探讨静电纺丝技术的研究进展
静电纺丝技术的研究及其应用前景
静电纺丝技术的研究及其应用前景静电纺丝,又称为电纺或电喷丝,是一种高效的聚合物加工技术。
该技术利用静电作用将溶解或熔融的聚合物拉出细丝,形成纤维织物。
静电纺丝技术具有高效、环保和简便等优点,被广泛应用于纺织、医疗、建筑和能源等领域。
这篇文章将说明静电纺丝技术的研究进展和应用前景。
一、静电纺丝技术的研究进展静电纺丝技术最早是由杜邦公司的V.B.吉伦等人在1934年发明的。
随着人们对纤维材料性能和纺织加工工艺需求的不断提高,静电纺丝技术也得到了广泛的研究。
目前,静电纺丝技术的研究主要集中在两个方面:一是改善纤维品质,二是提高工艺效率。
1. 改善纤维品质静电纺丝组合机构的优化是改善纤维品质的重要手段。
一些研究人员通过改变电场形状、控制溶液流速和温度等手段,使它们更好地适应静电纺丝。
此外,通过控制纺丝过程中溶液中聚合物的浓度和粘度,或者加入其他化合物,还可以改善纤维的物理性能、光学性能和表面活性。
2. 提高工艺效率静电纺丝技术的工艺效率主要取决于喷嘴的制作和工艺条件的控制。
研究人员通过选择不同的喷嘴材料、改变喷嘴形状和大小,或者改变加热温度和电压条件,使得喷射速度和纤维直径更加稳定,丝线连续性更好,从而提高了纤维的产量和生产效率。
二、静电纺丝技术的应用前景静电纺丝技术作为一种高效的纺织加工技术,不仅具有广泛的应用前景,而且有着巨大的发展潜力。
1. 纺织静电纺丝技术可以用于制备各种纤维材料。
目前,已经有很多研究人员对多孔材料、高分子纳米纤维和智能纤维等领域进行了研究。
这些材料有着广泛的应用,比如用于过滤、分离和传感器等领域。
2. 医疗静电纺丝技术可以用于制备医用材料,比如医用纳米纤维膜、医用绷带和人工血管等。
这些材料具有高度的生物相容性和良好的渗透性,可以大大提高医疗治疗效果。
3. 建筑静电纺丝技术可以用于制备建筑材料,比如健康气息墙的制备、建筑保温材料和建筑防水材料等。
这些材料具有良好的防水、防火性能,并且能够吸附有害气体和减少空气污染等。
静电纺丝实验报告
静电纺丝实验报告静电纺丝,又称为电丝分离,是一种用于在原料液体中分离可纺丝物质的技术。
该技术可将原料液体中的有用物资精确分离出来,使其形成细丝状,从而达到获取超细纤维、纳米纤维和微米纤维的目的。
本文对静电纺丝实验进行了报告,以分享研究结果,旨在深入探究以及加深人们对该技术的了解。
一、研究背景随着全球经济的快速发展,社会的物质文化水平也在不断提高。
为了满足不断增加的物质需求,人们不断创新,研发新的技术和产品。
静电纺丝技术是其中之一,它的出现对于改善生活环境、满足熔断纤维和精细纤维无缝产品的制造提供了重要技术手段和帮助。
二、实验环境及材料静电纺丝实验需要有一定的实验环境和材料准备,其中最重要的是电场产生器,包括负载电容、控制电容、变压器、流量计、液位控制器等。
除此之外,实验还需要包括罐头、滤布,移动式架体、滤料等。
三、实验步骤实验步骤主要分为四部分,分别是实验前准备、实验过程、实验后整理和统计分析。
(1)实验前准备:按照实验要求,清除实验室环境,检查实验器材,熟悉实验步骤,确保材料齐备。
(2)实验过程:准备原料液体,调整电场参数,调整液体流量,控制液体温度和压力,监测细丝的变化,当达到预期效果时,停止实验。
(3)实验后整理:实验完成后,收集所有实验数据,整理统计,以便研究者后续分析。
(4)统计分析:对实验室所收集的数据进行分析,可以获得细丝的类型、纤维尺寸、结构等特征,以及跟踪电场参数变化的规律等,以便研究人员进一步对该技术进行深入研究。
四、实验结果实验结果表明,在满足特定条件的情况下,静电纺丝流程可以有效地将原料液体中的有用成分分离出来,形成细丝,从而获得超细纤维、纳米纤维和微米纤维等产品。
实验数据进一步证明,静电纺丝技术是一种可靠的、经济高效的工艺手段。
五、总结本文介绍了静电纺丝技术的实验过程,以及实验所得结果。
实验结果表明,通过调整电场参数可以有效地获得细丝状的产品,从而达到获取超细纤维、纳米纤维和微米纤维的目的。
静电纺丝制备纳米纤维的研究进展
静电纺丝制备纳米纤维的研究进展近年来,随着纳米技术的快速发展,纳米材料的应用领域也越来越广泛,其中纳米纤维作为一种新型材料备受关注。
静电纺丝技术作为一种制备纳米纤维的有效方法,其应用范围也越来越广泛。
本文将介绍静电纺丝制备纳米纤维的研究进展。
1. 静电纺丝技术概述静电纺丝技术是一种利用静电场将高分子材料制备成纳米纤维的方法。
该技术具有工艺简单、操作方便、成本低、制备纤维直径可调等优点。
静电纺丝技术离不开两个基本元素:溶液和电场。
高分子材料被溶解在溶液中,经过特定的处理后,在电场的作用下开始拉伸,形成纳米直径的纤维。
2. 静电纺丝技术的优缺点静电纺丝技术在制备纳米纤维方面具有以下优点:①纳米纤维可以制备成连续的纤维丝,其长度可达数百米以上,比传统制备方法的纤维连续性更好;②纳米纤维直径可在10纳米至数微米之间调节;③制备成纳米纤维的材料具有极高的比表面积和孔隙度,这些特性使得其在耐热性、膜分离、天然气储存等方面具有广泛的应用前景。
但是,静电纺丝技术也存在一些缺点:①纤维纳米化会导致纤维的拉伸力和断裂十分容易,因此在制备过程中需要控制拉伸度,避免出现纤维过于脆弱导致纤维丝断裂;②由于溶剂挥发以及电场造成的电荷分布不均,容易导致制备的纳米材料出现不均匀性和不稳定性。
3. 静电纺丝技术的进展目前,在静电纺丝技术领域已有许多研究成果。
例如,在制备金属氧化物、生物纳米纤维、纳米复合材料、药物等方面都有广泛的应用。
例如,学者们在制备PCL(聚己内酯)纳米纤维过程中,将X射线光谱法和原子力显微镜(AFM)技术结合,探究了纤维的结构、力学性能和表面形貌等。
研究结果表明,纤维直径的变化可以显著改变材料的力学性能。
在另一项研究中,学者们使用静电纺丝技术制备出药物包被的聚乳酸(PLA)纳米纤维,实现了药物的缓慢释放,有望在医药领域得到应用。
4. 静电纺丝技术未来发展随着人们对纳米材料需求的增加,静电纺丝技术的应用前景也越来越广阔。
丝素静电纺丝技术的研究进展
现 代 丝 绸科 学 与 技 术
2 9
丝 素 静 电 纺 丝 技 术 的 研 究 进 展
李鹏 举 , 明 忠 李
( 州 大 学 纺 织 与服 装 工程 学 院 , 苏 苏 州 2 5 2 ) 苏 江 10 1
摘 要 : 电纺 丝 素 材 料 在 生 物 医学 等 领 域 具有 广 阔 的 开 发 和 应 用 潜 力 。丝 素 静 电 纺 丝 所 用 的 溶 剂 主 要 有 六 氟 异 静
此后 , g _ Oh ol 将 家 蚕 丝 用 延 流 法 制 成 再 生 等 丝素膜 , 丝 素膜 溶解 在 HF ・3 o 中制 成 2 把 A H。
~
1 浓 度 的静 电纺丝溶 液 。纺 出纤 维 的直 径大 约 0
在 1 O 0 m, 认 为 家 蚕 最 佳 的 纺 丝 浓 度 是 O ~10 0n 他
结 晶度有 稍微 的提 高 ; 绵膜 溶解 在 甲酸 中 , 海 甲酸诱
导产 生 了 G折叠 结 晶度 提 高 ; 纺 丝 过程 中 出现 了 在 更多的 I 晶, 3 结 不过 这 些 结 晶 同蚕 丝纤 维 结 晶 相 比
1 静 电纺 丝 原 理 及 影 响 因素
13 9 4年 , omh l 第 一 次 申请 了关 于 静 电纺 F r as 丝加 工 的专 利 , 9 9年 Ta lr研 究 了 纺 丝 装 置 中 16 yo 喷 嘴的液 滴 向喷射 细 流 转 化 的 过 程 , 这个 液滴 呈 锥
入 无菌 的瓶 子 中 , 用六 氟异 丙醇 ( I ) 为溶 剂 采 HF P 作 在 室温 下溶 解 5个 月 , 然后 用 此 溶 液 静 电 纺 丝 。再 生 丝素 膜纤 维直 径 在 6 5 1 0n 经过 高 温氮 气 . ~ 0 m,
静电纺丝纳米纤维的工艺原理、现状及应用前景
静电纺丝纳米纤维的工艺原理、现状及应用前景一、本文概述本文旨在深入探讨静电纺丝纳米纤维的工艺原理、现状及应用前景。
我们将详细阐述静电纺丝技术的基本原理,包括其工作原理、操作步骤以及关键影响因素。
接着,我们将概述当前静电纺丝纳米纤维的研究现状,包括纳米纤维的制备技术、性能调控以及应用领域等方面的最新进展。
我们将展望静电纺丝纳米纤维的未来应用前景,分析其在各个领域中的潜在应用价值以及可能面临的挑战。
通过本文的综述,我们希望能够为相关领域的研究人员提供关于静电纺丝纳米纤维的全面了解,并为未来的研究提供有益的参考和启示。
我们也期望能够引起更多研究者对静电纺丝纳米纤维技术的关注,共同推动其在各个领域的广泛应用和发展。
二、静电纺丝纳米纤维的工艺原理静电纺丝是一种利用静电场力将高分子溶液或熔体拉伸成纳米级纤维的技术。
其工艺原理主要涉及到电场力、表面张力和高分子链的缠结作用。
在静电纺丝过程中,高分子溶液或熔体被置于一个强静电场中。
当电场强度足够大时,液体表面电荷密度增加,形成泰勒锥。
随着电荷的不断积累,电场力克服表面张力,使得泰勒锥的尖端形成射流。
射流在电场力的作用下被迅速拉伸,同时溶剂挥发或熔体冷却固化,最终形成纳米级纤维。
在这个过程中,高分子链的缠结作用也起到了关键作用。
高分子链之间的缠结使得纤维在拉伸过程中保持一定的结构稳定性,防止纤维断裂。
缠结作用还有助于纤维在接收装置上的沉积和收集。
静电纺丝技术具有操作简便、纤维直径可控、可制备多种材料等优点,因此在纳米材料制备、生物医用、环境保护等领域具有广泛的应用前景。
通过深入研究静电纺丝纳米纤维的工艺原理,可以进一步优化纺丝过程,提高纤维的性能和产量,为相关领域的科技进步做出贡献。
三、静电纺丝纳米纤维的现状静电纺丝技术自其诞生以来,在纳米纤维制备领域已经取得了显著的进展,并逐渐发展成为一种高效、可控的纳米纤维生产方法。
目前,静电纺丝纳米纤维的研究与应用已经涉及到了众多领域,如环境保护、生物医疗、能源科技、纺织工程等。
国内外静电纺丝技术的研究进展
提 高了静电纺丝的产率 ,但仍有很多问题亟待解决 。本文主要介绍了静 电纺丝技术的发展进程及面临的问题 。
关键 词 :静 电纺丝;纳米纤维 ;技术进展 中图分类号 :T Q 3 4 0 . 6 5 文献标识码 :A
L a t e s t P r o g r e s s o n E l e c t r o s p i n n i n g a t H o me a n d Ab r o a d
1 国内外静电纺 丝技 术的理论研究现 状
静电纺丝过程中的带电聚合物 , 在电场力、 表面张力和
黏 弹力的 共 同作用下 , 会发 生 形 变, 由圆形 变 为椭 圆形 , 进 而变 为锥 形。 当电场力增大 到一定程 度时 , 聚合 物就会在 锥
液 的粘弹 性 、 电荷分布 以及溶 液 的表 面 张力是 影 响珠 丝 形 成的关键 因素 。 J . M. D e t i z e l 等 在工艺 参数 对 纤维尺寸 的影 响的研 究 中 发现 , 纺丝电压和溶 液浓 度是最 重要 的工艺参 数。 纺丝电压
静电纺丝材料制备与应用研究进展
静电纺丝材料制备与应用研究进展静电纺丝是一种常用的纳米纤维制备技术,通过利用静电作用将高分子材料或其他纳米材料制备成纳米纤维。
近年来,随着纳米技术的发展和应用需求的增加,静电纺丝材料制备与应用的研究逐渐受到广泛关注。
本文将对静电纺丝材料制备与应用的研究进展进行探讨。
静电纺丝的原理是利用高电压作用下的电场效应,使溶液或溶胶中的材料发生极化,形成纤维状的物质。
制备静电纺丝材料的关键是调控溶液的流动性、表面张力以及电场的强度和方向。
在制备材料时,可以使用单独的高分子溶液,也可以将纳米颗粒或纳米纤维混悬于溶剂中,形成复合材料。
此外,还可以通过调节电压和喷射距离等条件,控制纤维的粗细、形状和排列方式,以满足不同应用的需求。
静电纺丝材料制备技术具有许多优势。
首先,制备过程简单、快速,并且可以制备大面积的纳米纤维薄膜。
其次,纳米纤维的细度可以达到纳米级,且纤维呈现连续性,具有良好的力学性能和特殊的表面形态。
此外,静电纺丝材料还具有较高的比表面积和孔隙率,有利于吸附和释放物质、调控光学、电学、磁学等性能。
因此,静电纺丝材料在能源储存、传感器、过滤材料、组织修复等领域具有广泛的应用前景。
在能源储存领域,静电纺丝材料可以用于超级电容器和锂离子电池的电解质膜。
由于其高比表面积、多孔结构和良好的导电性能,静电纺丝膜可提供更高的电化学活性表面,从而提高电容器和电池的能量密度和循环寿命。
此外,静电纺丝膜还可以用于太阳能电池的薄膜基底,提供较好的光学透明性和力学支撑性。
在传感器领域,静电纺丝材料的高比表面积和可调控的孔隙结构使其具有良好的气体和液体吸附性能。
例如,静电纺丝纳米纤维可以用于制备挥发性有机化合物传感器,通过吸附、扩散和检测挥发性有机化合物的特定分子达到气体传感的目的。
此外,静电纺丝纳米纤维还可以用于制备生物传感器、化学传感器等,用于监测生物标记物、环境污染物等。
在过滤材料领域,静电纺丝材料的高比表面积和细小孔隙结构使其具有良好的颗粒捕获性能。
静电纺丝技术制备纳米纤维的研究进展
静电纺丝技术制备纳米纤维的研究进展近年来,随着纳米科技的快速发展,纳米材料的研究在各个领域得到了广泛应用。
其中制备纳米纤维的技术,成为了研究热点之一。
静电纺丝技术便是一种制备纳米纤维的重要手段,由于其简单易行、成本低廉、操作方便等优点,已经成为应用最为广泛的方法。
本文将从静电纺丝技术的基本原理、研究进展、应用展望三个方面进行论述。
第一部分:静电纺丝技术的基本原理静电纺丝技术是一种通过电场作用将溶液中的大分子材料拉伸成纳米级别的纤维的方法。
该技术主要依靠静电相互作用力和表面张力之间的竞争关系,来控制和定向溶液中的高分子纤维进行拉伸。
静电纺丝技术的基本原理可归纳为以下三个步骤:1. 溶液制备:制备静电纺丝纤维的首要步骤是制备高分子材料的溶液。
该溶液需要具有一定的粘度和表面张力,一般可以使用有机溶剂来溶解高分子材料。
2. 高电场加薄膜涂布:在静电纺丝设备上沉积一个高电场,并用喷雾器将高分子溶液轻松喷射在一个导电性或吸附性基底上。
溶液被均匀覆盖在导电性或吸附性基底上的一个细长的液体线。
3. 拉伸和固化:在高电场的作用下,溶液会变成一条液体纤维,并开始在导电性或吸附性基底上放置。
同时,高分子纤维的拉伸也在进行中。
将纤维固化并从基底上分离出来即可。
第二部分:静电纺丝技术的研究进展在纳米科技的发展进程中,静电纺丝技术是一种应用领域十分广泛的制备纳米材料的方法。
自2006年被应用于生物材料制备以来,该技术受到了越来越多的关注和研究。
近年来,静电纺丝技术发展的主要方向是,探索新型高分子材料,提高制备效率,改善纤维纳米结构控制技术。
下面,我们分别从这三个方面进行探讨。
1. 探索新型高分子材料静电纺丝技术的应用范围很广,主要用于制备聚合物、纺织品、纳米印刷等领域的高分子材料。
近几年,研究人员广泛探索各种新型的高聚物材料,如壳聚糖、聚乳酸、DNA、蛋白质等。
这些新型材料的引入,不仅增加了高分子材料领域的研究深度,同时也拓宽了静电纺丝技术在工业上的应用范围。
静电纺丝制备聚合物纳米纤维膜的研究
静电纺丝制备聚合物纳米纤维膜的研究纳米科技的发展引发了对纳米材料的广泛关注。
纳米纤维膜由于其良好的性能被广泛用于燃料电池和生物医学等领域。
静电纺丝技术作为一种独特的制备纳米纤维膜的方法,凭借其简单易操作、成本低廉的优点,被广泛应用于纳米材料的制备中。
本文将介绍静电纺丝技术和静电纺丝制备聚合物纳米纤维膜的研究进展。
一、静电纺丝技术静电纺丝是一种利用电场将高分子聚合物纺成纳米级高分子纤维的工艺。
该工艺分为溶液静电纺丝和熔融静电纺丝两种类型。
溶液静电纺丝主要是将溶解在有机溶剂中的聚合物通过静电纺丝装置进行喷枪淋浆、电荷均匀化和纤维拉伸加工,形成纳米级的高分子纤维。
熔融静电纺丝则是将熔融的高分子材料通过静电纺丝装置进行电荷均匀化和纤维拉伸加工,形成纳米级高分子纤维。
二、静电纺丝制备聚合物纳米纤维膜的研究进展随着纳米科技的发展,静电纺丝制备聚合物纳米纤维膜在材料科学、生物医学等领域得到了广泛应用。
下面将介绍四个方面的静电纺丝制备聚合物纳米纤维膜的研究进展。
1. 聚合物材料的选择聚合物材料的选择是静电纺丝制备聚合物纳米纤维膜的关键。
通常选择的聚合物材料包括聚乳酸、聚酯、聚丙烯酸、聚苯乙烯等。
这些聚合物材料有良好的可纺性、生物相容性和耐久性,并能够制备出高质量的聚合物纳米纤维膜。
2. 溶液电导率的控制溶液电导率是影响聚合物纳米纤维膜形态的主要因素之一。
电导率的增加会导致电荷的不均匀分布和纤维的跳跃现象。
因此,控制溶液电导率是制备高质量聚合物纳米纤维膜的重要手段之一。
3. 后处理技术静电纺丝制备的聚合物纳米纤维膜具有良好的形态和性能,但由于其表面积大和纳米级孔隙率高,会导致纤维膜对周围环境的敏感性增加。
为了改善聚合物纳米纤维膜的稳定性和使用寿命,需要对其进行后处理。
目前常用的后处理技术包括等离子体处理、UV辐射、热处理等。
4. 应用领域静电纺丝制备的聚合物纳米纤维膜在能源领域、生物医学领域和环境领域等方面得到了广泛应用。
静电纺丝技术应用现状及发展趋势
静电纺丝技术应用现状及发展趋势概述静电纺丝技术是一种通过静电作用将高分子溶液或熔体纺丝成纤维的方法。
该技术具有高效、低能耗、易于操作等优势,因此在纺织、医疗、材料科学等领域得到广泛应用。
本文将以静电纺丝技术应用现状为基础,探讨其发展趋势。
一、静电纺丝技术应用现状1. 纺织领域静电纺丝技术在纺织领域得到了广泛应用。
通过调节溶液配方、纺丝参数等,可以制备出具有不同性能的纺织品,如细纤维滤材、高吸附性纤维、电磁屏蔽材料等。
此外,静电纺丝技术还可用于纤维增强复合材料的制备,提高材料的强度和导电性。
2. 医疗领域静电纺丝技术在医疗领域具有广阔的应用前景。
通过静电纺丝技术制备的纤维具有高比表面积和多孔结构,可以用于制备医用纺织品、修复组织工程支架、药物缓释系统等。
例如,静电纺丝技术制备的纤维材料可以用于制作创面敷料,具有良好的吸附性和渗透性,能够促进伤口的愈合。
3. 材料科学领域静电纺丝技术在材料科学领域发挥了重要作用。
通过调节纺丝参数和材料组分,可以制备出具有特殊结构和功能的纤维材料。
例如,静电纺丝技术可以制备出具有高比表面积和孔隙结构的纳米纤维薄膜,用于催化、传感和能源存储等领域。
此外,静电纺丝技术还可以用于制备纤维增强陶瓷材料、纤维增强金属复合材料等。
二、静电纺丝技术的发展趋势1. 工艺改进静电纺丝技术在溶液配方、纺丝参数等方面存在一些挑战,如纤维直径分布不均匀、低产率等问题。
因此,未来的发展趋势之一是改进静电纺丝工艺,提高纺丝的稳定性和一致性。
这可以通过优化溶液配方、改进纺丝设备和控制系统等措施实现。
2. 多功能材料开发随着对功能材料需求的增加,静电纺丝技术在制备多功能材料方面具有广阔的应用前景。
未来的发展趋势之一是开发具有多种功能的纤维材料,如光学性能、电子性能、力学性能等。
这可以通过改变纺丝参数、材料组分和纤维结构等方式实现。
3. 与其他制备技术结合静电纺丝技术在制备纤维材料方面具有独特的优势,但也存在一些限制。
材料科学与工程学科中静电纺丝技术制备TiO2纳米纤维薄膜的研究
材料科学与工程学科中静电纺丝技术制备TiO2纳米纤维薄膜的研究静电纺丝技术在材料科学与工程学科中具有广泛应用,其中之一是用于制备TiO2纳米纤维薄膜。
TiO2纳米纤维薄膜具有很高的比表面积和优异的光催化性能,在环境净化、光电催化制氢、染料敏化太阳能电池等领域具有重要的应用前景。
在本文中,我们将介绍静电纺丝技术制备TiO2纳米纤维薄膜的研究进展,并分析其在各个领域中的应用。
首先,静电纺丝技术是一种将高分子溶液通过高电压静电场作用下形成纤维的方法。
通过调整高分子聚合物的浓度、电场强度和纺丝距离等参数,可以获得不同直径和形态的纳米纤维。
在制备TiO2纳米纤维薄膜中,通常使用聚合物作为模板材料,将TiO2颗粒或前驱体分散在聚合物溶液中,然后通过静电纺丝技术制备纳米纤维薄膜。
制备的纳米纤维薄膜可以通过热处理或光照等后续步骤进行晶化,得到TiO2具有优异性能的薄膜。
在环境净化领域,TiO2纳米纤维薄膜具有良好的光催化性能。
光催化过程中,纳米纤维薄膜可以通过对有害气体的吸附和光解作用,将其分解为无害物质。
由于TiO2纳米纤维薄膜具有很高的比表面积和较好的可见光响应性能,可以有效提高光催化反应的效率。
此外,纳米纤维薄膜还具有良好的机械稳定性和低压降特性,可以实现高效的气体处理。
因此,TiO2纳米纤维薄膜在室内空气净化、有机废气处理等方面具有广阔的应用前景。
在光电催化制氢领域,TiO2纳米纤维薄膜可以作为光电极材料,用于水光电解制氢。
纳米纤维薄膜具有大量的活性表面,可以有效提高光生电子-空穴对的分离效率。
通过对纳米纤维薄膜的表面进行修饰,如导入负载剂、调整晶相结构等,可以进一步提高其催化活性和稳定性。
研究表明,静电纺丝制备的TiO2纳米纤维薄膜在光电催化制氢中具有良好的性能,在利用太阳能进行无污染氢能生产方面具有巨大潜力。
此外,TiO2纳米纤维薄膜还可以应用于染料敏化太阳能电池。
染料敏化太阳能电池是一种新兴的太阳能转化技术,其基本原理是通过将染料吸附在光电极上,利用光生电子-空穴对的分离产生电流。
静电纺丝技术制备纳米纤维材料的研究
静电纺丝技术制备纳米纤维材料的研究一、前言近年来,静电纺丝技术广泛应用于纳米纤维材料的制备中。
通过该技术,可以制备出具有高比表面积、高孔隙率、高通透性等多种优异性能的纳米纤维材料,在能源、环境、医疗等领域得到了广泛的应用。
二、静电纺丝技术的原理静电纺丝技术是一种通过高电场将聚合物溶液或熔体喷射成纳米级纤维的技术。
其主要原理是:将高压电源接在喷液口附近,形成强电场,使聚合物溶液或熔体加速运动,并在射流过程中产生链段拉伸、分子排列等现象,最终形成纳米级纤维。
三、静电纺丝技术的优点静电纺丝技术具有以下几个优点:1. 制备成本低。
静电纺丝技术所需的设备简单,生产成本较低。
2. 制备的纳米纤维材料性能优异。
制备出的纳米纤维材料具有高比表面积、高孔隙率、高通透性等优异性能,适用于能源、环境、医疗等领域。
3. 制备精度高。
静电纺丝技术可以制备出直径从几十纳米到几百纳米的纳米纤维。
4. 生产效率高。
静电纺丝技术可以实现连续生产,生产效率较高。
四、静电纺丝技术在纳米纤维材料制备中的应用静电纺丝技术可以制备出各种形状、尺寸、结构的纳米纤维材料,目前已经在以下领域得到了广泛的应用。
1. 软件复合材料领域。
静电纺丝技术制备的纳米纤维材料可以用于增强软件复合材料的力学性能和导热性能。
2. 组织工程领域。
静电纺丝技术制备的纳米纤维材料可以作为组织工程载体,用于修复和再生组织。
3. 能源领域。
静电纺丝技术制备的纳米纤维材料可以用于太阳能电池、锂离子电池等能源领域。
4. 过滤材料领域。
静电纺丝技术制备的纳米纤维材料可以用于空气过滤、水处理等领域。
五、未来发展方向随着对纳米纤维材料需求的不断增加,静电纺丝技术在纳米纤维材料制备中的应用将不断扩大。
未来,静电纺丝技术还有很大的发展空间,可以通过改进材料的制备工艺和结构,提高纳米纤维材料的性能,扩大其应用领域。
六、结论静电纺丝技术是一种简单、高效的纳米纤维材料制备技术。
随着对纳米材料需求的不断增加,它在能源、环境、医疗等领域的应用将会越来越广泛。
静电纺丝技术及其研究进展
静电纺丝技术的未来发展
静电纺丝技术的未来发展
静电纺丝技术未来的发展将聚焦于提高生产效率、拓展应用领域以及实现绿 色生产等方面。具体来说,以下几个方面值得:
静电纺丝技术的未来发展
1、生产效率:提高生产效率是静电纺丝技术的重要发展方向。未来可以通过 优化生产工艺、引入新型设备等方式提高静电纺丝技术的生产效率,以满足日益 增长的市场需求。
静电纺丝技术的原理与特点
静电纺丝技术的原理与特点
静电纺丝技术是一种利用静电场牵引高分子流体进行定向排列和固化成纤维 的方法。在静电纺丝过程中,高分子流体受到静电场的牵引力,会在负电极表面 形成一层液膜,液膜在静电场中会逐渐变薄并最终固化成纤维。静电纺丝技术具 有以下特点:
静电纺丝技术的原理与特点
1、可制备纳米级纤维材料:静电纺丝技术可以制备出直径为纳米级别的纤维 材料,具有极高的比表面积和孔隙率,有利于提高材料的吸附性能和过滤效率。
静电纺丝技术的原理与特点
2、适用范围广泛:静电纺丝技术可以用于制备各种高分子材料、金属材料和 无机材料等,具有广泛的适用性。
静电纺丝技术的原理与特点
3、生产效率高:静电纺丝技术可以实现大规模生产,有利于降低生产成本和 推广应用。
静电纺丝技术的研究进展
1、静电纺丝技术的分类及其法
静电纺丝技术根据纺丝液的物理状态可以分为溶液静电纺丝和熔体静电纺丝 两种。溶液静电纺丝是将高分子溶液通过注射器注入到电场中,然后高分子溶液 在电场中形成纤维;熔体静电纺丝是将高分子材料加热到熔点以上,通过喷头形 成细丝,然后在电场中固化成纤维。
静电纺丝技术的分类
2、熔体静电纺丝:熔体静电纺丝是将高分子材料加热到熔点以上,然后通过 静电场的作用拉伸成丝。该方法适用于制备高温性能优良的纤维材料。熔体静电 纺丝的优点是可加工温度高,缺点是对于热敏性材料可能会导致热损伤。
静电纺丝技术的研究进展
静电纺丝技术的研究进展一、概述随着纳米材料技术的快速发展,纳米材料的制备方法也得到了广泛应用。
静电纺丝技术是一种制备纤维状纳米材料的有效手段。
本文将详细介绍静电纺丝技术的原理、方法以及在不同领域的应用进展。
二、原理及方法静电纺丝技术是利用静电场将高分子材料或其它材料转化为纳米级尺度的纤维。
其主要过程包括电荷产生、电选择和电喷射等,整个过程的牵引力来自静电场的作用。
在静电纺丝过程中,首先将高分子材料或其它材料溶解或熔融于溶剂中,然后在一个高压电场的作用下,利用静电力使得溶液内部产生荷电的分子或离子。
当达到一定电荷量时,内部电荷相互排斥,使得材料分子形成细小的液滴。
此时,再利用另一个电场对液滴进行拉伸,当液滴尺寸减小到一定程度时,会形成细纤维,并集中成纤维束。
三、应用领域及进展静电纺丝技术在医学、生物技术、能源储存等领域中得到了广泛的应用。
1、生物医学领域在生物医学领域中,静电纺丝技术制备的纳米纤维材料能够用于制备生物材料。
例如,静电纺丝技术可以制备纤维状的生物吸附材料,用于分离纯化蛋白质和酶等生物大分子。
同时,利用静电纺丝技术制备的薄膜也可以用于治疗皮肤损伤、组织缺损等。
近年来,生物材料的研究越来越多地使用了静电纺丝技术。
2、能源领域静电纺丝技术制备的纳米材料可以用于制备锂离子电池、燃料电池等电池的电极材料。
此外,还可以制备超级电容器等储能材料。
静电纺丝技术能够制备具有较高电导率和储能性能较好的纳米纤维材料。
3、纳米材料领域静电纺丝技术可以制备出直径在纳米级别的纤维,进一步提升了材料的柔韧性和耐用性。
通过改变静电场的作用条件,还可以制备成不同类型、不同形态、不同性质的材料。
因此,这种技术成为纳米材料的重要制备方法之一。
四、存在问题及未来发展虽然静电纺丝技术在多个领域中得到了广泛应用,但是也存在一些问题。
例如,静电纺丝技术制备纳米纤维材料的产量较低,制备过程需要使用多种溶剂,对环境造成一定污染。
在未来,需要加强对静电纺丝机理的研究,并进行工艺改进,提高产量和生产效率。
静电纺丝技术的研究及应用
静电纺丝技术的研究及应用静电纺丝技术是近年来逐渐走入人们的视野的一种前沿技术,在材料理论和制备领域有着广泛应用,可用于制备高性能的纤维素材料、药物载体、纳米纤维膜等等。
随着生物、纺织、材料等多领域的专家的积极研究和不断探索,静电纺丝技术的研究和应用也越来越成熟。
本文主要从静电纺丝技术的原理、特点、研究现状、应用前景等方面探讨了静电纺丝技术的研究及应用。
一、静电纺丝技术的原理与特点静电纺丝技术源于自然界中的电场纺丝过程,其原理主要是利用静电场将溶液中的高分子聚集成无数个亚微米级的纤维,从而制得具有微纳级直径的纤维素材料。
这种技术的主要特点是工艺条件宽松,纤维细度可以控制在亚微米级范围内,同时产品的物理性质也具有优异的特点,如高比表面、高缺陷密度、高孔隙率以及自组装等特性。
二、静电纺丝技术的研究现状静电纺丝技术的发展历程大致分为三个阶段:早期的电动梳法,中期的双液法和后期的自由表面法,现如今已经形成了一系列的国际标准和实验室技术,成为了一种重要的微纳技术手段。
从材料制备、物性研究和应用开发等多个方向,国内外学者已经开展了大量的研究工作。
材料制备方面,从早期的聚合物纤维制备,到后来的功能材料(如药物载体、生物材料、锂离子电池电极材料等)制备,再到最近的生物/无机杂化材料的制备,静电纺丝技术已经不仅仅是一种纤维制备技术,而是逐步向功能材料的制备拓展。
在这些方向上,发现了一些新的杂化材料系统,如纤维素/生物大分子、纤维素/无机杂化纤维等。
在物性研究方面,针对静电纺丝纤维性质的研究主要涉及到静电纺丝纤维的形貌、结构、力学和表面性质等方面。
同时,也涉及到静电纺丝材料的水和药物释放性能、生物相容性、抗菌性能等。
在应用方面,静电纺丝技术的应用范围非常广泛,主要包括了医学领域(药物输送、伤口敷贴、组织工程支架)、纳米器件领域(传感器、场发射器、薄膜电容器等)、能源材料领域(锂离子电池、超级电容器、光伏材料等)以及环保领域等。
静电纺丝技术制备纳米纤维膜的研究
静电纺丝技术制备纳米纤维膜的研究近年来,静电纺丝技术被广泛应用于制备纳米纤维膜,这一技术因其制备简单、成本低廉、成膜速度快等特点,被认为是制备纳米材料的一种有效方法。
本文将就静电纺丝技术制备纳米纤维膜的研究进行探讨。
一、静电纺丝技术的原理静电纺丝技术是利用静电力将高分子溶液或熔体拉成极细的纤维的一种制备方法。
在制备过程中,先将高分子材料加入溶剂中,制成溶液。
随着旋转电极或喷嘴的旋转,高压电极产生静电场,将离子化的高分子材料聚集在带电源上产生静电力。
这种静电力可以拉伸高分子溶液中的分子,使其在旋转电极或喷嘴的运动下将高分子材料拉成一维纳米纤维,形成纤维膜。
二、静电纺丝技术制备纳米纤维膜的优点1. 成本低廉:静电纺丝技术所需的设备简单,易于维护,在成本方面相对较低。
2. 制备速度快:在制备过程中,以极高的速度拉伸高分子材料,使其在其中形成纳米纤维,速度远高于其他制备纳米材料的方法。
3. 纤维直径均匀:由于静电纺丝过程中,高分子分子在静电场作用下均匀分布,并在旋转电极或喷嘴的运动下形成均匀的一维纳米纤维结构,所以纤维直径均匀,分布相对集中,可以控制纤维直径在数十纳米至几百纳米范围内。
4. 成膜效果好:静电纺丝技术制备的纳米纤维膜具有高比表面积、大孔隙率和空隙率等特点,不仅具有优异的过滤、吸附性能,而且可以与多种表面进行化学修饰,可应用于纳米催化体系、纳米电池等领域。
三、静电纺丝技术制备纳米纤维膜的应用1. 生物医学领域:利用静电纺丝技术制备的纳米纤维膜可以用于体内组织修复和人工器官的制备。
因为纤维直径小、孔隙结构通透,与生物组织相似,不仅可以为细胞提供硬度和支撑,还能促进细胞的成长和扩散,从而实现治疗和替代人体组织的功能。
2. 能源储存领域:利用静电纺丝技术制备的纳米纤维膜可以应用于电极材料、远程传感器、空气和水处理及污水处理等领域。
此外,纳米纤维膜还可以结合不同的化学物质提高纤维的导电性能和催化剂功效,从而实现纳米电池的制备。
静电纺丝法制备金属纳米材料的研究
静电纺丝法制备金属纳米材料的研究静电纺丝法是一种制备纳米材料的技术,通过将高压电场应用于高分子液体来制备纤维和纳米颗粒,该技术已被成功地应用于制备金属纳米材料。
本文将详细介绍静电纺丝法制备金属纳米材料的研究进展、方法和应用。
研究进展近年来,金属纳米材料已成为纳米技术中最活跃的领域之一。
静电纺丝法制备金属纳米材料是一种重要的方法,可以得到高纯度、高质量和高控制度的金属纳米材料。
例如,Lu等人利用静电纺丝法成功制备了Cu、Ag、Au、Pt等多种金属纳米粒子,粒径范围从几十到几百纳米,形状可以是球形、棒形或星形等。
方法静电纺丝法是一种简单、快速、易于控制的技术,可以利用低成本的设备制备高质量的金属纳米材料。
该方法主要包括两个步骤:溶液制备和纺丝过程。
首先,选择合适的金属盐溶液,并将其与高分子溶液混合。
然后,通过静电纺丝装置在极性电极之间施加高电压,形成锥形液滴并进行拉伸,最终形成纳米颗粒。
纺丝过程可以通过改变静电纺丝装置的参数进行调节,例如电压、距离和喷射速率等。
应用利用静电纺丝法制备的金属纳米材料具有许多应用前景,例如电子材料、生物传感器、催化剂和表面增强拉曼光谱等。
其中,金属纳米粒子作为表面增强拉曼光谱(SERS)的基本成分,已被广泛应用于化学、生物医学、环境和食品等领域中的分析和检测。
此外,金属纳米粒子还具有许多其他应用,比如制备导电材料、催化有机反应、制备基于纳米光学的光学器件等。
总结静电纺丝法是制备金属纳米材料的重要方法之一,具有高效、低成本和高质量的优点。
已有许多研究表明该方法可以用于制备多种类型的金属纳米材料,并在许多领域中取得了广泛的应用。
相信随着研究的不断发展,静电纺丝法制备金属纳米材料的研究将会取得更大的进展和应用。
静电纺丝技术的研究进展和应用
静电纺丝技术的研究进展和应用一、静电纺丝技术的概述静电纺丝技术是指利用高压静电场将高分子溶液等液体通过细流管喷头喷丝,形成纳米尺度的聚合物纤维的一种制备方法。
这种纳米纤维具有很高的比表面积和较好的力学性能,被广泛应用于纳米材料、生物医学、环境保护等领域。
二、静电纺丝技术的研究进展1. 静电纺丝过程机理研究静电纺丝过程是一个液体电流的形成和拉伸的过程。
研究表明,高电压静电场导致高分子溶液表面产生电荷,产生电场的作用下,高分子分子链会被拉伸成细丝状,形成纳米纤维。
此外,流体力学、表面化学等因素也会影响静电纺丝的过程和纤维形态。
2. 几何结构控制与优化研究静电纺丝纤维的性能可以通过调整喷头、电场、高分子溶液等条件来进行优化,得到所需的尺寸和结构。
纤维的结构可以通过多轮喷丝、旋转收集板等方式进行调整。
3. 合成和表征新型高分子材料静电纺丝技术可以制备高分子纤维材料,可用于制备各种复杂形态、功能材料。
例如,通过表面修饰和交联等技术,可以制备具有生物相容性、超疏水性和电导性等多种功能的高分子材料。
三、静电纺丝技术的应用1. 纳米复合材料静电纺丝技术可以制备纳米尺度的纤维团束,这些团束可以与其他材料复合,制备出新型的复合材料,并具有新颖的功能和性能。
例如,将纳米纤维和金属纳米颗粒复合,可以制备出高导电性和机械性能的材料。
2. 药物控释静电纺丝技术可以制备出纳米纤维,并将药物控释于纤维中,制备出药物纳米纤维,这种材料可以增加药物的生物利用度,改善药物的纳米传递性能。
3. 空气过滤材料静电纺丝技术制备的非织造聚合物纤维材料可用于空气过滤器制备,因为其结构稀疏,具有高负载,大量的局部滤材料,网状的空间结构捕捉和过滤气体分子。
四、静电纺丝技术的局限性和展望1. 工艺数据选择不正确可能会影响到结构和性能。
2. 目前静电纺丝技术主要是在实验室中使用,大规模制备还需要更多的实验研究和商业开发。
3. 后期稳定性、低温下的保持性和可生物降解性需要进一步改进。
静电纺丝技术的应用研究
静电纺丝技术的应用研究静电纺丝技术是一种利用电场将高分子液体或熔融体制成纳米纤维的新兴技术。
该技术具有成本低廉、操作简单、产物成分可控等优点,已被广泛应用于领域,如纺织材料、医用纺织品、滤料、膜材料等。
本文旨在探讨静电纺丝技术在不同领域中的应用和研究进展。
一、纺织材料领域静电纺丝技术在纺织材料领域中得到了广泛应用。
通过静电纺丝技术制备的纤维细度范围可以控制在几纳米至几微米的尺度,具有较大的比表面积和高的孔隙度。
因此,这些纤维可以在织物中形成复杂的结构,改善织物的性能,并且可以制成各种不同用途的纺织材料。
静电纺丝技术制备的纺织材料可以应用于多个领域。
例如,在防辐射领域中可以制成防辐射服装,提供辐射保护。
在医学领域中,可以制备纳米纤维口罩、绷带和缝合线等产品。
此外,在涂层领域中,可以将纳米纤维材料和不同的化合物结合以制成具有独特性能的新型薄膜。
二、医用纺织品领域静电纺丝技术制备的高比表面积纳米纤维对于医用纺织品制备具有巨大优势。
在该领域中,静电纺丝技术已被广泛应用于制备纳米纤维口罩、医用绷带和心脏修复材料等产品。
对于纳米纤维口罩,其纤维直径一般为100-500 nm,通常具有高的透气性和高的过滤性能。
在制备时,可以掺杂一些化合物,如银离子等,以提高口罩具有的防菌性能和抗菌性能。
除此之外,静电纺丝技术还可以用于制备人工血管、人工心脏瓣膜和脊髓修复材料。
这些产品通常由多种生物可降解聚合物制成,并且拥有优异的生物相容性和组织透明性。
三、滤料领域在滤料领域中,静电纺丝技术用于制备不同用途的过滤材料,并已被广泛应用于空气净化、污水处理和医疗手术过程中的液体过滤.。
可以用纳米纤维制成具有较高过滤效率和高比表面积的滤料。
此外,静电纺丝技术也可以用于制备空气过滤器、水过滤器、精密过滤器等各种类型的滤料。
这些过滤器具有明显的过滤效果,并且可以根据不同的过滤效率来进行制定。
四、膜材料领域静电纺丝技术已被广泛应用于制备新型膜材料。
静电纺丝技术的研究及应用
静电纺丝技术的研究及应用第一章绪论静电纺丝技术是一种在高电压作用下,通过静电力使高分子液体喷出细丝,并在空气中凝固成为纤维的技术。
该技术具有成本低、能耗小、单纤维直径可以达到亚微米级别、可调节性强等优点,因此在材料学、生物医学、纳米技术、纺织、能源等领域得到了广泛应用。
第二章静电纺丝技术的研究2.1 原理静电纺丝技术利用高电压场强使溶液内部分子进行电离,并产生带电的离子,这些离子会受到电场的作用,移向带有相反电荷的电极,即可产生静电场。
在此环境下,流经液滴的表面张力发生变化,使溶液受到向心的导力,于是形成了纤维。
2.2 内在机理静电纺丝技术的内在机理与材料的流变学、静电学、动力学等多个学科相关。
其中,重要的参数包括高压电源电压、电极距离、液体与气体相对湿度、喷液速度、喷嘴与泵的耦合效率等。
这些参数对纤维细度、形态、尺寸分布、结晶度、热稳定性等性能起着决定性作用。
第三章静电纺丝技术的应用3.1 材料学领域静电纺丝技术用于制备各种材料,包括纤维、膜、泡沫、纳米纤维等。
纳米级的纤维由于具有超大比表面积和强烈的场致横向取向等独特性质,可以用于制备电池、传感器、过滤材料、防弹衣、医用敷料、人工皮肤等。
3.2 生物医学领域静电纺丝技术可以用于制备人工骨(Poriferan),此类材料为三维网状结构,与自然骨骼相近,可以用于骨突复原和组织重建。
此外,还可以制备纳米级别的纤维支架,用于组织工程和再生医学。
3.3 纺织领域静电纺丝技术可以用于制备高品质、多功能的纺织纤维,除了增强纤维的机械性能,还可以赋予其各种特殊性能,如抗菌、防水、阻燃等。
此外,在纺织品加工过程中,静电纺丝技术可以起到辅助作用,如制备羊毛衫和马甲的下胆子。
3.4 能源领域静电纺丝技术可以用于制备电池、太阳能电池及其他电化学器件,如超级电容器、生物微电池等。
此外,还可以制备材料从而用于制备高能量密度储能器、电动汽车电池等。
第四章静电纺丝技术的发展趋势静电纺丝技术是目前研究的热点,在材料学、生物医学、纺织、能源等领域应用前景广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探讨静电纺丝技术的研究进展摘要:静电纺丝工艺是目前能够直接、连续制备聚合物纳米纤维的方法,具有工艺简单、操作方便、制造速度快等优点,在医学和环保等领域有广泛应用。
介绍了近年来静电纺丝技术及其应用的研究进展,对静电纺丝的原理、影响因素等方面进行了综述,对静电纺丝技术在未来的应用提出展望。
关键词:静电纺丝;纳米纤维;进展引言纳米纤维严格意义上是指纤维直径小于100nm的超微细纤维。
它具有比表面积大、孔隙率高等特点,因而可广泛应用于高效过滤材料、生物材料、高精密仪器、防护材料、纳米复合材料等领域。
20世纪90年代纳米技术研究的升温,使纳米纤维的制备迅速成为研究热点。
静电纺制备聚合物纳米纤维具有设备简单、操作容易等特点,是目前为止制备聚合物连续纳米纤维最重要的方法之一。
1静电纺丝静电纺丝设备的简图如图1所示,主要由3部分组成:高压电源、喷丝头和纤维收集装置。
一般采用直流电源供应高压电,而不是交流电源。
静电纺丝所需的高压电为 1~30kV。
注射器(或者移液管)将溶液或熔体输送到其末端的喷丝头处。
喷丝头是非常细的金属管且装有电极。
收集装置或接收板用于收集纳米纤维,通过改变收集装置的几何尺寸与形状,可调整纳米纤维的排列形态。
2静电纺丝技术的原理早在1882年,Raleigh的研究发现,带电的液滴在电场中不稳定,进入电场之后,由于电场力的作用,容易劈裂成较小的液滴。
Taylor的研究表明,带电的液滴通过喷丝头进入电场以后,在电场力以及液体表面张力的共同作用下,液滴逐渐被拉长,形成一个锥状体(Taylor锥),并确定其角度为49.3°。
静电纺丝过程中,聚合物溶液或熔体被挤压到喷丝头,由于电场力和表面张力的作用,在喷丝头处形成Taylor锥,随着纺丝液不断的被推入电场,纺丝液便会从Taylor锥尖端喷出,在电场中受电场力的作用而被继续拉伸,当射流被拉伸到一定程度时,便会克服表面张力,发生非稳定性弯曲进而被拉伸并分裂成更细的射流,此时射流的比表面积迅速增大而使溶剂快速挥发,最终在收集装置上被收集并固化形成非织造布状的纤维毡。
3静电纺丝的影响因素静电纺丝的影响因素主要包括溶液性质(如黏度、浓度、相对分子质量分布、弹性传导率、介电常数、表面张力等),过程条件(如电压、挤出率、喷丝头与接收装置之间的距离、喷丝头直径等)和环境因素(如温度、湿度、气体流速等)。
对于这一方面,很多人进行了研究。
现有的研究结果表明,在静电纺丝过程中,影响纤维性能的主要工艺参数主要有:聚合物溶液浓度、纺丝电压、固化距离(喷嘴到接丝装置距离)、溶剂挥发性和挤出速度等。
(1)合物溶液浓度聚合物溶液浓度越高,粘度越大,表面张力越大,而离开喷嘴后液滴分裂能力随表面张力增大而减弱。
通常在其它条件不变时,随着聚合物溶液浓度的增加纤维的直径也增大。
(2)纺丝电压随着对聚合物溶液施加的电压增大,体系的静电力增大,液滴的分裂能力相应增强,所得纤维的直径趋于减少。
(3)固化距离聚合物液滴经喷嘴喷出后,在空气中伴随着溶剂挥发细流中的同时,合物浓缩固化成纤维,最后被接丝装置接受。
对于不同的体系,固化距离对纤维直径的影响不同。
例如,对于聚苯乙烯(PS)/四氢呋喃(THF)体系研究表明,改变固化距离,对纤维直径的影响不明显。
而对于聚丙烯腈(PAN)/N,N-二甲基甲酰胺(DMF)体系,纤维直径随着接收距离的增大而减小。
(4)溶剂与常规的溶液纺丝相似,溶剂的性质对溶液电的静电纺丝纤维的成形与结构和性能有很大的影响,溶剂的挥发性对纤维的形态起着重要的作用。
4静电纺丝技术的应用随着纳米技术的发展,静电纺丝作为一种简便有效的可生产纳米纤维的新型加工技术,将在生物医用材料、过滤及防护、催化、能源、光电、食品工程、化妆品等领域发挥巨大作用。
①在生物医学领域,纳米纤维的直径小于细胞,可以模拟天然的细胞外基质的结构和生物功能;人的大多数组织、器官在形式和结构上与纳米纤维类似,这为纳米纤维用于组织和器官的修复提供了可能;一些电纺原料具有很好的生物相容性及可降解性,可作为载体进入人体,并容易被吸收;加之静电纺纳米纤维还有大的比表面积、孔隙率等优良特性,因此,其在生物医学领域引起了研究者的持续关注,并已在药物控释、创伤修复、生物组织工程等方面得到了很好的应用。
②纤维过滤材料的过滤效率会随着纤维直径的降低而提高,因而,降低纤维直径成为提高纤维滤材过滤性能的一种有效方法。
静电纺纤维除直径小之外,还具有孔径小、孔隙率高、纤维均一性好等优点,使其在气体过滤、液体过滤及个体防护等领域表现出巨大的应用潜力。
③静电纺纤维能够有效调控纤维的精细结构,结合低表面能的物质,可获得具有超疏水性能的材料,并有望应用于船舶的外壳、输油管道的内壁、高层玻璃、汽车玻璃等。
但是静电纺纤维材料若要实现在上述自清洁领域的应用,必须提高其强力、耐磨性以及纤维膜材料与基体材料的结合牢度等。
④具有纳米结构的催化剂颗粒容易团聚,从而影响其分散性和利用率,因此静电纺纤维材料可作为模板而起到均匀分散作用,同时也可发挥聚合物载体的柔韧性和易操作性,还可以利用催化材料和聚合物微纳米尺寸的表面复合产生较强的协同效应,提高催化效能。
⑤静电纺纳米纤维具有较高的比表面积和孔隙率,可增大传感材料与被检测物的作用区域,有望大幅度提高传感器性能。
此外,静电纺纳米纤维还可用于能源、光电、食品工程等领域。
5静电纺丝的技术进展5.1静电纺丝法的技术改进(1)共静电纺丝2003年,德国菲利浦大学与以色列扎司门(Zussman)一起开发了共静电纺丝技术。
这种纺丝技术有2种溶液,使用2个喷嘴。
在喷嘴的前端形成复合液滴,产生喷射流,内侧的液滴也进入到喷射流之中。
因此,液滴控制较困难。
如果控制得好,则变成芯-壳结构,使用这种方法也可以制造中空纤维。
(2)TUFT的开发TUFT是管形纤维模板的缩写,是用聚合物制造纳米纤维,使其他聚合物、金属、陶瓷等吸附在纳米纤维上,然后除去原来的聚合物,中间变成中空。
也可以制成复合层,制作纳米电容器。
例如,如果在钯粒子的外侧添加聚合物,就可以得到内侧是导电体、外侧有绝缘层的纳米电缆。
如果使铝附着在聚合物上,就可以得到氧化铝管;使铬附着在聚合物上,也就得到铬管。
(3)复合喷嘴静电纺丝基本上是采用喷嘴方式,日本滋贺县立大学开发了复合喷嘴。
为了连续制造纳米纤维非织造布,复合喷嘴不可缺少。
由于各喷嘴上、下、左、右的间隔大,静电排斥的影响变小。
因此,一般按左、右10mm、上、下50mm的间隔配置喷嘴。
喷嘴采用内径0.5mm的不锈钢管,使用耐药品性好的氟橡胶管向各钢管输送溶液。
各不锈钢管插入到铜管上所开的孔中,对该铜管施加高电压。
为此,不锈钢管要固定到和铜管牢固接触的程度,但可以拆卸。
现在使用的喷嘴为线状排列形式。
5.2 M-ESP的开发图2 具有激光加热部的熔融静电纺丝装置F.Ko等将挤压机的喷嘴接地,给捕集器(纤维接收器)施加高电压,静电喷纺聚丙烯(PP),但使用该装置没有得到平均直径1μm以下的纤维。
而且,捕集器上所收集到的纤维在高电压施加状态下不能取出,存在工业应用问题。
Warner将PP充填的注射器用塑料管卷绕,使热载体在其中循环制造成熔融体,将纺丝空间置于加热状态,在安装注射器上的喷嘴和捕集器之间施加高电压,第一次得到了纳米纤维。
Joo等给注射器加入聚乳酸(PLA),制造了能够控制注射器温度、纺丝温度、捕集器温度的装置,成功地制造出了PLA纳米纤维。
上述研究使用的装置,是在容器中制造高分子熔体,在容器的一部分上设置喷嘴。
这只是在S-ESP上将高分子溶液换成了熔体,这种方法也可以说是S-ESP的延伸。
日本福井大学开发了从远方给高分子棒照射激光,对其一部分制造成熔融体,并对该熔融体施加高电压的装置。
该装置的作用原理是以一定速度(约0.2mm/s)向熔融部供给高分子棒状材料(直径约小于1mm),用二氧化碳激光从3个方向同时加热其前端,在局部使高分子棒均匀熔融,并给该高分子熔体施加高电压,在纺丝空间加热状态下由静电牵引力制造成纤维。
激光照射部分呈纺锤形,从其下部方向生成1根纤维(图2)。
对各种高分子纤维试制的结果表明,都是只从熔融部形成1根纤维,收集在捕集器上的纤维其平均直径为1μm以下。
该装置的特征是:因为使用激光加热熔融,可以瞬间进行局部加热,能量损失小;因为是间接加热,装置要求不高;因为不使用喷丝板,熔点高的切片也可以纺丝。
6结束语目前,静电纺纳米纤维技术还处于发展初期,但已可见其广阔的应用前景,以后它还会创造数以亿计的市场价值。
研究者们也将会克服纳米纤维应用领域的各项技术难关,也许各项技术能带动整个纺织产业的科技进步。
当然,这些技术的进步还需要社会各领域,如纺织技术、化学技术、生物学、高分子科学和材料科学等的密切合作才能完成。
参考文献:[1]静电纺丝工艺与装置的研究进展[J].薛花,熊杰,李妮,刘冠峰. 现代纺织技术. 2010(02)[2]在静电纺丝技术中的聚合物进展[J].任春华,林朝阳,叶亚莉. 泸天化科技.2010(02)[3]一种静电纺丝设备[P].赵曙光.中国专利:CN104099679A,[4]熔体静电纺丝技术研究进展[J].杨卫民,李好义,吴卫逢,丁玉梅. 北京化工大学学报(自然科学版).2014(04)。