考数学试题分项版解析专题18立体几何中三视图及其应用文201711011

专题18 立体几何中三视图及其应用1.【2017课标II,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π【答案】B【考点】三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.2.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A)60 (B)30(C)20 (D)10【答案】D【解析】试题分析:该几何体是三棱锥,如图:11图中红色线围成的几何体为所求几何体,该几何体的体积是V53410,32故选D.【考点】1.三视图;2.几何体的体积.【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面的外面,否则中间的那条线就不会是虚线.3.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为()A.3B.4C.24D.34【答案】D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.4.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.5.【2015北京文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.B.2C.3D.【答案】C【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长即可.6.【2015新课标2文6】一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()1 8 A.17B.16C.15D.【答案】D 【解析】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为15,故选D.【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.7. (2014课标全国Ⅰ,文8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是().A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案:B名师点睛:本题考查根据三视图判断原几何体的形状,考查空间想象能力,容易题. 三视图 的长度特征:“长对正,宽相等,高平齐”,即主视图和左视图一样高,主视图和俯视图一样 长,左视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视 图中,要注意实、虚线的画法.8.【2015高考安徽,文 9】一个四面体的三视图如图所示,则该四面体的表面积是()(A )1 3 (B )1 2 2 (C ) 2 3 (D ) 2 2【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面 PAC ⊥底面 ABC ,且PAC ≌ ABC ,由三视图中所给数据可知:PA PC AB BC 2 ,取 AC 中点O ,连接 PO ,BO ,则 Rt POB 中, 3 1PO BO 1 PB 2 ∴2 2 2 2 34 2S 2,故选 C .【考点定位】本题主要考查空间几何体的三视图、锥体表面积公式.【名师点睛】在利用空间几何体的三视图求几何体的体积或者表面积时,一定要正确还原几何 体的直观图,然后再利用体积或表面积公式求之;本题主要考查了考生的空间想象力和基本运 算能力.69.【2014年普通高等学校招生全国统一考试湖北卷 7】在如图所示的空间直角坐标系O xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四 个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②【答案】D考点:空间由已知条件,在空间坐标系中作出几何体的形状,正视图与俯视图的面积,容易题. 【名师点睛】将空间几何体的三视图与空间直角坐标系融合在一起,凸显了数学内知识间的内 在联系,充分体现了数学特点和知识间的内在联系,能较好的考查学生的综合知识运用能力. 其解题突破口是正确地在空间直角坐标系中画出该几何体的原始图像.10.【2015高考重庆,文 5】某几何体的三视图如图所示,则该几何体的体积为()(A)1 3(B) 132(B) 136(C)73(D)52【答案】B【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用 简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.11.【2015高考浙江,文 2】某几何体的三视图如图所示(单位: cm ),则该几何体的体积是 ( )A . cm 3B . 12 cm 3C . 32 3cm3D . 40 3cm3【答案】C【解析】由三视图可知,该几何体是一个棱长为的正方体与一个底面边长为,高为的正四棱锥 的组合体,故其体积为23 1 22 2 32 3Vcm .故选 C.3 3【考点定位】1.三视图;2.空间几何体的体积. 学¥【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的 结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间 想象能力和基本的运算能力.12.【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何 体的体积为()1 2 (A )+ π 3 3(B )1 2 + π 3 3(C )1 2 + π3 6 2 1+ π (D )6【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算, 综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等. 13. 【2014四川,文 4】某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥1体体积公式:VSh ,其中 S 为底面面积,为高) 3A 、B 、C 、 3D 、212212 1 1侧 侧 侧侧 侧 侧9【答案】DAAD DOC CB B【考点定位】空间几何体的三视图和体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.14. 2016高考新课标Ⅲ文数]如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18365(B)54185(C)90 (D)81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积S236233233554185,故选B.考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.1015.【2015高考湖南,文10】某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)()A、89B、827C、24(21)2D、8(21)2【答案】A【考点定位】三视图、基本不等式求最值、圆锥的内接长方体【名师点睛】运用基本不等式求最值要紧紧抓住“一正二定三相等”条件,本题“和为定”是解决问题的关键.空间想象能力是解决三视图的关键,可从长方体三个侧面进行想象几何体.求组合体的体积,关键是确定组合体的组成形式及各部分几何体的特征,再结合分割法、补体法、转化法等方法求体积.16.【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条1128π相互垂直的半径.若该几何体的体积是,则它的表面积是()3(A)17π(B)18π(C)20π(D)28π【答案】A考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.17.【2015高考北京,文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.B.2C.3D.12【答案】C【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则 很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长 即可.18.【2017山东,文 13】由一个长方体和两个 1 4圆柱构成的几何体的三视图如图,则该几何体的体积为 .【答案】2 π 2【解析】试题分析:由三视图可知,长方体的长宽高分别为 2,1,1,圆柱的高为 1,底面圆半径为 1,所以Vπ1π2211 2 1 2 .42【考点】三视图及几何体体积的计算.13【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽 相等”的原则.(2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是 由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整 体;③综合起来,定整体.19.【2014高考北京文第 11题】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.22主 主 主 主 主 主 1 11 主 主 主 主 主主 主 主 主【答案】 2 2考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力,考查分析问题与解 决问题的能力.20.【2016高考四川文科】已知某三菱锥的三视图如图所示,则该三菱锥的体积.主 主 主主 主 主【答案】 33【解析】1试题分析:由三视图可知该几何体是一个三棱锥,且底面积为S2 313 ,高为 1,214113所以该几何体的体积为V Sh31.333考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.21.【2015高考天津,文10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为m .3【答案】8π3【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.22.【2014天津文10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为m.3【答案】203.15考点:三视图考点定位:本题考点为利用三视图还原几何体及求组合体的体积【名师点睛】本题考查三视图及求组合体的体积,本题属于基础题,正确利用三视图还原为原几何体,特别是有关数据的还原,本题中的几何体为一个圆锥与一个圆柱的组合体,借助三视图中的数据,求出圆锥和圆柱的体积,两体积相加得出组合体的体积,三视图问题为今年高考热点,是必考题,是高考备考的重点,近几年出题难度逐年增加.16。

专题17:三视图高考真题集锦(解析版)

专题17:三视图高考真题集锦(解析版)

专题17:三视图高考真题集锦(解析版)1.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13【答案】A 【详解】因为加工前的零件半径为3,高为6,所以体积154V π=,又因为加工后的零件,左半部为小圆柱,半径为2,高4,右半部为大圆柱,半径为3,高为2,所以体积2161834V πππ=+=,所以削掉部分的体积与原体积之比为5434105427πππ-=,故选A.考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力.2.2018年全国卷Ⅲ文数高考试题中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题.3.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A.B.C.D.【答案】A【解析】对于B,易知AB∥MQ,则直线AB∥平面MNQ;对于C,易知AB∥MQ,则直线AB∥平面MNQ;对于D,易知AB∥NQ,则直线AB∥平面MNQ.故排除B,C,D,选A.点睛:本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【答案】B 【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B.点睛:(1)解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.(2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.5.2014年全国普通高等学校招生统一考试理科数学如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A .63B .6C .2D .4【答案】B 【详解】由正视图、侧视图、俯视图形状,可判断该几何体为四面体,且四面体的长、宽、高均为4个单位,故可考虑置于棱长为4个单位的正方体中研究, 如图所示,该四面体为D ABC -,且4AB BC ==,42AC =,25DB DC ==,2(42)46DA =+=,故最长的棱长为6,选B .6.2016年全国普通高等学校招生统一考试理科数学(全国2卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π【答案】C 【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.考点:三视图与表面积.7.2016年全国普通高等学校招生统一考试文科数学(新课标3卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.B.C.90D.81【答案】B【解析】【详解】试题分析:解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:.故选:B.点睛:本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.8.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图+,则r=( )中的正视图和俯视图如图所示,若该几何体的表面积为1620πA .1B .2C .4D .8 【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+="16" + 20π,解得r=2,故选B. 考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式9.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .15【答案】D 【详解】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为,故选D. 考点:本题主要考查三视图及几何体体积的计算.10.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【答案】B 【解析】试题分析:由三视图中的正视图可知,由一个面为直角三角形,左视图和俯视图可知其它的面为长方形.综合可判断为三棱柱. 考点:由三视图还原几何体.11.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A .2717 B .95 C .2710 D .31【答案】C 【解析】试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图.12.2020年全国统一高考数学试卷(理科)(新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H【答案】A 【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点. 【详解】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E . 故选:A 【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题. 13.2020年全国统一高考数学试卷(理科)(新课标Ⅲ) 下图为某几何体的三视图,则该几何体的表面积是( )A .2B .2C .3D .3【答案】C 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△ 根据勾股定理可得:22AB AD DB ===∴ADB △是边长为22的等边三角形根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△ ∴该几何体的表面积是:2362332=⨯++.故选:C. 【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.2017年全国普通高等学校招生统一考试理科数学(新课标1卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.点睛:三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.15.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【答案】D【解析】试题分析:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为111111326⨯⨯⨯⨯=,∴剩余部分体积为15166-=,∴截去部分体积与剩余部分体积的比值为15.故选D.考点:由三视图求体积16.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是A.17πB.18πC.20πD.28π【答案】A【解析】试题分析:由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的,即该几何体是个球,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和,即,故选A.【考点】三视图及球的表面积与体积【名师点睛】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键.17.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.B.C.D.【答案】C【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和。

高考数学三视图汇编.doc

高考数学三视图汇编.doc

高考立体几何三视图1( 2017 全国卷二理数)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90B.63C.42D.36【答案】 B【解析】该几何体可视为一个完整的圆柱减去一个高为 6 的圆柱的一半.2( 2017 北京文数)某三棱锥的三视图如图所示,则该三棱锥的体积为A 60B 30C 20D 10【答案】 D【解析】该几何体是如图所示的三棱锥P-ABC ,由图中数据可得该几何体的体积为V 115 3 4 10 3 23( 2017 北京理数)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A 3 2B 2 3C 2 2D 2【答案】 B【解析】如下图所示,在四棱锥P ABCD 中,最长的棱为PA,所以 PA= PC2AC 222(2 2) 2 2 3 ,故选B.4( 2017 山东理数)由一个长方体和两个何体的三视图如图,则该几何体的体积为1圆柱构成的几4。

【答案】2+ 【解析】由三视图可知,长方体的长、宽、2高分别是2、 1、 1,圆柱的高为1,底面半径为1,所以V 2 1 1 2 121=2+4 25( 2017 全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C.14 D .16【答案】 B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为2(2 4) 2 112 ,故选 B. 26( 2017 浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A. π+1 πB. +32 2C. 3 3π+1 D. +3 2 2【答案】 A 【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥的体积为 V1 1 1 12 3 π,三棱锥的体积为 V2 112 13 1 ,2 3 2 3 2 2所以它的体积为V V1 V2π 1 2 27.( 2016 全国卷 1 文数)如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π,则它的表面积3是().A .17πB.18πC.20π D .28π【答案】 B 【解析】由三视图可知该几何体是7个球(如图所示),设球的半径为 R ,则8V 7 4π 3 28πS表7 2 3 28R 得 R=2 ,所以它的表面积是84π 2 +42 173 38.( 2016 全国卷 2 文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为().A.20πB.24C.28D.32【答案】 C【解析】由题意可知,圆柱的侧面积为S12π 2 4 16圆锥的侧面积为S212π 2 48 2圆柱的底面积为S3π 22 4该几何体的表面积为S S1+S2 +S3289.( 2016 全国卷 3 文数)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为() .A. 18 36 5B. 54 18 5C. 90D. 81【答案】 B 【解析】(1)由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S=3×6×2+3×3×2+ 3× 45×2= 54+ 18 5. 10.( 2016 北京文数)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3【解析】由已知中的三视图可知,该几何体是一个以俯视图为底面的四棱柱,2棱柱的底面积为 S 1(1+2) 1 3 棱柱的高为1,故体积为3 2 2 211.(2016 山东文数)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为() .A . 1 2 πB . 1 2 π3 3 3 3C. 1 2 πD.1 2 π3 6 6 11 1正(主)视图侧(左)视图俯视图【答案】 C【解析】由题意可知,该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥底面棱长为1,可得2R 22,故 R2半球的体积为,2 23 2(g )=326棱锥的面积为1,高为 1,故体积为1故几何体的体积为1 +23 3 612.( 2016 天津文数3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为() .【答案】 B【解析】由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项 B.13( 2016 四川文数)已知某三棱锥的三视图如图所示,则该三棱锥的体积等于. 【答案】 C【解析】由题意可知,该几何体为三棱锥,底面为俯视图所示的三角形,底面积 S 13 1 3 ,高为 h1 1 32 1 棱锥的体积为VSh g 3g1=3 2 3 314.( 2016 浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的表2 3面积是 ______cm ,体积是 ______cm .【答案】 C 【解析】由题意可知,该几何体为长方体上面放置一个小的正方体,其表面积为 S 6 22 2 42 4 2 4 2 22 80其体积为 V 23 4 4 2 40。

2017高考数学全国卷立体几何汇编.doc

2017高考数学全国卷立体几何汇编.doc

2013-2017高考数学全国卷理科--立体几何汇编学校: 姓名: 班级: 考号:一、选择题I(理)]某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 ( )A. 10B. 12C. 14D. 162. [2017·全国新课标卷II(理)]如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 ( )A. 90πB. 63πC. 42πD. 36π3. [2017·全国新课标卷II(理)]已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 ( )A. 32B. 155C. 105D. 334. [2017·全国新课标卷III(理)]已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 ( )A. πB. 3π4C. π2D. .π45. [2016·高考全国新课标卷Ⅰ,6]如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π6. [2016·高考全国新课标卷Ⅰ,11]平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A. 32B. 22C. 33D. 137. [2016·高考全国新课标卷Ⅱ,6]如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A. 20πB. 24πC. 28πD. 32π8. [2016·高考全国新课标卷Ⅲ,9]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A. 18+365B. 54+185C. 90D. 819. [2016·高考全国新课标卷Ⅲ,10]在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A. 4πB. 9π2C. 6πD. 32π310. [2015·高考全国新课标卷Ⅰ,6]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆第2页共10页放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A. 14斛B. 22斛C. 36斛D. 66斛11. [2015·高考全国新课标卷Ⅰ,11]圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=()正视图俯视图A. 1B. 2C. 4D. 812. [2015·高考全国新课标卷Ⅱ,6]一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A. 18B. 17C. 16D. 1513. [2015·高考全国新课标卷Ⅱ,9]已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A. 36πB. 64πC. 144πD. 256π第4页 共10页14. [2014·高考全国新课标卷Ⅰ,12]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A. 62B. 6C. 42D. 415. [2014·全国新课标卷Ⅱ,6]如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 1316. [2014·全国新课标卷Ⅱ,11]直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A. 110B. 25C. 3010D. 2217. [2013·高考全国新课标卷Ⅰ,6]如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A. 500π3 cm 3B. 866π3 cm 3C. 1372π3 cm 3D. 2048π3 cm 318. [2013·高考全国新课标卷Ⅰ,8]某几何体的三视图如图所示,则该几何体的体积为( )A. 16+8πB. 8+8πC. 16+16πD. 8+16π19. [2013·高考全国新课标卷Ⅱ,4]已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A. α∥β且l ∥α B. α⊥β且l ⊥β C. α与β相交,且交线垂直于l D. α与β相交,且交线平行l20. [2013·高考全国新课标卷Ⅱ,7]一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )A. B. C. D.二、填空题I(理)]如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.22. [2017·全国新课标卷III(理)]a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)23. [2016·高考全国新课标卷Ⅱ,14]α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)三、解答题第6页 共10页24. [2017·全国新课标卷I(理)] (本小题满分12分)如图,在四棱锥P-ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC ,∠APD=90°,求二面角A-PB-C 的余弦值. 25. [2017·全国新课标卷II(理)] (本小题满分12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=12AD ,∠BAD=∠ABC=90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值. 26. [2017·全国新课标卷III(理)] (本小题满分12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD ,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.27. [2016·高考全国新课标卷Ⅰ,18] (本小题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D -AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.28. [2016·高考全国新课标卷Ⅱ,19] (本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=10.第8页 共10页(1)证明:D'H ⊥平面ABCD ; (2)求二面角B -D'A -C 的正弦值.29. [2016·高考全国新课标卷Ⅲ,19] (本小题满分12分)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.30. [2015·高考全国新课标卷Ⅰ,18](本小题满分12分) 如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.31. [2015·高考全国新课标卷Ⅱ,19](本小题满分12分)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F= 4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.32. [2014·高考全国新课标卷Ⅰ,19] (本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值.33. [2014·全国新课标卷Ⅱ,18] (本小题满分12分) 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积.34. [2013·高考全国新课标卷Ⅰ,18](本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.第10页 共10页35. [2013·高考全国新课标卷Ⅱ,18](本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.。

2017高考试题分类汇编立体几何文数

2017高考试题分类汇编立体几何文数

立体几何(三视图)【2017年北京卷第6题】某三棱锥的三视图如下图,那么该三棱锥的体积为(A)60 (B)30 (C)20 (D)10【2017年山东卷第13题】由一个长方体和两个14圆柱组成的几何体的三视图如右图,那么该几何体的体积为 .【2017年浙江卷第3题】某几何体的三视图如下图(单位:cm),那么该几何体的体积(单位:3cm)是A. π+12B.π+32C.π3+12D.π3+32【2017年新课标II 第6题】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部份后所得,那么该几何体的体积为A.90πB.63πC.42πD.36π立体几何(点线面关系、大题)【2017年浙江卷第11题】我国古代数学家刘徽创建的“割圆术”能够估算圆周率π,理论上能把π的值计算到任意精度。

祖冲之继承并进展了“割圆术”,将π的值精准到小数点后七位,其结果领先世界一千连年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6= 。

【2017年新课标I 卷第16题】已知三棱锥S-ABC 的所有极点都在球O 的球面上,SC 是球O 的直径.假设平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,那么球O 的表面积为________.【2017年新课标I 卷第6题】如图,在以下四个正方体中,A ,B 为正方体的两个极点,M ,N ,Q 为所在棱的中点,那么在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2017年浙江卷第9题】如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 别离为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA==,别离记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,那么A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【2017年新课标III 卷第9题】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,那么该圆柱的体积为A .πB .3π4C .π2D .π4【2017年新课标II 第15题】长方体的长、宽、高别离为3,2,1,其极点都在球O 的球面上,那么球O 的表面积为【2017年新课标III 卷第10题】在正方体1111ABCD A B C D 中,E 为棱CD 的中点,那么A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【2017年天津卷第11题】已知一个正方体的所有极点在一个球面上,假设那个正方体的表面积为18,那么那个球的体积为 .【2017年江苏卷第6题】如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PC 2 + AC 2
22 + (2 2)2 高考立体几何三视图
1(2017 全国卷二理数)如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A . 90
B . 63
C . 42
D . 36
【答案】B 【解析】该几何体可视为一个完整的圆柱减去一个高为 6 的圆柱的一半.
V = V - 1 V = π ⋅ 32 ⋅10 - 1
⋅ π ⋅ 32 ⋅ 6 = 63π

2 上 2
2(2017 北京文数) 某三棱锥的三视图如图所示,则该三棱锥的体积为
A 60
B 30
C 20
D 10
【答案】D 【解析】该几何体是如图所示的三棱锥 P-ABC , 由图中数据可得该几何体的体积为V = 1 ⨯ 1
⨯ 5 ⨯ 3 ⨯ 4 = 10
3 2
3(2017 北京理数)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为
A 3
B 2
C 2
D 2
【答案】B
【解析】如下图所示,在四棱锥 P - ABCD 中,最长的棱为 PA

所以 PA = = = 2 3 ,故选
B . 2
3 2
1
4(2017 山东理数)由一个长方体和两个圆柱构成的几
4
何体的三视图如图,则该几何体的体积为。

【答案】2+
2
【解析】由三视图可知,长方体的长、宽、高分别是2、1、1,圆柱的高为1,底面半径
⨯12
为1,所以V = 2 ⨯1⨯1 + 2 ⨯⨯1=2+
4 2
5(2017 全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若
干个是梯形,这些梯形的面积之和为
A.10 B.12 C.14 D.16
【答案】B
【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,
如下图,则该几何体各面内只有两个相同的梯形,
则这些梯形的面积之和为2 ⨯(2 + 4) ⨯ 2 ⨯1
= 12 ,故选 B. 2
6(2017 浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
A.π
+1 2
C. 3
+1
2
B.
π
+3
2
D.

+3
2
【答案】A 【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥
的体积为V =1

1
⨯⨯12⨯ 3 =
π
,三棱锥的体积为V =
1

1
⨯ 2 ⨯1⨯ 3 =
1

1 2 3 2 2 3 2 2
所以它的体积为V =V +V =π +1
1 2 2 2
3 7.(2016 全国卷 1 文数)如图所示,某几何体的三视图是三个半径相等的圆及
28π 每个圆中两条相互垂直的半径.若该几何体的体积是
,则它的表面积是
3

).
A.

B.
18π
C.
20π
D.
28π
7 【答案】B
【解析】由三视图可知该几何体是 个球( 如图所示), 设球的半径为 R , 则
8
V = 7 ⨯ 4π R 3 = 28π
得 R=2,所以它的表面积是 S 8 3 3 表
= 7 ⨯ 4π⨯ 22 + 3 ⨯⨯ 22 = 17
8
4
8.(2016 全国卷 2 文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ).
A. 20π
B. 24π
C. 28π
D. 32π 【答案】C 【解析】由题意可知,圆柱的侧面积为 S 1 = 2π⨯ 2 ⨯ 4 = 16
圆锥的侧面积为 S 2 = 1
⨯ 2π⨯ 2
⨯ 4 = 8
2
圆柱的底面积为 S = π⨯ 22
= 4
该几何体的表面积为 S = S 1 +S 2 +S 3 = 28
9.(2016 全国卷 3 文数)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 (
).
A.18 + 36 C. 90
B. 54 +18 D. 81
5 5
2
2
【答案】B 【解析】(1)由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S=3×6×2+3×3×2+3×45×2=54+18 5.
10.(2016 北京文数)某四棱柱的三视图如图所示,则该四棱柱的体积为.
3
【答案】【解析】由已知中的三视图可知,该几何体是一个以俯视图为底面的四棱柱,2
棱柱的底面积为 S=
1
⨯(1+2)⨯1=
3
2 2
3
棱柱的高为1,故体积为
2
11.(2016 山东文数)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该
几何体的体积为().
A.
1
+
2
π B.
1

主主主主主主主主主主主主
3 3
C.
1
+
2
π
3 3
D.1+
2
π
3 6 6
主主主
【答案】C 【解析】由题意可知,该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥底面棱长为1,可得2R=,故R=
2
半球的体积为
2

2
)3=
2
2 ,
1 1 2
棱锥的面积为1,高为1,故体积为故几何体的体积为+
3 2 6
3 3 6
12.(2016 天津文数3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯
视图如图所示,则该几何体的侧(左)视图为().
1
1 1
3
1
3
3
1
1
3 3
1
A.
B.
C.
D.
【答案】B 【解析】由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项 B.
13(2016 四川文数)已知某三棱锥的三视图如图所示,则该三棱锥的体积等于
.
正视图
侧视图
俯视图
【答案】C
【解析】由题意可知,该几何体为三棱锥,底面为俯视图所示的三角形,
底面积 S = 1 ⨯ 2 3 ⨯1 = ,高为 h = 1 棱锥的体积为V = 1 Sh = 1 3 1=
3
2 3 3
3
14.(2016 浙江文数)某几何体的三视图如图所示(单位:cm ),则该几何体的表面
积是 cm 2,体积是 cm 3.
【答案】C 【解析】由题意可知,该几何体为长方体上面放置一个小的正方
体,
其表面积为 S = 6 ⨯ 22 + 2 ⨯ 42 + 4 ⨯ 2 ⨯ 4 - 2 ⨯ 22 = 80 其体积为V = 23 + 4 ⨯ 4 ⨯ 2 = 40。

相关文档
最新文档