人教版七年级下册数学各章小结与复习
七年级下册数学个章知识点
七年级下册数学个章知识点数学是一门严谨而有趣的学科,对于初中生来说,数学基础打得好与否直接关系到他们以后学习数学的难易程度,因此,初中数学的学习是非常重要的。
七年级下册数学一共有18章,下面就逐一介绍这些章节的重点知识。
第一章:比例与相似这一章主要讲解比例和相似,其中包括比例的基本概念、用比例解决实际问题、相似的基本概念和用比率表示相似等知识点。
学习这一章,需要注意理解比例的概念以及如何应用到实际问题中。
第二章:整数及其运算这一章主要学习整数及其加法、减法、乘法、除法运算的规律,以及正数、负数的混合运算等知识点。
学习这一章,需要认真理解整数的概念和运算规律,并掌握正负数的概念。
第三章:一次函数这一章主要讲解一次函数的概念、特征、解法及其在实际中的运用。
学习这一章,需要掌握函数的概念和性质,并熟练掌握函数图像的绘制。
第四章:图形的性质这一章主要学习各种图形的基本概念及其性质,如平行四边形、正方形、等腰三角形等。
学习这一章,需要掌握各种图形的基本概念和特征,并能灵活运用。
第五章:三角形这一章主要讲解三角形内角和的性质、三角形外角和的性质、相似三角形及其应用等知识点。
学习这一章,需要理解三角形的基本概念和性质,并能运用三角形知识解决实际问题。
第六章:平面直角坐标系这一章主要学习平面直角坐标系的概念、坐标系中点、距离、斜率等知识点。
学习这一章,需要熟练掌握平面直角坐标系的概念及其运用,能够利用坐标系解决实际问题。
第七章:数的拓展这一章主要学习实数、有理数、无理数及其性质,以及实数的大小比较等知识点。
学习这一章,需要理解实数、有理数、无理数的概念及其关系,并能进行大小比较。
第八章:直线与角这一章主要讲解直线的概念、角的概念及其分类、角的度量等知识点。
学习这一章,需要认真理解直线和角的概念,掌握角的度量方法。
第九章:平行线及其应用这一章主要学习平行线的概念、平行线的性质及其应用,包括平移、轴对称、中心对称等知识点。
人教版七年级数学下册知识点总结归纳
人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
同位角相等,两直线平行。
判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
内错角相等,两直线平行。
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
同旁内角互补,两直线平行。
5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
两直线平行,同旁内角互补。
5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。
如果题设成立,那么结论一定成立,这样的命题叫做真命题。
题设成立时,不能保证结论一定成立,这样的命题中做假命题。
人教版数学初一年级下册学期各单元知识点总结复习
人教版数学初一下学期第六章知识点总结第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。
另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。
掌握本节内容对以后学习和生活有着积极的意义。
教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识人教版数学初一下学期第七章知识点总结第七章三角形一.知识框架二.知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
七年级数学下册(人教版)全册笔记 超详细
七年级数学下册(人教版)全册笔记超详细第一章分数1.1 分数的引入- 分数的概念:分数是整数与整数之间的比值关系。
- 分子和分母:分数的分子表示分数的份数,分母表示每份的份数。
- 分数的意义:分数表示一个数比整数大,但比下一个整数小。
1.2 分数的性质- 分数的大小比较:分数的分母相同,分子大的分数大;分数的分子相同,分母小的分数大。
- 分数的约分:分子和分母同时除以一个相同的数,得到的分数与原分数相等。
1.3 分数的加减运算- 分数的加法:分母相同,分子相加;分母不同,通分后分子相加。
- 分数的减法:分母相同,分子相减;分母不同,通分后分子相减。
1.4 分数的乘除运算- 分数的乘法:分子相乘,分母相乘。
- 分数的除法:将除数倒置后变成乘法。
第二章小数2.1 小数的引入- 小数的概念:小数是整数与整数之间的比值关系,但分子是整数,分母是10的幂次。
2.2 小数与分数的关系- 小数转分数:小数的数字部分作为分子,根据小数位数确定分母的幂次。
- 分数转小数:分子除以分母得到小数。
2.3 小数的加减运算- 小数的加法:小数部分相加,整数部分相加。
- 小数的减法:小数部分相减,整数部分相减。
2.4 小数的乘除运算- 小数的乘法:小数部分相乘,整数部分相乘。
- 小数的除法:将被除数的小数点移动与除数对齐,然后按整数除法进行计算。
第三章平方根3.1 平方根的引入- 平方根的概念:平方根是一个数的平方等于另一个数的运算。
3.2 平方根的性质- 平方根的符号:非负数的平方根为正数。
- 平方根的大小比较:对于非负数,平方根越大,被开方数越大。
3.3 平方根的计算- 尝试法计算平方根:通过试探和逼近的方法计算一个数的平方根。
3.4 平方根的运算- 平方根的加减运算:分别计算两个数的平方根,然后进行加减运算。
- 平方根的乘除运算:分别计算两个数的平方根,然后进行乘除运算。
以上是《七年级数学下册(人教版)全册笔记》的内容概要。
七年级下册数学全章知识点
七年级下册数学全章知识点在七年级下册数学课程中,我们将学习若干章节的知识点。
本文将概述这些章节的重点,涵盖了数字、代数和几何三大模块。
数字模块
数字模块主要是学习整数、分数等数的种类和运算。
其中,我们需要注意的重点包括:
有理数的概念与性质
加减乘除有理数的方法
整数和分数在数轴上的表示
此外,我们还需要掌握负数的特殊性质和用负数进行运算的方法。
代数模块
代数模块主要是学习方程和不等式,并研究它们的解法方法。
其中,我们需要注意的重点包括:
简单线性方程和不等式的解法方法
方程和不等式的应用
线性方程组和含参方程的解法方法
利用代数式表示运算过程并求解问题
此外,我们还需要掌握分式的简化、化简及分式方程解法方法。
几何模块
几何模块主要是学习角度、图形的性质以及图形之间的关系。
其中,我们需要注意的重点包括:
角的概念和性质
等腰三角形、等边三角形和直角三角形的性质
平行四边形、矩形、正方形和菱形的性质
梯形和圆的性质
此外,我们还需要掌握长度、角度、面积、体积等问题的求解
方法。
总结
七年级下册数学课程的知识点涉及数字、代数和几何三个模块。
本文概述了每个模块的重点,以期能够让同学们更好地掌握这些
知识点,进一步提高他们的数学成绩。
数学人教版七年级下册知识点归纳
数学人教版七年级下册知识点归纳
在数学人教版七年级下册中,我们学习了许多重要的数学知识点,这些知识点为我们进一步学习数学打下了坚实的基础。
以下是本册教材中的核心知识点归纳:
1. 整式的运算:我们学习了整式的加减、乘除以及乘方等基本运算规则。
掌握了合并同类项的方法,以及如何使用分配律进行整式的乘法运算。
2. 因式分解:我们学习了提取公因式法和公式法进行因式分解,这有助于我们简化复杂的多项式表达式,为解决高阶方程做准备。
3. 分式:本册教材中,我们开始接触分式的概念,学习了分式的加减乘除运算,以及分式的基本性质和化简方法。
4. 二元一次方程组:我们学习了如何解二元一次方程组,包括代入消元法和加减消元法。
这些方法帮助我们找到方程组的解,即满足所有方程的变量值。
5. 不等式与不等式组:我们了解了不等式的基本性质,学习了如何解一元一次不等式和不等式组。
这包括了如何找到不等式的解集,以及如何通过数轴表示解集。
6. 平面直角坐标系:我们学习了平面直角坐标系的基本概念,包括坐标轴、坐标点以及坐标平面上的点的坐标表示方法。
7. 一次函数:我们探讨了一次函数的图像和性质,学习了如何根据函数表达式绘制函数图像,以及如何通过图像解决实际问题。
8. 数据的收集与处理:我们学习了数据的收集、整理和描述方法,包括统计表、条形图、折线图和扇形图等数据表示方式。
9. 概率初步:我们初步接触了概率的概念,学习了如何计算简单事件的概率,以及如何使用概率解决一些实际问题。
通过这些知识点的学习,我们不仅掌握了数学的基本技能,还培养了解决问题的逻辑思维能力。
这些知识点将在我们的数学学习旅程中发挥重要作用。
人教版七年级下册第十章数据的收集、整理与描述复习与小结
(3)若被调查的家庭占全城区家庭数的10%, 请估计该城区不再使用超薄塑料袋的家庭数. (4)针对本次调查结果,请用一句话发表你的感想.
家庭数
a
10%
C
B 72º
800
A
c
情况
A
B
C
2、某果农承包了一片果林,为了了解整个果林的挂果 情况,果农随机抽查了部分果树的挂果数进行分析. 如图是根据数据绘制的统计图,图中从左到右各 长方形之比为5∶6∶8∶4∶2,又知挂果数大于 60的果树共有48棵. (1)果农共抽查了多少棵果树? (2)在抽查的果树中挂果数在40~60之间的树有多少 棵数 棵,占百分之几?
2、用样本估计总体,样本应具有代表性。
例 2、
(1).下列调查中,适合采用全面调查方式的是( ) A.对漓江水质情况的调查. B.对端午节期间市场上粽子质量情况的调查. C. 对某班50名同学体重情况的调查. D.对某类烟花爆竹燃放安全情况的调查. (2).下列调查中,样本最具有代表性的是( ) A.在重点中学调查全市七年级学生的数学水平 B.在篮球场上调查青少年对我国篮球事业的关注度 C.了解班上学生的睡眠时间时,调查班上学号为双 的学生的睡眠时间 D.了解某人心地是否善良,调查他对子女的态度
人教版七年级下册第十章
复习课
第十章 数据的收集、整理与描述
复习
一、回顾总结:
1、数据处理的一般过程:
收 整 描 分 得 出 结 论
全面调查
集
抽样调查
理
数 据
条 形 图 扇 形 图
述
数 据
折 线 图 直 方 图
析
数 据
趋 势 图
数 据
2、几个概念: 全面调查(普查)与抽样调查、 总体、个体、样本、样本容量的概念。
第8章 二元一次方程组(小结与复习)教案-七年级数学下册(人教版)
知识网络只住3人,且空余11间宿舍,求该年级寄宿学生有多少人?宿舍有多少间?解:设该年级寄宿学生有x 人,宿舍有y 间.根据题意可得⎩⎨⎧-=--=+3)111(746x y x y 解这个方程组,得 ⎩⎨⎧==85514y x 答:该年级寄宿学生有514人,宿舍有85间.10.A 、B 两地相距36千米.甲从A 地出发步行到B 地,乙从B 地出发步行到A 地.两人同时出发,4小时相遇,6小时后,甲所余路程为乙所余路程的2倍,求两人的速度.解:设甲、乙两人的速度分别为x 千米/时和y 千米/时.根据题意可得⎩⎨⎧-=-=+)636(26363644y x y x 解这个方程组,得 ⎩⎨⎧==54y x 答:甲、乙的速度分别为4千米/时和5千米/时.【课堂训练案】1.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示m ,p 之间的关系:__________;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示s ,t 之间的关系,并写出所有s ,t 可能的取值.解:(2)设六边形有x 个,正方形有y 个.根据题意可得⎩⎨⎧+==+++41101315x y y x 解这个方程组,得 ⎩⎨⎧==1612y x 所以正方形有16个,六边形有12个.(3)根据题意可得 3t +s =50又根据题意可得,t ≥s ,且s ,t 均为正整数.因此s ,t 可能的取值为:选做题:复习题8第9、11题。
新人教版七年级数学下册第八章 小结与复习
第八章复习教案教学设计思想本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。
首先让学生思考回答:①二元一次方程组的解题思路及基本方法。
②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。
教学目标知识与技能熟练地解二元一次方程组;熟练地用二元一次方程组解决实际问题;对本章的内容进行回顾和总结,进一步感受方程模型的重要性。
过程与方法通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。
情感态度价值观通过反思消元法,进一步强化数学中的化归思想;学会如何归纳知识,反思自己的学习过程。
教学方法:复习法,练习法。
重、难点重点:解二元一次方程组、列二元一次方程组解应用题。
难点:如何找等量关系,并把它们转化成方程。
解决办法:反复读题、审题,用简洁的语言概括出相等关系。
课时安排1课时。
教具准备投影片教学过程设计(一)明确目标前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。
(二)整体感知本章含有两个主要思想:消元和方程思想。
所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。
(三)复习通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。
(四)练习1.2x -5y=18找学生写出它的五个解。
2.4(x y 1)3(1y)2y x 223--=--⎧⎪⎨+=⎪⎩分别用代入消元法、加减消元法求出它的解来。
答案:{x 2y 3== 3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓库所余的粮食比1号仓库所余的粮食多30吨。
人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
人教版七年级数学下册各章节知识点归纳
人教版七年级数学下册各章节知识点归纳七年级数学下册知识点归纳第五章相交线与平行线5、1 相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点就是两个角共用一条边,另一条边互为反向延长线,性质就是邻补角互补;相对的两个角叫做对顶角,特点就是它们的两条边互为反向延长线。
性质就是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别就是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线: 垂直就是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1与∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3与∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3与∠6。
5、2 平行线及其判定(一) 平行线1、平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
人教版七年级数学下册第六章《实数》知识点复习与小结优秀教学案例
3.利用问题引导学生进行推理和证明,培养他们的逻辑思维能力。
4.鼓励学生主动寻找解决问题的方法,培养他们的自主学习能力和创新意识。
(三)小组合作1.将学生分为小ຫໍສະໝຸດ ,鼓励他们进行合作学习和讨论交流。
2.设计具有挑战性和综合性的任务,让学生在合作中解决问题,提高解决问题的能力。
(三)学生小组讨论
1.将学生分为小组,给出具有挑战性和综合性的任务,让学生在小组合作中解决问题。例如,可以让学生探讨实数的性质和运算规则,并尝试解决一些实际问题。
2.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。例如,可以让每个小组成员依次发表自己的观点,并进行讨论交流。
(四)总结归纳
三、教学策略
(一)情景创设
1.利用生活实际问题,创设情境,引发学生对实数的兴趣和好奇心。
2.通过图形、模型等直观教具,帮助学生形象地理解实数的概念和性质。
3.设计具有挑战性和针对性的问题,激发学生的思考和探索欲望。
4.创设互动交流的平台,让学生分享自己的思考过程和解决问题的方法。
(二)问题导向
1.引导学生提出问题,培养他们的问题意识和解决问题的能力。
3.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。
4.注重小组合作的过程和结果,对学生的合作学习和团队精神进行评价和反馈。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,发现自己的优点和不足,提高自我认知能力。
2.让学生通过自我评价和同伴评价,了解自己的学习进展和提高方向。
1.培养学生对数学学科的兴趣和热情,使他们愿意主动学习数学。
2.培养学生的团队合作意识,使他们能够在学习过程中相互帮助、共同进步。
人教版七年级下册数学第八章小结与复习
已知x=1,y=-2是二元一次方程组 ax-2y=3,的
x-by=4
解,求a,b的值.
解:把x=1,y=-2代入二元一次方程组得
a+4=3, 1+2b=4,
解得:a=-1,b=1.5.
一般情况下,提到二元一次方程(组) 的解,须先把解代入二元一次方程(组),得到解 题需要的关系式,然后解关系式,即可解决问题.
A.xy+8=0
B.
1 x
1 y
23
C.x2-2x-4=0
D.2x+3y=7
2.已知x=2,y=1是方程kx-y=3的解,则k= 2 .
3.已知方程x-2y=4,用含x的式子表示y为_y___x _2_4_;
用含y的式子表示x为___x=__2_y+__4__.
2x 3y k,
4.方程组 3x 5y k 2 中,x与y的和为12,求k的值.
解:设这个汽车运输队原有汽车x辆,原规定完成的天
数为y天,每辆汽车每天的运输量为1. 根据题意可得 (x-6)(y+3)=xy,
(x+4)(y-1)①
-x+4y=4 ,②
由②可得x=4y-4 ,③
把③代入①可得3(4y-4)-6y=18, 解得y=5.
把y=5代入③得 x=16. 由此可得
所以6a-3b=6×3-3×1=15.
专题四 二元一次方程组的实际应用
【例5】某汽车运输队要在规定的天数内运完一批货物, 如果减少6辆汽车则要再运3天才能完成任务;如果增 加4辆汽车,则可提前一天完成任务,那么这个汽车运 输队原有汽车多少辆?原规定运输的天数是多少? 分析:等量关系式:
①减少6辆汽车后运输的货物=原规定运输货物; ②增加4辆汽车后运输的货物=原规定的货物。
七年级数学下各章知识点汇总
七年级数学下各章知识点汇总第五章平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等3、判断两直线平行的条件:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
(4)如果两条直线都和第三条直线平行,则这两条直线也互相平行。
(5)如果两条直线都和第三条直线垂直,则这两条直线也互相平行。
4、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)内错角相等,同旁内角互补。
5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。
⑵命题的组成每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,则……”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“则”开始的部分是结论。
6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。
连接各组对应点的线段平行且相等。
第六章 实数一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫ 二、知识回顾算术平方根的定义: 平方根的定义: 平方根的性质: 立方根的定义: 立方根的性质: 练习:1、—8是 的平方根; 64的平方根是 ; =64 ;—64的立方根是 ; =9 ; 9的平方根是 。
2、大于17-而小于11的所有整数为 几个基本公式:(注意字母a 的取值范围)2)(a = ;2a =无理数的定义: 实数的定义: 实数与 上的点是一一对应的第七章 平面直角坐标系 1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b )2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
数学人教版七年级下册第七章小结与复习
数学人教版七年级下册第七章小结与复习第七章平面直角坐标系小结与复习教学目标【知识与技能】位置的确定、平面直角坐标系以及坐标方法的应用.【过程与方法】通过“坐标方法的简单应用”反映现实生活中大量存在的图形变换,并揭示其中的规律,从而发展学生的形象思维能力与数学应用能力.【情感、态度与价值观】培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化,发展学生的形象思维能力和数形结合的意识.教学重点、难点重点:1.画平面直角坐标系.2.由点找坐标,由坐标确定点的位置.3.用坐标表示位置和平移.难点:用坐标表示位置和平移,体会图形的平移及点的坐标的变化规律.关键:结合知识结构图对本章知识进行归纳总结,注意知识间的衔接及联系.突破方法:在平面坐标系中,有序数对就是坐标,坐标(有序数对)是统领全章的一个重要概念,复习时,要结合具体问题复习坐标(有序数对)的意义和作用.教法与学法导航教学方法:归纳总结法、练习法、数形结合法.教师系统地以知识结构图的形式复习本章内容,帮学生归纳,不要死记硬背,突出数形结合法.学习方法:结合本章的知识结构图,采用数形结合法,通过小组讨论,结合练习题系统地复习本章内容.教学过程一、知识回顾确定平面内点的位置画两①互相垂直条②有公共原点坐标(有序数对)(x,y)数象限与象限内点的符号轴建立平面直角坐标系知识要点:1.平面直角坐标系的意义:在平面内有公共原点且互相垂直的两条数轴组成平面直角坐标系.水平的数轴为x 轴,铅直的数轴为y 轴,它们的公共交点O 为平面直角坐标系的原点.2.象限:两坐标轴把平面分成四个象限,坐标轴上的点不属于任何一个象限.3.可用有序数对(a,b)表示平面内任何一点P的坐标.a 表示横坐标,b 表示纵坐标.4.各象限内点的坐标符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).5.坐标轴上点的坐标特点:横轴上的点纵坐标为0,纵轴上的点横坐标为0.6.利用平面直角坐标系绘制某一区域的各点分布情况的平面图包括以下过程:(1)建立适当的坐标系,即选择适当的点作为原点,确定x 轴、y 轴的正方向;(注重寻找最佳位置)(2)根据具体问题确定恰当的比例尺,在数轴上标出单位长度;(3)在坐标平面上画出各点,写出坐标轴.7.一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左右平移:纵坐标不变,横坐标变,变化规律是左减右加;上下平移:横坐标不变,纵坐标变,变化规律是上加下减.例如:当P(x,y)向右平移 a 个单位,再向上平移 b 个单位长度后坐标P′(x+a,y+b).二、综合运用(多媒体展示)1.在平面直角坐标系中,将三角形各点的纵坐标都减去4,横坐标保持不变,所得图形与原图形相比是()A.向右平移了4 个单位B.向左平移了4 个单位C.向上平移了4 个单位D.向下平移了4 个单位2.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,-4)的对应点为A′(1,-1),则点B(1,1)的对应点B′,点C(-1,4)的对应点C′的坐标分别为()A.(2,2),(3,4)B.(3,4),(1,7)C.(-2,2),(1,7)D.(3,4),(2,-2)3.一个长方形在平面直角坐标系中,三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)4.若点P(x,y)的坐标满足xy=0(x≠y),则点P在()A.原点上B.x 轴上C.y 轴上D.x 轴上或y 轴上5.一只蚂蚁由(0,0)先向上爬3 个单位长度,再向右爬3 个单位长度,再向下爬2 个单位长度后,它所在位置的坐标是_________.6.在平面直角坐标系中画一三角形ABC,并将三角形ABC 向右平移2 个单位长度,再向下平移3 个单位长度,得到对应的三角形A1B1C1,画出三角形A1B1C1,并写出点A1,B1,C1的坐标.答案:1.D 2.B 3.B 4.D 5.(3,1) 6.作图略,坐标略【设计意图】教师用课件展示练习题让学生练习,以巩固知识,增强学生的理解能力和动手操作能力.三、完善整合请大家再次观察知识结构图,回顾本章主要知识点、所学方法以及应注意的问题,真正在大脑中形成一个完整的知识体系,从而达到理解、掌握、会用本章知识解决一些实际问题的目的.板书展示确定平面内点的位置画两①互相垂直条②有公共原点坐标(有序数对)(x,y)数象限与象限内点的符号轴建立平面直角坐标系坐标系的应用用坐标表示位置用坐标表示平移课堂作业1.点A(-5,7)在第_____ 象限.2.如果用(7,8)表示七年级八班,那么八年级七班可表示成 .3.如果P(a,ab)在第二象限,那么点Q(a,-b)在第象限.4.若点P到x 轴的距离为2,到y 轴的距离为3,则点P的坐标为 .5.将点P(-3,2)向下平移3 个单位,向左平移2 个单位后得到的点的坐标为 .6.若线段CD 是由线段AB 平移得到的,且已知点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D 的坐标为 .参考答案:1.二2.(8,7)3.二4.(3,2),(-3,-2),(3,-2)或(-3,2)5.(-5,-1)6.(1,2)教学反思对于平面直角坐标系的有关概念,要结合具体例子复习,切忌死记硬背,对于点与坐标的对应关系要注意本章的教学要求,可先向学生讲明在以后的学习中可以看到点与坐标的一一对应关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
D
解析:紧扣平移的概念解题.
【归纳拓展】平移前后的图形形状和大小完全相同,
任何一对对应点连线段平行(或共线)且相等.
【迁移应用4】如图所示,△DEF经过平移得到△ABC, 那
么∠C的对应角和ED的对应边分别是 ( C )
A.∠F,AC B.∠BOD,BA A
C.∠F,BA D.∠BOD,AC
第五章 相交线与平行线
小结与复习
知识网络
专题复习
课堂小结
课后训练
知识网络
相 交 线 知 识 构 图
平 行 线
两 一般情况 线 四 角 特殊
三 线 八 角
邻补角
邻补角互补
对顶角
对顶角相等
垂直
存在性和唯一性
点到直
垂线段最短 线的距
离
同位角、内错角、同旁内角
平行线的判定
平行公理及其推论
平行线的性质
平移
命题 平移的特征
.相交时形成了两对对顶角和四对邻补角.其中垂直是
相交的特殊情况,它将一个周角分成了四个直角.
【迁移应用1】如图,AB,CD相交于点
O,∠AOC=70°,EF平分∠COB,求∠COE的度数.
答案:∠COE=125°.
F B
C
O
D
A E
专题二 点到直线的距离
【例2】如图,AD为三角形ABC的高,能表示点到直
而∠4=∠1+∠2(对顶角相等).
故∠4=36°.
【归纳拓展】利用方程解决问题,是几何与代数知识相 结合的一种体现,它可以使解题思路清晰,过程简便.在 有关线段或角的求值问题中它的应用非常广泛.
【迁移应用5】如图所示,直线AB与CD相交于点O,
∠AOC:∠AOD=2:3,求∠BOD的度数.
A
答案:72°
证:EF//BC.
DF
C
证明: ∵∠DAC= ∠ACB (已知)
∴ AD//BC(内错角相等,两直线平行)
∵ ∠D+∠DFE=180°(已知)
B E
A
∴ AD// EF(同旁内角互补,两直线平行)
∴ EF// BC(平行于同一条直线的两条直线互相平行)
【归纳拓展】平行线的性质和判定经常结合使用,由
D O
B C
课堂小结
请同学们总结一下本节课所复习的主要内容
课后训练
A
B
1.如图, 若∠3=∠4,则 AD∥ BC;
若AB∥CD, 则∠ 1 =∠ 2 .
D
3 14 2 C
2.如图,∠D=70°,∠C= 110°,∠1=69°,则
∠B= 69°·
E
1
A
D
B
C
3.如图1,已知 AB∥CD, ∠1=30°, ∠2=90°,则∠3= 60 °
M
A
E
B
G
C
D
F
N
H
变式:若∠AEM=∠DGN,EF、GH分别平分∠AEG
和∠CGN,则图中还有平行线吗?
EF∥GH
第六章 实 数
小结与复习
知识网络
专题复习
课堂小结
课后训练
知识网络
互为逆运算
乘方
开方
实数
平方根 正
算术平方根
立方根
有理数
无理数
运算
专题复习
专题一 开方运算
【例1】1.求下列各数的平方根:
A D
B
C
专题三 平行线的性质和判定
【例3】(1)如图所示,∠1=72°,∠2=72°,∠3=60°,求
∠4的度数.
解:∵∠1=∠2=72°,
4
∴a//b (内错角相等,两直线平行). 3
∴∠3+∠4=180°. (两直线平行,同旁内角互补)
∵∠3=60°,∴∠4=120°.
2 1
a b
(2)已知∠DAC=∠ACB,∠D+∠DFE=180°,求
【迁移应用1】求下列各式的值:
① 400 ;
③ 49 100
② 16 81
④ 3 1 63 64
答案:①
20;②
4 9
;③
7 10
;④
1 4
.
专题二 实数的有关概念 【例2】在-7.5, , 4, , , 0.15, 中,无理数 的个数是( B )
A. 1个 B. 2个 C.3个 D.4个
角之间的关系得出直线平行,进而再得出其他角之间
的关系,或是由直线平行得到角之间的关系,进而再
由角的关系得出其他直线平行.
【迁移应用3】如图所示,把一张长方形纸片ABCD
沿EF折叠,若∠EFG=50°,求∠DEG的度数.
A
E
D
答案:100°.
G B
M
FC N
专题四 平移 【例4】如图所示,下列四组图形中,有一组中的两个图 形经过平移其中一个能得到另一个,这组图形是 (D)
D
B
C
E
F
专题五 相交线中的方程思想
【例5】如图所示,l1,l2,l3 交于点O,∠1=∠2,∠3∶∠1 =8∶1,求∠4的度数.
解:设∠1的度数为x°,则∠2的度数为x°,
∠3的度数为8x°,根据题意可得 x°+x°+8x°=180°,解得x=18. 即∠1=∠2=18°,
l1
3
2 1
4O
l2 l3
线(线段)的距离的线段有( B ) A
A.2条 B.3条
C.4条 D.5条
B
DC
解析:从图中可以看到共有三条,A到BC的垂线 段AD,B到AD的垂线段BD,C到AD的垂线段CD.
【归纳拓展】点到直线的距离容易和两点之间的距离相 混淆.当图形复杂不容易分析出是哪条线段时,准确掌 握概念,抓住垂直这个关键点,认真分析图形是键. 【迁移应用2】如图AC⊥BC,CD⊥AB于点D,CD=4.8cm, AC=6cm,BC=8cm,则点C到AB的距离是 4.8 cm;点 A到BC的距离是 6 cm;点B到AC的距离是 8 cm.
(1) 25 ; (2) 6 1 ; (3) (10)2
36
4
2.求下列各数的立方根:
(1)
-
8 ;(2)0.027;(3)1125
7 8
(1) 5 ; (2) 5 ;
6
2
(1) 2 ; (2) 0.3; 5
(3) 10. (3) 1 .
2
【归纳拓展】解题时,要注意题目的要求,是求平方 根、立方根还是求算术平方根.
专题复习
专题一 相交线
【例1】如图,AB⊥CD于点O,直线EF过O
点,∠AOE=65°,求∠DOF的度数.
B F
解:∵AB⊥CD,∴∠AOC=90°.
C
O
D
∵∠AOE=65°,∴∠COE=25°E
又∵∠COE=∠DOF(对顶角相等) A
∴∠DOF=25°.
【归纳拓展】两条直线相交包括垂直和斜交两种情形
A
B
1
2
3
C 图1
D
A
B
F C
图2
4.如图2,若AE∥CD,
∠EBF=135°,∠BFD=60°,∠D=( D )
A.75° B.45° C.30° D.15°
E D
5. 如图,直线AB、CD相交于O,∠AOC=80°,∠1=30°;
求∠2的度数.
答案:50°
A
D
)1 O )2 E C
B
6. 如图,已知∠AEM=∠DGN,则你能说明AB平行于CD吗?