高中数学-三角函数公式大全
高中数学常用三角函数公式

高中数学常用三角函数公式锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的.邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
高中数学三角函数公式大全全解

高中数学三角函数公式大全全解三角函数公式1.正弦定理:$a/\sin A=b/\sin B=c/\sin C=2R$($R$为三角形外接圆半径)。
2.余弦定理:$a^2=b^2+c^2-2bc\cos A$。
$b^2=a^2+c^2-2ac\cos B$。
$c^2=a^2+b^2-2ab\cos C$。
3.海伦公式:$S_{\triangle}=\sqrt{p(p-a)(p-b)(p-c)}$。
其中$p=(a+b+c)/2$,$S_{\triangle}$为三角形面积。
4.诱导公式:奇变偶不变,符号看象限。
sin(-\alpha)=-\sin\alpha$,$\sin(\pi-\alpha)=\sin\alpha$,$\cos(-\alpha)=\cos\alpha$,$\cos(\pi-\alpha)=-\cos\alpha$,$\tan(-\alpha)=-\tan\alpha$,$\tan(\pi-\alpha)=\tan\alpha$,$\cot(-\alpha)=-\cot\alpha$,$\cot(\pi-\alpha)=-\cot\alpha$。
5.和差角公式:sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,$\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$,$\tan(\alpha\pm\beta)=(\tan\alpha\pm\tan\beta)/(1\mp\tan\alpha\tan \beta)$。
6.二倍角公式:(含万能公式)sin 2\theta=2\sin\theta\cos\theta=2\tan\theta/(1+\tan^2\theta)$,$\cos 2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta= (1-\tan^2\theta)/(1+\tan^2\theta)$,$\tan 2\theta=2\tan\theta/(1-\tan^2\theta)$。
高中数学三角函数万能公式

高中数学三角函数万能公式
三角函数是高中数学学习的一个重点,那幺,数学三角函数有哪些万能公式呢?下面小编整理了一些相关信息,供大家参考!
1 三角函数有哪些万能公式一、(1)(sinα) +(cosα) =1
(2)1+(tanα) =(secα)
(3)1+(cotα) =(cscα)
证明下面两式,只需将一式,左右同除(sinα) ,第二个除(cosα) 即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
二、设tan(A/2)=t
sinA=2t/(1+t ) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t ) (A≠2kπ+π,k∈Z)
cosA=(1-t )/(1+t ) (A≠2kπ+π k∈Z)
就是说sinA.tanA.cosA 都可以用tan(A/2)来表示,当要求一串函数式最值的
时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。
三、sinα=[2tan(α/2)]/{1+[tan(α/2)] }
cosα=[1-tan(α/2) ]/{1+[tan(α/2)] }
tanα=[2tan(α/2)]/{1-[tan(α/2)] }
将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换.
1 三角函数相关公式有哪些1.半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.。
高中数学三角函数公式大全

2
⑥ 1 cos 2 cos 2
2
8.积化和差公式: (选择记忆) 1 1 sin cos sin( ) sin( ) cos sin sin( ) sin( ) 2 2 1 1 cos cos cos( ) cos( ) sin sin cos( ) cos 2 2 9.和差化积公式:
tan - tg - tg + tg - tg + tg tan + ctg - ctg + ctg - ctg
cot - ctg - ctg + ctg - ctg + ctg cot + tg - tg + tg - tg
- sin + sin - sin - sin + sin sin
2 tan 1 tan 2
7.半角公式: (符号的选择由
所在的象限确定) 2
① s1 cos 2
② sin 2
2
1 cos 2
③ cos
2
1 cos 2
④ cos 2
2
⑤ 1 cos 2 sin 2
① sin sin 2 sin
2 2 cos ③ cos cos 2 cos 2 2
cos
② sin sin 2 cos
2
sin
2 2
④ cos cos 2 sin
2
sin
tan tan 1 tan tan
高中三角函数公式大全

高中三角函数公式大全三角函数公式1. 两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA + tan(A-B) =tanAtanB 1tanBtanA +- cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+2. 倍角公式tan2A =Atan 12-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3. 三倍角公式3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 4. 半角公式 sin(2A )=2cos 1A- cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +5. 和差化积sina+sinb=2sin 2b +cos 2ba -sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba - tana+tanb=b a b a cos cos )sin(+6. 积化和差sinasinb = -2[cos(a+b)-cos(a-b)]cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]7. 诱导公式 cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin8. 万能公式(不需要记)sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa - 9. 其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)210. 其他非重点三角函数csc(a) =a sinsec(a) =acos 111. 双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a● 公式一:设 sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα ● 公式三:的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα ● 公式四:π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα ● 公式五:2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα ● 公式六: 2π±α及2±α与α的三角函数值之间的关系:sin (2π+α)= cosαcos (2π+α)= -sinαtan (2π+α)= -cotαcot (2π+α)= -tanαsin (2π-α)= cosαcos (2π-α)= sinαtan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinα tan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)ta n(α+β)=(1+m)/(1-m)tanβ。
高中数学三角函数常用公式

高中数学三角函数常用公式三角函数是高中数学中非常重要的内容,掌握了三角函数的常用公式,能够对解题提供很大的帮助。
下面是一些常用的三角函数公式。
1.基本公式:正弦函数(sin):sin(A+B) = sinA * cosB + cosA * sinBsin(A-B) = sinA * cosB - cosA * sinBsin2A = 2 * sinA * cosA余弦函数(cos):cos(A+B) = cosA * cosB - sinA * sinBcos(A-B) = cosA * cosB + sinA * sinBcos2A = cos^2A - sin^2A = 2cos^2A-1 = 1-2sin^2A正切函数(tan):tan(A+B) = (tanA + tanB) / (1 - tanA * tanB)2.万能公式:sinA = 2tan(A/2) / (1 + tan^2(A/2))cosA = (1 - tan^2(A/2)) / (1 + tan^2(A/2))tanA = 2tan(A/2) / (1 - tan^2(A/2))3.诱导公式:s in(π/2 - A) = cosAcos(π/2 - A) = sinAtan(π/2 - A) = 1 / tanAcot(π/2 - A) = 1 / tanAsec(π/2 - A) = 1 / cosAcsc(π/2 - A) = 1 / sinA 4.任意角公式:sin(-A) = -sinAcos(-A) = cosAtan(-A) = -tanAtan(A + π) = tanAsin(π - A) = sinAcos(π - A) = -cosAsin(A + π) = -sinAcos(A + π) = -cosAsin(2π -A) = -sinAcos(2π - A) = cosAsin(A + 2π) = sinAcos(A + 2π) = cosA5.等差关系:sin(A + nπ) = sinAcos(A + nπ) = cosAtan(A + nπ) = tanA6.倍角公式:sin(2A) = 2sinAcosAcos(2A) = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan(2A) = (2tanA) / (1 - tan^2A)7.半角公式:sin(A/2) = ±√((1 - cosA) / 2)cos(A/2) = ±√((1 + cosA) / 2)tan(A/2) = ±√((1 - cosA) / (1 + cosA))8.三角恒等式:sin^2A + cos^2A = 11 + tan^2A = sec^2A1 + cot^2A = csc^2A这些是高中数学中常用的三角函数公式,掌握了这些公式,能够在解题过程中准确、快速地计算三角函数的值,帮助解决许多复杂的问题。
高中数学常用的三角函数公式

高中数学常用的三角函数公式高中三角函数公式:倍角公式Sin2A=2SinA·CosA。
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1。
tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))高中三角函数公式:半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα。
高中三角函数公式:两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)高中三角函数公式:三倍角公式sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosA高中三角函数公式:和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB高中三角函数公式:积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]高中三角函数公式:诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA高中三角函数公式:万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}高中三角函数公式:其它公式a?sin(a)+b?cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a] a?sin(a)-b?cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]^2;1-sin(a) = [sin(a/2)-cos(a/2)]^2;;高中三角函数公式:其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)。
高中数学三角函数常用公式大全

高中数学三角函数常用公式大全高中数学三角函数常用公式大全之锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边高中数学三角函数常用公式大全之倍角公式高中数学三角函数常用公式大全之三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)高中数学三角函数常用公式大全之二倍角公式推导高中数学三角函数常用公式大全之两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)高中数学三角函数常用公式大全之诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课程高中数学三角公式汇总
一、任意角的三角函数
在角α的终边上任取..
一点),(y x P ,记:2
2y x r +=, 正弦:r y =αsin 余弦:r x
=αcos 正切:x
y
=αtan 余切:y x =αcot
正割:x
r
=
αsec 余割:y
r =
αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式
倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =
,α
α
αsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式
⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)
⑵
απ
+2、απ
-2
、απ+23、απ-23的三角函数值,等于α的异名函数值,
前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)
四、和角公式和差角公式
βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+
βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβ
αβαtan tan 1tan tan )tan(⋅-+=+
β
αβ
αβαtan tan 1tan tan )tan(⋅+-=
-
五、二倍角公式
αααcos sin 22sin =
ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*
α
α
α2tan 1tan 22tan -=
二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)
αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-
六、万能公式(可以理解为二倍角公式的另一种形式)
ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,α
α
α2
tan 1tan 22tan -=。
万能公式告诉我们,单角的三角函数都可以用半角的正切..
来表示。
七、和差化积公式
2cos 2
sin
2sin sin β
αβ
αβα-+=+ …⑴ 2
sin
2
cos
2sin sin β
αβ
αβα-+=- …⑵
2
cos
2
cos
2cos cos β
αβ
αβα-+=+ …⑶ 2
sin
2
sin
2cos cos β
αβ
αβα-+-=- …⑷
了解和差化积公式的推导,有助于我们理解并掌握好公式:
2sin 2cos 2cos 2sin
22
sin sin βαβαβαβαβαβαα-++-+=⎪⎭⎫
⎝⎛-++= 2sin 2cos 2cos 2sin
22sin sin βαβαβαβαβαβαβ-+--+=⎪⎭⎫
⎝⎛--+= 两式相加可得公式⑴,两式相减可得公式⑵。
2sin 2sin 2cos 2cos
22cos cos βαβαβαβαβαβαα-+--+=⎪⎭⎫
⎝⎛-++= 2sin 2sin 2cos 2cos
22cos cos βαβαβαβαβαβαβ-++-+=⎪⎭⎫
⎝⎛--+= 两式相加可得公式⑶,两式相减可得公式⑷。
八、积化和差公式
[])sin()sin(2
1
cos sin βαβαβα-++=⋅ [])sin()sin(2
1
sin cos βαβαβα--+=⋅ [])cos()cos(2
1
cos cos βαβαβα-++=
⋅ [])cos()cos(2
1
sin sin βαβαβα--+-
=⋅ 我们可以把积化和差公式看成是和差化积公式的逆应用。
九、辅助角公式
)sin(cos sin 22ϕ++=+x b a x b x a ()
其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,
2
2sin b a b +=
ϕ,2
2cos b a a +=
ϕ,a
b =
ϕtan 。
十、正弦定理
R C
c
B b A a 2sin sin sin ===(R 为AB
C ∆外接圆半径) 十一、余弦定理
A bc c b a cos 2222⋅-+=
B ac c a b cos 2222⋅-+=
C ab b a c cos 2222⋅-+=
十二、三角形的面积公式 高底⨯⨯=∆2
1ABC S
B ca A bc
C ab S ABC sin 2
1sin 2
1sin 2
1===∆(两边一夹角)
R
abc
S ABC 4=
∆(R 为ABC ∆外接圆半径) r c
b a S ABC ⋅++=
∆2
(r 为ABC ∆内切圆半径) ))()((c p b p a p p S ABC ---=∆…海仑公式(其中
c
b a p ++=
)
四、和角公式和差角公式
βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- β
αβ
αβαtan tan 1tan tan )tan(⋅-+=
+
β
αβ
αβαtan tan 1tan tan )tan(⋅+-=
-
五、二倍角公式
αααcos sin 22sin =
ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*
α
α
α2tan 1tan 22tan -=
二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)
αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-。