8-5迈克耳孙干涉仪 ppt课件

合集下载

《迈克尔逊干涉仪》课件

《迈克尔逊干涉仪》课件

提高测量精度的措施
使用高精度仪器
选择加工精度高、装配精度高的迈克 尔逊干涉仪,能够减少仪器本身带来 的误差。
细致调整
在实验前对迈克尔逊干涉仪进行细致 的调整,确保干涉条纹完全对齐,以 减小调整误差的影响。
控制环境因素
尽可能在恒温、无气流和振动的环境 中进行实验,以减小环境因素对实验 结果的影响。
重复测量
等方面将更加智能化和自动化。
03
多功能化与拓展应用
未来迈克尔逊干涉仪将进一步拓展应用领域,不仅局限于光学和物理学
,还将应用于化学、生物学等领域,实现更多功能和应用。
THANKS
感谢观看
折射率测量
迈克尔逊干涉仪可以用于测量介质的 折射率,这对于光学玻璃、晶体等材 料的检测和表征具有重要意义。通过 干涉仪测量折射率,可以获得高精度 的结果。
光学玻璃的检测
光学玻璃的折射率
迈克尔逊干涉仪可以用于检测光学玻璃的折射率,这对于光学仪器的制造和校准具有关键作用。通过干涉仪测量 折射率,可以确保光学元件的性能和精度。
光学玻璃的均匀性
迈克尔逊干涉仪还可以用于检测光学玻璃的均匀性,即检查玻璃内部是否存在杂质或气泡。通过观察干涉条纹的 变化,可以判断玻璃的质量和加工工艺。
物理实验中的重要工具
基础物理实验
迈克尔逊干涉仪是许多基础物理实验的重要工具,如光速的测量、光的波动性研究等。通过使用迈克 尔逊干涉仪,学生可以深入理解光的干涉原理和波动性质。
暗物质与暗能量研究
迈克尔逊干涉仪可以用于寻找暗物质和暗能量的线索,帮助解决宇宙 学中的重大问题。
迈克尔逊干涉仪在技术领域的应用前景
1 2 3
量子信息技术
迈克尔逊干涉仪是量子通信和量子计算中的关键 组件,对于量子密钥分发和量子纠缠态的制备具 有重要意义。

高二物理竞赛课件:迈克尔逊干涉仪(14张PPT)

高二物理竞赛课件:迈克尔逊干涉仪(14张PPT)
物理学是一门实验的科学。只有用实验证明了 这一观点,才能算真正找到了这个绝对静止的参照 系。
当时很多科学家都力图证实这个绝对静止 的参照系,
但结果大家费了九牛二虎之力,都没有找到,但是却为
相对论的产生提供了实验基础。其中最出名的是迈克尔 逊--莫雷(Amichelson--Morley)实验。 其实验大致思路是:光对以太的速度为C,地球在以太 系中运动,依伽俐略速度变换:地球上测出的光速不是 C而是另一值。
C
C
u 测得为:
u 测得为:
Cu
Cu
正于顺风与顶风骑自行车感觉风速不一样一样。
Michelson-Morlay 实验(1881–1887)
当时认为光在“以太”(ether)中以速度c 传播。设“以太”相对太阳静止。
B L2
S P
地球公转
u
A
实验目的:干涉仪转 90° , 观 测 干 涉 条 纹 是 否移动?
成功解释过的机械波来类比。
机械波
电磁波(光)
1)依靠弹性媒质传播, 1)依靠弥漫宇宙的
其波速由弹性模量和 “以太”(Aether)
媒质密度决定。
u
B
如声波在空气中传播

播。C
G
C很大,故“以太”应
比钢还硬且星体在其
中运动时要畅行无阻。
2)波速是相对于和 静止媒质保持相对静 止的参照系的波速。
2)C是相对“以太” 参照系的速度
“以太”是宇宙间的 绝对静止参照 系。
按照以上分析,Maxwell方程只对绝对静止 的“以太”参照系成立,并且依照“GT”,在 不同的参照系中应测出不同的光速。这意味着 宇宙间存在一特殊的参照系---以太参照系,在 这个参照系中光速是C,其它惯性系中将测出不 同的光速。

迈克尔逊干涉仪ppt.

迈克尔逊干涉仪ppt.



1.大学物理实验教程浙江大学出版社。 2.大学物理实验武汉大学出版社。 3.大学物理导论清华大学出版社。 4.普通物理实验高等教育出版社。 5.改变世界的物理学复旦大学出版社。 6.固体物理学中南大学出版社。 7.工程光学机械工业出版社。 8.英汉物理学词汇北京大学出版社。 9.物理实验手册机械工业出版社。 10.普通物理实验高等教育出版社。 11.大学物理通用教程北京大学出版社。 12.现代光学基础北京大学出版社。 13.电子仪器与测量技术中国科技大学出版社。 14.大学物理浙江大学出版社。
发明光学干涉仪
进行光谱学和基本度量学研究 美国历史上第一位诺贝尔物理学奖获得者。 美国科学促进会主席,美科学院院长。 月球上的一个环形山是以他的名字命名。 1931年5月9日逝世于加利福尼亚州。 “以太漂移”学说 基于光的波动理论 光借助 “以太”这种介质传播 迈克尔逊-莫雷实验 测量“以太风”
2d cos
Nλ 明纹 ={(2N+1)λ/2 暗纹 其中 N=0,1,2,3,…
S S 2 S S 1
明纹时有: 2d cos N
可见,当 N、 一定时,如果 逐渐减小,则 角逐渐减小,同一
N 0,1,2,
级条纹圆环半径减小,看到的现象 是干涉圆环缩进(吞);如果 d 逐渐 增大,同理,看到的现象是干涉圆环 冒出(吐)。对于中央条纹,当缩进 或冒出 N 次,则光程差变化为
用迈克尔逊干涉仪测气流
“古老”原理的现代应用之例
光学相干CT — 断层扫描成像新技术 (Optical Coherence Tomography简称OCT) CT-Computed Tomography 计算机断层成象 第一代: X射线CT 射线CT-工业CT 第二代: NMR CT-核磁共振成象 第三代: 光学相干CT-OCT

迈克尔逊干涉实验.ppt

迈克尔逊干涉实验.ppt

2dn2cois
(5―12―1)
两束相干光明暗条件为
k
2dn2cosi (k Nhomakorabea1)2
亮 暗 (k=1,2,3,…,)(5―12―2)
(5―12―2)式中为反射光在平面反射镜M1上的反射角,为激光的波长,为空 气薄膜的折射率,为薄膜厚度。
凡相同的光线光程差相等,并且得到的干涉条纹随M1和M2'的距离而改变。 当时光程差最大,在点处对应的干涉级数最高。由(5―12―2)式得
干扰视线,然后调整激光器或干涉仪的位置,使激
光器发出的光束经P1折射和M1反射后,原路返回到 激光出射口,这已表明激光束对分光板P1的水平方
2" 1"
向入射角为45度。
(3)调整定臂光路
将纸片从M2上拿下,遮住M1的镜面。发现从定镜M2
E
反射到激光发射孔附近的光斑有四个,其中光强最 强的那个光斑就是要调整的光斑。为了将此光斑调
N
6
ddi
N N B 0 .5
d d A
i1
61
实验注意事项
1、迈克尔逊干涉仪是精密光学仪器,各光学表面必须保持清洁,严禁 用手触摸;调整时必须仔细、认真、小心、轻缓,严禁用力过度,损坏 仪器。
2、测量时要防止引入空程误差,影响测量精度。
3、避免激光直接射入眼睛,否则可能会造成视网膜永久性的伤害。
半透半反膜
2 1 E
2dn2cois
1.用迈克尔逊干涉仪测量激光波长
迈克尔逊干涉仪的工作原理如图5—12—3所示,M1、M2为两垂直放置的平面反射镜, 分别固定在两个垂直的臂上。P1、P2平行放置,与M2固定在同一臂上,且与M1和 M2的夹角均为45度。M1由精密丝杆控制,可以沿臂轴前后移动。P1的第二面上涂 有半透明、半反射膜,能够将入射光分成振幅几乎相等的反射光、透射光,所以 P1称为分光板(又称为分光镜)。光经M1反射后由原路返回再次穿过分光板P1后 成为光,到达观察点E处;光到达M2后被M2反射后按原路返回,在P1的第二面上 形成光,也被返回到观察点处。由于光在到达E 处之前穿过P1三次,而光在到达E 处之前穿过P1一次,为了补偿、两光的光程差,便在M2所在的臂上再放一个与P1 的厚度、折射率严格相同的P2平面玻璃板,满足了 、两光在到达E 处时无光程差, 所以称P2为补偿板。由于、光均来自同一光源S ,在到达P1后被分成、两光,所 以两光是相干光。 总上所述,光线是在分光板P1的第二面反射得到的,这样使M2在M1的附近(上部 或下部)形成一个平行于M1的虚像M2',因而,在迈克尔逊干涉仪中,自M1 、M2 的反射相当于自M1、M2'的反射。也就是,在迈克尔逊干涉仪中产生的干涉相当 于厚度为的空气薄膜所产生的干涉,可以等效为距离为2d的两个虚光源S1和S2' 发出的相干光束。即M1和M2'反射的两束光程差为

迈克尔逊干涉仪的调节和使用ppt课件

迈克尔逊干涉仪的调节和使用ppt课件
1、光源的调理 放置好钠光灯使光源和分光板G1、补偿板
G2及反射镜M2中心大致等高,且三者连线大 致垂直于M2镜。适当调理光源及扩束透镜的 位置使得在E处视野可看到均匀的亮斑。 2、等倾干涉条纹的调理 1〕转动粗动手轮,尽量使M1、M2距分光板后 外表的间隔相等。
迈克耳逊干涉仪的调理
2) 在扩束透镜和分光板之间,放置笔尖,用肉眼直接 察看笔尖多个投影,调整M1反射镜〔或M2反射镜〕 镜后螺丝,使笔尖2个投影重合,即可察看到等是分振幅干涉。 S 设薄膜上下外表平行。如图2 a1与a2的光程差为
a1 a2 iD
L2ncdoi s
dA B
n
C
即入射角一样的点的光程 差 L一样,故称等倾干涉。 干涉图样为同心圆。
图2 面光源产生的等倾干涉
2ndc ois(2KK1) 2
〔明条纹〕 〔暗条纹〕
实验原理
5) 丈量前应转动微调手轮,挪动M1反射镜,察看等 倾条纹的变化情况。选择适宜一段区间,以利完成 丈量。




条 纹
M2
M 2 M 2 与 M1'
M 1'
M1' 重 合
M 1'
M 1'
M2
M2





M2
M2
M2

M 1'
M1' M1'
M 1'
M 1'
M2
M2
条纹的可见度问题
运用的光源包含两种波长λ1 及λ2 , 且λ1 和λ2 相差很 小。 1、当光程差同时为两种波长λ1 及λ2 的半波长整数倍, 即L = mλ1 /2= nλ2/2 ,此时两个波长的亮纹叠加,可 见度最正确; 2、当光程差为L = mλ1 /2 = (n +0.5) λ2/2 时, 两种光 产生的条纹为重叠的亮纹和暗纹, 使得视野中条纹的 可见度降低, 假设λ1 与λ2 的光的亮度又一样, 那么条 纹的可见度为零, 即看不清条纹了。

迈克尔逊干涉仪实验ppt课件

迈克尔逊干涉仪实验ppt课件

M1
关光发出的球面波在相遇空间处 S
处相关,所以察看屏放入光场叠
加区的任何位置处,都可察看到
外形不同的干涉条纹,称这种条
纹为非定域干涉条纹。
3、等倾干涉
当 M和1 M严2 厉平行时〔即 和M 1 相M 2互垂直〕,所
得的干涉为等倾干涉。一切倾角为 的入射光束由
M 1和 M 2 反射的光波的光程差均为 2dco。s此时干
接纳 屏
平面镜 M 2
补偿 板
分光 板
平面镜 M 1
粗动手轮
微动手轮
微调螺丝
M1
d
M 2
S光源
分光板
Hale Waihona Puke 补偿板M2G1
G2
P
迈克耳逊干涉仪原理图
S光源,P察看屏,G1、G2为资料厚度一样的平行 板,G1为分光板,其后外表为镀银的半透半反膜,以 便将入射光分成振幅近乎相等的反射光和透射光。G2 为补偿板,它补偿了反射光和透射光的附加光程差。 M1、M2是相互垂直的平面反射镜, M2'是M2的虚 象。这两束光波分别在M1、M2上反射后逆着各自入 射方向前往,最后都到达P处构成干涉条纹。
次数

起点(mm)
1 终点(mm)
起点(mm)
2 终点(mm)
起点(mm)
3 终点(mm)
起点(mm)
4 终点(mm)
起点(mm)
5 终点(mm)

起点(mm)
d1
终点(mm)
d 2
d3
起点(mm) 终点(mm) 起点(mm) 终点(mm)
d 4
起点(mm) 终点(mm)
起点(mm)
d5
终点(mm)

迈克尔逊干涉仪的调节和使用ppt课件

迈克尔逊干涉仪的调节和使用ppt课件

2en2 2
对应条纹级次最高
物理实验教学中心
沈阳城市学院
• 迈干仪的干三涉实原验理测量原理
反射镜 M1
M1 移动导轨
M1 M2
扩束镜



色 光


M2
分光板 G1
补偿板 G 2
G1//G 2 与 M1, M2 成 450角 物理实验教学中心
沈阳城市学院
M2 的像 M'2 反射镜 M1
d
迈克尔逊及其对物理学发展的主要贡献
• 1907年迈克尔逊因为“发明光学干涉仪并使用 其进行光谱学和基本度量学研究” 而成为美国 历史上第一位诺贝尔物理学奖获得者。 1910-1911年担任美国科学促进会主席。
• 1923-1927年担任美国科学院院长。 月球上的一个环形山是以他的名字命字。
• 1931年5月9日逝世于加利福尼亚的帕萨迪纳。
物理实验教学中心
沈阳城市学院
数据处理及分析
1.用逐差法计算He-Ne激光的波长.
di=di4 di
d

i
di 4
=2 di
k
2.将测得波长λ与公认值λs进行百分差比较. He-Ne激光:λs =632.8nm
3.计算钠双线的波长差,并与公认值Δλs进行百分差比较.
钠光平均波长:λ12=589.294nm钠光双线:Δλs=0.597nm
观察干涉圆环的环心,如增大d,k也增大,环 心的级次也增大,环心不断冒出环纹,环纹增多 变密;如减小d,则发生相反的情景,环心不断 缩入环纹,条纹减市学院
实 验 内容
物理实验教学中心
沈阳城市学院
一、调整迈克尔逊干涉仪及其光路
(1)粗调:① 将M1、M2方位螺钉和拉簧调至半松半紧状态 ② 调激光器方位,使反射光大致对 称分布

迈克耳逊干涉仪PPT课件

迈克耳逊干涉仪PPT课件

钠黄光两条强谱线的波
长分别为λ1=589.0 nm和λ
2=589.6 nm,移动M2,当
光程差满足两列光波⑴和⑵
的光程差恰为λ1的整数倍
,而同时又为λ2的半整数
倍,即
k11
(k2
1 2
)2
实验原理——测量钠光的双线波长差Δλ
这时λ1光波生成亮环的地方 ,恰好是λ2光波生成暗环的 地方。如果两列光波的强度 相等,则在此处干涉条纹的 视见度应为零(即条纹消失) 。那么干涉场中相邻的两次 视见度为零时,光程差的变 化应为:
在两臂轴线相交 处,有一与两轴成 45°角的平行平面玻 璃板G1,它的另一个 平面上镀有半透(半反射)的银 膜,以便将入射光分成振幅接近 相等的反射光⑴和透射光⑵,故 G1又称为分光板。
实验原理——仪器的调节
G2也是平行平 面玻璃板,与G1平 行放置,厚度和折 射率均与G1相同。 由于它补偿了光线⑴和⑵因穿越 G1次数不同而产生的光程差, 故称为补偿板。
迈克耳逊干涉仪
实验目的 实验内容 实验仪器 注意事项 实验原理 数据处理
思考题
实验目的
1.了解迈克尔逊干涉仪的干涉 原理和迈克尔逊干涉仪的结 构,学习其调节方法。
2.测量He-Ne激光的波长。 3.测量钠黄光双线的波长差。
返回
实验仪器
迈克尔逊干涉仪(WSM-100型), He-Ne激光器, 钠光灯, 扩束镜, 凸透镜
实验原理——点光源产生的非定域干涉
因此,当M2镜移动时,若有 Δn个条纹陷入中心,则表明M2 相对于M1移近了
d n
(3)
2
反之,若有Δn个条纹从中心涌出
来时,则表明M2相对于M1移
远了同样的距离。
如果精确地测出M2移动的 距离Δd,则可由式(3)计算出入 射光波的波长。

麦克耳逊干涉仪.ppt

麦克耳逊干涉仪.ppt

2en2 2
对应条纹级次最高
三实验测量原理
迈干仪的干涉原理
反射镜 M 1
M 1 移动导轨
扩束镜 单 色 光 源
分光板 G 1
M1 M2
反 射 镜
M2 补偿板 G 2
G1//G2 与 M1,M2 成 45 0角
三实验测量原理
M 2 的像 M' 2 反射镜 M 1
d
M1 M2
单 色
反 射



一实验目的及要求
了解迈克尔逊干涉仪的结构和干涉条纹的 形成原理。 通过观察实验现象,加深对干涉原理的理 解。 学会迈克尔逊干涉仪的调整和使用方法。 观察等倾干涉条纹,测量激光的波长。
二实验仪器
迈干仪的历史背景
迈克耳逊( Albert Abrham Michelson ,1852 -1931),迈克尔逊1852 年12月19日出生在普鲁士,2岁时随父母移民美国。1907年诺贝尔 物理学奖授予芝加哥大学的迈克耳逊,以表彰他对光学精密仪器 及用之于光谱学与计量学研究所作的贡献。
二实验仪器
迈克尔逊干涉仪
反射镜M1
激光器光源
扩束镜
反射镜M2
分光板 补偿板
观察屏
M2移动导轨
三实验测量原理
等倾干涉原理 (n2 >n1,薄膜上下表面平行)
L
2与 3的光程差为:
1
n M 1 1 n2
M2 n1
iD
A
B
2k
2
P
3 C
e
n222ee(nA2B nc22oB sC n12)s2ni1 nA 2D i 2 2
G1
G2
M2
在迈克尔逊干涉仪中产生的干涉相当于厚度为d的空气 薄膜所产生的干涉,当M1与M2垂直时,即M1与M2‘平 行时,可以观察到等倾干涉条纹。中心处两束相干光的

《迈克耳逊干涉仪》课件

《迈克耳逊干涉仪》课件

思考题
迈克耳逊干涉仪的工作原理是什么? 实验中如何调整干涉条纹的间距和亮度? 实验中如何测量干涉条纹的间距和亮度? 实验中如何分析干涉条纹的变化规律? 实验中如何判断干涉条纹的变化是由光源还是光路引起的? 实验中如何判断干涉条纹的变化是由光路还是光程引起的?
感谢您的观看
汇报人:
观察屏:观察干涉 条纹,分析干涉现 象
迈克耳逊干涉仪的应用
测量光速:通过测量干涉条纹的移动速度,可以计算出光速 测量折射率:通过测量干涉条纹的移动速度,可以计算出折射率 测量波长:通过测量干涉条纹的移动速度,可以计算出波长 测量光程差:通过测量干涉条纹的移动速度,可以计算出光程差
实验目的与要求
第三章
实验总结与思考题
第六章
实验总结
实验目的:验证迈克耳逊干涉仪的原理和特性 实验器材:迈克耳逊干涉仪、光源、测量仪器等 实验步骤:调整光源、调整干涉仪、测量干涉条纹等 实验结果:观察到清晰的干涉条纹,验证了迈克耳逊干涉仪的原理和特性 实验思考题:如何提高干涉条纹的清晰度?如何改进干涉仪的设计以提高测量精度?
实验目的
理解迈克耳逊干涉仪的工作原理 掌握干涉条纹的形成和变化规律 学习如何调整干涉仪以获得清晰的干涉条纹 提高实验操作技能和观察能力
实验要求
掌握干涉条纹的形成和测量 方法
熟悉迈克耳逊干涉仪的结构 和工作原理
学会使用干涉仪进行实验操 作和数据分析
遵守实验室安全规定,保持 实验环境整洁
实验原理及步骤
迈克耳逊干涉仪 PPT课件大纲
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 迈克耳逊干涉仪简介 03 实验目的与要求 04 实验原理及步骤 05 实验结果分析

大学基础物理实验课件迈克尔逊干涉仪

大学基础物理实验课件迈克尔逊干涉仪
准确的实验结果。
建议在实验后增加对实验数据的分析和讨论环节,引 导学生深入思考和探讨实验现象背后的物理原理,提
高学生对物理实验的兴趣和探究精神。
THANK YOU
感谢聆听
通过观察和分析实验数据,我 学会了如何运用物理知识和数 学工具解决实际问题,提高了 自己的科学素养。
通过与同学合作完成实验,我 学会了团队协作和沟通交流, 培养了自己的团队合作精神。
对实验的改进建议
建议在实验前增加对迈克尔逊干涉仪的原理和结构的 讲解,以便学生更好地理解实验操作和注意事项。
建议在实验过程中加强对学生的指导和帮助,特别是 在调整干涉仪参数时,确保学生能够正确操作并获得
大学基础物理实验课件迈克尔 逊干涉仪

CONTENCT

• 迈克尔逊干涉仪简介 • 实验准备与操作 • 实验结果分析 • 实验结论与总结
01
迈克尔逊干涉仪简介

定义与工作原理
定义
迈克尔逊干涉仪是一种利用分束镜将一束光分为两束相干光束, 再通过反射镜反射回来,最后重新交汇产生干涉现象的实验仪器 。
通过比较实验结果与理论预期,验证 迈克尔逊干涉仪的原理和干涉现象。
误差分析
误差来源
分析实验中可能产生的误差来源,如测量误差、仪器误差、环境因素等。
误差传递
根据误差来源,评估其对实验结果的影响,并进行误差传递分析,以得出更准确的实验结论。
04
实验结论与总结
实验结论
迈克尔逊干涉仪能够产生等厚干涉和等倾干涉,验 证了光的波动性和干涉现象。
工作原理
一束光经过分束镜分为两束相干光束,分别沿着不同路径反射回 来后重新交汇,由于光程差的变化,产生干涉现象。
历史与发展

迈克尔逊干涉仪PPT课件

迈克尔逊干涉仪PPT课件
wwwphyccnueducngxganshemikersunhtm实现等倾干涉等厚干涉精确地测定光谱线的波长及其精细结构测定以太风速度从而否定以太的存在测定介质气液固体折射率
2.7迈克尔逊干涉仪
主讲人 广州大学 刘翠红
迈克尔逊干涉仪
主讲人 广州大学 刘翠红
迈克尔逊干涉仪(The Michelson interferometer)
"以太"?
"以太"风速度?
1(A.A.Michelson) 美籍德国人
A.A.Michelson因创造精密光 学仪器,用于进行光谱学和度 量学的研究,并精确测出光速,
获1907年诺贝尔物理奖。
1.干涉仪结构
分光板G1 &补偿板G2 平面反射镜M1&M2
/supply/offerdetail/24691.html
2.干涉原理
S
G1上表面折射 下表面反射 I、折射II
I G1上、下表面折射
/supply/offerdetail/24691.html
M1反射
G1上、下表面折射 P
G1下表面反射
M 1 M 2 等倾干涉
II
G2上、下表面折射
M2反射
M1
||
M
'
2
,
等厚干涉
4. h N
2
精确地测定光谱线的波长及其精细结构 测定介质(气、液、固体)折射率......

1

2
亮条纹 暗条纹
m 0,1,2,3...
M 1 M 2 等倾干涉
M1
||
M
'
2
,
等厚干涉
讨论:等倾干涉,屏幕中心处
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

迈克耳孙干涉仪的照片
物理学
第五版
8-5 迈克耳孙干涉仪
一 迈克耳孙干涉仪光路及结构
反射镜 M 1 M 1 移动导轨
单 色 光 源
分光板 G 1
M1 M2
反 射 镜 M2 补偿板 G 2
G1//G2 与 M1,M2 成 45 角
5
物理学
第五版
M 2 的像 M' 2
反射镜 M 1
单 色 光 源
G1
信号臂
L1 L2 2×2 参考臂 L3 光纤耦合器
生物体
参考光 反射镜
超外差电路
数据采集系统
数据处理
OCT系统结构图
OCT与高频率超声成像的比较
科学中的艺术
爱因斯坦: 我总认为迈克耳孙是科学中的艺术家,他的最大乐趣 似乎来自实验本身的优美和所使用方法的精湛,他从 来不认为自己在科学上是个严格的‘专家’,事实上 的确不是,但始终是个艺术家。
许多著名的实验都堪称科学中的艺术,如:全息照相 实验、激光冷却原子等等。
重要的物理思想+巧妙的实验构思+精湛的实验技术
科学中的艺术
纹一个个向中心缩进,
干涉条纹变稀 .
9
物理学
第五版
M' 2
M1
G1
8-5 迈克耳孙干涉仪
d
插入介质片
nM 2 光程差变化
G2
t
Δ2(n1)t
10
物理学
第五版
M' 2
M1
G1
8-5 迈克耳孙干涉仪
d
nM 2
干涉条纹移动数目
N
2(n1)t
介质片厚度
Hale Waihona Puke G2tt N n1 2
11
光纤迈克耳孙干涉仪
低相干光源 探测器
8-5迈克耳孙干涉仪 ppt课件
迈克耳孙简介
迈克耳孙在工作
迈克耳孙 (A.A.Michelson)
美籍德国人,1881 年为了研究光速问题 发明了干涉仪,因其 发明的干涉仪及其在 精密测量和实验方面 的杰出成就,获得了 1907年的诺贝尔物理 学奖。
迈克耳孙干涉仪的应用
迈克耳孙干涉仪三个著名的实验 测量以太的漂移速度 精确测量长度 测量谱线的精细度
(2)两光束的光程差可调.
M' 2
M1
d
d
干涉条纹移动
数目 N
移动反射镜d d N
2
移动反射镜d
光程差改变 2d
G1
G2
M2
N 2d
8
物理学
第五版
8-5 迈克耳孙干涉仪
➢ 干涉条纹的移动
当 M 1与 M2 之
间距离变大时 ,圆形
干涉条纹从中心一个
个长出,并向外扩张,
干涉条纹变密;距离
变小时,圆形干涉条
8-5 迈克耳孙干涉仪
d
M1 M2



G2
M2
光程差 Δ2d
6
物理学
第五版
M' 2
反射镜 M 1
单 色 光 源
G1
8-5 迈克耳孙干涉仪
当 M 1不垂直于M 2
时,可形成劈尖
型等厚干涉条纹.



G2
M2
7
物理学
第五版
8-5 迈克耳孙干涉仪
二 迈克耳孙干涉仪的主要特性
(1)两相干光束完全分开;
相关文档
最新文档