线性代数知识点_48678
线性代数知识点全归纳
线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
线性代数知识点归纳
线性代数知识点归纳线性代数复习要点第一部分行列式1.排列的逆序数2.行列式按行(列)展开法则3.行列式的性质及行列式的计算行列式的定义行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角行列式等于主对角线上元素的乘积④若都是方阵(不必同阶)则⑤关于副对角线:⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法)对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法)把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2.对于阶行列式,恒有:,其中为阶主子式;3.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4.代数余子式和余子式的关系:第二部分矩阵矩阵的运算性质矩阵求逆矩阵的秩的性质矩阵方程的求解矩阵的定义由个数排成的行列的表称为矩阵.记作:或(同型矩阵:两个矩阵的行数相等、列数也相等.(矩阵相等:两个矩阵同型,且对应元素相等.(矩阵运算a.矩阵加(减)法:两个同型矩阵,对应元素相加(减).b.数与矩阵相乘:数与矩阵的乘积记作或,规定为.c.矩阵与矩阵相乘:设,,则,其中注:矩阵乘法不满足:交换律、消去律,即公式不成立.a.分块对角阵相乘:b.用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量d.两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a.对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b.分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,,.分块对角阵矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立) 2.逆矩阵的求法方阵可逆.①伴随矩阵法:②初等变换法③分块矩阵的逆矩阵:④,⑤配方法或者待定系数法(逆矩阵的定义)行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵初等变换与初等矩阵对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵初等矩阵的逆初等矩阵的行列式 () () () ?矩阵的初等变换和初等矩阵的关系:(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.矩阵的秩关于矩阵秩的描述:①、,中有阶子式不为0,阶子式(存在的话)全部为0;②、,的阶子式全部为0;③、,中存在阶子式不为0;矩阵的秩的性质:①;;≤≤②③④⑤≤⑥若、可逆,则;即:可逆矩阵不影响矩阵的秩.⑦若;若⑧等价标准型.⑨≤,≤≤⑩,求秩矩阵方程的解法):设法化成第三部分线性方程组1.向量组的线性表示2.向量组的线性相关性3.向量组的秩4.向量空间5.线性方程组的解的判定6.线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系)(2)非齐次线性方程组的解的结构(通解)线性表示:对于给定向量组,若存在一组数使得,则称是的线性组合,或称称可由的线性表示.线性表示的判别定理:可由的线性表示由个未知数个方程的方程组构成元线性方程:①、有解②、③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)2.设的列向量为的列向量为,,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵. 同理:的行向量能由的行向量线性表示,为系数矩阵. 即:线性相关性判别方法:法1法2法3推论线性相关性判别法(归纳)线性相关性的性质零向量是任何向量的线性组合零向量与任何同维实向量正交单个零向量线性相关;单个非零向量线性无关部分相关整体必相关;整体无关部分必无关原向量组无关接长向量组无关;接长向量组相关原向量组相关两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关向量组中任一向量≤都是此向量组的线性组合若线性无关,而线性相关则可由线性表示且表示法一向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作矩阵等价经过有限次初等变换化为向量组等价和可以相互线性表示记作:矩阵的行向量组的秩列向量组的秩阶梯形矩阵的秩等于它的非零行的个数矩阵的初等变换不改变矩阵的秩且不改变行向量间的线性关系向量组可由向量组线性表示且,则线性相关向量组线性无关且可由线性表示则.向量组可由向量组线性表示且则两向量组等价任一向量组和它的极大无关组等价向量组极大无关组若两个线性无关的向量组等价则它们包含的向量个数相等设是矩阵若,的行向量线性无关;线性方程组的矩阵式向量式(1)解得判别定理(2)线性方程组解的性质:判断是的基础解系的条件:①线性无关;②是的解;③.(4)求非齐次线性方程组Ax=b的通解的步骤(5)其他性质一个齐次线性方程组的基础解系不唯一.√若是的一个解,是的一个解线性无关√与同解(列向量个数相同):①它们的极大无关组相对应从而秩相等②它们对应的部分组有一样的线性相关性③它们有相同的内在线性关系与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵).第四部分方阵的特征值及特征向量1.施密特正交化过程2.特征值、特征向量的性质及计算3.矩阵的相似对角化,尤其是对称阵的相似对角化1.(标准正交基个维线性无关的向量两两正交每个向量长度为1与的内积(.记为:④向量的长度⑤是单位向量的向量.2.内积的性质:①正定性:②对称性:③线性:(设A是一个n阶方阵,若存在数和n维非零列向量,使得,则称是方阵A的一个特征值,为方阵A的对应于特征值的一个特征向量.(的特征矩阵).(的特征多项式).④是矩阵的特征多项式⑤,称为矩阵的迹.⑥上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素若则为的的基础解系即为属于的线性无关的特征向量.⑧一定可分解为=、,从而的特征值为:,.为各行的公比,为各列的公比.⑨若的全部特征值,是多项式,则:①若满足的任何一个特征值必满足②的全部特征值为;.⑩与有相同的特征值,但特征向量不一定相同.特征值与特征向量的求法(1)写出矩阵A的特征方程,求出特征值.(2)根据得到A对应于特征值的特征向量.设的基础解系为其中.则A对应于特征值的全部特征向量为其中为任意不全为零的数.(与相似(为可逆矩阵)(与正交相似(为正交矩阵)(可以相似对角化与对角阵相似.(称是的相似标准形)6.相似矩阵的性质:①,从而有相同的特征值,但特征向量不一定相同.是关于的特征向量,是关于的特征向量.②③从而同时可逆或不可逆④⑤若与相似,则的多项式与的多项式相似.矩阵对角化的判定方法①n阶矩阵A可对角化(即相似于对角阵)的充分必要条件是A有n 个线性无关的特征向量.这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:.②可相似对角化,其中为的重数恰有个线性无关的特征向量.:当为的重的特征值时,可相似对角化的重数基础解系的个数.③若阶矩阵有个互异的特征值可相似对角化.实对称矩阵的性质:①特征值全是实数,特征向量是实向量;②不同特征值对应的特征向量必定正交;:对于普通方阵,不同特征值对应的特征向量线性无关;③一定有个线性无关的特征向量.若有重的特征值,该特征值的重数=;④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑥两个实对称矩阵相似有相同的特征值.9.正交矩阵正交矩阵的性质①;②;③正交阵的行列式等于1或-1④是正交阵则也是正交阵⑤两个正交阵之积仍是正交阵⑥的行(列)向量都是单位正交向量组.10.11.施密特线性无关单位化:其中为对称矩阵,(与合同.()(正惯性指数二次型的规范形中正项项数负惯性指数二次型的规范形中负项项数符号差(为二次型的秩)④两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分别相等.⑤两个矩阵合同的充分条件是:与等价⑥两个矩阵合同的必要条件是:2.经过化为标准形.(正交变换法(配方法(1)若二次型含有的平方项,则先把含有的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形;若二次型中不含有平方项,但是(),则先作可逆线性变换,化二次型为含有平方项的二次型,然后再按(1)中方法配方.(初等变换法3. 正定二次型不全为零,.正定矩阵正定二次型对应的矩阵.4.为正定二次型(之一成立):(1),;(2)的特征值全大于;(3)的正惯性指数为;(4)的所有顺序主子式全大于;(5)与合同,即存在可逆矩阵使得;(6)存在可逆矩阵,使得;5.(1)合同变换不改变二次型的正定性.(2)为正定矩阵;.(3)为正定矩阵也是正定矩阵.(4)与合同,若为正定矩阵为正定矩阵(5)为正定矩阵为正定矩阵,但不一定为正定矩阵. 半正定矩阵的判定一些重要的结论:全体维实向量构成的集合叫做维向量空间.√关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示.7第1页共20页。
线性代数知识点总结
向量的模长
• 定义:向量的大小
• 计算公式:|v| = √(x² + y² + ... + n²)
向量的加法运算
向量加法的定义
• 两个向量的和是一个新的向量,其坐标等于两个向量坐标的和
• 向量加法满足交换律和结合律
向量加法的计算
• 直接将两个向量的对应坐标相加
• 可以用坐标法表示向量加法
向量加法的性质
正定二次型
• 二次型的标准化是将二次型表示为标准二次型的形式
• 正定二次型是指二次型对应的矩阵是正定矩阵
• 标准二次型的形式为f(x) = x′Ax + λx′x
• 正定二次型的二次函数在向量空间的原点处取得最小值
08
线性规划
线性规划问题的定义与模型
线性规划问题的定义
• 线性规划问题是一种优化问题,要求求解一组变量的最优值
06
特征值与特征向量
特征值与特征向量的定义与性质
01
特征值的定义
• 特征值是线性变换特征方程的根
• 特征值表示线性变换对向量的放大倍数
02
特征向量的定义
• 特征向量是线性变换特征方程的解向量
• 特征向量表示线性变换对向量的方向
03
特征值与特征向量的性质
• 特征值具有唯一性和稳定性
• 特征向量具有线性无关性
二次型的定义与表示
二次型的定义
二次型的表示
• 二次型是一种二次函数,表示为f(x) = Ax² + Bx + C
• 二次型可以用矩阵表示,为f(x) = x′Ax + x′Bx + x′Cx
• 其中,A、B、C是常数矩阵
• 其中,A、B、C是二次型的系数矩阵
线性代数知识点全面总结
线性代数知识点全面总结线性代数是研究向量空间、线性变换、矩阵、线性方程组及其解的一门数学学科。
它是高等数学的基础课程之一,广泛应用于物理学、工程学、计算机科学等领域。
下面将全面总结线性代数的知识点。
1.向量向量是线性代数的基本概念之一,它表示有方向和大小的物理量。
向量可以表示为一个有序的元素集合,也可以表示为一个列向量或行向量。
向量的加法、减法、数乘等运算满足一定的性质。
2.向量空间向量空间是一组向量的集合,其中的向量满足一定的性质。
向量空间中的向量可以进行线性组合、线性相关、线性无关等运算。
向量空间的维数是指向量空间中线性无关向量的个数,也称为向量空间的基的个数。
3.矩阵矩阵是线性代数中的另一个重要概念,它是由若干个数排成的矩形阵列。
矩阵可以表示线性方程组、线性变换等。
矩阵的加法、数乘运算满足一定的性质,矩阵的乘法满足结合律但不满足交换律。
4.线性方程组线性方程组是由线性方程组成的方程组。
线性方程组可以表示为矩阵乘法的形式,其中未知数对应为向量。
线性方程组的解可以通过高斯消元法、矩阵的逆等方法求解。
5.行列式行列式是一个包含数字的方阵。
行列式的值可以通过一系列的数学运算求得,它可以表示方阵的一些性质,例如可逆性、行列式的大小等。
6.矩阵的特征值与特征向量矩阵的特征值和特征向量是矩阵的重要性质。
特征值表示线性变换后的方向,特征向量表示与特征值对应的方向。
通过求解特征值和特征向量可以分析矩阵的性质,例如对角化、矩阵的相似等。
7.线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以通过矩阵的乘法表示,矩阵中的元素代表了向量的变换规则。
8.最小二乘法最小二乘法是一种通过最小化误差的平方和来求解线性方程组的方法。
最小二乘法可以用于求解多项式拟合、数据拟合等问题,它可以通过求矩阵的伪逆来得到解。
9.正交性与正交变换正交性是指向量或函数满足内积为零的性质。
正交变换是一种保持向量长度和夹角不变的线性变换。
线代知识点概念总结
线代知识点概念总结1.向量空间向量空间是线性代数的基础概念之一,它是一个集合,其中的元素称为向量,同时该集合还具有向量加法和数量乘法的结构。
向量空间具有多种性质,例如:对于任意的向量a,b和c,满足加法交换律、结合律、零元素和负元素等。
2.线性方程组线性方程组是由一系列线性方程组成的方程组,例如:a1x1 + a2x2 + ... + anxn = b是一个线性方程,它可用矩阵表示。
解线性方程组是线性代数中的一个重要内容,可以用高斯消元法、矩阵求逆、克拉默法则等方法来求解。
3.矩阵矩阵是线性代数中的重要工具,它由一组按照矩形排列的数所组成的,其中每一个数称为一个元素。
矩阵可以进行加法、数乘和矩阵乘法等运算。
矩阵的性质和运算规则很多,例如:矩阵的转置、逆矩阵、矩阵的秩等。
4.线性变换线性变换是指将一个向量空间映射到另一个向量空间的变换,同时满足线性函数的性质。
线性变换具有很多性质和运算规则,例如:线性变换的复合、线性变换的逆等。
5.特征值和特征向量特征值和特征向量是矩阵的一个重要性质,它们可以描述矩阵在某种变换下的特定性质。
特征值和特征向量在许多领域有广泛的应用,例如:物理学、工程学和计算机科学等。
6.内积空间内积空间是线性代数的一个重要分支,它是一个向量空间,并且在其上定义了一个内积运算。
内积空间具有很多性质和运算规则,例如:内积的线性性、正定性等。
7.正交、标准正交正交和标准正交是内积空间中的重要概念,它们描述了向量空间中向量之间的关系,具有很多性质和运算规则,例如:正交矩阵、标准正交基等。
8.奇异值分解奇异值分解是矩阵分解的一种重要方法,它可以将一个任意的矩阵分解为奇异值矩阵、左奇异向量和右奇异向量的乘积,具有重要的应用价值。
9.特征值分解特征值分解是一种重要的矩阵分解方法,它可以将一个对称矩阵分解为特征向量和对角元素的乘积,具有很多应用。
10.广义逆矩阵广义逆矩阵是线性代数中的一个重要概念,它是对非方正矩阵的逆矩阵的推广,具有很多应用。
线性代数知识点
考研数学知识点-线性代数第一讲 基本知识二.矩阵和向量 ① A ② ( A③c( + + A 1.线性运算与转置B B + =) B 反对称矩阵B +A +C = A + ( B + C ) 初等变换分 ) =cA + cB ( c + d ) A = cA +dAA T= 三.矩阵的初等变换,阶梯形矩阵 ⎧ ⎨−A 。
初等行变换初等列变换⎩ 三类初等行变换 ④c ( dA ) = ( cd )A ①交换两行的上下位置⑤ cA = 0 ⇔ c = 0 或 A = 0 。
A → B向量组的线性组合 ②用非零常数 c 乘某一行。
③把一行的倍数加到另一行上(倍加变换)α ,α , Λ ,α ,1 2 s 阶梯形矩阵⎛4 1 0 2 0 ⎞c α + c α + Λ + c α 。
1 12 2 s s ⎜ ⎟ 1 0⎜ 0 − 1 2 5 1 ⎟转置2 1⎜ ⎟0 0 0 2 3 ⎜ ⎟ 4 3 ⎜ ⎟ A 的转置 A T (或 A ′ )0 0 0 0 0 ⎝ ⎠T ①如果有零行,则都在下面。
T ( A ) = A ②各非零行的第一个非 0 元素的列号自上而下严格 单调上升。
TT T ( A ± B ) = A ± B或各行左边连续出现的 0 的个数自上而下严格单调 T T 上升,直到全为 0 。
( c A ) = c ( A ) 。
台角:各非零行第一个非 0 元素所在位置。
简单阶梯形矩阵:3. n 阶矩阵3.台角位置的元素都为 1n 行、 n 列的矩阵。
4.台角正上方的元素都为 0。
对角线,其上元素的行标、列标相等 a , a ,Λ 11 22 每个矩阵都可用初等行变换化为阶梯形矩阵和简单 ⎛ * 0 0 ⎞ ⎜ ⎟ 阶梯形矩阵。
对角矩阵 ⎜ 0 * 0 ⎟ 如果 A 是一个 n 阶矩阵⎜ ⎟ 0 0 * ⎝ ⎠ A 是阶梯形矩阵 ⇒ A 是上三角矩阵,反之不一定,如⎛ 3 0 0 ⎞ ⎜ ⎟ 数量矩阵 0 3 0 = 3E ⎛ 0 0 1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 0 1 0 是上三角,但非阶梯形 0 0 3 ⎜ ⎟ ⎝ ⎠ ⎜ ⎟ 0 0 1 ⎝ ⎠⎛ 1 0 0 ⎞ ⎜ ⎟ 单位矩阵 ⎜ 0 1 0 ⎟ E 或I 四.线性方程组的矩阵消元法 ⎜ ⎟ 0 0 1 ⎝ ⎠ 用同解变换化简方程再求解三种同解变换:⎛ * * * ⎞⎜ ⎟ ①交换两个方程的上下位置。
线性代数知识点总结
大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变;转置行列式T D D = ②行列式中某两行列互换,行列式变号;推论:若行列式中某两行列对应元素相等,则行列式等于零; ③常数k 乘以行列式的某一行列,等于k 乘以此行列式; 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零; ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零; 克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,;;化为三角形行列式 ⑤上下三角形行列式:行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵 矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TT T B A B A +=+)( TTkA kA =)( TTTA B AB =)(反序定理 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的;矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵; 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==**4、1*-=A A A A 可逆5、1*-=n AA 6、()()A AA A1*11*==--A 可逆 7、()()**T TA A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组;希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P 向量组的秩:极大无关组定义P188定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出;秩:极大无关组中所含的向量个数;定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r;现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r T n T T<⇒)....(21ααα线性无关充要n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关;定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关;极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的; 不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的; 齐次线性方程组I 解的结构:解为...,21ααI 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数; 非齐次线性方程组II 解的结构:解为...,21μμ II 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解; 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解;第四章 向量空间向量的内积 实向量定义:α,β=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ; ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵; 2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量; |A|=n λλλ...**21注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值 则1-A --------λ1 则m A --------mλ 则kA --------λk若2A =A 则-----------λ=0或1 若2A =I 则-----------λ=-1或1 若k A =O 则----------λ=0 迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281 相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BPP =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212- --C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P 6、若A~B,则它们有相同的特征值; 特征值相同的矩阵不一定相似 7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩 例子:B AP P =-1则1100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1 A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ 注:三角形矩阵、数量矩阵I λ的特征值为主对角线;约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵;定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1;第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型; 标准型:形如 的二次型,称为标准型; 规范型:形如 的二次型,称为规范型; 线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B;合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
(完整)线性代数知识点总结汇总,推荐文档
线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
线性代数总结知识点
线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。
以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。
- 向量加法:两个向量对应分量相加得到新的向量。
- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。
- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。
- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。
2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。
- 矩阵加法和减法:对应元素相加或相减。
- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。
- 矩阵的转置:将矩阵的行变成列,列变成行。
- 单位矩阵:对角线上全是1,其余位置全是0的方阵。
- 零矩阵:所有元素都是0的矩阵。
3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。
- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。
4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。
- 子空间:向量空间的子集,它自身也是一个向量空间。
- 维数:向量空间的基(一组线性无关向量)的大小。
- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。
5. 线性变换- 定义:保持向量加法和标量乘法的函数。
- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。
6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。
- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。
线性代数知识点全归纳
线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <;⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n nnm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nm n mmm m r nr r n nn nnnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r rr r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。
线性代数知识点归纳
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
线代知识点总结全部
线代知识点总结全部一、向量和矩阵1. 向量的定义向量是指具有大小和方向的几何体,通常用箭头表示。
在数学中,向量通常用有序数对或有序数组表示。
例如,在二维空间中,一个向量可以表示为(a, b),表示向量在x轴上的分量为a,在y轴上的分量为b。
2. 向量的线性运算向量的线性运算包括向量的加法和数量乘法。
向量的加法就是将两个向量相加,得到一个新的向量。
数量乘法是将一个实数与一个向量相乘,得到一个新的向量。
3. 矩阵的定义矩阵是一个由数排成的矩形阵列,它是线性代数中的一个重要概念。
矩阵中的数称为元素,矩阵的行数和列数分别称为矩阵的阶数。
例如,一个m×n的矩阵有m行n列。
4. 矩阵的基本运算矩阵的基本运算包括矩阵的加法、数量乘法和矩阵的乘法。
矩阵的加法是将两个相同阶数的矩阵相加得到一个新的矩阵,矩阵的数量乘法是将一个实数与一个矩阵相乘得到一个新的矩阵。
矩阵的乘法是将一个m*n的矩阵与一个n*p的矩阵相乘得到一个m*p的矩阵。
5. 矩阵的转置矩阵的转置是将矩阵的行向量转换为列向量,列向量转换为行向量。
矩阵的转置操作可以用来表示矩阵的对称性和几何意义,也有利于简化矩阵的计算。
二、向量空间和子空间1. 向量空间的定义向量空间是指具有加法和数量乘法两种运算的集合,并且满足一定的性质。
向量空间可以是有限维的,也可以是无限维的。
例如,n维实数向量空间可以表示为R^n,它包含所有n维的实数向量。
2. 子空间的定义子空间是指在一个向量空间V中的一个非空集合W,并且满足在W中任意两个向量的线性组合仍然在W中。
子空间的一个重要性质是它也是一个向量空间,可以继承向量空间的性质。
3. 线性相关和线性无关一组向量中的向量如果存在线性组合能够得到零向量,则称这组向量线性相关;如果不存在这样的线性组合,则称这组向量线性无关。
4. 基和维数在一个向量空间中,如果存在一组线性无关的向量可以组成整个空间中的任意向量,则称这组向量是一组基。
线性代数知识点简单总结
线性代数知识点简单总结线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
以下是线性代数的一些核心知识点的简单总结:1. 向量与空间- 向量:可以视为空间中的点或箭头,具有大小和方向,可以进行加法和数乘运算。
- 零向量:所有向量加法的单位元,加任何向量结果不变。
- 单位向量:长度为1的向量。
- 向量空间:一组向量的集合,其中任意向量的线性组合仍然在这个集合中。
- 子空间:向量空间的子集,自身也是一个向量空间。
- 维数:向量空间的基的大小,表示为n维空间。
2. 矩阵与线性变换- 矩阵:一个由数字排列成的矩形阵列,可以表示线性变换。
- 行向量与列向量:矩阵中的行和列可以被视为行向量或列向量。
- 线性变换:保持向量加法和数乘的函数,可以用矩阵来表示。
- 单位矩阵:对角线为1,其他为0的方阵,与任何矩阵相乘结果不变。
- 转置:将矩阵的行变成列,列变成行的操作。
3. 线性方程组- 齐次线性方程组:形如Ax=0的方程组,其中A是矩阵,x是未知向量。
- 非齐次线性方程组:形如Ax=b的方程组,b不是零向量。
- 行列式:方阵的一个标量值,可以表示矩阵表示的线性变换对空间体积的缩放因子。
- 克拉默法则:使用行列式解线性方程组的方法,适用于小规模且系数矩阵行列式非零的情况。
4. 特征值与特征向量- 特征值:一个标量λ,使得存在非零向量x满足Ax=λx。
- 特征向量:与特征值对应的非零向量x。
- 特征多项式:用于求解特征值的多项式,定义为det(A-λI)=0。
- 对角化:将矩阵表示为特征向量和特征值的组合。
5. 内积与正交性- 内积(点积):两个向量的函数,满足Schwarz不等式。
- 正交:两个向量的内积为零,表示它们在空间中垂直。
- 正交基:一组向量,任意两个向量都正交。
- 正交补:对于一个向量空间的子集,所有与该子集中所有向量正交的向量组成的集合。
6. 奇异值分解- 奇异值分解(SVD):将任意矩阵分解为三个特殊矩阵的乘积,即A=UΣV*。
线性代数主要知识点
《线性代数》的主要知识点第一部分 行列式概念:1. n 阶行列式展开式的特点:①共有n!项,正负各半;②每项有n 个元素相乘,且覆盖所有的行与列;③每一项的符号为(列)行)ττ+-()1(2. 元素的余子式以及代数余子式 ij ji ij M )1(A +-=3. 行列式的性质计算方法:1. 对角线法则2. 行列式的按行(列)展开 (另有异乘变零定理)第二部分 矩阵1. 矩阵的乘积注意:①不满足交换率(一般情况下B A A B ≠)②不满足消去率 (由AB=AC 不能得出B=C )③由AB=0不能得出A=0或B=0④若AB=BA ,则称A 与B 是可换矩阵2.矩阵的转置满足的法则:T T T B A )B A (+=+,T T T T T A B AB kA kA ==)(,)(3.矩阵的多项式 设nn x a x a a x +++= 10)(ϕ,A 为n 阶方阵,则n n A a A a E a A +++= 10)(ϕ称为A 的n 次多项式。
对与对角矩阵有关的多项式有结论如下:(1)如果 1-Λ=P P A ,则nn A a A a E a A +++= 10)(ϕ11110---Λ++Λ+=P Pa P Pa EP Pa nn = 1)(-ΛP P ϕ(2)若),,(21n a a a diag =Λ,则))(),(),(()(21n a a a diag ϕϕϕϕ =Λ4.逆矩阵:n 阶矩阵A,B ,若E BA AB ==,则A,B 互为逆矩阵。
n 阶矩阵A 可逆0A ≠⇔;n A r =⇔)( (或表示为n A R =)()即A 为满秩矩阵;⇔A 与E 等价;⇔A 可以表示成若干个初等矩阵的乘积;⇔A 的列(行)向量组线性无关;⇔A 的所有的特征值均不等于零求法:①伴随矩阵法:*11A AA ⋅=- ②初等变换法:()()1,,-−−−→−A E E A 初等行变换或⎪⎪⎭⎫⎝⎛−−−→−⎪⎪⎭⎫ ⎝⎛-1A E E A 初等列变换, E 是单位矩阵性质:(1)矩阵A 可逆,则A 的逆矩阵是唯一的(2)设A 是n 阶矩阵,则有下列结论 ①若A 可逆,则1-A 也可逆,且A A =--11)( ②若A 可逆,则T A 也可逆,且T T A A )()(11--=③若A 可逆,数0≠k ,则kA 可逆,且111)(--=A kkA ④若B A .为同阶矩阵且均可逆,则B A .也可逆,且111)(---=A B AB5.方阵A 的行列式:满足下述运算规律(设B A ,为n 阶方阵,λ为数) ①A A T = ②A A n λλ= ③B A AB =6.伴随矩阵:行列式A 的各个元素的代数余子式ij A 所构成的如下的矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n A A A A A A A A A A 212221212111*,称为矩阵A 的伴随矩阵(注意行与列的标记的不同) 伴随矩阵具有性质:E A A A AA ==** 常见的公式有:①1*-=n A A ②1*-⋅=A A A ③A AA 1)(1*=- ④=-1*)(A *1)(-A 等 7.初等矩阵:由单位矩阵E 经过一次初等变换后所得的矩阵称为初等矩阵。
线性代数知识点总结
线性代数知识点总结线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。
下面是小编想跟大家分享的线性代数知识点总结,欢迎大家浏览。
第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的.子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断。
大学线性代数最全知识点
将一个矩阵分解为一个正交矩阵、一个对角矩阵和一 个正交矩阵的乘积。
矩阵的秩
02
01
03
秩的定义
矩阵的秩是该矩阵中非零子式的最高阶数。
秩的性质
矩阵的秩满足传递性,即如果AB=BA,则r(A)+r(B)n≤r(AB)≤min{r(A),r(B)}。
秩与线性方程组
矩阵的秩等于其对应的线性方程组的解的个数。
大学线性代数最全知识点
目
CONTENCT
录
• 线性方程组与矩阵 • 向量与向量空间 • 线性变换与特征值 • 行列式与矩阵的分解 • 线性代数在实际问题中的应用
01
线性方程组与矩阵
线性方程组
80%
线性方程组的定义
线性方程组是由n个线性方程组 成的方程组,其中包含n个未知 数。
100%
线性方程组的解法
05
线性代数在实际问题在物理中广泛应用于 解决多变量问题,如力学、电 磁学和量子力学等领域。
在解决线性偏微分方程时,线 性代数方法如高斯消元法和LU 分解等被广泛应用。
在处理矩阵和向量运算时,线 性代数提供了高效的算法和工 具,如矩阵乘法、特征值和特 征向量等。
在计算机科学中的应用
向量的加法
向量的加法遵循平行四边形法 则,即以第一个向量为一边, 第二个向量为另一边作平行四 边形,对角线即为两向量的和 。
向量的数乘
数乘是标量与向量的乘积,结 果仍为向量,其模和方向都与 原向量不同。
向量空间
向量空间的定义
向量空间是一个由向量构成的集合,满足加 法和数乘封闭性、加法和数乘的结合律、加 法和数乘的交换律等性质。
02
在金融领域,线性代数用于风 险评估和资产定价,如计算协 方差矩阵和预期收益率矩阵等 。
线性代数知识点全面总结
线性代数知识点全面总结线性代数是数学的重要分支,广泛应用于各个领域,如物理学、计算机科学、经济学等。
本文将全面总结线性代数的知识点,帮助读者系统地了解和掌握该学科。
1. 线性代数的基本概念1.1 向量及其表示:向量是线性代数的基本概念,可以用有序数对、矩阵或列向量表示,具有方向和大小。
1.2 矩阵及其运算:矩阵是由数字排列成的矩形数组,可以进行加法、乘法、转置等运算。
1.3 线性方程组:线性方程组是由一组线性方程组成的方程组,可以用矩阵和向量的表示形式来求解。
2. 向量空间2.1 向量空间的定义:向量空间是由一组满足一定条件的向量构成的集合,满足加法和数乘运算的封闭性。
2.2 子空间:子空间是向量空间的子集,也是向量空间,满足加法和数乘运算的封闭性。
2.3 线性无关与生成子空间:线性无关是指向量组中的向量之间不存在线性关系,生成子空间是指向量组中所有向量的线性组合的集合。
3. 线性映射3.1 线性映射的定义:线性映射是一个将一个向量空间映射到另一个向量空间的映射,保持加法和数乘运算的性质。
3.2 线性映射的矩阵表示:线性映射可以用矩阵表示,将一个向量空间的向量转化为另一个向量空间的向量。
3.3 核与像:核是线性映射中被映射为零向量的向量集合,像是线性映射中所有被映射到的向量组成的集合。
4. 矩阵的特征值与特征向量4.1 特征值和特征向量的定义:特征值是一个矩阵对应的线性变换中不改变方向的标量因子,特征向量是在特征值下发生伸缩的向量。
4.2 特征值与特征向量的计算:特征值与特征向量可以通过求解特征方程来计算。
4.3 对角化与相似矩阵:若一个矩阵相似于一个对角矩阵,则称其可对角化,对角矩阵是一个形式为对角线非零、其余元素均为零的矩阵。
5. 线性代数的应用5.1 物理学中的应用:线性代数在量子力学、力学等物理学领域有广泛应用,如描述粒子的状态和变换等。
5.2 计算机科学中的应用:线性代数在计算机图形学、机器学习等领域起到重要作用,如图像处理、数据分析等。
大学线性代数最全知识点
D2
a11 a21
b1 . b2
则二元线性方程组的解为
b1
x1
D1 D
b2 a11
a21
a12 a22 , a12 a22
a11
x2
D2 D
a21 a11
a21
b1 b2 . a12 a22
例1 求解二元线性方程组
32x1x12
x2 x2
12, 1.
解
3 D
2
3 (4) 7 0,
21
12 D1 1
a31x1 a32 x2 a33 x3 b3;
a11 b1 a13
得
D2 a21 b2 a23 ,
a31 b3 a33
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
a11 a12 a13 D a21 a22 a23
(2)
(1)a22:
a11a22x1 + a12a22x2 = b1a22,
(2)a12:
a12a21x1 + a12a22x2 = b2a12,
两式相减消去x2, 得 (a11a22 – a12a21) x1 = b1a22 – b2a12;
(a11a22 a12a21)x1 b1a22 a12b2;
线性代数
第一章 行列式 第二章 矩阵及其运算 第三章 矩阵的初等变换及线性方程组 第四章 向量组的线性相关性 第五章 相似矩阵及二次型
第一章 行列式
§1.1 二阶与三阶行列式
一、二元线性方程组与二阶行列式
用消元法解二元(一次)线性方程组:
线性代数知识点归纳
线性代数知识点归纳线性代数是现代数学中的一个重要分支,主要研究向量空间及其上的线性映射。
它在许多科学领域中都有广泛的应用,包括物理学、计算机科学、经济学等。
本文将对线性代数中的一些重要知识点进行归纳总结,以帮助读者更好地理解和掌握这门学科。
一、向量与矩阵1. 向量的定义与运算- 向量的表示:向量可以用有序数组表示,也可以用线段箭头表示。
- 向量的加法与减法:向量之间可以进行加法和减法运算,满足交换律和结合律。
- 向量的数乘:向量与实数之间可以进行数乘运算。
- 内积与外积:向量之间有内积和外积两种运算,分别表示向量的夹角和与之垂直的面积。
2. 矩阵的定义与运算- 矩阵的表示:矩阵可以用二维数组表示,其中每个元素称为矩阵的一个元。
- 矩阵的加法与减法:矩阵之间可以进行加法和减法运算,要求矩阵的维度相同。
- 矩阵的数乘:矩阵与实数之间可以进行数乘运算。
- 矩阵乘法:矩阵乘法满足结合律,但不满足交换律。
二、线性方程组与矩阵运算1. 线性方程组- 线性方程组的定义:线性方程组由一组线性方程组成,其中每个方程都是线性的。
- 解的存在性与唯一性:线性方程组的解可能没有,可能有唯一解,也可能有无穷多解。
- 线性方程组的求解方法:高斯消元法、矩阵求逆、克拉默法则等。
2. 矩阵的逆与行列式- 矩阵的逆:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。
- 行列式:行列式是一个与矩阵相关的标量值,用于判断矩阵的可逆性和计算矩阵的特征值。
三、线性映射与特征值问题1. 线性映射- 线性映射的定义:线性映射是一个满足线性性质的函数,将一个向量空间映射到另一个向量空间。
- 线性映射的表示与运算:线性映射可以用矩阵表示,可以进行加法、减法和数乘。
- 线性映射的核与像:线性映射的核是所有映射到零向量的向量集合,像是所有映射到的向量集合。
2. 特征值与特征向量- 特征值与特征向量的定义:对于一个线性映射,若存在一个非零向量使得线性映射作用于该向量后相当于对该向量进行标量乘法,该向量称为特征向量,该标量称为特征值。
线性代数知识点
线性代数知识点关键信息项:1、向量与矩阵的基本概念向量的定义、表示与运算矩阵的定义、类型(如方阵、对称矩阵等)与运算2、线性方程组的求解高斯消元法矩阵的秩与线性方程组解的判定3、行列式的计算与性质行列式的定义与计算方法(如按行展开、按列展开)行列式的性质(如行列式转置值不变等)4、矩阵的特征值与特征向量特征值与特征向量的定义与计算特征值与矩阵的相似对角化5、线性空间与线性变换线性空间的定义与基本性质线性变换的定义、矩阵表示与性质11 向量与矩阵的基本概念111 向量是具有大小和方向的量,可以用有序数组表示。
向量的运算包括加法、数乘和内积等。
加法满足交换律和结合律,数乘满足分配律。
112 矩阵是由数按照矩形排列组成的数组。
矩阵的运算包括加法、数乘、乘法。
矩阵乘法不满足交换律,但满足结合律和分配律。
113 方阵是行数和列数相等的矩阵。
对称矩阵是满足其转置等于自身的矩阵。
12 线性方程组的求解121 高斯消元法是求解线性方程组的常用方法。
通过一系列的初等行变换将增广矩阵化为行阶梯形或行最简形,从而求解方程组。
122 矩阵的秩是矩阵中非零子式的最高阶数。
根据矩阵的秩可以判断线性方程组解的情况:若秩等于未知数个数,则有唯一解;若秩小于未知数个数,则有无穷多解;若秩大于未知数个数,则无解。
13 行列式的计算与性质131 行列式是一个数值,可以通过按行展开或按列展开进行计算。
二阶和三阶行列式有特定的计算公式。
132 行列式具有以下性质:行列式转置值不变;某行(列)乘以一个数加到另一行(列),行列式的值不变;某行(列)元素全为零,则行列式的值为零;两行(列)对应元素成比例,则行列式的值为零。
14 矩阵的特征值与特征向量141 对于矩阵 A,如果存在非零向量 x 和数λ,使得 Ax =λx,则λ 称为矩阵 A 的特征值,x 称为矩阵 A 对应于特征值λ 的特征向量。
142 求特征值和特征向量的步骤包括:计算特征多项式,求解特征方程得到特征值,然后代入方程求解特征向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数(经管类)考点逐个击破第一章 行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数)2,1,(=j i a ij 得到下列式子:11122122a a a a 称为一个二阶行列式,其运算规则为2112221122211211a a a a a a a a -=2.三阶行列式由9个数)3,2,1,(=j i a ij 得到下列式子:333231232221131211a a a a a a a a a称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式 3332312322211312113a a a a a a a a a D =对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M例如 3332232211a a a a M =,3332131221a a a a M =,2322131231a a a a M =再记 ij ji ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式.例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为我们把它称为3D 按第一列的展开式,经常简写成∑∑=+=-==3111131113)1(i i i i i i i M a A a D4.n 阶行列式一阶行列式 11111a a D ==n 阶行列式 1121211111212222111211n n nnn n n nn A a A a A a a a a a a a a a a D +++==ΛΛΛΛΛΛΛ其中(,1,2,,)ij A i j n =L 为元素ij a 的代数余子式.5.特殊行列式上三角行列式111212221122000nnnn nn a a a a a a a a a =L L L L L L L L 下三角行列式11221122120nn n n nn a a a a a a a a a =LLL L L L L L21 对角行列式1122112200nn nna a a a a a =L L L L L L L L(二)行列式的性质性质1 行列式和它的转置行列式相等,即TD D =性质2 用数k 乘行列式D 中某一行(列)的所有元素所得到的行列式等于kD ,也就是说,行列式可以按行和列提出公因数.性质3 互换行列式的任意两行(列),行列式的值改变符号.推论1 如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.3131212111113332312322211312113A a A a A a a a a a a a a a a D ++==性质4 行列式可以按行(列)拆开.性质5 把行列式D 的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D. 定理1(行列式展开定理)n 阶行列式nij a D =等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即),,2,1(2211n i A a A a A a D in in i i i i ΛΛ=+++= 或),,2,1(2211n j A a A a A a D nj nj j j j j ΛΛ=+++=前一式称为D 按第i 行的展开式,后一式称为D 按第j 列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值. 定理 2 n 阶行列式nij a D =的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即)(02211k i A a A a A a kn in k i k i ≠=+++Λ 或)(02211s j A a A a A a ns nj s j s j ≠=+++Λ(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k 时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式 52072325121314124-=D解:观察到第二列第四行的元素为0,而且第二列第一行的元素是112=a ,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.42141214156231212115062150523210503(2)1725025********31225110813757375D -+⨯=---+-⨯+⨯=行行按第二列展开行行7 列列按第二行展开例2 计算行列式 ab b b b a b b bb a b bb b a D =4解:方法1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为b a 3+(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子b a 3+,再将后三行都减去第一行:3131(3)31311000(3)000000a b b b a b b b b bb b b a b b a b a b b a b b a b b b a b a b b a b b a b b b b a a b b b a b b ab b b a b a b a b a b++==+++-=+-- 3))(3(b a b a -+=方法2 观察到这个行列式每一行元素中有多个b ,我们采用“加边法”来计算,即是构造一个与4D 有相同值的五阶行列式:11234541101000010000100001000b b b b b bb b ab b ba b b b a b b a b b D b a b b a b b b a bb b a b a b b b bab b b a a b⨯-+--===------行(),,,行 这样得到一个“箭形”行列式,如果b a =,则原行列式的值为零,故不妨假设b a ≠,即0≠-b a ,把后四列的ba -1倍加到第一列上,可以把第一列的(-1)化为零.441000040001()(3)()000000b b b b b a b a b b a b a b a b a b a b a b a b3+--⎛⎫=-=+-=+- ⎪-⎝⎭--例3 三阶范德蒙德行列式 ))()((1112313122322213213x x x x x x x x x x x x V ---==(四)克拉默法则定理1(克拉默法则)设含有n 个方程的n 元线性方程组为11112211211222221122,,n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L 如果其系数行列式0≠=nija D ,则方程组必有唯一解:n j DD x j j ,,2,1,Λ==其中j D 是把D 中第j 列换成常数项n b b b ,,,21Λ后得到的行列式. 把这个法则应用于齐次线性方程组,则有定理2 设有含n 个方程的n 元齐次线性方程组1111221211222211220,0,0n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L 如果其系数行列式0≠D ,则该方程组只有零解:021====n x x x Λ换句话说,若齐次线性方程组有非零解,则必有0=D ,在教材第二章中,将要证明,n 个方程的n 元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.第二章 矩阵(一)矩阵的定义1.矩阵的概念由n m ⨯个数),,2,1;,,2,1(n j m i a ij ΛΛ==排成的一个m 行n 列的数表⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a a a a a A ΛΛΛΛΛ212222111211 称为一个m 行n 列矩阵或n m ⨯矩阵当n m =时,称()nn ija A ⨯=为n 阶矩阵或n 阶方阵元素全为零的矩阵称为零矩阵,用n m O ⨯或O 表示2.3个常用的特殊方阵:①n 阶对角矩阵是指形如 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn a a a A ΛΛΛΛΛ0000002211的矩阵 ②n 阶单位方阵是指形如 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001ΛΛΛΛΛn E 的矩阵③n 阶三角矩阵是指形如 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n nn n n a a a a a a a a a a a a ΛΛΛΛΛΛΛΛΛΛ2122211122*********,000的矩阵3.矩阵与行列式的差异矩阵仅是一个数表,而n 阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“*”与矩阵记号“()*”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵n m ij a A ⨯=)(,λ⨯=k ij b B )(,若k m =,λ=n ,则说A 与B 是同型矩阵.若A 与B 同型,且对应元素相等,即ij ij b a =,则称矩阵A 与B 相等,记为B A =因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设n m ij a A ⨯=)(,n m ij b B ⨯=)(是两个同型矩阵则规定n m ij ij b a B A ⨯+=+)( n m ij ij b a B A ⨯-=-)(注意:只有A 与B 为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算设n m ij a A ⨯=)(,k 为任一个数,则规定n m ij ka kA ⨯=)(故数k 与矩阵A 的乘积就是A 中所有元素都乘以k ,要注意数k 与行列式D 的乘积,只是用k 乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律.4.乘法运算设k m ij a A ⨯=)(,n k ij b B ⨯=)(,则规定n m ij c AB ⨯=)(其中kj ik j i j i ij b a b a b a c +++=Λ2211 ),,2,1;,,2,1(n j m i ΛΛ==由此定义可知,只有当左矩阵A 的列数与右矩阵B 的行数相等时,AB 才有意义,而且矩阵AB 的行数为A 的行数,AB 的列数为B 的列数,而矩阵AB 中的元素是由左矩阵A 中某一行元素与右矩阵B 中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地: ①不满足交换律,即BA AB ≠②在0=AB 时,不能推出0=A 或0=B ,因而也不满足消去律.特别,若矩阵A 与B 满足BA AB =,则称A 与B 可交换,此时A 与B 必为同阶方阵.矩阵乘法满足结合律,分配律及与数乘的结合律.5.方阵的乘幂与多项式方阵设A 为n 阶方阵,则规定m A AA A =L 14243m 个特别E A =0又若1110()m m m m f x a x a x a x a --=++++L ,则规定1110()m m m m f A a A a A a A a E --=++++L称)(A f 为A 的方阵多项式,它也是一个n 阶方阵6.矩阵的转置设A 为一个n m ⨯矩阵,把A 中行与列互换,得到一个m n ⨯矩阵,称为A 的转置矩阵,记为T A ,转置运算满足以下运算律:A A T =T )(,T T TB A B A +=+)(,T T kA kA =)(,T T T A B AB =)(由转置运算给出对称矩阵,反对称矩阵的定义设A 为一个n 阶方阵,若A 满足A A T =,则称A 为对称矩阵,若A 满足A A T -=,则称A 为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n 阶方阵,有方阵的行列式的概念. 设)(ij a A =为一个n 阶方阵,则由A 中元素构成一个n 阶行列式nij a ,称为方阵A 的行列式,记为A方阵的行列式具有下列性质:设A ,B 为n 阶方阵,k 为数,则①A A T =; ②A k kA n= ③B A AB ⋅=(三)方阵的逆矩阵1.可逆矩阵的概念与性质设A 为一个n 阶方阵,若存在另一个n 阶方阵B ,使满足E BA AB ==,则把B称为A 的逆矩阵,且说A 为一个可逆矩阵,意指A 是一个可以存在逆矩阵的矩阵,把A 的逆矩阵B 记为1-A ,从而A 与1-A 首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A ,B 为同阶可逆矩阵,0≠k 为常数,则①1-A 是可逆矩阵,且A A =--11)(;②AB 是可逆矩阵,且111)(---=A B AB ;③kA 是可逆矩阵,且111)(--=A kkA ④TA 是可逆矩阵,且T TA A )()(11--=⑤可逆矩阵可从矩阵等式的同侧消去,即设P 为可逆矩阵,则B A PB PA =⇔= B A BP AP =⇔=2.伴随矩阵设)(ij a A =为一个n 阶方阵,ij A 为A 的行列式nij a A =中元素ij a 的代数余子式,则矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn nn n n A A A A A A A A A ΛΛΛΛΛΛ212221212111称为A 的伴随矩阵,记为*A (务必注意*A 中元素排列的特点)伴随矩阵必满足E A A A AA ==**1*-=n AA (n 为A 的阶数)3.n 阶阵可逆的条件与逆矩阵的求法定理:n 阶方阵A 可逆⇔0≠A ,且*11A AA =- 推论:设A ,B 均为n 阶方阵,且满足E AB =,则A ,B 都可逆,且B A =-1,A B =-1例1 设⎪⎪⎭⎫⎝⎛=d c b a A (1)求A 的伴随矩阵*A(2)a ,b ,c ,d 满足什么条件时,A 可逆?此时求1-A解:(1)对二阶方阵A ,求*A 的口诀为“主交换,次变号”即⎪⎪⎭⎫⎝⎛--=a cb d A * (2)由bc ad dc b a A -==,故当0≠-bc ad 时,即0≠A ,A 为可逆矩阵此时⎪⎪⎭⎫⎝⎛---==-a c b d bc ad A A A 11*1(四)分块矩阵1. 分块矩阵的概念与运算对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A 的列分块方式与右矩阵B 的行分块方式一致,然后把子块当作元素来看待,相乘时A 的各子块分别左乘B 的对应的子块.2.准对角矩阵的逆矩阵形如 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛r A A A O21的分块矩阵称为准对角矩阵,其中r A A A ,,,21Λ均为方阵空白处都是零块.若r A A A ,,,21Λ都是可逆矩阵,则这个准对角矩阵也可逆,并且⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----11211121r r A A A A A A O O(五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A 施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A 的某两行(列);(2)用一个非零数k 乘A 的某一行(列);(3)把A 中某一行(列)的k 倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“→”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E 经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为ij P ,)(k D i 和)(k T ij ,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A 为任一个矩阵,当在A 的左边乘一个初等方阵的乘积相当于对A 作同类型的初等行变换;在A 的右边乘一个初等方阵的乘积相当于对A 作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A 经过若干次初等变换变为B ,则称A 与B 等价,记为B A ≅对任一个n m ⨯矩阵A ,必与分块矩阵⎪⎪⎭⎫⎝⎛O O O E r 等价,称这个分块矩阵为A 的等价标准形.即对任一个n m ⨯矩阵A ,必存在n 阶可逆矩阵P 及n 阶可逆矩阵Q ,使得⎪⎪⎭⎫⎝⎛=O O O E PAQ r5.用初等行变换求可逆矩阵的逆矩阵设A 为任一个n 阶可逆矩阵,构造n n 2⨯矩阵(A ,E ) 然后 ),(),(1-→A E E A注意:这里的初等变换必须是初等行变换.例2 求⎪⎪⎪⎭⎫⎝⎛----=421412311A 的逆矩阵解:()()()122113211311213322113100113100(,)214010012210124001011101101110100421012210010412001311001311A E ⨯-+⨯+⨯+⨯-+⨯-+⨯+--⎛⎫⎛⎫⎪⎪=-→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭---⎛⎫⎛⎫⎪⎪→--→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭行行行行行行行行行行行行则 ⎪⎪⎪⎭⎫⎝⎛----=-1132141241A例3 求解矩阵方程⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----213411421412311X解:令⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----=213411,421412311B A ,则矩阵方程为B AX =,这里A 即为例2中矩阵,是可逆的,在矩阵方程两边左乘1-A ,得⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----==-2052032134111132141241B A X也能用初等行变换法,不用求出1A -,而直接求B A 1-),(201005201003001214213441211311),(1B A E B A -=⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=则 ⎪⎪⎪⎭⎫ ⎝⎛==-2052031B A X(六)矩阵的秩1.秩的定义设A 为n m ⨯矩阵,把A 中非零子式的最高阶数称为A 的秩,记为秩)(A 或)(A r 零矩阵的秩为0,因而{}n m A ,m in )(0≤≤秩,对n 阶方阵A ,若秩n A =)(,称A 为满秩矩阵,否则称为降秩矩阵.2. 秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A ,只要用初等行变换把A 化成阶梯形矩阵T ,则秩(A)=秩(T)=T 中非零行的行数.3.与满秩矩阵等价的条件n 阶方阵A 满秩⇔A 可逆,即存在B ,使E BA AB ==⇔A 非奇异,即0≠A ⇔A 的等价标准形为E⇔A 可以表示为有限个初等方阵的乘积 ⇔齐次线性方程组0=AX 只有零解⇔对任意非零列向量b ,非齐次线性方程组b AX =有唯一解⇔A 的行(列)向量组线性无关⇔A 的行(列)向量组为n R 的一个基⇔任意n 维行(列)向量均可以表示为A 的行(列)向量组 的线性组合,且表示法唯一.(七)线性方程组的消元法.对任一个线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛ22112222212*********可以表示成矩阵形式b AX =,其中n m ij a A ⨯=)(为系数矩阵,Tm b b b b ),,,(21Λ=为常数列矩阵,Tn x x x X ),,,(21Λ=为未知元列矩阵.从而线性方程组b AX =与增广矩阵),(b A A =一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.第三章 向量空间(一)n 维向量的定义与向量组的线性组合1. n 维向量的定义与向量的线性运算由n 个数组成的一个有序数组称为一个n 维向量,若用一行表示,称为n 维行向量,即n ⨯1矩阵,若用一列表示,称为n 维列向量,即1⨯n 矩阵与矩阵线性运算类似,有向量的线性运算及运算律.2.向量的线性组合设m ααα,,,21Λ是一组n 维向量,m k k k ,,,21Λ是一组常数,则称m m k k k ααα+++Λ2211为m ααα,,,21Λ的一个线性组合,常数m k k k ,,,21Λ称为组合系数.若一个向量β可以表示成m m k k k αααβ+++=Λ2211则称β是m ααα,,,21Λ的线性组合,或称β可用m ααα,,,21Λ线性表出.3.矩阵的行、列向量组设A 为一个n m ⨯矩阵,若把A 按列分块,可得一个m 维列向量组称之为A 的列向量组.若把A 按行分块,可得一个n 维行向量组称之为A 的行向量组.4.线性表示的判断及表出系数的求法.向量β能用m ααα,,,21Λ线性表出的充要条件是线性方程组βααα=+++m m x x x Λ2211有解,且每一个解就是一个组合系数.例1 问T )5,1,1(-=β能否表示成,T )3,2,1(1=αT)4,1,0(2=α,T )6,3,2(3=α的线性组合?解:设线性方程组为 βααα=++332211x x x对方程组的增广矩阵作初等行变换:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-==110020101001564313121201),,,(),(321βαααβA则方程组有唯一解1,2,1321-===x x x所以β可以唯一地表示成321,,ααα的线性组合,且3212αααβ-+=(二)向量组的线性相关与线性无关1.线性相关性概念设m ααα,,,21Λ是m 个n 维向量,如果存在m 个不全为零的数m k k k ,,,21Λ,使得02211=+++m m k k k αααΛ,则称向量组m ααα,,,21Λ线性相关,称m k k k ,,,21Λ为相关系数.否则,称向量m ααα,,,21Λ线性无关.由定义可知,m ααα,,,21Λ线性无关就是指向量等式02211=+++m m k k k αααΛ当且仅当021====m k k k Λ时成立.特别 单个向量α线性相关⇔0=α;单个向量α线性无关⇔0≠α2.求相关系数的方法设m ααα,,,21Λ为m 个n 维列向量,则m ααα,,,21Λ线性相关⇔m 元齐次线性方程组02211=+++m m x x x αααΛ有非零解,且每一个非零解就是一个相关系数⇔矩阵),,,(21m A αααΛ=的秩小于m例2 设向量组123(2,1,7),(1,4,11),(3,6,3)T T Tααα=-==-,试讨论其线性相关性.解:考虑方程组0332211=++αααx x x其系数矩阵 ⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--==0001102013117641312),,(321αααA于是,秩32)(<=A ,所以向量组线性相关,与方程组同解的方程组为⎩⎨⎧=-=+0023231x x x x 令13=x ,得一个非零解为1,1,2321==-=x x x 则02321=++-ααα3.线性相关性的若干基本定理定理1 n 维向量组m ααα,,,21Λ线性相关⇔至少有一个向量是其余向量的线性组合.即m ααα,,,21Λ线性无关⇔任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组m ααα,,,21Λ线性无关,又m αααβ,,,,21Λ线性相关,则β可以用m ααα,,,21Λ线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4 无关组的接长向量组必无关.(三)向量组的极大无关组和向量组的秩1.向量组等价的概念若向量组S 可以由向量组R 线性表出,向量组R 也可以由向量组S 线性表出,则称这两个向量组等价.2.向量组的极大无关组设T 为一个向量组,若存在T 的一个部分组S ,它是线性无关的,且T 中任一个向量都能由S 线性表示,则称部分向量组S 为T 的一个极大无关组.显然,线性无关向量组的极大无关组就是其本身.对于线性相关的向量组,一般地,它的极大无关组不是唯一的,但有以下性质: 定理1 向量组T 与它的任一个极大无关组等价,因而T 的任意两个极大无关组等价.定理2 向量组T 的任意两个极大无关组所含向量的个数相同.3.向量组的秩与矩阵的秩的关系把向量组T 的任意一个极大无关组中的所含向量的个数称为向量组T 的秩.把矩阵A 的行向量组的秩,称为A 的行秩,把A 的列向量组的秩称为A 的列秩. 定理:对任一个矩阵A ,A 的列秩=A 的行秩=秩(A )此定理说明,对于给定的向量组,可以按照列构造一个矩阵A ,然后用矩阵的初等行变换法来求出向量组的秩和极大无关组.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:)3,4,4,2(),3,4,1,2(),6,6,1,1(),9,2,,2,1(),7,2,1,1(54321==--=---=-=ααααα解:把所有的行向量都转置成列向量,构造一个54⨯矩阵,再用初等行变换把它化成简化阶梯形矩阵()B A TT T T T =⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛------==1000001100010100000133697446224112122111,,,,54321ααααα 易见B 的秩为4,A 的秩为4,从而秩{}4,,,,54321=ααααα,而且B 中主元位于第一、二、三、五列,那么相应地5321,,,αααα为向量组的一个极大无关组,而且324ααα--=(四)向量空间1.向量空间及其子空间的定义定义1 n 维实列向量全体(或实行向量全体)构成的集合称为实n 维向量空间,记作nR定义2 设V 是n 维向量构成的非空集合,若V 对于向量的线性运算封闭,则称集合V 是nR 的子空间,也称为向量空间.2. 向量空间的基与维数设V 为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V 的一个基,把向量组的秩称为向量空间的维数.显然,n 维向量空间nR 的维数为n ,且nR 中任意n 个线性无关的向量都是nR 的一个基.3. 向量在某个基下的坐标设r ααα,,,21Λ是向量空间V 的一个基,则V 中任一个向量α都可以用r ααα,,,21Λ唯一地线性表出,由r 个表出系数组成的r 维列向量称为向量α在此基下的坐标.第四章 线性方程组(一) 线性方程组关于解的结论定理1 设b AX =为n 元非齐次线性方程组,则它有解的充要条件是)(),(A r b A r =定理2 当n 元非齐次线性方程组b AX =有解时,即r A r b A r ==)(),(时,那么(1)b AX =有唯一解⇔n r =; (2)b AX =有无穷多解⇔n r <.定理3 n 元齐次线性方程组0=AX 有非零解的充要条件是n r A r <=)( 推论1 设A 为n 阶方阵,则n 元齐次线性方程组0=AX 有非零解⇔0=A 推论2 设A 为n m ⨯矩阵,且n m <,则n 元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组0=AX 的解的全体所组成的向量集合{}0==ξξA V显然V 是非空的,因为V 中有零向量,即零解,而且容易证明V 对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V 成为n 维列向量空间nR 的一个子空间,我们称V 为方程组0=AX 的解空间(三)齐次线性方程组的基础解系与通解把n 元齐次线性方程组0=AX 的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n 元齐次线性方程组0=AX 有非零解时,即n r A r <=)(时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为r n -求基础解系与通解的方法是:对方程组0=AX 先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求⎪⎩⎪⎨⎧=-++=+-+=+-+0022*********43214321x x x x x x x x x x x x 的通解解:对系数矩阵A ,作初等行变换化成简化阶梯形矩阵:12212310341034321211110145111111110000A ⨯⨯⨯⨯---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭行(-1)+2行行(-1)+3行3行(-1)+1行1行(-1)+2行42)(<=A r ,有非零解,取43,x x 为自由未知量,可得一般解为⎪⎪⎩⎪⎪⎨⎧==+-=-=4433432431,54,43x x x x x x x x x x 写成向量形式,令13k x =,24k x =为任意常数,则通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1054014321k k X 可见,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1054,014321ξξ为方程组的一个基础解系. (四)非齐次线性方程组1. 非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设b AX =为一个n 元非齐次线性方程组,0=AX 为它的导出组,则它们的解之间有以下性质:性质1 如果21,ηη是b AX =的解,则21ηηξ-=是0=AX 的解性质2 如果η是b AX =的解,ξ是0=AX 的解,则ηξ+是b AX =的解由这两个性质,可以得到b AX =的解的结构定理:定理 设A 是n m ⨯矩阵,且r A r b A r ==)(),(,则方程组b AX =的通解为r n r n k k k X --++++=ξξξηΛ2211*其中*η为b AX =的任一个解(称为特解),r n -ξξξ,,,21Λ为导出组0=AX 的一个基础解系. 2.求非齐次线性方程组的通解的方法对非齐次线性方程组b AX =,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2 当参数a ,b 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x bx x a x x x x x x x x有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:()()23424111110111100122101221(,)01320010132110123110111012210010100010A b a b a b a a a b a +⨯++⨯+⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=→ ⎪ ⎪----+ ⎪ ⎪-----⎝⎭⎝⎭---⎛⎫ ⎪ ⎪→ ⎪-+ ⎪-⎝⎭行行1行-3行行行2行-1行当1≠a 时,4)(),(==A r b A r ,有唯一解;当1,1≠=b a 时,3),(=b A r ,2)(=A r ,无解;当1,1-==b a 时,2)(),(==A r b A r ,有无穷多解.此时,方程组的一般解为 ⎪⎪⎩⎪⎪⎨⎧==--=++-=44334324312211x x x x x x x x x x 令2413,k x k x ==为任意常数,故一般解为向量形式,得方程组通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=10210121001121k k X。