排列组合综合题型及答案
排列组合题目精选(附答案)
排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。
选项D正确。
2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。
选项B正确。
3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。
选项D 错误。
4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。
5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。
6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。
选项B正确。
7.首先从8个元素中选出2个排在前排,有8选2种选择方式。
然后从剩下的6个元素中选出1个排在后排,有6种选择方式。
最后将剩下的5个元素排在后排,有5!种排列方式。
因此不同的排法有8选2×6×5!=28×720=20,160种。
8.首先将甲、乙、丙三人排成一排,有3!种排列方式。
然后将其余4人插入到相邻的位置中,有4!种排列方式。
因此不同的排法有3!×4!=144种。
9.首先将10个名额排成一排,有10!种排列方式。
然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。
因此不同的分配方案有10!÷(6×8)=21,000种。
10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。
然后将甲和乙插入到相邻的位置中,有2种插入方式。
因此不同的派遣方案有8!×2=80,640种。
11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。
排列组合专题各方法题型及其答案
排列组合题型总结一.直接法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
二.间接法当直接法求解类别比较大时,应采用间接法。
例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数三.插空法当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。
例44名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共多少种六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法七.染色问题例7 某城市中心广场建造一个花圃,花圃6分为个部分,现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).561432八.递推法例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种十.先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有多少种十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.十二.转化命题法例 11.圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。
高中数学排列组合问题的类型及解答
高中数学排列组合问题的类型及解答一、相邻问题捆绑法例16名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种A. 720B. 360 C. 240D. 120解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。
由分步计数原理可知,共有=240种不同排法,选C。
评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。
二、相离问题插空法例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。
由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。
评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。
此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。
三、定序问题缩倍法例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。
解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。
评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。
这类问题用缩小倍数的方法求解比较方便快捷。
四、标号排位问题分步法例4同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()A. 6种 B. 9种C. 11种D. 23种解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。
排列组合常见题型及解答
排列组合常见题型 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个是底数,哪个是指数【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34 (3)34【例2】 把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38 B 、83 C 、38A D 、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。
所以选A二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】A,B,C,D,E 五人并排站成一排,如果A,B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把A,B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 188C. 216D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432,其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法数是52 563600A A【例2】书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有种不同的插法(数字作答)【解析】:111789A A A=504【例3】高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A=3600【例4】某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
高中排列组合基础题 (含答案)
排列、组合问题基本题型及解法同学们在学习排列、组合的过程中,总觉得抽象,解法灵活,不容易掌握.然而排列、组合问题又是历年高考必考的题目.本文将总结常见的类型及相应的解法.一、相邻问题“捆绑法”将必须相邻的元素“捆绑”在一起,当作一个元素进行排列. 例1 甲、乙、丙、丁四人并排站成一排,如果甲、乙必须站在一起,不同的排法共有几种? 分析:先把甲、乙当作一个人,相当于三个人全排列,有33A =6种,然后再将甲、乙二人全排列有22A =2种,所以共有6×2=12种排法. 二、不相邻问题“插空法”该问题可先把无位置要求的元素全排列,再把规定不相邻的元素插入已排列好的元素形成的空位中(注意两端).例2 7个同学并排站成一排,其中只有A 、B 是女同学,如果要求A 、B 不相邻,且不站在两端,不同的排法有多少种?.分析:先将其余5个同学先全排列,排列故是55A =120.再把A 、B 插入五个人组成的四个空位(不包括两端)中,(如图0×0×0×0×0“×”表示空位,“0”表示5个同学)有24A =2种方法.则共有5254A A =440种排法.三、定位问题“优先法”指定某些元素必须排(或不排)在某位置,可优先排这个元素,后排其他元素.例3 6个好友其中只有一个女的,为了照像留念,若女的不站在两端,则不同的排法有 种.分析:优先排女的(元素优先).在中间四个位置上选一个,有14A 种排法.然后将其余5个排在余下的5个位置上,有55A 种方法.则共1545A A =480种排法.还可以优先排两端(位置优先). 四、同元问题“隔板法”例4 10本完全相同的书,分给4个同学,每个同学至少要有一本书,共有多少种分法? 分析:在排列成一列的10本书之间,有九个空位插入三块“隔板”.如图: ×× × ××× ××××一种插法对应于一种分法,则共有39C =84种分法. 五、先分组后排列对于元素较多,情形较复杂的问题,可根据结果要求,先分为不同类型的几组,然后对每一组分别进行排列,最后求和.例5 由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有( )(A )210个 (B )300个 (C )464个 (D )600个分析:由题意知,个位数字只能是0,1,2,3,4共5种类型,每一种类型分别有55A 个、113433A A A 个、113333A A A 个、113233A A A 个、1333A A 个,合计300个,所以选B例6 用0,1,2,3,…,9这十个数字组成五位数,其中含有三个奇数数字与两个偶数数字的五位数有多少个?【解法1】考虑0的特殊要求,如果对0不加限制,应有325555C C A 种,其中0居首位的有314544C C A 种,故符合条件的五位数共有325314555544C C A C C A =11040个.【解法2】按元素分类:奇数字有1,3,5,7,9;偶数字有0,2,4,6,8. 把从五个偶数中任取两个的组合分成两类:①不含0的;②含0的.①不含0的:由三个奇数字和两个偶数字组成的五位数有325545C C A 个;②含0的,这时0只能排在除首位以外的四个数位上,有14A 种排法,再选三个奇数数与一个偶数数字全排放在其他数位上,共有31415444C C A A 种排法.综合①和②,由分类计数原理,符合条件的五位数共有325545C C A +31415444C C A A =11040个. 例8 由数字1,2,3,4,5可以组成多少个无重复数字,比20000大,且百位数字不是3的自然数?【解】设A ={满足题设条件,且百位数字是3的自然数},B ={满足题设条件,且比20000大的自然数},则原题即求()card U B A ,画韦恩图如图,阴影部分 即UBA ,从图中看出()()card card UBA B AB =-.又A BB ,由性质2,有()()()card card card .B A B B A B -=-()card B 即由数字1,2,3,4,5组成无重复数字,且比20000大的自然数的个数,易知()1444card A A B =.()card A B 即由数字1,2,3,4,5组成无重复数字、比20000大,且百位数字是3的自然数的个数,易知()1333card A A AB =,所以()14134433card A A A A UB A =-=78.即可组成78个符合已知条件的自然数.典型例题例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.例2 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
排列组合经典题型及解析
排列组合经典题型及解析1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.`例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( ) A 、24种 B 、60种 C 、90种 D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种, … 选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C 种 B 、44412843C C C 种C 、4431283C C A 种D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种,答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( ) A 、210种 B 、300种 C 、464种 D 、600种 ]解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B. (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
高中数学排列组合专项练习(后附答案)
排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。
排列组合专题各方法题型及其答案
排列组合题型总结一.直接法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
二.例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?三.插空法当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。
例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共多少种?六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法?七.染色问题例7 某城市中心广场建造一个花圃,花圃6分为个部分,现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).561432例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种?十.先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.十二.转化命题法例 11.圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各?排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。
(完整版)排列组合练习题与答案
(完整版)排列组合练习题与答案排列组合习题精选⼀、纯排列与组合问题:1.从9⼈中选派2⼈参加某⼀活动,有多少种不同选法?2.从9⼈中选派2⼈参加⽂艺活动,1⼈下乡演出,1⼈在本地演出,有多少种不同选派⽅法?3. 现从男、⼥8名学⽣⼲部中选出2名男同学和1名⼥同学分别参加全校“资源”、“⽣态”和“环保”三个夏令营活动,已知共有90种不同的⽅案,那么男、⼥同学的⼈数是()A.男同学2⼈,⼥同学6⼈B.男同学3⼈,⼥同学5⼈C. 男同学5⼈,⼥同学3⼈D. 男同学6⼈,⼥同学2⼈4.⼀条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58种(从甲站到⼄站与⼄站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个答案:1、2936C = 2、2972A = 3、选 B. 设男⽣n ⼈,则有2138390n n C C A -=。
4、2258m nm A A +-= 选C.⼆、相邻问题:1. A 、B 、C 、D 、E 五个⼈并排站成⼀列,若A 、B 必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的⽂艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在⼀起,⽂艺书也连在⼀起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排⼀个有4个歌唱节⽬和3个舞蹈节⽬的演出节⽬单,任何两个舞蹈节⽬都不相邻,有多少种不同排法?2、1到7七个⾃然数组成⼀个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男⽣和4名⼥⽣站成⼀排,若要求男⼥相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成⼀排的8个空位上,坐3⼈,使每⼈两边都有空位,有多少种不同坐法?5.8张椅⼦放成⼀排,4⼈就坐,恰有连续三个空位的坐法有多少种?6. 排成⼀排的9个空位上,坐3⼈,使三处有连续⼆个空位,有多少种不同坐法?7. 排成⼀排的9个空位上,坐3⼈,使三处空位中有⼀处⼀个空位、有⼀处连续⼆个空位、有⼀处连续三个空位,有多少种不同坐法?8. 在⼀次⽂艺演出中,需给舞台上⽅安装⼀排彩灯共15只,以不同的点灯⽅式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进⾏设计,那么不同的点亮⽅式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424AC = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男⽣,3名⼥⽣。
排列组合难题题型总结(含答案)
排列组合难题题型总结(含答案)一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重复排列问题求幂策略(住店法)解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.例5.把6名实习生(元素)分配到7个车间(位置)实习,共有多少种不同的分法练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?练习题:6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有(即有且只有!!)两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种 十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? (注意有9个空隙,6个隔板!) 练习题:10个相同的球装5个盒中,每盒至少一有多少装法? 2 .100x y z w +++=求这个方程组的自然数解的组数十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种?练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的 抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安 排2名,则不同的安排方案种数为______ 十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法? 练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27) 本题还有如下分类标准:*以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果 十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120) 十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法 练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种十六. 分解与合成策略例16. 30030能被多少个不同的偶数整除练习:正方体的8个顶点可连成多少对异面直线十七.化归策略例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少种?十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 十九.树图策略例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______练习: 分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i )的不同坐法有多少种? 二十.复杂分类问题表格策略例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法参考答案例1.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C54321BA然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:解:分两步完成.第一步选两葵花之外的花占据两端和中间的位置有A53=60种排法 第二步排其余的位置:有A44=24种排法 所以共有60×24=1440种排法. 二.相邻元素捆绑策略例2. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高二数学难点《排列组合》题型大全
高二数学难点《排列组合》题型大全1.排队问题1.你帅,你帅,你天下最帅,头顶一窝白菜,身披一条麻袋,腰缠一根海带,你以为你是东方不败,其实你是傻瓜二代。
2你的一笑,狼都上吊,你的一叫,鸡飞狗跳,你的一站,臭味弥漫,你一出汗,虱子灾难,你不打扮,比鬼难看,你一打扮,鬼吓瘫痪7人站成一排拍照,共有______种排法.答案:(1)甲必须站在中间的排法_______种. 答案:(2)甲、乙两人必须站在两端的排法_______种. 答案:(3)甲、乙两人必须相邻的排法_______种. 答案:(4)甲、乙不能相邻的排法_______种. 答案:(5)若甲、乙、丙三人必须相邻的排法______种. 答案:(6)其中3人站在前排,4人站在后排的排法_______种. 答案:(7)其中甲、乙、丙站前排,其余4人站后排的排法_______种. 答案:(8)甲、乙不能站两端的排法_______种. 答案:(9)甲、乙均不与丙相邻的排法_______种. 答案:,即分丙站两端和丙不站两端计算(10)最高者站中间,其余6人按从中间到两端依次降低站在两边的排法_______种. 答案:(11)若甲、乙、丙顺序一定,则共有_______种排法. 答案:3377A A (12)若7人站成一圈,有_______种站法. 答案:(固定起点)或777A 2.几何问题 直线、线段、有向线段、射线、弦问题、平面个数、交线条数、交点个数、对角线条数、四面体个数(1)从-11,-7,0,1,2,3,5这七个数中每次选三个作为直线的系数,,C ,且斜率小于0的直线有_______条.答案:70(2)平面内有10个点,可确定_______条线段,_______条有向线段. 答案:(3)空间八个点最多确定_______个平面,_______个四面体. 答案:(4)平面内n 条线段最多有_______个交点. 答案:(5)空间n 个平面最多有_______条交线. 答案:(6)以正方体的八个顶点为顶点的三棱锥有_______个. 答案:(7)以正方形的四个顶点、四边中点、中心共九个点中的三个点可作_______个三角形. 答案:76,即(8)四面体的一个顶点为A ,从其它顶点与各棱中点中取3个点,使它们和点A 在同一平面上,不同取法有_______个. 答案:33,即(9)正方体有_______对异面的棱;棱与对角线异面的有_______对;_______对异面的面对角线;面对角线与体对角线异面的有_______对. 答案:24;24;30;24(10)如果∠AOB 的两边上分别有3个点和4个点,则过这八个点(含点)可作_______个三角形. 答案:42,即,先算不含的,再算含的,(11)从正方体的六个面中选三个面,其中有两个面不相邻的选法_______个. 答案:12(12)过圆周上的2n 个等分点可作_______个直角三角形. 答案:(13)从正四面体的四个顶点及各棱中点共10个点中,任取4个不共面的点的取法有_______种. 答案:141,即3.概率问题(去序法)(1)5名运动员参加100米跑,如每人到达终点的顺序各不同,则甲比乙先到达终点的可有 ________种. 答案:60,即255A (2) A 、B 、C 、D 、E 五人站在一排,若A 必须站在B 的左边(A 、B 可以不相邻),那么不同的排法有_______种. 答案:60,即255A (3)用1、2、3、4、5可以组成_______个无重复数字的三位数,偶数有_______个. 答案:60;24,即4.人民币币值:(通法1:按最大币值考虑;通法2:按每种币值的的拿法考虑)(1)现有壹元、贰元、伍元、拾元人民币各一张,可组成_______种币值. 答案:15,即(2)有1角硬币3枚,贰元币6张,百元币6张,共组成_______种币值. 答案:195,(3)有壹元、贰元、拾元人民币数张,现要支付20元,有_______种支付方法. 答案:18(4)有壹元硬币6枚,伍元币3张,拾元币3张,伍拾元币3张,可组成_______种不同的币值. 答案:201(5)现有壹元币一张、贰元币两张、伍元和拾元人民币各一张,可组成_______种币值. 答案:205.集合映射个数问题(1)集合有个元素,则集合的子集中含有3个元素的集合有_______个;集合共有_______个子集;_______个真子集. 答案:(2)集合,集合,则从→的映射有_______个,从→的映射有_______个. 答案:(3)若集合,,则从A →B 的映射有_______个. 答案:(4)若集合,,若中不同的元素在中有不同的象,则这样从A →B 的映射有_______个. 答案:60,即(5)集合,,则中的元素在中都有原象的映射有_______个. 答案:(6),映射:→,则使的映射有_______个. 答案:7(7),,对中任意元素x ,使均为偶数,则从→映射有_______个. 答案:126.多面手问题(1)9名翻译中,6人懂英语,4人懂日语,既懂英语又懂日语的1人,从中选3名英语,2名日语,有多少种不同选法. 答案:90,即按多面手分类:;按英语翻译分类:(2)11名工人,5人只会排版,4人只会印刷,2人都会,选出4人排版,4人印刷,有多少种不同选法. 答案:185,即按排版工人情况:7.约数问题(1)12有______个约数,60有______个约数(含1和其本身). 答案:6;12(2)一个正整数的最大约数为24,则它有______个约数. 答案:8(3)数2n ×3m ×有____________个约数. 答案:8.分组分配问题(平均分组、部分均匀分组、非均匀分组)6本不同的书分给3个人,按以下要求有多少种不同的分法?(1)平均分给甲、乙、丙三人;答案:(2)分成三份,每份两本;答案:33222426A C C C(3)分给甲一本,乙两本,丙三本;答案:(4)分成三份,一份一本,一份两本,一份三本;答案:(5)分给三个人,一人一本,一人两本,一人三本;答案:(6)分给甲四本,乙、丙各一本;(7)分成三份,一份四本,其余两份各一本; 答案:22111246A C C C 或 (8)分给三个人,一人四本,其余两人各一本;答案:或或2233111246A A C C C (9)分给甲乙丙三人,每人至少一本. 答案:++9.空位连续问题(1)一人射击8枪,4枪命中,其中3枪连在一起的方法有______种. 答案:20,即(2)停车场划出一排12个停车位置,今有8辆车需停放,要求空位连在一起,则停车方法______.答案:9(3)马路上有8盏路灯,为省电,可熄灭其中的3盏,但不能连续熄灭两盏,两头的灯不能熄灭,则熄灭的方法有______种. 答案:4,即(4)在一块并排10垄的田地种,选择两垄分别种植2种作物,每种作物种植一垄,为有利于作物生长,要求A 、B 两种作物之间的间隔不小于6垄,则不同的选垄方法有______种. 答案:1210.贺卡问题(1) 标号为1、2、3的卡片放入标号为1、2、3的三个盒子里,且每个盒子的标号与卡片标号均不同的放法有______种. 答案:2(2) 室四人各写一张贺年卡,先集中起来,然后每人从中拿出一张别人送出的贺年卡,则四张贺年卡不同的分配方法有______种. 答案:9,即(3) 数字为1、2、3、4、5填到标号为1、2、3、4、5的格子里,且所填数字与其格子的标号均不同的填法有______种. 答案:44,即递推式D (n )=(n-1)[D(n-1)+D(n-2)](4)某团支部进行换届选举,从甲、乙、丙、丁中选出三人分别担任班长、书记和宣传委员,规定上届任职的甲、乙、丙不能连任原职,则不同的任职方案______种. 答案:1111.巧插“隔板”问题(特点:要分配的元素是没有差别的)(1)要从6个班选出10个人参加校篮球比赛,每班都要有人参加的选法有______种. 答案:(2)方程的正整数解的个数,自然数解的个数各多少?答案:()(3)将10个相同的球放入9个不同的盒子,且每盒都不空的放法有_____种,放入6个不同盒子有_____种. 答案:(4)将10个相同的球放入3个不同的盒子,盒子的编号为1、2、3,要使放入的球输不小于编号数的放法有_____种. 答案:12.数字问题常识:最高次位不能为0;奇数、偶数取决于末位是否被2整除;若一个正整数每一位上的数字之和能被3整除,则此数能被3整除;末位数为0和5的整数可被5整除.用0、1、2、3、4、5这六个数,(1)可以组成多少个五位数;答案:(2)可以组成多少个无重复数字的五位数;答案:(3)可以组成多少个无重复数字的五位奇数;答案:(4)可以组成多少个无重复数字的五位偶数;答案: (5)可以组成多少个比32000大的无重复数字的五位数;答案: (6)可以组成多少个比32451大的无重复数字的五位数;答案: (7)可以组成多少个能被5整除的无重复数字的五位数;答案: (8)可以组成多少个能被25整除的无重复数字的五位数;答案: (9)可以组成多少个能被3整除的无重复数字的五位数;答案: (10)可以组成多少个能被6整除的无重复数字的五位数;答案: (11)可以组成多少个能被4整除的无重复数字的五位数;答案: (12)求组成的无重复数字的五位数的个位数字之和;答案: (13)求组成的无重复数字的五位数的和. 13. 鞋子成双、单只问题(技巧:先取“双”,再取“只”) 10双互不相同的鞋子混装在一只口袋中,从中任取4只,求满足下列要求的情况数 (1)4只没有成双;答案:,即 (2)4只恰成两双;答案:45,即 (3)4只鞋子2只成双,2只不成双;答案:1440, 14.球队比赛问题 双循环赛(排列)、单循环赛(组合)、淘汰赛、对抗赛 (1)4支队进行淘汰赛以决出冠军共举行______场比赛. 答案:3 (2)现有8支球队,平均分成2个小组,每组4支队分别举行双循环赛决出前两名,再由他们举行淘汰赛决出冠军,共举行______场比赛. 答案:27,即 15.涂色问题(技巧:先涂相邻区域多的,该分类时再分类)(1)将3种颜色涂在如图方格中,相邻不涂相同颜色。
排列组合题型全归纳 专题05 分堆问题(解析版)
专题05分堆问题【方法技巧与总结】分组问题(分成几堆,无序)有等分、不等分、部分等分之别.一般地,平均分成n堆(组)必须除以n n A;如果有m堆(组)元素个数相同,必须除以m m A.【典型例题】例1.(2023·全国·高三专题练习)某研究机构采访了“—带一路”沿线20国的青年,让他们用一个关键词表达对中国的印象,使用频率前12的关键词为高铁,移动支付,网购,共享单车、一带一路、无人机、大熊猫、广场舞、中华美食、长城、京剧、美丽乡村.其中使用频率排前4的关键词“高铁、移动支付、网购、共享单车”也成为了他们眼中的“新四大发明”.若将这12个关键词平均分成3组,且各组都包含“新四大发明”关键词.则不同的分法种数为()A.1680B.3360C.6720D.10080【答案】B【解析】先将4个“新四大发明”分成1,1,2三组,有11243222C C C6A=种不同的分法,再将余下的8个分成3,3,2三组,有33285222C C C280A=种不同的分法,最后配成三组,所以共有628023360⨯⨯=种不同的分法.故选:B.例2.(2023·全国·高三专题练习)贵阳一中体育节中,乒乓球球单打12强中有4个种子选手,将这12人平均分成3个组(每组4个人)、则4个种子选手恰好被分在同一组的分法有()A.21B.42C.35D.70【答案】C【解析】4个种子选手分在同一组,即剩下的8人平均分成2组,方法有448422C C35A=种,故选:C.例3.(2023·高二课时练习)把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有()A.4种B.5种C.6种D.7种【答案】A【解析】分类:三堆中“最多”的一堆为5个,其他两堆总和为5,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为4个,其他两堆总和为6,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为3个,那是不可能的.考点:本题主要考查分类计数原理的应用.例4.(2022春·福建泉州·高二校联考期中)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有()A .25种B .30种C .40种D .50种【答案】C【解析】就Grace 的实际参与情况进行分类计数:第一类,Grace 不参与该项任务,则满足题意的不同搜寻方案有1254C C 30=种:第二类,Grace 参与搜寻近处投掷点的食物,则满足题意的不同搜寻方案有25C 10=种,因此由加法计数原理得知,满足题意的不同搜寻方案有30+10=40(种),故选:C.例5.(2022春·山东淄博·高二山东省淄博第一中学校考期中)某市政府决定派遣6名干部分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少2人,则不同的派遣方案共有()A .360种B .90种C .50种D .180种【答案】C【解析】两组至少都是2人,则分组中两组的人数分别为3、3或2、4,两组的人数为2和4的方法数为1226C C 30=(种),两组的人数都是3的方法为36C 20=(种),则不同的派遣方案种数为302050+=(种).故选:C例6.(2022·全国·高二专题练习)将12个不同的物体分成3组,每组4个,则不同的分法种数为().A .34650B .5940C .495D .5775【答案】D【解析】不同的分法种数为444128433121110987651432143215775321C C C A ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯==⨯⨯.故选:D.例7.(2022·全国·高二专题练习)某中学要给三个班级补发8套教具,先将其分成3堆,其中一堆4套,另两堆每堆2套,则不同的分堆方法种数为()A .422842C C CB .1238C C C .42284222C C C A D .42284233C C C A 【答案】C【解析】由条件可知,8套教具,分成4,2,2,共有42284222C C C A 种分法.故选:C .例8.(2022秋·福建厦门·高三厦门双十中学校考阶段练习)将6名同学分成两个学习小组,每组至少两人,则不同的分组方法共有___________种.【答案】25【解析】由题知,6人分为两组共有两种分法:(1)一组2人,一组4人:这种分法数为4262C C 15=种;(2)两组均为3人:这种分法数为3363C C 102!=种,所以,由分类加法原理可得共有25种分法.故答案为:25例9.(2022·高二课时练习)某亲子栏目中,节目组给6位小朋友布置一项搜寻空投食物的任务,已知:①食物投掷点有远、近两处;②由于小朋友甲年纪尚小,所以要么不参与该项任务,要么参与搜寻近处投掷点的食物,但不参与时另需1位小朋友在大本营陪同;③所有参与搜寻任务的小朋友被均匀分成两组,一组去远处,一组去近处.那么不同的搜寻方案共有______种.【答案】40【解析】若甲不参与任务,则需要先从剩下的5位小朋友中任意选出1位陪同,有15C 种选择,再从剩下的4位小朋友中选出2位搜寻远处,有24C 种选择,最后剩下的2位小朋友搜寻近处,因此搜寻方案有1254C C 30=(种);若甲参与任务,则其只能去近处,需要从剩下的5位小朋友中选出2位搜寻近处,有25C 种选择,剩下的3位小朋友去搜寻远处,因此搜寻方案有25C 10=(种).综上,搜寻方案共有30+10=40(种).故答案为:40.例10.(2022春·河北保定·高二校联考阶段练习)将11人分成4组,每组至少2人,则不同的分组方法种数为___________.【答案】56980【解析】依题意,将11人分成4组,可得各组的人数为2,2,2,5或2,2,3,4或2,3,3,3,故不同的分组方法种数为222522342333119751197411963323323C C C C C C C C C C C C A A A ++()1106331514056980=⨯++=.故答案为:56980.例11.(2022·全国·高三专题练习)8名学生平均分成两组,每组都围成一个个圆圈,有______种不同的围法.【答案】1260或()44284C C 32!!【解析】8名学生平均分成两组,有4484C C 2!种分组法,每组都围成一个圈,两个组有323(A )种围法,所以共有()()444422384843C C C C A =3126022=!!!种不同的围法.故答案为:1260或()44284C C 32!!.例12.(2022春·天津河西·高二天津市新华中学校考期中)10个人参加义务劳动,分成4组,各组分别为2人、2人、2人、4人,则不同的分组方案共有__________种(用数字作答).【答案】3150【解析】先从10人抽出4人,有410C 种方法,再将剩余的6人平均分为3组,有226433C CA 种分法,故共有224641033C CC 3150A ⨯=种分组方案,故答案为:3150例13.(2022·高二课时练习)6本不同的书平均分成3堆,每堆2本,共有______种分法.【答案】15【解析】先分三次取书,每次取两本,则应是222642C C C 种方法,但是这里出现了重复.不妨记6本书分别为A 、B 、C 、D 、E 、F ,若第一次取AB ,第二次取CD ,第三次EF ,该种分法记为(),,AB CD EF ,则222642C C C 种分法中还有(),,AB EF CD 、(),,CD AB EF 、(),,CD EF AB 、(),,EF AB CD 、(),,EF CD AB ,33A 种情况,而这33A 种情况,仅是AB 、CD 、EF 的顺序不同,因此只能作为一种分法,故满足题意的分法共有22264233C C C 15A =(种).故答案为:15.例14.(2023·全国·高二专题练习)6本不同的书,按照以下要求处理,各有几种分法?(1)一堆1本,一堆2本,一堆3本;(2)甲得1本,乙得2本,丙得3本;(3)一人得1本,一人得2本,一人得3本;(4)平均分给甲、乙、丙三人;(5)平均分成三堆.【解析】(1)先从6本书中任取1本,作为一堆,有16C 种取法,再从余下的5本书中任取2本,作为一堆,有25C 种取法,最后从余下的3本书中取3本作为一堆,有33C 种取法,故共有分法123653C C C 60=种.(2)由(1)知,分成三堆的方法有123653C C C 种,而每种分组方法仅对应一种分配方法,故甲得1本,乙得2本,丙得3本的分法亦为123653C C C 60=种.(3)由(1)知,分成三堆的方法有123653C C C 种,但每一种分组方法又有33A 种分配方法,故一人得1本,一人得2本,一人得3本的分法有12336533C C C A 360=种.(4)3个人一个一个地来取书,甲从6本不同的书中任取出2本的取法有26C 种,乙再从余下的4本书中取2本书,有24C 种取法,丙从余下的2本中取2本书,有22C 种取法,所以一共有222642C C C 90=种取法.(5)把6本不同的书分成三堆,每堆2本与把6本不同的书分给甲、乙、丙三人,每人2本的区别在于,后者相当于把6本不同的书平均分成三堆后,再把书分给甲、乙、丙三人,因此,设把6本不同的书,平均分成三堆的方法有x 种,那么把6本不同的书分给甲、乙、丙三人每人2本的分法就应有33A x 种,由(4)知,把6本不同的书分给甲、乙、丙三人,每人2本的方法有222642C C C 种.所以32223642A C C C x =,则22264233C C C 15A x ==.例15.(2022·全国·高三专题练习)已知有6本不同的书.分成三堆,每堆2本,有多少种不同的分堆方法?【解析】6本书平均分成3堆,所以不同的分堆方法的种数为222642336543××1C C C 2121==15A 321⨯⨯⨯⨯⨯⨯.故答案为:15.例16.(2022·全国·高三专题练习)已知有6本不同的书.分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?【解析】从6本书中,先取1本作为一堆,再从剩下的5本中取2本作为一堆,最后3本作为一堆,所以不同的分堆方法的种数为12365354C C C 616021⨯=⨯⨯=⨯.例17.(2022·全国·高三专题练习)现有6本不同的书,如果满足下列要求,分别求分法种数.(1)分成三组,一组3本,一组2本,一组1本;(2)分给三个人,一人3本,一人2本,一人1本;(3)平均分成三个组每组两本.【解析】(1)根据题意,第一组3本有36C 种分法,第二组2本有23C 种分法,第三组1本有1种分法,所以共有3263C C 160⨯=种分法.(2)根据题意,先将6本书分为1、2、3的三组,有3263C C 160⨯=种分法,再将分好的三组分给3人,有33A =6种情况,所以共有606360⨯=种分法.(3)根据题意,将6本书平均分为3组,有22264233C C C A =15种不同的分法.例18.(2022·全国·高三专题练习)已知有6本不同的书.(1)分成三堆,每堆2本,有多少种不同的分堆方法?(2)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?【解析】(1)6本书平均分成3堆,所以不同的分堆方法的种数为222642336×54×3××1C C C 2×12×1==15A 3×2×1.(2)从6本书中,先取1本作为一堆,再从剩下的5本中取2本作为一堆,最后3本作为一堆,所以不同的分堆方法的种数为12365354C C C 616021⨯=⨯⨯=⨯.例19.(2022·全国·高三专题练习)设有99本不同的书(用排列数、组合数作答).(1)分给甲、乙、丙3人,一人得93本,另两人各得3本,共有多少种不同的分法?(2)分成3份,一份93本,另两份各3本,共有多少种不同的分法?【解析】(1)99本不同的书,分给甲、乙、丙3人,一人得93本,另两人各得3本,3人中,谁都有得到93本的可能,所以不同的分法共有933339963322C C C A C ⋅(种).(2)99本不同的书,分成3份,一份93本,另两份各3本,两份3本的有重复,所以不同的分法共有9333996322C C C )A ⋅(种).例20.(2022·全国·高三专题练习)6本不同的书,按照以下要求处理,各有几种分法?(1)平均分给甲、乙、丙三人;(2)平均分成三堆.【解析】(1)3个人一个一个地来取书,甲从6本不同的书中任取出2本的取法有26C 种,乙再从余下的4本书中取2本书,有24C 种取法,丙从余下的2本中取2本书,有22C 种取法,所以一共有222642C C C 90=种取法.(2)把6本不同的书分成三堆,每堆2本与把6本不同的书分给甲、乙、丙三人,每人2本的区别在于,后者相当于把6本不同的书平均分成三堆后,再把书分给甲、乙、丙三人,因此,设把6本不同的书,平均分成三堆的方法有x 种,那么把6本不同的书分给甲、乙、丙三人每人2本的分法就应有33A x 种,由(1)知,把6本不同的书分给甲、乙、丙三人,每人2本的方法有222642C C C 种.所以32223642A C C C x =,则22264233C C C 15A x ==.例21.(2022·全国·高三专题练习)某班有一个5男4女组成的社会实践调查小组,准备在暑假进行三项不同的社会实践,若不同的组合调查不同的项目算作不同的调查方式,求按下列要求进行组合时,有多少种不同的调查方式?(1)将9人分成人数分别为2人、3人、4人的三个组去进行社会实践;(2)将9人平均分成3个组去进行社会实践;(3)将9人平均分成每组既有男生又有女生的三个组去进行社会实践.【解析】(1)将9人按2:3:4分组,有234974C C C 种分组方法,再把各组分配到三个项目中去有33A 方法,由分步乘法计数原理得:23439743C C C A 7560=,所以不同的调查方式有7560.(2)从9人中任取3人去调查第一个项目,从余下6人中任取3人去调查第二个项目,最后3人去调查第三个项目,由分步乘法计数原理得:333963C C C 1680=,所以不同的调查方式有1680.(3)把4个女生按2:1:1分组,有24C 种分法,再从5个男生中任取1个到两个女生的一组,从余下4个男生中任取2人到1个女生的一组,最后2个男生到最后的1个女生组,分法种数为541222C C C ,将分得的三个小组分配到三个项目中去有33A 方法,由分步乘法计数原理得:5422122343C C C C A 1080 ,所以不同的调查方式有1080.。
微专题:排列组合问题的综合应用经典题型(含解析)
【学生版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。
【典例】题型1、特殊元素(位置)问题例1、大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有()A.18种B.24种C.36种D.48种【提示】;【答案】;【解析】;【说明】题型2、相邻、相间问题例2、(1)某大厦一层有A,B,C,D四部电梯,现有3人在同一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有()A.12种B.24种C.18种D.36种【答案】【解析】;(2)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.168【答案】【解析】;题型3、分组、分配问题例3、(1)现有三本相同的语文书和一本数学书,分发给三个学生,每个学生至少分得一本,不同分法的种数为()A.36 B.9 C.18 D.15(2)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有种不同的分法.题型4、涂色问题例4、(1)如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?(2)如图,一个地区分为5个行政区域,现给该地区的地图着色,要求相邻区域不得使用同一种颜色.现在有4种颜色可供选择,则不同的着色方法共有________种.(用数字作答)【说明】解决涂色问题,关键还是阅读理解与用好两个计数原理;【归纳】排列、组合的混合问题是从几类元素中取出符合题意的几个元素,再安排到一定位置上的问题.其基本的解题步骤为:第一步:选,根据要求先选出符合要求的元素;第二步:排,把选出的元素按照要求进行排列;第三步:乘,根据分步乘法计数原理求解不同的排列种数,得到结果;均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数;【即时练习】1、有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种2、从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法种数为()A.C210P48B.C19P59C.C18P59D.C18P583、北京APEC峰会期间,有2位女性和3位男性共5位领导人站成一排照相,则女性领导人甲不在两端,3位男性领导人中有且只有2位相邻的站法有种A.12种B.24种C.48种D.96种4、如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有种5、在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)(1)三名女生不能相邻,有多少种不同的站法?(2)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(3)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)(4)从中选出2名男生和2名女生表演分四个不同角色朗诵,有多少种选派方法?6、现有7名师范大学应届毕业的免费师范生将被分配到育才中学、星云中学和明月湾中学任教.(1)若4人被分到育才中学,2人被分到星云中学,1人被分到明月湾中学,则有多少种不同的分配方案?(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?【教师版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。
1.2.3排列组合综合题型
例14.已知方程x y z 5,求 ⑴有多少组正整数解? ⑵有多少组非负整数解?
4
2 ( 4
4 3 3 C - (2)甲、乙二人有且仅有1人参加,有 2 ( )种; A A 4 3 4
(3)甲、乙二人均参加,有 C
A
4 - 2 4
A +A
3 3
2 2 )种
共有252种.
例6.从6名短跑运动员中选4人参加4×100米接力,如 果其中甲不跑第一棒,乙不跑第四棒,问共有多少种参 赛方法? 解法二:六人中取四人参加的种数为
1 4 共有 A4 A4 种;
解法二:对特殊位置 :第一节和第六节进行分类解决. 例7 某天课表共六节课,要排政治、语文、数学、 物理、化学、体育共六门课程,如果第一节不排体育, 最后一节不排数学,共有多少种不同的排课方法? 2 第一类 第一节和第六节均不排数学、体育,有 A4 种 4 共有 A42 A44 种; 其他有 A4 种, 第二类 第一节排数学、第六节排体育有 一 种,
甲乙 丙丁
捆绑法来解决问题.即将需要相邻的元素合并 5 2 2 由分步计数原理可得共有 A5 A2 A2 =480 为一个元素 ,再与其它元素一起作排列,同时 种不同的排法 要注意合并元素内部也必须排列.
相邻元素的排列,可以采用“整体到局部”的排法,即 将相邻的元素当成“一个”元素进行排列,然后再局部排 列.
练习: (1)今有10件不同奖品,从中选6件分成三份, 二份各1 件,另一份4件, 有多少种分法? (2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每 人二件有多少种分法?
解: (1) C C C C 3150 2 2 C C C (2) 6 4 C 18900
排列组合常见题型及解答
一.可重复的摆列求幂法:重复摆列问题要划分两类元素:一类能够重复,另一类不可以重复,把不能重复的元素看作“客” ,能重复的元素看作“店” ,则经过“住店法”可顺利解题,在这种问题使用住店办理的策略中,重点是在正确判断哪个是底数,哪个是指数【例 1】( 1)有 4 名学生报名参加数学、物理、化学比赛,每人限报一科,有多少种不一样的报名方法(2)有 4 名学生参加抢夺数学、物理、化学比赛冠军,有多少种不一样的结果(3)将 3 封不一样的信投入 4 个不一样的邮筒,则有多少种不一样投法【分析】:(1)( 2)( 3)【例 2】把6名实习生疏派到7 个车间实习共有多少种不一样方法【分析】:达成此事共分 6 步,第一步;将第一名实习生疏派到车间有7 种不一样方案,第二步:将第二名实习生疏派到车间也有7 种不一样方案,挨次类推,由分步计数原理知共有种不一样方案 .【例 3】 8 名同学抢夺 3 项冠军,获取冠军的可能性有()A、B、C、D、【分析】:冠军不可以重复,但同一个学生可获取多项冠军,把8 名学生看作8 家“店”, 3 项冠军看作 3 个“客”,他们都可能住进随意一家“店” ,每个“客”有 8 种可能,所以共有种不一样的结果。
所以选 A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,看作一个大元素参加摆列.【例 1】 A,B,C,D,E五人并排站成一排,假如A,B 一定相邻且 B 在 A 的右侧,那么不一样的排法种数有【分析】:把 A,B 视为一人,且 B 固定在 A 的右侧,则此题相当于 4 人的全摆列,种【例 2】( 2009 四川卷理) 3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数是()A. 360B. 188C. 216D. 96【分析】:间接法 6位同学站成一排, 3位女生中有且只有两位女生相邻的排法有,,此中男生甲站两头的有,切合条件的排法故共有288三.相离问题插空法:元素相离(即不相邻)问题,可先把无地点要求的几个元素全摆列,再把规定的相离的几个元素插入上述几个元素的空位和两头.【例 1】七人并排站成一行,假如甲乙两个一定不相邻,那么不一样的排法种数是【分析】:除甲乙外,其余 5 个摆列数为种,再用甲乙去插 6 个空位有种,不一样的排法数是【例 2】书架上某层有 6 本书,新买 3 本插进去,要保持原有 6 本书的次序,有种不一样的插法(数字作答)【分析】:【例 3】高三(一)班学要安排毕业晚会的 4 各音乐节目, 2 个舞蹈节目和 1 个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不一样排法的种数是【分析】:不一样排法的种数为=3600【例 4】某工程队有 6 项工程需要独自达成,此中工程乙一定在工程甲达成后才能进行,工程丙必须在工程乙达成后才能进行,有工程丁一定在工程丙达成后立刻进行。
2024年高考数学专项复习排列组合12种题型归纳(解析版)
排列组合12种题型归纳1.排列与组合的概念名称定义区别排列从n 个不同元素中取出m (m ≤n )个元素按照一定的顺序排成一列排列有序,组合无序组合合成一组2.排列数与组合数定义计算公式性质联系排列数从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数.用符号“A m n ”表示A m n =n (n -1)(n -2)…(n -m +1)=n !(n -m )!(n ,m ∈N *,且m ≤n )(1)A n n =n !;(2)0!=1C m n =A m nm !组合数从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号“C m n ”表示C m n =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(n ,m ∈N *,且m ≤n )(1)C n n =C 0n =1;(2)C m n =C n -m n ;(3)C m n +1=C mn +C m -1n【题型一】人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:2024年高考数学专项复习排列组合12种题型归纳(解析版)【变式演练】1.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A.30B.36C.60D.722.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.144B.120C.72D.483.2021年4月15日,是第六个全民国家安全教育日,教育厅组织宣讲团到某市的六个不同高校进行国家安全知识的宣讲,时间顺序要求是:高校甲必须排在第二或第三个,且高校甲宣讲结束后需立即到高校丁宣讲,高校乙、高校丙的宣讲顺序不能相邻,则不同的宣讲顺序共有()A.28种B.32种C.36种D.44种【题型二】人坐座位模型2:染色(平面)【典例分析】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则A、C区域颜色不相同的概率是A.1/7 b.2/7 c.3/7 D.4/7【变式演练】1.正方体六个面上分别标有A、B、C、D、E、F六个字母,现用5种不同的颜色给此正方体六个面染色,要求有公共棱的面不能染同一种颜色,则不同的染色方案有()种.A.420B.600C.720D.7802.如图,某伞厂生产的太阳伞的伞篷是由太阳光的七种颜色组成,七种颜色分别涂在伞篷的八个区域内,且恰有一种颜色涂在相对区域内,则不同颜色图案的此类太阳伞最多有().A .40320种B .5040种C .20160种D .2520种3.如图,用四种不同的颜色给图中的A ,B ,C ,D ,E ,F ,G 七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有()A .192B .336C .600D .以上答案均不对【题型三】人坐座位模型3:染色(空间):【典例分析】如图所示的几何体由三棱锥P ABC -与三棱柱111ABC A B C -组合而成,现用3种不同颜色对这个几何体的表面涂色(底面111A B C 不涂色),要求相邻的面均不同色,则不同的涂色方案共有()A .6种B .9种C .12种D .36种【变式演练】1.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法种数是()A.420B.210C.70D.352.在如图所示的十一面体ABCDEFGHI中,用3种不同颜色给这个几何体各个顶点染色,每个顶点染一种颜色,要求每条棱的两端点异色,则不同的染色方案种数为__________.3.用五种不同颜色给三棱台ABC DEF的六个顶点染色,要求每个点染一种颜色,且每条棱的两个端点染不同颜色.则不同的染色方法有___________种.【题型四】书架插书模型【典例分析】有12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.168B.260C.840D.560【变式演练】A aB bC cD d1.从A,B,C,D,a,b,c,d中任选5个字母排成一排,要求按字母先后顺序排列(即按(),(),(),()先后顺序,但大小写可以交换位置,如AaBc或aABc都可以),这样的情况有__________种.(用数字作答)2..在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法3.书架上有排好顺序的6本书,如果保持这6本书的相对顺序不变,再放上3本书,则不同的放法共有().A.210种B.252种C.504种D.505种【题型五】球放盒子模型1:球不同,盒子也不同【典例分析】已知有5个不同的小球,现将这5个球全部放入到标有编号1、2、3、4、5的五个盒子中,若装有小球的盒子的编号之和恰为11,则不同的放球方法种数为()A.150B.240C.390D.1440【变式演练】1.将5个不同的小球放入3个不同的盒子,每个盒子至少1个球,至多2个球,则不同的放法种数有()A.30种B.90种C.180种D.270种2.将编号分别为1,2,3,4,5的5个小球分别放入3个不同的盒子中,每个盒子都不空,则每个盒子中所放小球的编号奇偶性均不相同的概率为A.17B.16C.625D.7243.将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法种数为()A.15B.30C.20D.42【题型六】球放盒子模型2:球相同,盒子不同【典例分析】把1995个不加区别的小球分别放在10个不同的盒子里,使得第i 个盒子中至少有i 个球(1,2,...,10i ),则不同放法的总数是A .101940C B .91940C C .101949C D .91949C 【变式演练】1.将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法种数为()A .22B .25C .20D .482.把20个相同的小球装入编号分别为①②③④的4个盒子里,要求①②号盒每盒至少3个球,③④号盒每盒至少4个球,共有种方法.A .39C B .319C C .3494C AD .143205C C 3.将7个相同的小球放入A ,B ,C 三个盒子,每个盒子至少放一球,共有()种不同的放法.A .60种B .36种C .30种D .15种【题型七】相同元素排列模型1:数字化法【典例分析】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓才加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.9【变式演练】1.一只小蜜蜂位于数轴上的原点处,小蜜蜂每一次具有只向左或只向右飞行一个单位或者两个单位距离的能力,且每次飞行至少一个单位.若小蜜蜂经过5次飞行后,停在数轴上实数3位于的点处,则小蜜蜂不同的飞行方式有多少种?A .5B .25C .55D .752.跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格子外跳到第8个格子的方法种数为A .8种B .13种C .21种D .34种3.如图所示,甲、乙两人同时出发,甲从点A 到B ,乙从点C 到D ,且每人每次都只能向上或向右走一格.则甲、乙的行走路线没有公共点的概率为().A .37B .57C .514D .1321【题型八】相同元素排列模型2:空车位停车等【典例分析】1.某单位有8个连在一起的车位,现有4辆不同型号的车需要停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为()A.240B.360C.480D.7202.马路上有编号为1,2,3,4,5,6,7,8,9的9盏路灯,为节约用电,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,满足条件的关灯办法有种【变式演练】1.某公共汽车站有6个候车位排成一排,甲、乙、丙三个乘客在该汽车站等候228路公交车的到来,由于市内堵车,228路公交车一直没到站,三人决定在座位上候车,且每人只能坐一个位置,则恰好有2个连续空座位的候车方式的种数是A.48B.54C.72D.842.现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有_________种.3.地面上有并排的七个汽车位,现有红、白、黄、黑四辆不同的汽车同时倒车入库.当停车完毕后,恰有两个连续的空车位,且红、白两车互不相邻的情况有________种.【题型九】相同元素排列模型3:上楼梯等【典例分析】欲登上第10级楼梯,如果规定每步只能跨上一级或两级,则不同的走法共有A.34种B.55种C.89种D.144种【变式演练】1.斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、…..,在数学上,斐波那契数列以如下被递推的方法定义:()11f =,()21f =,()()()()122,f n f n f n n n N *=-+-≥∈.这种递推方法适合研究生活中很多问题.比如:一六八中学食堂一楼到二楼有15个台阶,某同学一步可以跨一个或者两个台阶,则他到二楼就餐有()种上楼方法.A .377B .610C .987D .15972.从一楼到二楼共有12级台阶,可以一步迈一级也可以一步迈两级,要求8步走完,则从一楼到二楼共有走法.A .12B .8C .70D .663.某人从上一层到二层需跨10级台阶.他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步,最多能跨3级台阶,称为三阶步.从一层上到二层他总共跨了6步,而且任何相邻两步均不同阶.则他从一层到二层可能的不同过程共有()种.A .6B .8C .10D .122010年全国高中数学联赛山东赛区预赛试题【题型十】多事件限制重叠型【典例分析】班班会准备从含甲、乙、丙的7名学生中选取4人发言,要求甲、乙两人至少有一个发言,且甲、乙都发言时丙不能发言,则甲、乙两人都发言且发言顺序不相邻的概率为A .217B .316C .326D .328【变式演练】1.某同学计划用他姓名的首字母,T X ,身份证的后4位数字(4位数字都不同)以及3个符号,,αβθ设置一个六位的密码.若,T X 必选,且符号不能超过两个,数字不能放在首位和末位,字母和数字的相对顺序不变,则他可设置的密码的种数为()A .864B .1009C .1225D .14412.2019年11月19日至20日,北京师范大学出版集团携手北师大版数学教材编写组在广东省珠海市联合举办了以“新课程,我们都是追梦人”为主题的北师大版中小学数学教材交流研讨会,会议期间举办了一场“互动沙龙”,要求从6位男嘉宾,2位女嘉宾中随机选出4位嘉宾进行现场演讲,且女嘉宾至少要选中1位,如果2位女嘉宾同时被选中,她们的演讲顺序不能相邻,那么不同演讲顺序的种数是()A .1860B .1320C .1140D .10203.有2辆不同的红色车和2辆不同的黑色车要停放在如图所示的六个车位中的四个内,要求相同颜色的车不在同一行也不在同一列,则共有______种不同的停放方法.(用数字作答)【题型十一】多重限制分类讨论【典例分析】高一新生小崔第一次进入图书馆时看到了馆内楼梯(图1),她准备每次走1级或2级楼梯去二楼,并在心中默默计算这样走完25级楼梯大概有多少种不同的走法,可是当她走上去后发现(图2)原来在13级处有一宽度达1.5米的平台,这样原来的走楼梯方案需要调整,请问,对于剩下的15级()123+楼梯按分2段的走法与原来一次性走15级的走法相比较少了______种.【变式演练】1.市内某公共汽车站有7个候车位(成一排),现有甲,乙,丙,丁,戊5名同学随机坐在某个座位上候车,则甲,乙相邻且丙,丁不相邻的不同的坐法种数为______;(用数字作答)3位同学相邻,另2位同学也相邻,但5位同学不能坐在一起的不同的坐法种数为______.(用数字作答)2.2021年某地电视台春晚的戏曲节目,准备了经典京剧、豫剧、越剧、粤剧、黄梅戏、评剧6个剧种的各一个片段.对这6个剧种的演出顺序有如下要求:京剧必须排在前三,且越剧、粤剧必须排在一起,则该戏曲节目演出顺序共有()种.A .120B .156C .188D .2403.甲、乙、丙、丁等六名退休老党员相约去观看党史舞台剧《星火》.《星火》的票价为50元/人,每人限购一张票.甲、乙、丙三人各带了一张50元钞,其余三人各带了一张100元钞.他们六人排成一列到售票处买票,而售票处一开始没有准备50元零钱,那么他们六人共有多少种不同排队顺序能使购票时售票处不出现找不出钱的状态.()A .720B .360C .180D .90【题型十二】综合应用【典例分析】设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需Ti 分钟,假设Ti 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少()A .从Ti 中最大的开始,按由大到小的顺序排队B .从Ti 中最小的开始,按由小到大的顺序排队C .从靠近Ti 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变【变式演练】1.由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是()A .120B .112C .110D .162.设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为()A .32B .56C .72D .843.为迎接第24届冬季奥林匹克运动会,某校安排甲、乙、丙、丁、戊共五名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人.则学生甲不会被安排到冰球比赛项目做志愿者的概率为()A.34B.23C.56D.12【经典题专练】1.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则,A C区域涂色不相同的概率为()A.17B.27C.37D.472.将一个四棱锥S ABCD的每个顶点染上一种颜色,并使同一条棱的两端异色,如果只有5种颜色可供使用,则不同的染色方法的总数是A.540B.480C.420D.3603.清明节前夕,某校团委决定举办“缅怀革命先烈,致敬时代英雄”主题演讲比赛,经过初赛,共有10人进入决赛,其中高一年级3人,高二年级3人,高三年级4人,现采用抽签方式决定演讲顺序,则在高二年级3人相邻的前提下,高一年级3人不相邻的概率为()A.512B.712C.914D.5144.10名同学合影,站成前排4人后排6人,现摄影师要从后排6人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A .2263C A B .2666C A C .2266C AD .2265C A 5.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A .90B .135C .270D .3606.现有9个相同的球要放到3个不同的盒子里,每个盒子至少一个球,各盒子中球的个数互不相同,则不同放法的种数是()A .28B .24C .18D .167.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为A .16B .18C .32D .728.校园某处并排连续有6个停车位,现有3辆汽车需要停放,为了方便司机上下车,规定:当有汽车相邻停放时,车头必须同向;当车没有相邻时,车头朝向不限,则不同的停车方法共有__________种.(用数学作答)9.如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是()A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有64种C .甲、乙两人在2A 处相遇的概率为81400D .甲、乙两人相遇的概率为1210.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.11.2020年疫情期间,某县中心医院分三批共派出6位年龄互不相同的医务人员支援武汉六个不同的方舱医院,每个方舱医院分配一人.第一批派出一名医务人员的年龄为1P ,第二批派出两名医务人员的年龄最大者为2P ,第三批派出三名医务人员的年龄最大者为3P ,则满足123P P P <<的分配方案的概率为()A .13B .23C .120D .3412.如图,在某海岸P 的附近有三个岛屿Q ,R ,S ,计划建立三座独立大桥,将这四个地方连起来,每座桥只连接两个地方,且不出现立体交叉形式,则不同的连接方式有().A .24种B .20种C .16种D .12种13.现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是()A .每人都安排一项工作的不同方法数为54B .每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为4154A C C .如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为()3122352533C CC C A +D .每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是1232334333C C A C A +14.罗马数字是欧洲在阿拉伯数字传入之前使用的一种数码,它的产生标志着一种古代文明的进步.罗马数字的表示法如下:数字123456789形式ⅠⅡⅢⅣⅤⅥⅦⅧⅨ其中“Ⅰ”需要1根火柴,“Ⅴ”与“X”需要2根火柴,若为0,则用空位表示.(如123表示为,405表示为)如果把6根火柴以适当的方式全部放入下面的表格中,那么可以表示的不同的三位数的个数为()A .87B .95C .100D .10315.如图为33⨯的网格图,甲、乙两人均从A 出发去B 地,每次只能向上或向右走一格,并且乙到达任何一个位置(网格交点处)时向右走过的格数不少于向上走过的格数,记甲、乙两人所走路径的条数分别为M、 的值为()N,则M NA.10B.14C.15D.16排列组合12种题型归纳1.排列与组合的概念名称定义区别排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列排列有序,组合无序组合合成一组2.排列数与组合数定义计算公式性质联系排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.用符号“A m n”表示A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(n,m∈N*,且m≤n)(1)A n n=n!;(2)0!=1C m n=A m nm!组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号“C m n”表示C m n=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(n,m∈N*,且m≤n)(1)C n n=C0n=1;(2)C m n=C n-m n;(3)C m n+1=C m n+C m-1n【题型一】人坐座位模型1:捆绑与插空【典例分析】1.有四男生,三女生站一排,其中只有俩个女生相邻:2.有四男生,4女生站一排,女生若相邻,则最多2个女生相邻:解答(1):先捆绑俩女生,再排列捆绑女生,然后排列四个男生,两个“女生”插孔即可,2242 3245 C A A A(2)分类讨论24422422243445224542451; (2); (3)2C A A A A A C A A A ()都不相邻:A 两队各自相邻:一对两人相邻:!【方法技巧】人坐座位模型:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。
排列组合练习题及答案.
排列组合练习题及答案.第一篇:排列组合练习题及答案.《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派 2人参加文艺活动, 1人下乡演出, 1人在本地演出, 有多少种不同选派方法?3.现从男、女 8名学生干部中选出 2名男同学和 1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是A.男同学 2人,女同学 6人B.男同学 3人,女同学 5人C.男同学 5人,女同学 3人D.男同学 6人,女同学 2人4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1,则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票,那么原有的车站有A.12个B.13个C.14个D.15个 5.用 0, 1, 2, 3, 4, 5这六个数字,(1可以组成多少个数字不重复的三位数?(2可以组成多少个数字允许重复的三位数?(3可以组成多少个数字不允许重复的三位数的奇数?(4可以组成多少个数字不重复的小于1000的自然数?(5可以组成多少个大于3000,小于 5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1甲乙必须站两端,有多少种不同排法?(2甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1, 2, 3, 4, 5, 6, 7所组成的没有重复数字的四位数,按从小到大的顺序排列起来, 第 379个数是A.3761B.4175C.5132D.6157 4.设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1, 2,…, 10,11的 11个球中取 5个,使这 5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从 6双不同颜色的手套中任取 4只,其中恰好有 1双同色的取法有 A.240种 B.180种 C.120种 D.60种7.用 0, 1, 2, 3, 4, 5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第 71个数是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合综合题型
1. 10件不同厂生产的同类产品
(1) 在商品评选会上,有两件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,
有多少种不同的选法?(16804
8=p )
(2) 若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的
布置方法?(504004
826=∙p p )
2. 把4个班平均分给两个教师任教,问不同的分配方法有多少种?(62
4=C )
3. 从5名男生、3名女生中选5名担任5门不同学科的课代表,求符合下列条件的方法数:(1)女生必须少
于男生;(2)女生甲担任语文课代表;(3)男生乙必须是课代表,但不任数学课代表;(4)女生甲必须任语文课代表,男生乙必须任课代表,但不任数学课代表。
((1)5520)(552335134555=++P C C C C C (2)84047=P (3)33601447=P P (4)3601
336=P P )
4. 从一班50人中选出5人,从二班52人中选出5人,组成两个5人小组(一、二班人混合选),然后各组选
正、副组长各1人,共有多少种选法(答案用组合数表示)?()2
1(2
5255105
52550P P C C C )
5. 从6名短跑运动员中选4人组成1004⨯米接力队,甲不跑第一棒,乙不跑最后一棒,有几种选法?
(252)(24351435=-+P P C P 或 252)2(2
2334424223313341244=+-++P P P C C P P C C P )
6. 按以下要求分配6本不同的书,各有几种分法?(均只要求列式)
(1) 平均分给甲、乙、丙三人,每人2本;(2
42
6C C )
(2) 平均分成三份,每份2本;(332426/p C C )
(3) 甲、乙、丙三人,甲得1本,乙得2本,丙得3本;(3
32516C C C ) (4) 甲、乙、丙三人一人得1本,一人得2本,一人得3本;(3
33
32
51
6P C C C ) (5) 分成三份,一份1本,一份2本,一份3本;(3
32
51
6C C C )
(6) 甲、乙、丙三人中。
甲得4本,乙、丙每人各得1本 ;(2
24
6P C 或1
51
6C C )
(7) 甲、乙、丙三人中。
一人得4本,另两人每人得1本 ;(224613P C C 或4633C P 或22124633/P C C P )
(8) 分成三份,一份4本,另两份每份1本;(4
6C )
7. 10人排成前后两排,前4后6,根据下列各种情况,各有多少种排法?(均只要求列式)
(1) 无其他条件;(10
10P )
(2) 甲不排在前排,乙、丙不排在后排;(772414P P C ) (3) 甲、乙不相邻,且一定在后排;(88223P P 或8824)3(P P -) (4) 甲、乙不相邻。
(8826882288141622)5(3)(P P P P P C C P -+++)
8. 10人坐成前后两排,每排5人,按照以下要求,各有多少种坐法?(均只要求列式)
(1) 无其它约束条件;(10
10P )
(2) 若某2人必须在前排,另外某1人必须坐在后排;(771525P P P )
(3) 在(2)中,若指定坐前排的2人须相邻,指定坐后排的1人不在两端。
(771322)4(P C P +)
9. 某车间有9名工人,其中有2人既能当车工又能当钳工;有3人只能当车工;有4人只能当钳工,现在需
抽调3名车工,3名钳工,有多少种抽法?
10. 从9,8,7,6,5,4,3,2,1中选出3个偶数,2个奇数,可组成无重复数字的五位数多少个?其中奇数有多少个?
11. 从5,4,3,2,1,0中选2个奇数2个偶数,可组成无重复数字的四位数多少个?其中偶数有多少个?
12. 有六个数7,6,5,4,3,2。
(1)从其中任取两个数作为乘数,可以得到多少个不同的积?(2)上述积中有多
少个偶数?
13. 在9,7,5,3,1中任取三个数字,在8,6,4,2,0中任取两个数字,可组成多少个不同的五位偶数? 模式题型 (一) 相邻问题
14. g f e d c b a ,,,,,,七个人排成一排,如果c b a ,,必须相邻,那么不同的排法有多少种?
(二) 相离问题
15. e d c b a ,,,,五个人排成一排,a 与b 不相邻,共有多数种不同的排法?
(三)
顺序问题
16. 现有语文、数学、英语、物理、化学、生物练习题各一套,准备分给c b a 、、三名学生:
(1)a 得3套,b 得2套,c 得1套,有多水种不同的分法? (2)一人得3套,一人得2套,一人得1套,有多少种不同的分法? (四)
标号排位问题
17. 将数字4,3,2,1填入标号为4,3,2,1的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同
的填法有 (
)
A 。
6种
B 。
9种
C 。
11种
D 。
23种
(五) 多元问题
18. 用数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数字的共有
(
)
A 。
210个
B 。
300个
C 。
464个
D 。
600个
(六) 定位问题 19. 1名老师和4名获奖学生排成一排照相留念,若老师不在两侧,则不同的排法有________________种。
(七) 分组问题
20. 现有6套不同的练习题:
(1)平均分给3名学生,有多少种不同的分法?
(2)平均分成3份,有多少种不同的分法?
习题: 一、
选择题
1. 掷下4枚编了号的硬币,至少有2枚正面朝上的情况有
(
)
A ()
44342
4C C C
++种
B
()
44342
4A A A
++种
C
4
22
1∙种 D 不同于A 、B 、C 的结论 2. 从E D C B A 、、、、五名学生中选出四名分别参加数学、物理、化学、英语竞赛,其中A 不参加物理、
化学竞赛,则不同的参赛方案种数为 (
)
A 。
24
B 。
48
C 。
120
D 。
72
3. 数字不重复,且个位数字与千位数字之差的绝对值等于2的四位数的个数为(
)
A 。
672
B 。
784
C 。
840
D 。
896
4. 10021,,,l l l 为100条共面且不同的直线,若其中编号为()
*
∈N k k 4的直线互相平行,编号为34-k 的直
线都过某定点A 。
则这100条直线的交点个数最多为 ( )
A.4350
B.4351
C.4900
D.4901
二、
填空题 5. 在数字6,5,4,3,2,1,0中,任取3个不同的数字为系数c b a ,,组成二次函数c bx ax y ++=2
,则一共可以
组成_________个不同的解析式?
6. 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包一项,丙、丁公司各承包2项,则
共有_________种承包方式。
7. 四个不同的小球放入编号为4,3,2,1的四个盒子中,则恰好有一个空盒的放法共有_________种。
8. 某校乒乓球队有男运动员10人和女运动员9人,选出男、女运动员各3名参加三场混合双打比赛(每名
运动员只限参加一场比赛),共有_________种不同的选赛方法。
三、
解答题
9. 有7本不同的书:(1)全部分给6个人,每人至少一本;(2)全部分给5个人,每人至少一本。
求各有多
少种不同的分法。
10. 九张卡片分别写着数字,8,,2,1,0 从中取出三张排成一排组成一个三位数,如果写着6的卡片还能当9
用,问共可以组成多少个三位数?。