中英文翻译---工业控制系统和协同控制系统

合集下载

工业控制常用英语单词及缩写

工业控制常用英语单词及缩写

工业控制常用英语单词及缩写工业控制常用英语单词及缩写转帖]工业控制常用英语单词及缩写集散控制系统————Distributed Distributed Distributed Control Control Control System System (DCS ) 现场总线控制系统————Fieldbus Fieldbus Fieldbus Control Control Control System System (FCS ) 监控及数据采集系统————Supervisory Supervisory Supervisory Control Control Control And And And Data Data Data Acqusition Acqusition (SCADA ) 可编程序控制器————Programmable Programmable Programmable Logic Logic Logic Controller Controller (PLC ) 可编程计算机控制器————Programmable Programmable Programmable Computer Computer Computer Controller Controller (PCC ) 工厂自动化————Factory Factory Factory Automation Automation (FA )过程自动化————Process Process Process Automation Automation (PA )办公自动化————Office Office Office Automation Automation (OA )管理信息系统————Management Management Management Information Information Information System System (MIS ) 楼宇自动化系统————Building Building Building Automation Automation Automation System System 人机界面————Human Human Human Machine Machine Machine Interface Interface (HMI )工控机————Industrial Industrial Industrial Personal Personal Personal Computer Computer (IPC )单片机————Single Single Single Chip Chip Chip Microprocessor Microprocessor 计算机数控(CNC )远程测控终端————Remote Remote Remote Terminal Terminal Terminal Unit Unit (RTU )上位机————Supervisory Supervisory Supervisory Computer Computer 图形用户界面(GUI )人工智能————Artificial Artificial Artificial Intelligent Intelligent (AI )智能终端————Intelligent Intelligent Intelligent Terminal Terminal 模糊控制————Fuzzy Fuzzy Fuzzy Control Control 组态————Configuration Configuration 仿真————Simulation Simulation 冗余————Redundant Redundant 客户/服务器————Client/Server Client/Server 网络————Network Network 设备网————DeviceNET DeviceNET 基金会现场总线————foundation foundation foundation fieldbus fieldbus (FF )现场总线————Fieldbus Fieldbus 以太网————Ethernet Ethernet 变频器————Inverter Inverter 脉宽调制————Pulse Pulse Pulse Width Width Width Modulation Modulation (PWM )伺服驱动器————Servo Servo Servo Driver Driver 软起动器————Soft Soft Soft Starter Starter 步进————Step-by-Step Step-by-Step 控制阀————Control Control Control Valver Valver 流量计————Flowmeter Flowmeter 仪表————Instrument Instrument 记录仪—— Recorder 传感器————Sensor Sensor 智能传感器————Smart Smart Smart Sensor Sensor 智能变送器————Smart Smart Smart Transducer Transducer 虚拟仪器虚拟仪器 ————Virtual Virtual Virtual Instrument Instrument 主站/从站————Master Master Master Station/Slave Station/Slave Station/Slave station station 操作员站/工程师站/管理员站————Operator Operator Operator Station/Engineer Station/Engineer Station/Engineer Station/Manager Station/Manager Station/Manager Station Station 。

自动化常用英文缩写

自动化常用英文缩写

自动化常用英文缩写自动化是现代工业生产中不可或缺的一部分,它通过使用计算机和机械设备来控制和监控各种生产过程。

在自动化领域中,有许多常用的英文缩写词汇,这些缩写词汇被广泛应用于技术文档、报告和交流中。

以下是一些常见的自动化英文缩写及其解释:1. PLC - Programmable Logic Controller(可编程逻辑控制器)PLC是一种数字计算机,用于控制机器和工业过程。

它能够根据预设的逻辑条件执行各种操作,如控制电机、阀门和传感器等。

2. HMI - Human Machine Interface(人机界面)HMI是指人与机器之间进行交互的界面。

它通常包括触摸屏、键盘和显示器等设备,用于操作和监控自动化系统。

3. SCADA - Supervisory Control and Data Acquisition(监控与数据采集)SCADA系统用于监控和控制工业过程中的设备和参数。

它能够实时采集数据、进行数据分析,并向操作员提供报警和报告等功能。

4. DCS - Distributed Control System(分布式控制系统)DCS是一种用于控制和监控工业过程的计算机系统。

它将控制功能分布在多个控制器上,以实现对整个系统的集中控制。

5. MES - Manufacturing Execution System(制造执行系统)MES是一种用于管理和监控生产过程的软件系统。

它能够实时收集和分析生产数据,提高生产效率和质量。

6. CNC - Computer Numerical Control(计算机数控)CNC是一种用于控制机床和工具的技术。

它通过计算机程序控制机床的运动,实现精确的加工和制造。

7. PID - Proportional-Integral-Derivative(比例-积分-微分)PID是一种用于控制系统的常见算法。

它根据误差的大小和变化率来调整控制器的输出,以实现稳定和精确的控制。

自动化常用英文缩写

自动化常用英文缩写

自动化常用英文缩写自动化是一种广泛应用于各个行业的技术,它可以提高生产效率、降低成本并提供更高的产品质量。

在自动化领域,有许多常用的英文缩写术语,下面将为您详细介绍一些常见的自动化英文缩写及其含义。

1. PLC(Programmable Logic Controller):可编程逻辑控制器。

PLC是一种用于控制工业过程的电子计算机,它可以监测输入信号并根据预设的程序进行逻辑运算,然后输出控制信号,实现对机械设备的自动控制。

2. SCADA(Supervisory Control and Data Acquisition):监控与数据采集系统。

SCADA系统用于监视和控制远程设备,通过传感器和执行器采集数据,并将数据传输到中央计算机进行处理和显示。

3. HMI(Human Machine Interface):人机界面。

HMI是一种通过图形化界面使人与机器进行交互的技术,它可以显示设备状态、接收操作指令并提供报警信息。

4. DCS(Distributed Control System):分布式控制系统。

DCS是一种用于控制大型工业过程的系统,它由多个控制器组成,分布在不同的地理位置,通过网络进行通信和协调。

5. MES(Manufacturing Execution System):创造执行系统。

MES是一种用于管理和监控创造过程的软件系统,它可以跟踪生产进度、采集生产数据并提供实时的生产报告。

6. CNC(Computer Numerical Control):数控。

CNC是一种用于控制机床和其他自动化设备的技术,它通过预先编程的指令来控制设备的运动和操作。

7. RFID(Radio Frequency Identification):射频识别。

RFID是一种无线通信技术,通过使用射频信号来识别和跟踪物体,它可以用于物流管理、库存追踪等领域。

8. AI(Artificial Intelligence):人工智能。

自动化常用英文缩写

自动化常用英文缩写

自动化常用英文缩写自动化技术在现代工业和生活中发挥着重要作用,为了方便沟通和交流,人们普遍使用英文缩写来表示与自动化相关的术语和概念。

下面是一些常用的自动化英文缩写及其解释:1. PLC:Programmable Logic Controller,可编程逻辑控制器。

PLC是一种用于控制工业过程的数字计算机,广泛应用于工业自动化领域。

2. SCADA:Supervisory Control and Data Acquisition,监控与数据采集系统。

SCADA系统用于监控和控制远程设备,例如电力系统、水处理厂等。

3. DCS:Distributed Control System,分布式控制系统。

DCS系统由多个控制器组成,用于控制和监控工业过程。

4. HMI:Human-Machine Interface,人机界面。

HMI是一种用户与自动化系统进行交互的界面,通常使用触摸屏或键盘显示器。

5. CNC:Computer Numerical Control,数控。

CNC技术用于控制机床和其他工具,实现精确的加工和制造。

6. PID:Proportional-Integral-Derivative,比例-积分-微分。

PID控制是一种常用的反馈控制算法,用于调节系统的输出,使其接近预期值。

7. MES:Manufacturing Execution System,制造执行系统。

MES系统用于实时监控和管理生产过程,提高生产效率和质量。

8. RFID:Radio Frequency Identification,射频识别。

RFID技术使用无线电信号来识别和跟踪物体,广泛应用于物流和仓储管理。

9. IoT:Internet of Things,物联网。

物联网是指通过互联网连接和交互的物理设备和对象,实现智能化和自动化。

10. AI:Artificial Intelligence,人工智能。

AI技术用于模拟和仿真人类智能,实现自动化决策和任务执行。

自动化常用英文缩写

自动化常用英文缩写

自动化常用英文缩写自动化技术在现代工业和生活中扮演着重要的角色。

为了方便交流和减少冗长的表达,人们普遍使用缩写词来代表自动化领域中的常用术语和概念。

以下是一些自动化常用英文缩写及其解释:1. PLC:可编程逻辑控制器(Programmable Logic Controller)PLC是一种用于控制工业过程的电子设备,它可以接收输入信号并根据预设的程序进行逻辑运算,最终输出控制信号。

2. SCADA:监控、控制和数据采集(Supervisory Control and Data Acquisition)SCADA系统用于监控和控制工业过程中的设备和系统。

它能够实时采集数据、进行远程控制,并提供报警和故障诊断功能。

3. HMI:人机界面(Human-Machine Interface)HMI是一种提供人机交互的设备或者软件。

它通常由触摸屏、键盘和显示器组成,用于操作和监视自动化系统。

4. DCS:分散控制系统(Distributed Control System)DCS是一种用于控制和监控工业过程的系统。

它由多个分散的控制器组成,能够实现分布式的控制和数据处理。

5. MES:创造执行系统(Manufacturing Execution System)MES是一种用于管理和控制创造过程的系统。

它与企业资源计划(ERP)系统集成,能够实现生产计划、物料追踪和质量管理等功能。

6. CNC:计算机数控(Computer Numerical Control)CNC是一种通过计算机控制的自动化加工技术。

它能够实现高精度和高效率的加工,广泛应用于机械加工和创造业。

7. PID:比例-积分-微分(Proportional-Integral-Derivative)PID是一种常用的控制算法。

它通过比较实际值与设定值的差异,并根据比例、积分和微分的参数进行调整,实现闭环控制。

8. RFID:射频识别(Radio Frequency Identification)RFID是一种用于自动识别和追踪物体的技术。

自动化常用英文缩写

自动化常用英文缩写

自动化常用英文缩写自动化是指利用计算机技术和控制技术对生产过程进行自动化控制和管理的一种生产方式。

在自动化领域中,人们往往使用各种英文缩写来表达特定的概念、技术或者设备。

以下是一些常用的自动化英文缩写及其解释:1. PLC:可编程逻辑控制器(Programmable Logic Controller)PLC是一种专门用于工业自动化控制的计算机控制系统,它能够对生产过程进行逻辑控制和数据处理。

2. SCADA:监控与数据采集系统(Supervisory Control and Data Acquisition)SCADA系统是一种用于实时监控和数据采集的软件系统,它可以监控和控制分散在不同地点的远程设备。

3. DCS:分散控制系统(Distributed Control System)DCS是一种用于工业过程控制的计算机控制系统,它由多个分散的控制器组成,能够实现对整个生产过程的集中控制。

4. HMI:人机界面(Human Machine Interface)HMI是一种用于人机交互的设备或者软件界面,它提供了操作者与自动化系统进行交互的方式,如触摸屏、键盘、鼠标等。

5. CNC:数控机床(Computer Numerical Control)CNC是一种利用计算机控制系统来控制机床进行加工的技术,它能够实现高精度和高效率的加工过程。

6. MES:创造执行系统(Manufacturing Execution System)MES是一种用于管理和控制创造过程的信息系统,它能够实现对生产计划、物料管理、质量控制等方面的集中管理。

7. RFID:射频识别(Radio Frequency Identification)RFID是一种无线通信技术,通过射频信号实现对物体的识别和跟踪,广泛应用于物流管理、仓储管理等领域。

8. AI:人工智能(Artificial Intelligence)AI是一种摹拟人类智能的技术,它能够通过学习和推理来实现自主决策和问题解决,被广泛应用于自动化系统中。

中英文翻译---工业控制系统和协同控制系统

中英文翻译---工业控制系统和协同控制系统

INDUSTRIAL AND COLLABORATIVE CONTROL SYSTEMS- A COMPLEMENTARY SYMBIOSIS –-Looking at today‟s control system one can find a wide variety of implementations. From pure industrial to collaborative control system (CCS) tool kits to home grown systems and any variation in-between. Decisions on the type of implementation should be driven by technical arguments Reality shows that financial and sociological reasons form the complete picture. Any decision has it‟s advantages and it‟s drawbacks. Reliability, good documentation and support are arguments for industrial controls. Financial arguments drive decisions towards collaborative tools. Keeping the hands on the source code and being able to solve problems on your own and faster than industry are the argument for home grown solutions or open source solutions. The experience of many years of operations shows that which solution is the primary one does not matter, there are always areas where at least part of the other implementations exist. As a result heterogeneous systems have to be maintained. The support for different protocols is essential. This paper describes our experience with industrial control systems, PLC controlled turn key systems, the CCS tool kit EPICS and the operability between all of them.-INTRODUCTIONProcess controls in general started at DESY in the early 80thwith theinstallation of the cryogenic control system for the accelerator HERA (Hadron-Elektron-Ring-Anlage). A new technology was necessary because the existing hardware was not capable to handle standard process controls signals like4 to 20mA input and output signals and the software was not designed to run PIDcontrol loops at a stable repetition rate of 0.1 seconds. In addition sequence programs were necessary to implement startup and shutdown procedures for the complex cryogenic processes like cold boxes and compete compressor streets.Soon it was necessary to add interfaces to field buses and to add computing power to cryogenic controls. Since the installed D/3 system[1] only provided an documented serial connection on a multibus board, the decision was made to implement a DMA connection to VME and to emulate the multibus board‟s functionality. The necessary computing power for temperature conversions came from a Motorola MVME 167 CPU and the field bus adapter to the in house SEDAC field bus was running on an additional MVME 162. The operating system was VxWorks and the application was the EPICS toolkit.Since this implementation was successful it was also implemented for the utility controls which were looking for a generic solution to supervise their distributed PLC‟s.A SELECTION OF PROCESS CONTROL SYSTEMS AT DESYDCS (D/3)As a result of a market survey the D/3 system from GSE was selected for the HERA cryogenic plant. The decision was fortunate because of the DCS character of the D/3. The possibility to expand the system on the display- and on the I/O side helped to solve the increasing control demands for HERA. The limiting factor for the size of the system is not the total number of I/O but the traffic on the communication network. This traffic is determined by the total amount of archived data not by the data configured in the alarm system. The technical background of this limitation is the fact that archived data are polled from the display servers whereas the alarms are pushed to configured destinations like alarm-files, (printer) queues or displays.SCADA Systems with DCS Features (Cube)The fact that the D/3 system mentioned above had some hard coded limitations with respect to the Y2K problem was forcing us to look for an upgrade or a replacement of the existing system. As a result of a call for tender the company Orsi with their product Cube came into play [2]. The project included a complete replacement of the installed functionality. This included the D/3 as well as the integration of the DESY field bus SEDAC and the temperature conversion in VME. The project started promising. But soon technical and organizational problems were pushing the sche dule to it‟s limits which were determined by the HERA shutdown scheduled at that time. The final acceptance test at the vendors site showed dramatic performance problems. Two factors could be identified as the cause of these problems. The first one was related to the under estimated CPU load of the 6th grade polynomial temperature conversion running at 1 Hz. The second one was the additional CPU load caused by the complex functionality of the existing D/3 system. Here it was underestimated that each digital and analog input and output channel had it‟s own alarm limits in the D/3 system. In a SCADA like system as Cube the base functionality of a channel is to read the value and make it available to the system. Any additional functionality must be added. Last not least the load on the network for polling all the alarm limits – typically for a SCADA system – was also driving the network to it‟s limits.Finally the contract with Orsi was cancelled and an upgrade of the D/3 system was the only possible solution. It was finally carried out in march 2003.In any case it should be mentioned that the Cube approach had the advantage of a homogeneous configuration environment (for the Cube front end controllers) – compared with heterogeneous environments for …pure‟ SCAD A systems.SCADA (PVSS-II)The H1 experiment at the HERA accelerator decided to use PVSS-II for an upgrade of their slow control systems[3]. The existing systems were developed by several members of the H1 collaboration and were difficult to maintain. Thedecision to use PVSS as a replacement was driven by the results of an extensive survey carried out at CERN by the Joint Controls Project [4]. PVSS is a …pure‟ Supervisory And Data Acquisition System (SCADA). It provides a set of drivers for several field buses and generic socket libraries to implement communication over TCP/IP. The core element is the so called event manager. It collects the data (mostly by polling) from the I/O devices and provides an event service to the attached management services like: control manager, database manager, user interface, API manager and the built in HTTP server. The PVSS scripting library allows to implement complex sequences as well as complex graphics. Compared with other SCADA systems PVSS comes with one basic feature: it provides a true object oriented API to the device‟s data.One major disadvantage of SCADA systems is the fact that two databases, the one for the PLC and the one for the SCADA system must be maintained.Integrated environments try to overcome this restriction.EPICSEPICS has emerged at DESY from a problem solver to a fully integrated control system. Starting from the data collector and number cruncher for the cryogenic control system, EPICS made it‟s way to become the core application for the DESY utility group. In addition it is used wherever data is available through VME boards or by means of Industry Pack (IP) modules. For those cryogenic systems which are not controlled by the D/3 system EPICS is used with it‟s complete functionality. In total ab out 50 Input Output Controller (IOC) are operational processing about 25 thousand records.1 EPICS as a SCADA SystemThe utility group ( water, electrical power, compressed air, heating and air conditioning) is using a variety of PLC‟s spread out over th e whole DESY site.EPICS is used to collect the data from these PLC‟s over Profibus (FMS and DP) and over Ethernet (Siemens H1 and TCP). The IOC‟s provide the interfaces to the buses and collect the data. The built in alarm checking of the EPICS records is used to store and forward alarm states to the alarm handler (alh) of the EPICS toolkit. In addition tools like the channel archiver and the graphic display (dm2k) are used. The default name resolution (by UDP broadcast) and the directory server (name server) are used to connectclient and server applications over TCP. All of these are basically SCADA functions.The textual representation of all configuration files ( for the IOC, the graphic tool, the alarm handler and the archiver) provides a flexible configuration scheme. At DESY the utility group has developed a set of tools to create IOC databases and alarm configuration files from Oracle. This way the controls group provides the service to maintain the EPICS tools and the IOC‟s while the users can conc entrate on the equipment being controlled.2 EPICS as a DCS SystemBesides the basic components of a SCADA system EPICS also provides a full flavoured Input Output Controller (IOC). The IOC provides all of the function a DCS system requires, such as: a standard set of properties implemented in each record, built in alarm checking processed during the execution of each record;control records like PID etc.; configuration tools for the processing engine. The flexible naming scheme and the default display and alarm properties for each record ease the connection between the operator tools and the IOC‟s. The flexible data acquisition supports the poll mode as well as the publish subscribe mode.The latter reduces the traffic drastically.PLC‟sPLC‟s provide n owadays the same rich functionality as it was known from stand alone control systems in the past. Besides the basic features like the periodic execution of a defined set of functions they also allow extensive communication over Ethernet including embedded http servers and different sets of communication programs. Besides the communication processors, display processors can be linked to PLC‟s to provide local displays which can be comprised as touch panels for operator intervention and value settings.These kind of PLC‟s are attractive for turn key systems which are commissioned at the vendors site and later integrated into the customers control system. Intelligent I/ONew developments in I/O devices allow to …cluster‟ I/O in even smaller groups and connec t theses clustered I/O channels directly to the control system. PLC‟s are not any more necessary for distributed I/O. Simple communication processors for any kind of field buses or for Ethernet allow an easy integration into the existing controls infrastructure. Little local engines can run IEC 61131 programs.The differences between PLC‟s and intelligent I/O subsystems fade away.FUNCTIONALITYThe ever lasting question why control systems for accelerators and other highly specialized equipment are often home grown or at least developed in a collaboration but only in rare cases commercial shall not be answered here. We try to summarize here basic functionalities of different controls approaches. Front-end ControllerOne of the core elements of a control system is the front-end controller. PLC‟s can be used to implement most of the functions to control the equipment. The disadvantage is the complicated access to the controls properties. For instance all of the properties of a control loop like the P, I and D parameter, but also the alarm limits and other additional properties must be addressed individually in order to identify them in the communication protocol and last not least in the display-, alarm- and archive programs. In addition any kind of modifications of theseembedded properties is difficult to track because two or more systems are involved. This might be one strong argument why control loops are mainly implemented on the IOC level rather than PLC‟s.1 I/O and Control LoopsComplex control algorithms and control loops are the domain of DCS alike control systems. The support for sets of predefined display and controls properties is essential. If not already available (like in DCS systems) such sets of generic properties are typically specified throughout a complete control system (see namespaces).2 Sequence/ State programsSequence programs can run on any processor in a control system. The runtime environment depends on the relevance of the code for the control system.Programs fulfilling watchdog functions have to run on the front-end processor directly. Sequence programs for complicated startup and shutdown procedures could be run on a workstation as well. The basic functionality of a state machine can be even implemented in IEC 61131. Code gen erators can produce …C‟ code which can be compiled for the runtime environment.3 Supported HardwareThe support for field buses and Ethernet based I/O is a basic functionality for SCADA type systems it is commercially available from any SCADA system on the market. The integration of specific hardware with specific drivers and data conversion is the hard part in a commercial environment. Open API‟s or scripting support sometimes help to integrate custom hardware. If these tools are not provided for the control system it is difficult –if not impossible - to integrate custom hardware.New industrial standards like OPC allow the communication with OPC aware devices and the communication between control systems. One boundary condition for this kind of functionality is the underlying operating system. In the case of OPC it is bound to DCOM which is a Microsoft standard. UNIX based control systems have a hard time to get connected. Only control systems supporting multiple platforms can play a major role in a heterogeneous environments.As a result the limited support for custom- or specialized hardware may give reason for the development of a new control system.Display and OperationBesides the front-end system the operator interfaces play a major role for the acceptance of a control system. SCADA tools come with a homogeneous look and feel throughout their set of tools. Toolkits implemented in a collaboration might vary because the individual tools were developed by different teams.1 GraphicSynoptic displays are the advertising sign for any control system. Commercial synoptic displays come with a rich functionality and lots of special features.Starting to make use of all these features one will find out that all individual properties of the graphic objects must be specified individually. Since SCADA systems must be generic they cannot foresee that an input channel does not only consist of a value but also consists of properties like display ranges and alarm values. Defining all of these properties again and again can be a pretty boring job.Some systems allow to generate prototypes of graphic objects. These prototype or template graphics are complex and need a specialist to generate them.DCS or custom synoptic display programs can make use of the common set of properties each I/O point provides. This predefined naming scheme will fill in all standard property values and thus only require to enter the record –or device name into the configuration tool. A clear advantage for control systems with a notion of I/O objects rather than I/O points.2 AlarmingAlarms are good candidates to distinguish between different control system architectures. Those systems which have I/O object implemented also provide alarm checking on the front-end computer. Those systems which only know about I/O points have to add alarm checking into the I/O processing. While the I/O object approach allows to implement alarm checking in the native programming language of the front-end system, I/O point oriented systems typically have to implement this functionality in their native scripting language. This is typically less efficient and error prone because all properties must be individually configured. This leads to a flood of properties. Not only the error states for each I/O point wind up to be individual I/O points but also the alarm limits and the alarm severity of each limit must be defined as I/O points if it is desired to be able to change their values during runtime.Besides this impact on the configuration side the processing and forwarding of alarms makes the difference between SCADA and DCS systems. Since SCADA systems inherently do not …know‟ about alarms, each alarm state must be polled either directly from the client application or in advanced cases from an event manager which will forward alarm states to the clients. In any case a lot of overhead for …just‟ checking alarm limits. DCS system again have the advantage that clients can either register themselves for alarm states und thus get the information forwarded or are configured to send alarmchanges to certain destinations spread around the control system. The latter case is only possible for systems which in total are configured with all the nodes taking part in the controls network.3 Trending and ArchivingTrending has become an important business in control systems architectures.Trends are necessary to trace error conditions or for post mortem and performance analysis of the controlled plant. Besides some customimplementations which are capable to store the data of complete control objects, most of the trending tools archive scalar data. Additional features like conditional trending or correlation plots make up the difference between individual implementations.4 Programming InterfacesWith respect to open programmin g interfaces PLC‟s and DCS systems have a common strategy. They are running reliably because there‟s no way to integrate custom code which could interfere with the internal processing. As a consequence the customer has to order …specials‟ - which are extremely expensive – or forget about it and use the system as a black box.Since SCADA systems by definition must be able to communicate with a variety of I/O subsystems they already have some built in API‟s which allow to integrate custom functionality.Specially collaborative systems need a certain openness to fulfill all the requirements from various development groups. Programming interfaces on all levels like font-end I/O, front-end processing, networking etc. are mandatory. A clear advantage for this type of system.5 RedundancyIf redundancy means the seamless switch which takes over all the states and all the values of the I/O and all states of all programs currently running, it is a domain of only a few DCS systems. Custom or CCS implementation do not provide this kind of functionality. Maybe because of the immense effort and the fact that it is only required in rare cases.Besides processor redundancy, redundant networks or I/O subsystems are available for certain commercial DCS systems. Again –a domain which is not covered by SCADA or CCS implementations.Advanced safety requirements may be covered by redundant PLC subsystems.These are for instance installed in (nuclear) power plants. Requirements for Personal Protection Systems (PPS) can sometimes only be fulfilled by redundant PLC‟s. In process controls redundant PLC‟s are only used in rare cases.6 NamespaceThe flat namespace of SCADA systems has already been described in the alarm section. Some SCADA systems (like PVSS-II) provide the notion of control objects or structured data which is a rare case. In all other cases so called field objects must be specified. These are objects which consist of a list of properties (implemented as I/O points) and a set of methods ( implemented asmacros or function calls). One of these approaches is the UniNified Industrial COntrol System (UNICOS) at CERN [5].DCS systems and most of the custom/ collaborative systems are record –or device oriented. The difference being that typically one record is connected to asingle I/O point and provides this way all sub features of a record implementation like individual engineering units, display- and alarm limits. The device oriented approach allows to connect several I/O points. The major difference being the fact that an object oriented device implementation provides methods and states for a device while (EPICS) records only serve a certain set of built in functions.Naming hierarchies are not specific to a type of implementation. They are available for some systems of any kind. For sure hierarchical naming schemes are desirable.IMPLEMENTATION STRATEGIESAfter having shown all the possible controls approaches it is time to have a look at the implementation of control systems.Starting from the I/O level one has to decide whether commercial solution are required, feasible or wanted. Special I/O does not always require custom solution for the font-end controller. Signals can be converted into standard signals but this does not apply for all kinds of signals. Resolution, repetition rates and signal levels might require custom developments which must be integrated into the overall control architecture. Even if the signals can not be connected to standard I/O interfaces it might be possible to develop I/O controllers which implement a field bus interface which allow the integration with commercial control systems.Once this level of integration is not possible custom front-end controllers like VME crates come into play.Besides the decision whether special I/O requires dedicated custom solutions one has to decide who will do which part of the work? Does for instance the necessity of VME crates prohibit the delivery of a …turn key‟ system built by industry? Or does a PLC based front-end system require a commercial SCADA system for high level controls?Turn Key SystemsIt is a clear trend in industry to deliver turn key systems. It allows a modular design of the whole system. Individual components can be subcontracted to several companies and tested locally. Once delivered to the construction site the primary acceptance tests have already been passed and the second phase, to integrate the subsystem into the global control system begins.While the detailed specification of control loops etc. is now part of the subsystems contract, the customer has to specify clearly how much information of the subsystem must be made available, what the data structures will look like and which connection (field bus/ Ethernet) will be used.Most turn key systems are delivered with PLC‟s. Th e construction of the Swiss Light Source (SLS) has shown that also a VME based I/O system running a CCS – in this case EPICS – can be successfully commissioned [6].PLC Based SystemsPLC based systems are a consequence of the turn key ansatz. The next obvious approach might be to look besides commercial PLC‟s also for commercial SCADA systems. The advantage is clearly the same like for the PLC: stable software, no programming – only configuration, support and good documentation.At DESY we have successfully established a relation between the controls group which provides a CCS service based on EPICS and the utility group which uses the EPICS configuration tools to set up their control environment. The big advantage though being that the EPICS code can be adjusted to the special requirements from both sides.Industrial SolutionsThe difference between CCS solutions and commercial solutions is fading away as soon as industry starts to deliver and support collaborative control systems. At KEK a company was contracted to supply programmers for the KEK-B upgrade.These programmers were trained in writing drivers and application code for EPICS. As a result the KEK-B control system is a mixture of software developed partly by industry and partly in house. This is another example for an industrial involvement for a CCS implementation.COSTThe question: “Was is the total cost of ownership (TCO) of a PC?” has kept people busy since PC‟s exist. The answers vary to all extremes. The question what is the TCO of a control system might give similar results.If you go commercial you have to pay for the initial licenses the implementation which is typically carried out by the supplier or by a subcontractor, and you pay for the on going software support which might or might not include the update license fee.If you go for a collaborative approach, you might contract a company or implement everything on your own. A question of …time and money‟ as industry says. You will have more freedom and flexibility for your implementations but also a steeper learning curve. You can rely on the collaboration to provide new features and versions or you can contribute yourself. A major difference calculating the long term costs for a control system.At DESY one can roughly estimate that the (controls application)-support for a commercial approach – here D/3 - and the -support for a collaborative approach –here EPICS - is nearly the same. The software support and upgrade license fee is equivalent to one and a half FTE‟s – which is about the manpower necessary to support new hardware and to upgrade EPICS.CONCLUSIONSDepending on the size and the requirements for a controls project the combination of commercial solutions and solutions based on a collaborative approach is possible in any rate between 0 and 100 percent. This applies for all levels from implementation tolong term support. Special requirements on safety issues or a lack of manpower might turn the scale commercial. The necessity to interface special hardware, special timing r equirements, the …having the code in my hands‟ argument or the initial costs for commercial solutions will turn the scale collaborative. As long as collaborative approaches like EPICS stay up to date and run as stable and robust as commercial solutions, both will keep their position in the controls world in a complementary symbiosis.外文翻译译文工业控制系统和协同控制系统当今的控制系统被广泛运用于许多领域。

自动控制原理专业词汇中英文对照.pdf

自动控制原理专业词汇中英文对照.pdf

自动控制原理专业词汇中英文对照.pdf自动控制原理专业词汇中英文对照中文英文自动控制automatic control;cybernation 自动控制系统automatic control system自动控制理论 automatic control theory经典控制理论 classical control theory现代控制理论 modern control theory智能控制理论intelligent control theory 开环控制open-loop control闭环控制 closed-loop control输入量 input输出量 output给定环节 given unit/element比较环节 comparing unit/element放大环节 amplifying unit/element执行环节 actuating unit/element控制环节 controlling unit/element被控对象 (controlled) plant反馈环节 feedback unit/element控制器 controller扰动/干扰 perturbance/disturbance前向通道 forward channel反馈通道feedback channel 恒值控制系统constant control system随动控制系统servo/drive control system 程序控制系统programmed control system 连续控制系统continuous control system离散控制系统 discrete control system线性控制系统 linear control system非线性控制系统 nonlinear control system定常/时不变控制系统time-invariant control system 时变控制系统 time-variant control system 稳定性 stability快速性 rapidity准确性 accuracy数学模型 mathematical model微分方程 differential equation非线性特性 nonlinear characteristic线性化处理 linearization processing泰勒级数 Taylor series传递函数 transfer function比例环节 proportional element积分环节 integrating element一阶惯性环节 first order inertial element二阶惯性环节 second order inertial element二阶震荡环节second order oscillation element 微分环节differentiation element一阶微分环节 first order differentiation element二阶微分环节 second order differentiation element 延迟环节delay element动态结构图 dynamic structure block串联环节 serial unit并联环节 parallel unit信号流图 signal flow graph梅逊增益公式Mason’s gain formula时域分析法 time domain analysis method性能指标 performance index阶跃函数 step function斜坡函数 ramp function抛物线函数 parabolic function /acceleration function 冲击函数impulse function正弦函数 sinusoidal function动态/暂态响应 transient response静态/稳态响应 steady-state response 延迟时间 delay time上升时间 rise time峰值时间 peak time调节时间 settling time最大超调量 maximum overshoot稳态误差 steady-state error无阻尼 undamping欠阻尼 underdamping过阻尼 overdamping特征根 eigen root极点 pole零点 zero实轴 real axis虚轴 imaginary axis 稳态/静态分量 steady-state component 瞬态/暂态/动态分量transient component 运动模态motion mode衰减 attenuation系数 coefficient初相角 initial phase angle响应曲线 response curve主导极点 dominant pole 劳斯稳定判据 Routh stability criterion S平面 S plane胡尔维茨稳定判据Hurwitz stability criterion 测量误差measurement error扰动误差 agitation error结构性误差 structural error偏差 deviation根轨迹 root locus 常规根轨迹 routine root locus根轨迹方程 root locus equation 幅值 magnitude幅角 argument对称性 symmetry分离点 separation/break away point会合点 meeting/break-in point渐近线 asymptote出射角 emergence angle/angle of departure入射角incidence angle/angle of arrival 广义根轨迹generalized root locus零度根轨迹zero degree root locus 偶极子dipole/zero-pole pair 频域分析法frequency-domain analysis method 频率特性frequency characteristic极坐标系 polar coordinate system直角坐标系 rectangular coordinate system幅频特性 magnitude-frequency characteristic相频特性phase-frequency characteristic 幅相频率特性magnitude-phase frequency characteristic 最小相位系统minimum phase system非最小相位系统 nonminimum phase system奈奎斯特稳定判据Nyquist stability criterion 伯德定理Bode theorem稳定裕度 stability margin幅值裕度 magnitude margin 相位/相角裕度 phase margin对数幅频特性 log magnitude-frequency characteristic 无阻尼自然震荡角频率 undamped oscillation angular frequency 阻尼震荡角频率damped oscillation angular frequency 阻尼角damping angle带宽频率bandwidth frequency 穿越/截止频率crossover/cutoff frequency 谐振峰值 resonance peak系统校正 system compensation超前校正 lead compensation滞后校正 lag compensation自激震荡 self-excited oscillation死区特性 dead zone characteristic饱和特性 saturation characteristic间隙特性 backlash characteristic描述函数法 describing function method相平面法 phase plane method 采样控制系统 sampling control system数字控制系统 digital control system频谱 frequency spectrum 采样定理 sampling theorem信号重现 signal recurrence拉氏变换 Laplace transformZ变换 Z transform终值定理 final-value theorem差分方程 difference equation迭代法 iterative method 脉冲传递函数 pulse transfer function 零阶保持器 zero-order holder映射 mapping方框图 block diagram伯德图 Bode diagram特征方程 characteristic equation可控性 controllability临界阻尼 critical damping阻尼常数 damping constant阻尼比 damping ratio初始状态 initial state初值定理 initial-value theorem反Z变换 inverse Z-transformation负反馈 negative feedback正反馈 positive feedback 尼科尔斯图 Nichols chart部分分式展开partial fraction expansion 幅角原理argument principle相对稳定性 relative stability共振频率 resonant frequency劳斯表 Routh tabulation/array奇点 singularity渐进稳定性 asymptotic stability控制精度 control accuracy临界稳定性 critical stability耦合 coupling解耦 decoupling比例积分微分调节器proportional integral derivative regulator(PID) 串联校正 series/cascade compensation 单输入单输出 single input single output(SISO)多输入多输出 multi input multi output(MIMO)低通滤波器 low pass filter非线性系统 nonlinear system复合控制 compound control衰减振荡 damped oscillation主反馈 monitoring feedback 转折(交接)频率 break frequency 稳定焦点/节点 stable focus/node。

工控常用英文单词

工控常用英文单词

工控常用英文单词集散控制系统——Distributed Control System(DCS)现场总线控制系统——Fieldbus Control System(FCS)监控及数据采集系统——Supervisory Control And Data Acqusition(SCADA)可编程序控制器——Programmable Logic Controller(PLC)可编程计算机控制器——Programmable Computer Controller(PCC)工厂自动化——Factory Automation(FA)过程自动化——Process Automation(PA)办公自动化——Office Automation(OA)管理信息系统——Management Information System(MIS)楼宇自动化系统——Building Automation System人机界面——Human Machine Interface(HMI)工控机——Industrial Personal Computer(IPC)单片机——Single Chip Microprocessor计算机数控(CNC)远程测控终端——Remote Terminal Unit(RTU)上位机——Supervisory Computer图形用户界面(GUI)人工智能——Artificial Intelligent(AI)智能终端——Intelligent Terminal模糊控制——Fuzzy Control组态——Configuration仿真——Simulation冗余——Redundant客户/服务器——Client/Server网络——Network设备网——DeviceNET基金会现场总线——foundation fieldbus(FF)现场总线——Fieldbus以太网——Ethernet变频器——Inverter脉宽调制——Pulse Width Modulation(PWM)伺服驱动器——Servo Driver软起动器——Soft Starter步进——Step-by-Step控制阀——Control Valver流量计——Flowmeter仪表——Instrument记录仪——Recorder传感器——Sensor智能传感器——Smart Sensor智能变送器——Smart Transducer虚拟仪器——Virtual Instrument主站/从站——Master Station/Slave station操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Stationabort 中断,停止abnormal 异常abrader 研磨,磨石,研磨工具absence 失去Absence of brush 无(碳)刷Absolute ABS 绝对的Absolute atmosphere ATA 绝对大气压AC Lub oil pump 交流润滑油泵absorptance 吸收比,吸收率acceleration 加速accelerator 加速器accept 接受access 存取accomplish 完成,达到accumulator 蓄电池,累加器Accumulator battery 蓄电池组accuracy 准确,精确acid 酸性,酸的Acid washing 酸洗acknowledge 确认,响应acquisition 发现,取得action 动作Active power 有功功率actuator 执行机构address 地址adequate 适当的,充分的adjust 调整,校正Admission mode 进汽方式Aerial line 天线after 以后air 风,空气Air compressor 空压机Air duct pressure 风管压力Air ejector 抽气器Air exhaust fan 排气扇Air heater 空气加热器Air preheater 空气预热器Air receiver 空气罐Alarm 报警algorithm 算法alphanumeric 字母数字Alternating current 交流电Altitude 高度,海拔Ambient 周围的,环境的Ambient temp 环境温度ammeter 电流表,安培计Ammonia tank 氨水箱Ampere 安培amplifier 放大器Analog 模拟Analog input 模拟输入Analog-to-digital A/D 模拟转换Analysis 分析Angle 角度Angle valve 角伐Angle of lag 滞后角Angle of lead 超前角anthracite 无烟煤Anion 阴离子Anionic exchanger 阴离子交换器Anode 阳极,正极announce 通知,宣布Annual 年的,年报Annual energy output 年发电量anticipate 预期,期望Aph slow motion motor 空预器低速马达Application program 应用程序approach 近似值,接近Arc 电弧,弧光architecture 建筑物结构Area 面积,区域armature 电枢,转子衔铁Arrester 避雷器Ash 灰烬,废墟Ash handling 除灰Ash settling pond 沉渣池Ash slurry pump 灰浆泵assemble 安装,组装Assume 假定,采取,担任Asynchronous motor 异步马达atmosphere 大气,大气压Atomizing 雾化Attempt 企图Attemperater 减温器,调温器Attention 注意Attenuation 衰減,减少,降低Auto reclose 自动重合闸Auto transfer 自动转移Autoformer 自耦变压器Automatic AUTO 自动Automatic voltage regulator 自动调压器Auxiliary AUX 辅助的Auxiliary power 厂用电Available 有效的,可用的Avoid 避免,回避Avometer 万用表,安伏欧表计Axial 轴向的Axis 轴,轴线Axis disp protection 轴向位移,保护Axle 轴,车轴,心捧BBack 背后,反向的Back pressure 背压Back wash 反冲洗Back up 支持,备用Back ward 向后Baffle 隔板Bag filter 除尘布袋Balance 平衡Ball 球Ball valve 球阀Bar 巴,条杆Bar screen materialclassifier栅形滤网base 基础、根据Base load 基本负荷Base mode 基本方式Batch processing unit 批处理单元Battery 电池Bearing BRG 轴承before 在…之前bell 铃Belt 带,皮带Bend 挠度,弯曲Besel 监视孔BLAS 偏置,偏压Binary 二进制,双Black 黑色Black out 大停电,全厂停电blade 叶片Bleed 放气,放水Blocking signal 闭锁信号Blow 吹Blow down 排污Blowlamp 喷灯blue 蓝色Bms watchdogBms 看门狗,bms 监视器boiler BLR 锅炉Boiler feedwater pump BFP 锅炉给水泵Boil-off 蒸发汽化bolt 螺栓bore 孔,腔boost BST 增压,提高Boost centrifugal pump BST CEP 凝升泵Boost pump BP 升压泵Boot strap 模拟线路,辅助程序bottom 底部Bowl mill 碗式磨brash 脆性,易脆的bracket 支架,托架,括号breadth 宽度break 断开,断路breaker 断路器,隔离开关Breaker coil 跳闸线路breeze 微风,煤粉Brens-chluss 熄火,燃烧终结bridge 电桥,跨接,桥形网络brigade 班,组,队,大队broadcast 广播brownout 节约用电brush 电刷,刷子Brush rocker 电刷摇环Brown coal 褐煤Buchholtz protecter 瓦斯保护bucket 斗,吊斗Buffer tank 缓冲箱built 建立bulletin 公告,公报bump 碰,撞击bunker 煤仓burner 燃烧器Burner management system 燃烧器管理系统Bus section 母线段busbar 母线Busbar frame 母线支架buscouple 母联button 按钮Bypass/by pass BYP 旁路Bypass valve 旁路阀Ccabinet 柜cable 电缆calculator 计算器caliber 管径、尺寸、大小calorie 卡caloric 热的、热量Caloric value 发热量、热值calorific 发热的、热量的Calorific efficiency 热效率cancel 取消、省略capacitance CAPAC 电容Capacitive reactance 容抗capacity 容量、出力、能量card (电子)板、卡carrier搬运机、载波、带电粒子Carrier protection 高频保护cascade CAS 串级Case pipe 套管casine 壳、箱casual偶然的、临时、不规则的Casual inspection 不定期检查、临时检查casualty 人身事故、伤亡、故障catastrophe 灾祸、事故Catastrophe failure 重大事故Cat-pad 猫爪cathode 阴板、负极Cathode ray tube CRT 显示器Cation exchanger 阳离子交换器caution 注意Center 中心centigrade 摄氏温标Central control room 中控室Central processing unit CPU 中央处理器Centrifugal 离心的Certificate 证明书、执照Centrifugal fan 离心风机Certification of fitness 合格证书、质量证书Chamber 办公室、会议室Change 改变Channel 通道、频道Character 字符Characteristics 特性、特性曲线Charge 负荷、充电、加注Charge indicator 验电器、带电指示器Chart 图、图线图chassis 底座、机壳Chassis earth 机壳接地Check 检查Check valve CK VLV 截止线、止回线Chemical 化学Chemical dosing 化学加药Chest 室Chief 主要的、首长、首领Chief engineer 总工程师Chief operator 值班长Chimney 烟囱、烟道Chlorine 氯Circuit 电路Circuit breaker 电路断路器Circuit diagram 电路图Circular current 环流Circulating 循环Circulating water pump 循环水泵Circulating cooling water 循环冷却水Clamp 夹具、钳Clarification 澄清Class 类、等级、程度Class of insulation 绝缘等级Clean 清洁的、纯净的Cleanse 净化、洗净、消毒Clear 清除CLEARING OF FAULT 故障清除Clock interface unit CIU 时钟接口单元Clockwise 顺时针、右旋的Close 关闭Closed cooling water 闭式冷却水Closed-loop 闭环Cluster 电池组、组、群Coal 煤Coal ash 煤灰Coal breaker 碎煤机Coal consumption 耗煤量、煤耗Coal crusher 碎煤机Coal handling 输煤设备、输煤装置Coal dust 煤粉Coal-fired power plant 燃煤发电厂Coal hopper 煤斗Coal yard 煤场Coarse 粗的、不精确的Coaxial cable 同轴电缆Code 代号、密码Coil 线圈Coil pipe 蛇形管Cold 冷Cold air 冷风Cold reheater CRH 再热器冷段Cold reserve 冷备用(锅炉)Cold start 冷态启动Cold test 冷态试验Collect 收集Collecting pipe 集水管Collector 收集器Colour 颜色Colour library 颜色库Combin 合并、联合Combustion 燃烧Command 命令、指挥Commission 使投入、使投产Common 共同的、普通的Communication 联系、通讯Commutator 换向器Compensation 补偿Company CO 公司Company limited CO LTD 有限公司Complexity 复杂Complete 完成Component 元件Compress 压缩Compress air 压缩空气Compresser 压缩机Computer 计算机Concrete 混凝土制的Concurrent 同时发生的、一致的Concurrent boiler 直流锅炉Cond press 凝结器压力Condensate 冷凝、使凝结Condensate extraction pump CEP 凝结水泵Condenser COND/CNDER 凝结器Condensive reactance 容抗Condition 条件、状况Conduct 传导Conductivity 导电率Conference 会议、商讨、谈判Congealer 冷却器、冷冻器Configure 组态Connection 联接Connector 联接器、接线盒Console 控制台Consult 商量、咨询、参考Consumption 消费、消耗Consumption steam 汽耗Constant 恒定的Contact 触点Contactor 接触器、触头Contact to earth 接地、触地、碰地Content 目录Contin blwdwn 连排Continuous 连续的Contract 合同Control CNTR/CNTPL 控制Control & instrument 仪控Control loop 控制环Control oil 控制油Control panel 控制盘Controller 控制器Control stage 调节级、控制级Control valve 调节阀Conve cton sh 低温过热器Convection 对流Convertor 运输机、传输机Cool 冷的Cooler 冷却器Cooling 冷却Cooling fan 冷却风机Cooling water pump 冷却水泵Cooling tower 冷却塔Coordinate COORD 协调Coordinate boiler followmode协调的锅炉跟随方式Coordinate control system 协调控制系统Coordinate turbine followmode协调的汽机跟随方式Copy 拷贝Core 铁心、核心、磁心Core loss 铁(芯损)耗Corner 角落Correction 修正、改正Corrosion 腐蚀Cost 价格、成本、费用Cost of fuel 燃料费用Cost of upkeep 日常费用、维护费用Coupler 联轴器Coupling 耦合、联轴Couple CPL 联轴器Crane 起重机Critical 临界的Critical speed 临界速度Crusher 碎渣机Current transformer CT 电流互感器Cube 立方(体)Cubicle illumination 箱内照明Curdle 凝固Current 电流、当前Cursor 光标Curve 曲线Custom 习惯、海关Custom keys 用户键Cutter 切削工具Cyanic 青色、深蓝色Cycle 循环、周期、周波Cymometer 频率表Cyclome classifier 旋风分离器Cylinder CYL 汽缸DDaily load curve 日负荷曲线Daily load 日负荷Damage 损坏、破坏Damper DMPR 阻尼器、挡板Danger 危险、危险物Dank 潮湿Danger zone 危险区Data 数据Data base 数据库Data acquisition system DAS 数据采集系统Data highway 数据高速公路Date 日期Data pool 数据库Dc lub oil pump 直流润滑油泵Dead band 死区DeaeratorDEA/DEAE/DEAER除氧器Decimeter 分米Decrease DEC 减少Deep 深度、深的、深Default 默认、缺席Degree 度、等级Demand 要求、查问Delay 延迟Delay time 延时Delete 删除Demineralized water 除盐水Demineralizer 除盐装置Deposit 沉积结垢Desalt 除盐设备Description 说明、描述Destination 目标、目的地Desuperheater 减温器Desuperheater water DSH WTE 减温水Detail 细节Detect 发现、检定Deviate 偏离、偏差Device 设备、仪器Diagnosis 诊断Diagram 图形、图表Diagram directory 图目录Diagram number 图形号Diameter 直径Diaphragm 膜片、隔板Dielectric 介质、绝缘的Diesel generator 柴油发电机Difference 差异、差别、差额Differential protection 差动保护Diff press 差压Diff expansion DIFF EXP 胀差Differential pressure DP/DSP 差压Digital 数字的Digital electric hydraulic 电调Digital input/output 数字量输入/输出Digital-to-analog D/A 数/模转换Dioxde 二氧化碳Direct current DC 直流(电)Direct digital control DDC 直接数字控制Disassembly 拆卸Disaster 事故、故障Disc 叶轮Disaster shutdown 事故停机Discharge 排除、放电、卸载Discharge current 放电电流、泄漏电流Disconnector 隔离器、隔离开关Disconnect switch 隔离开关Discrete input/output 离散输入/输出Disk 磁盘Disk manage commands 磁盘管理命令Dispatch 调度、发送派遣Dispatcher 调度员Dispatching station 调度站(局)Disconnector 隔离器、隔离开关Discrete input/output 离散输入/输出Disk 磁盘Displacement 位移Displacement pump 活塞泵Display 显示、列屏Distance 距离Distilled water DISTL WTR 蒸馏水Distributed分布\分配\配电(水、汽)Distributed control system DCS 集散控制系统Distributed processing unit DPU 分布处理单元Distributing board 配电盘Distribution network 配电网络Distribution substation 二次变电站Disturbance 扰动Diverter vlv 切换线Divided by 除以Design 设计、发明Division 分界、部门Division wall 分割屏Documentation 文件Door 门Dosing pump 加药泵Dowel pin 定位销Down pipe 下降管Download 下载Downtime 停机时间Dozer 推土机Draft 通风、草图Drain DRN 疏水、排放Drain pump 疏水泵Drain tank 疏水箱Drawing 图样、牵引Drill 钻孔、钻头、钻床Drive 驱动、强迫Drn collector 疏水收集器Drop 站Drowned pump 潜水泵Drum 汽包Drum-type boiled 汽包式锅炉Dry 干、干燥Dual 双重的Duct 风道、管道Dust 灰尘Dust helmet 防尘罩Dust catcher 除尘器、吸尘器Duty 责任Dynamic 动态的Dynamometer 功率表EEarth 大地Earth fault 接地故障Earth connector 接地线、接地Earth lead 接地线、接地Eccentricity 偏心、扰度Econ recirc vlv 省煤器再循环线Economizer ECON 省煤器Edit 编辑Efficiency 效率Eject pump 射水泵Ejection 射出Ejector 抽气器Electric 电的Elbow 弯管、弯头Electric-hydraulic control 电/液控制Electrical 电的、电气的Electrical lockout solenoid 电磁阀锁阀vlvElectrical machine 电机Electrical service 供电Electric power industry 电力工业Electrode 电极Electric power company 电力公司Electric power system 电力系统Electronic 电子的、电子学的Electrotechnics 电工学、电工技术Electrostaic precipitator 静电除尘器Electrostatic 静电的Element 元件、零件、单元Elevation ELEV 标高Elevator 升降机Ellipse 椭圆Emergency decree 安规Emerg lub oil 事故润滑油Emerg off 事故停/关闭Emerg seal oil 事故密封油Emergency EMERG 紧急事故Emergency drain 事故疏水Emergency governet/intercepter危急遮断器Employee 雇员Empty 排空Enclosure 外壳、包围End 末端、终结End cover 端盖Energize 激励、加电Energy 能、能量Energy meter 电度表Energy source 能源Engineer keyboard 工程师键盘Engineer station 工程师站Engineer's console 工程师操作站Engineering 工程Enter 开始、使进入Entry 输入Equalizer valve 平衡线Equipment 设备Erase 删除Error 错误Escape valve 安全线Evaporate 蒸发、冷化Evaporating 蒸发量Event 事件Excess 超过、过度Excess combustion air 过剩燃烧空气Excitation 励磁Exciter 励磁机Exhaust EXH 排汽Exhaust portion 排汽段Exit 出口Expansion EXP 膨胀Expansion tank 扩容箱Expenditure 费用Expert 专家、能手Explosion 爆炸Exponent 指数幂External 外部的、表面的Extinguisher 灭火器Extinguishing medium灭弧介质Extraction check valve EXTR CHK 抽汽逆止阀VLVExtra-high voltage超高压Extend扩展、延伸Exteral外部的、表面的Extr press抽汽压力Extr temp抽汽温度Extraction EXTR抽汽FFactor因素、因数Fahrenheit华式温标Failure FAIL失败FALSE假的、错误的Fan风扇、风机Fan duty风机负荷Fast cut back FCB快速切回Fault故障Faulty operation误操作Features特点Feed馈、供给Feedback反馈Feed forward前馈Feed water给水Feed-water makeup补给水Fiber optic光纤Field磁场、现场Field operator现场运行人员Figure数字、图案File文件Filter 滤网、过滤器Filter differentialpressureFILTR DP 滤网压差Final 最后的Final super-heater FSH 末级过热器、高过Fine ash silo 细灰库Fire 燃烧、火焰Fire-proof 耐火的、防火的Fire-extinguisher 灭火器Fire-hose 消防水带Fire hydrant 消防栓Fire-fight 灭火Fireproof 防火的、阻燃的Fire pump 消防水泵First stage 第一级、首级First stage guide vane 第一级导叶Flame 火焰Flame check 火检Flame detect cable FLM DET CAB 火检电缆Flange 法兰Flange joint 法兰结合面Flank 侧翼、侧面Flash 闪光、闪烁、闪蒸Flash lamp 闪光灯Flash light 闪光Flasher 闪光装置Flexible 灵活的、柔性的Flexible joint 弹性联接器Flip-flop 触发器、双稳态电路Float-charge 浮充电Floppy disk 软磁盘Floppy driver 磁盘机Flow 流量、流动Flowmeter 流量计Flue 烟道Format 形式、格式Flue gas 烟气Fluid 液体Fly ash 飞灰Follow 跟随Forbid 禁止Force 强制Force circulation 强制循环Force draft fan 送风机Forney 福尼(公司)Forward 向前Free end 自由端Frequency 频率From 从、来自Front 前面的Fuel 燃料Fuel safety 燃料保护Full speed 额定频率Fully 充分的、完全的Function 功能Function group 功能组Furnace 炉膛Fuse 保险丝、熔断器Fuse holder 保险盒Fusible cutout 熔断开关Fw bypass 给水旁路GGAIN 增益Gang 班、组Gas 气体、烟气Gate 闸门Gate damper 闸门式挡板Gateway 入口、途径Gauge 仪表、标准Gauge float 水位、指示、浮标Gear 齿轮Gear pump 齿轮泵Gear shift housing 变速箱Gen main breaker 发电机出口总开关General control panel 总控制屏General vlv 总阀Generate 引起、产生Generator 发电机、发生器Gland 密封套Gland heater GLAND HTR 轴封加热器Gland seal 轴封Glass-paper 砂纸Goal 目的、目标Go on 继续Govern vlv GV 调速器、调节器Graphics 调节阀Grease 图形Green 绿色Grid 高压输电网、铅板Grid system 电网系统Gross rating 总出力、总额定值Ground/earth 地、大地Group 组、群Group library 组库HHalt instruction 停机指令Hangers 悬吊管Hardware 硬件Hardness 硬度、困难的Hazardous 危险的、冒险的Header 联箱Heat 热、加热Heater 加热器Heating 加热Heat rate 热效率Heat soak 暖机Hertz HZ 赫兹Hesitate HESI 暂停、犹豫High 高的、高等的、高大的High pressure HP 高压High pressure heater HPH 高压加热器History 历史Historical date reporter HDR 历史数据报告Historical storage &retrieval unitHSR历史数据报告存储与检索单元Hold 保持Home 家、处所Hopper 漏斗、料斗Hori vib(vibration) 水平振动Horizontal 水平的、横式Horse power 马力Hose 软管、水龙带Hot 热的Hot air 热风Hot rh 再热(器)热段Hot start 热态启动Hot well 热水井Hour 小时Hp cyl cross pipe 高压缸短管Hp turb exh press 高压缸排汽压力Hybrid 混合物Hydraulic 液压Hydrogen 氢(H)Hydrogen purity 氢气纯度Hydrobin/ dewatering bin 脱水仓IIdiostaic 同电位的Idle 空载的、无效的Ignition light oil 轻油点火Ignition 引燃、电火Ignitor 电火器Ignore 忽视Illustrate 说明Impeller 推进器、叶轮Impedance 阻抗Import 进口、引入Impulse 脉冲、冲击、冲量Inch IN 英寸Inching 缓动、点动Income 进线Increase INC 增加Index 索引、指示Indicator 指示器Individual 单个的、独立的Inductive reactance 感抗Input/output I/O 输入/输出Induced draft fan IDF 引风机Inductance 电感Induction motor 异步电动机Industrial water 工业水Industry 工业Inflatable seal 充气密封Inhibit 禁止Initial 最初的Inlet 入口Input group 输入组Insert 插入Inside 内侧、内部Inspection 观察、检查Install 安装Inspection hole 检查孔、人孔Installed capacity 装机容量Instantaneous 即时的、瞬时的Instantaneous power 瞬时功率Instruction 说明书、指南、指导Instrument 仪器Instrument panel 仪表盘Insulate 绝缘、绝热、隔离Insulator 绝缘子Intake 输入端、进线Integer 整数Integral 积分Intensity 强度Interpole 换向板Inter-stage extraction 中间抽头Interface 接口Interference 干扰、干涉Interlock 联锁Intermediate 中间的Internal 内部的Interrogation 质问、问号Interrupt 中断Interval 间隔Interlock auto on 联锁投自动Inverter 逆变器、反向器、非门Invoice INV 发票、发货单、托运Intermediate pressure IP 中压Intermediate relay 中间继电器Invalid 无效的、有病的Investment 投资Ion-exchange 离子交换器IP.cyl 中压缸Isolation 隔离Isolator 隔离、刀闸JJacking oil 顶轴油Jacking pump 顶轴泵Job 工作Jumper 跳线、跨接Junction box 接线盒KKey 键销、钥匙、键槽Keyboard 键盘Key library 键库Key switch 键开关Kilovolt-ampere KVA 千伏安Kink 弯曲、缠绕Knack 技巧、窍门、诀窍Knife-switch 闸刀开关LLabel 标号、标签Laboratory 实验室Labyrinth seal 迷宫密封Ladder 梯子、阶梯Ladder diagram 梯形图Lamp 灯、光源Large platen LARGE PLT 大屏Last 最后的Latch 止动销、挂闸、插锁Leak 泄漏(动词)Leakage 泄漏(名词)Left 左Length 长度Level 液位、水平Lifebelt 安全带、保险带Lift 提、升Light 光亮、点、点燃、照亮Lightning 雷电Light run 空转Lightning arrestor 避雷器Limit LMT 极限、限制Limiter 限制器、限位开关Line 线、直线Line impedance 线路阻抗Lining 衬层、内衬Linkage 连杆List 列表Liter 公升Ljungstrom trisector airpreheaters容克式空预器Load 负荷Load demand compute LDC 负荷指令计算Load impedance 负荷阻抗Load limit 负荷限制Load rejection 甩负荷Load shedding 甩负荷Loading 加负荷Load thrown on 带负荷Local 局部Local attendant 现场值班员Local repair 现场检修Local start 就地启动Local stop 就地停止Location 处所、位置Lock 闭锁、密封舱、固定Logger 记录器、拖车Logic 逻辑Long 长Loop 环、回路Loss 损失、减少Loss of excitation 励磁损失Loss of phase 失相Low 低Low press LP 低压Low press heater LPH 低压加热器Low-half 下半Lower 较低的、降低Lower heating value 低位发热量Low pressure cylinder LPC/LP CYL 低压缸Low temperature superheater LT SH 低温过热器Lub oil 润滑油Lub oil pump 润滑油泵Lubricate LUB 润滑MMagenta 品红色Magnet 磁Main主要的/主蒸汽的/电力网Main oil tank 主油箱Main screen 主屏Main steam 主蒸汽Main transformer 主变压器Maintenance 维护、检修、小修Maintenance manual 检修手册Major overhaul 大修Make up 补充(补给)Makers works 制造厂Malfunction 出错、误动、失灵Management 管理、控制、处理Manhole 人孔、检查孔、出入孔Manifold各式各样的联箱、集气管Manometer 压力表Man-machine interaction 人机对话Manual 手动、手册Manual reject MRE 手动切换Manual/Auto station M/A STATION 手动/自动切换站Mark型号、刻度、标志、特征Mass memory 大容量存储器Master 主要、控制者Master control room 主控室、中央控制室Master fuel trip MFT 主燃料跳闸Maximum 最高的、最大Maximum continue rate MCR 最大连续率Mechanocaloric 热机的Mean 平均值、中间的Mean water level 平均水位Measure 量度、测量Mechanical 机械的、力学的Mechanical trip vlv 机械跳闸阀Mechanism 机械、力学、方法Medial 中间的、平均的Mediate 间接的、调解Medium 装置、介质、工质Megawatt 兆瓦Memory 存储Metal 金属Meter 集量器、仪表、米Meter switch 仪表开关Method 方法、规律、程序Method of operation 运行方式Mica 云母Mica dielectric 云母电介质Microcallipers 千分尺Microphone 麦克风、话筒Middle MID 中间的Middle-temperature rh MT RH 中温再热器Mill 磨、磨煤机、铣刀Minimum 最小的Minor overhaul 小修Minus 减、负号Minus phase 负相位Minute 分钟Miss operation 误动作、误操作Miss trip 拒跳闸Mistake 错误、事故Mixed bed 混床Mixture 混合物Man-machine interface MMI 人机接口Modem 调制解调器Modify 修改Modulating control 调节控制Modulating valve 调节阀Module 模件Moisture 湿度、湿汽Monitor 监视器、监视Monoxide 一氧化物Month 目Motor MTR 马达Motor control center MCC 马达控制中心Motor winding 电动机组绕组Mouldproof 防霉的Mount 安装、固定Mountain cork 石棉Mouse 鼠标Move 移动Multidrop 多站Multispeed 多速Mult-multi 多、多倍Multimeter 万用表Multiplication 乘Multivibrator 多谐振荡器NName 名、名字Natural 自然的Naught line 零线Needlepoint vlv 针阀Negative 负的Negative pressure NEG PRESS 负压Neon tester 试电表Net ratine/net output 净出力Network 网络Neutral line 中性线Neutral 中性的Neutral point 中性点Next 其次的Night shift 夜班Nipper 钳子、镊子Noise 噪音No-loading 空载Nominal 标称的、额定的Nominal power 额定功率Nominal rating 标称出力、额定出力Non-return vlv 逆止线Non-work 非工作的Normal 正常的、常规的Normal closed contact 常闭触点Normal makeup wtr 正常补水Not available 无效、不能用No touch relay 无触点继电器Non-work pad / n-work pad 非工作瓦Nozzle 喷嘴Number 数字、号码、数目Number of turns 匝数Nut 螺母、螺帽OOccur 发生Odd 奇数Office 办公室Oil 油Oil breaker 油开关Oiler 注油器Oil fuel trip OFT 油燃料跳闸Oil gun 油枪Oil immersed natural 油浸自然冷却coolingOil purifier 油净化装置On-line 在线、联机的On-load test 带负荷试验On/off 开/关Onset 开始、发作Open 开、打开Open-air 露天的、开启的Open-loop 开环Open work 户外作业Operating panel 操作盘Operation 操作、运行Operational log 运行记录Operator 操作员Operator keyboard 操作员键盘Operator station 操作员站Operator's alarm console 操作员报警台Optimal 最优的、最佳的Optimal value 最佳值Optional 可选的Option switch 选择开关Orifice plate 孔板Original 初始的、原始的Oscillator 振荡器Oscilloscope 示波器Out 出、出口Outage 停用Out-of-service 为投入运行的Outlet 出口Output 产量、产品、输出Output group 输出组Outside 外边、外面Over current 过流Over load 过负荷Overload protection 过载保护Overall design 总体设计Over voltage 过压Overflow 溢流Overflow vlv station 溢流阀门站Overhaul 大修Overhaul life 大修间隙Overhead 顶部Overhead line 架空线Override 超越Overspeed 超速Overspeed trip 超速跳闸Overview 概述、总述Own demand 厂用电量Oxide film 氧化膜、氧化层Oxygen 氧PPackage 组件、包Packed group 组合组Pad 瓦、衬垫Page 页Panel 屏、盘Parameter 参数Part 部分、部件Part per million PPM 百万分率Password 口令Path 路线Peak 峰值Peak load 峰值负荷Pendant 悬吊Pendant pull switch 拉线开关Penthouse 顶棚Penumatics 汽动装置Percent PCT 百分数Percentage 百分比Perfect 完全的、理想的Perfect combustion 完全燃烧Performance 完成、执行、性能Performance calculation 性能计算Performance curve 性能曲线Periodic 周期的、循环的Periodic inspection 定期检查Peripheral 周围的Peripheral equipment 外围设备Permanent 永久的、持久的Permanent magneticgenerator永磁发电机Permit 允许Permit to work 允许开工Petrol 汽油Phase PH 阶段、状态、方面、相Phase angle 相角Phase-failure protection 断相保护Phase not together 缺相、失相Phase sequence 相序Phase-in 同步Piezometer 压力计Pitch coal 烟煤Pid drawing 流程图Pilot 导向、辅助的、控制的Pilot bearing 导向轴承Pipe 管、管道Pitch 投、掷、节距、螺距Plan 计划Plant 工场、车间Plant load factor 电厂负荷因数Plastics 塑料Platen 台板、屏式Platen superheater PLT SH 屏式过热器Plug 塞子、栓、插头Plug socket 插座Plunger 柱塞、滑阀Plunger pump 柱塞泵Plus 加Plyers 钳子、老虎钳Pneumatic 气动的Point 点Point database 测点数据库Point directory 测点目录Point name 测点名Point record 测点记录Point field 泡克区Phase voltage 相电压Pole 机、柱Policher 除盐装置Pollution 污染Pop valve 安全阀、突开阀Portion 一部分Position POS 位置Positive 确定的、正的、阳性的Potable water 饮用水Potential transformer PT 电压互感器Pound LB 磅Power PWR 功率、电源Power factor 功率因子Power plant 电厂Pre-alarm 预报警PrecipitatorPRECI/PRECIP除尘器Preheat 预热Pre light 预点火Preliminary 准备工作Present 出现Preset 预设、预置Pressure PRES 压力Primary 初级的、一次的Primary air 一次风Primary air fan PAF 一次风机Primary superheater 低温过热器Primary grid substation 主网变电站Prime 首要的Printer 打印机Principle 原理、原则Priority 优先级、优点Probe 探头Process 过程、方法Processing time 处理时间Program 程序Programmable 可编程的Programmable logicalcontrollerPLC 可编程逻辑控制器Prohibit 禁止Proportional / integral /derivativePID 比例/积分/微分Protection PROT 保护Protection bolt 危急遮断器飞锤Protection ring 危急遮断器飞环Protocol 规约(数据通信)Potential transformer PT 电压互感器Psig磅/平方英寸(表压力)Psia磅/平方英寸(绝对压力)Puffer breaker 压力式断路器Pulse 脉冲、脉动Pulverizer PULV 磨煤机Pump 泵Punch 冲床、冲压机Purge 净化、吹扫Purifier 净化器Purify 纯度Purpose 目的、用途Push and pull switch 推拉开关Push button 按钮Put into operation 投入运行Pyod 热电偶Pyrology 热工学QQ-line Q 线Quad 回芯组线Quality 质量Quartz 石英、水晶Query 询问、查询Quick 快Quicksilver 水银、汞Quick open 快开Quit 停止、离开、推出RRack earth 机壳接地Radial 径向的、半径的Radication 开方Radiator wall rh 壁式再热器Radiator 散热(辐射)器Radiation fin 散热片Raise 升高Range 范围、量程Rap 敲打Rap device (除尘器)振打装置Rapid charge 快速充电Rated 额定的、比率的Rated conditions 额定条件Rated power 额定功率Ratio 比率Raw material 原材料Ray 光线、射线Reactance 电抗、反作用Reactive capacity 无功容量Reactive power 无功功率Read out 读出、结果传达Ready 准备好Real power 有效功率Real time 实时的Rear 后面Recall 重新调用、重查Receive tank 回收箱、接收箱Recipe 处方、配方Recire/Recycle damper 再循环挡板Recirculate 再循环Reclaim 再生回收Reclosing 重合闸Recommend 介绍、建议Recording 记录、录音、唱片Recovery 恢复、再生Recovery time 恢复时间Rectification 整流、检波、调整Rectifier 整流器Red 红色Reduction 还原、缩小、降低Redundancy 冗余、多余Reference REF 参考、参照、证明书Reflux 倒流、回流Region 地域、领域Register 寄存器Regulate 调节、控制Regulating stage 调节级Regulating valve 调节阀Reheater RH 再热器Relative REL 相对的Relative expansion 相对膨胀Relay 继电器Relay panel 继电器屏Release 释放Reliability 可靠的、安全的Relief去载、卸载、释放、解除Relieve valve 安全阀、减压阀Remote 遥远的、远方的Remote select 遥控选择Remote technical center RTC 遥控技术中心Renewal 更新、更换Repair 修理Repairer 修理工、检修工Repeat 重复、反复Replacement parts 备件、替换零件Request REO 请求Require 要求Reserve parts 备件Reserved 备用的Reset 复位Resistance 阻力、电阻Resonate 谐振、调谐Response 响应Responsibility 责任Retract 可伸缩的、缩回Retractable thermoprobe 可伸缩的温度探头Retrieval 可检索的、可追忆的Return 返回Return oil 回油Reverse power 逆功率Reverse rotation 反转Review 检查Rig 安装、装配、调整Right 右Right-of-way 公用线路Ring 环Roller 辊子Roof 顶、炉顶Root 跟Rotary switch 转换开关Rotating 旋转Rotating joint 液压联轴器Rotor 转子Routine 例行的、日常的Routing inspection 日常检查、日常检测Routing maintenance 日常维护Run 运行Run back 返回Rundown 迫降Running conditions 运行情况Running current 工作电流Running in 试运行、试转Running/operation overhaul 临时检修SSafe安全的、可靠的、稳定的Safe potential 安全电压Safety 安全Safety cap 安全帽Safety measure 安全措施Safety rules 安全规程Safety valve 安全线Sample 取样、举例Sampler 取样器Saturate 饱和Saturate condition 饱和条件、饱和状态Saturated steam SAT STM 饱和蒸汽Scale 铁锈水垢Scan 扫描Schedule 时间表、计划表Schematic 图解的、简图Scoop 勺管Scr controller 屏幕控制器Screen 屏幕Screw 螺杆、螺丝Screwdriver 螺丝刀Scroll 滚屏Sea 海Seal 密封Seal air 密封风Sealing gland 密封盖Seal oil 密封油Seal steam SEAL STM 密封蒸汽Search 寻找、查找Seawater 海水Second 秒、第二Second air SEC AIR 二次风Secondary 二次的Seep 渗出、渗漏Seepage 渗漏现象Select 选择Self 自己、自我、本人Self-hold 自保持Self-running 自启动Sensor 传感器Sensitive 灵敏器Sensitiveness 灵敏性Separator 分离器Sequence 顺序、序列Sequence of emergence SOE 事故追忆Sequential control system SCS 顺序控制系统Series-longitudinal layout 串联纵向布置Service 服务、伺服Service power 厂用电Servomotor 伺服电机Set 设定Setpoint 设定点Set up 安装、调整、建立Severity 刚度、硬度、严重Sewage treatment 废水处理Shadow 影子、屏蔽Shaft 轴、烟囱Shaft seal 轴封Shake 摇动、振动Shakeproof 防振Shaft 轴、手柄、矿井Shaped 形状Share 共享、分配Share memory 共享存储器Sheet 表格、纸张Shell 壳Shield 屏蔽层Shift 值、替换Shift charge engineer 值班工程师Shoe 推力瓦Shortage of water 缺水Short circuit 短路Shot 发射、冲击、钢粒Shunt reactor 并联电抗器Shut off 关闭Shutdown 停止、停机Siccative 干燥剂Side 侧边Sidewall 侧墙Sifter 筛子、滤波器Signal 信号Signal lamp 信号等Sign 标记、注册Significance 意义、有效Silence 消音、沉寂Silicon SI 硅Silicon stack 硅堆Silo 灰库Single 单个的、个体的Station interface module SLM 站接口模件Simple 单纯的、简单的Similar 同样的、类似的Simulator 仿真机Single blade switch 单刀开关Sinusoid 正弦曲线Site 现场Site commissioning test 现场投运方式Size 尺寸、大小Size of memory 存储量Sketch 图纸、草图Skin effect 集肤效应Skip 空指令、跳跃Slag 结垢Sliding key 滑销Sliding press mode 消压方式Sluiceway 水沟Slurry 灰浆Smoke 烟、冒烟Smokes-stack 烟囱Smooth 平滑的、光滑的Socket 插座Soft 软的、柔软的Software 软件Solenoid SOLN 螺线圈Solid 固体Sootblower 吹灰、吹灰器Sound detection 声音探测Source 源、电源Spanner 扳手Spare 备用的、空余的Spare parts 备件、备品Specification 技术说明Specific weight 比重Speed 速度Speed protection 超速保护Spray 喷射。

自动化控制英文缩写解释

自动化控制英文缩写解释

自动化控制英文缩写解释自动化控制(Automation Control)是指通过计算机、电子设备和传感器等技术手段,对各种生产设备和工业过程进行监测、控制和优化的过程。

在自动化控制领域中,人们通常使用一些缩写词汇来表示特定的技术、设备或者概念。

下面是一些常见的自动化控制英文缩写及其解释:1. PLC:Programmable Logic Controller(可编程逻辑控制器)PLC是一种专门用于工业自动化控制的计算机控制系统。

它可以根据预先编写的程序,对各种设备进行逻辑控制,实现自动化生产。

2. DCS:Distributed Control System(分布式控制系统)DCS是一种将控制功能分布在多个控制器中的控制系统。

它可以实现对大型工业过程的集中监控和控制,提高生产效率和安全性。

3. SCADA:Supervisory Control and Data Acquisition(监控与数据采集)SCADA系统是一种用于监控和控制分布式设备的系统。

它可以实时采集和显示设备的运行状态,并通过远程控制实现对设备的操作。

4. HMI:Human Machine Interface(人机界面)HMI是一种用于人机交互的设备或者软件界面。

它可以通过图形化界面显示设备的状态和操作控制,使操作员更方便地进行控制和监控。

5. PID:Proportional-Integral-Derivative(比例-积分-微分)PID是一种常用的控制算法,用于调节系统的输出。

它根据系统的误差、积分和微分来计算控制量,使系统能够快速稳定地响应变化。

6. CNC:Computer Numerical Control(计算机数控)CNC是一种通过计算机控制机床运动的技术。

它可以根据预先编写的程序,实现对机床的自动加工,提高加工精度和效率。

7. MES:Manufacturing Execution System(创造执行系统)MES是一种用于管理和控制创造过程的系统。

自动化控制英文缩写解释

自动化控制英文缩写解释

自动化控制英文缩写解释自动化控制是指利用计算机技术和现代控制理论,对生产过程、设备和系统进行自动化监测、调节和控制的一种技术手段。

在自动化控制领域中,有许多常见的英文缩写,下面将对其中一些常见的英文缩写进行解释。

1. PLC (Programmable Logic Controller)PLC是可编程逻辑控制器的缩写。

它是一种专门用于工业自动化控制的计算机控制系统。

PLC能够根据预先设定的程序对输入信号进行逻辑运算和控制输出信号,从而实现对生产过程的自动化控制。

2. DCS (Distributed Control System)DCS是分布式控制系统的缩写。

它是一种用于监控和控制大型工业过程的自动化系统。

DCS系统由多个分布在不同地点的控制单元组成,这些控制单元通过网络连接,实现对整个生产过程的集中控制和监测。

3. SCADA (Supervisory Control and Data Acquisition)SCADA是监控与数据采集的缩写。

它是一种用于监控、采集和控制远程设备和系统的技术。

SCADA系统通过传感器和执行器与远程设备进行通信,将实时数据传输到监控中心,操作员可以通过监控中心对远程设备进行监测和控制。

4. HMI (Human Machine Interface)HMI是人机界面的缩写。

它是一种用于人机交互的技术,通过图形化界面和操作控制设备,使操作员能够直观地监控和控制自动化系统。

HMI通常包括触摸屏、键盘、指示灯等设备,操作员可以通过这些设备与自动化系统进行交互。

5. PID (Proportional-Integral-Derivative)PID是比例-积分-微分的缩写。

它是一种常用的控制算法,用于调节和控制自动化系统的输出。

PID控制器根据当前的偏差和变化率,计算出输出信号,从而实现对系统的精确控制。

6. CNC (Computer Numerical Control)CNC是计算机数控的缩写。

自动化常用英文缩写

自动化常用英文缩写

自动化常用英文缩写自动化是现代工业生产和管理中的重要组成部份,为了简化和标准化相关概念和术语的表达,人们普遍使用英文缩写来代替长表达方式。

以下是自动化领域中常用的英文缩写及其对应的全称和解释:1. PLC:Programmable Logic Controller(可编程逻辑控制器)PLC是一种用于控制工业过程和机械设备的数字计算机。

它能够监测输入信号,根据预设的逻辑程序进行处理,并输出控制信号,实现自动化控制。

2. SCADA:Supervisory Control and Data Acquisition(监控与数据采集)SCADA系统用于监控和控制远程设备和过程。

它通过传感器和执行器采集数据,并通过网络传输到中央控制中心,以实现远程监控和操作。

3. HMI:Human-Machine Interface(人机界面)HMI是用户与自动化系统进行交互的界面。

它通常由触摸屏、按钮和指示灯等组成,用于显示系统状态、接收用户输入并向用户提供反馈信息。

4. DCS:Distributed Control System(分布式控制系统)DCS是一种用于控制大型工业过程的系统。

它由多个控制器和分布在不同位置的输入/输出设备组成,可以实现分布式控制和数据采集。

5. MES:Manufacturing Execution System(创造执行系统)MES是用于管理和控制创造过程的软件系统。

它与企业资源计划(ERP)系统集成,用于跟踪生产进度、采集生产数据和优化生产流程。

6. CNC:Computer Numerical Control(计算机数控)CNC是一种用于控制机床和工具的技术。

它通过预先编程的指令,控制机床的运动和工具的操作,实现高精度和高效率的加工。

7. RFID:Radio Frequency Identification(射频识别)RFID是一种用于识别和跟踪物体的技术。

它通过射频信号实现对物体的无线识别和数据传输,广泛应用于物流、库存管理和身份验证等领域。

工控常用英文单词

工控常用英文单词
casual
偶然的、临时、不规则

Casual inspection 不定期检查、临时检查
casualty 人身事故、伤亡、故障
catastrophe 灾祸、事故
Catastrophe failure 重大事故
Cat-pad 猫爪
cathode 阴板、负极
Cathode ray tube CRT 显示器
Centrifugal fan 离心风机
Certification of fitness 合格证书、质量证书
Chamber 办公室、会议室
Change 改变
Channel 通道、频道
Character 字符
Characteristics 特性、特性曲线
Charge 负荷、充电、加注
Charge indicator 验电器、带电指示器
智能传感器——Smart Sensor
智能变送器——Smart Transducer
虚拟仪器 ——Virtual Instrument
主站/从站——Master Station/Slave station
操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Station
burner 燃烧器
Burner management system 燃烧器管理系统
Bus section 母线段
busbar 母线
Busbar frame 母线支架
buscouple 母联
button 按钮
Bypass/by pass BYP 旁路
Bypass valve 旁路阀

自动化常用英文缩写

自动化常用英文缩写

自动化常用英文缩写自动化是指通过使用机械、电子、计算机等技术手段,使生产过程、操作过程或系统能够自动执行,减少人工干预,提高效率和质量。

在自动化领域,有许多常用的英文缩写术语,这些缩写术语在技术交流和文档撰写中被广泛使用。

下面是一些常见的自动化常用英文缩写及其解释:1. PLC:Programmable Logic Controller,可编程逻辑控制器。

它是一种用于工业自动化控制的数字计算机,可编程控制生产过程中的机械和电子设备。

2. SCADA:Supervisory Control and Data Acquisition,监控与数据采集系统。

它是一种用于监控和控制工业过程的软件和硬件组合,可以实时采集、处理和显示生产数据。

3. DCS:Distributed Control System,分布式控制系统。

它是一种用于监控和控制工业过程的集中式控制系统,通过分布在不同位置的控制器进行数据交换和控制。

4. HMI:Human-Machine Interface,人机界面。

它是一种通过图形化界面与自动化设备进行交互的技术,使操作人员能够直观地监控和控制生产过程。

5. CNC:Computer Numerical Control,计算机数控。

它是一种通过计算机控制工具或机床的运动和加工过程的技术,用于实现高精度和高效率的生产加工。

6. MES:Manufacturing Execution System,制造执行系统。

它是一种用于管理和控制生产过程的软件系统,包括计划排程、物料管理、质量控制等功能。

7. RFID:Radio Frequency Identification,射频识别。

它是一种通过无线电信号识别和跟踪物体的技术,常用于物料追踪和库存管理。

8. IoT:Internet of Things,物联网。

它是一种通过互联网连接和通信的技术,使各种物理设备能够互相交互和共享数据。

9. AI:Artificial Intelligence,人工智能。

工业控制常用英语单词及缩写

工业控制常用英语单词及缩写

工业控制常用英语单词及缩写集散控制系统——Distributed Control System(DCS)现场总线控制系统——Fieldbus Control System(FCS)监控及数据采集系统——Supervisory Control And Data Acqusition(SCADA)可编程序控制器——Programmable Logic Controller(PLC)可编程计算机控制器——Programmable Computer Controller(PCC)工厂自动化——Factory Automation(FA)过程自动化——Process Automation(PA)办公自动化——Office Automation(OA)管理信息系统——Management Information System(MIS)楼宇自动化系统——Building Automation System人机界面——Human Machine Interface(HMI)工控机——Industrial Personal Computer(IPC)单片机——Single Chip Microprocessor计算机数控(CNC)远程测控终端——Remote Terminal Unit(RTU)上位机——Supervisory Computer图形用户界面(GUI)人工智能——Artificial Intelligent(AI)智能终端——Intelligent Terminal模糊控制——Fuzzy Control组态——Configuration仿真——Simulation冗余——Redundant客户/服务器——Client/Server网络——Network设备网——DeviceNET基金会现场总线——foundation fieldbus(FF)现场总线——Fieldbus以太网——Ethernet变频器——Inverter脉宽调制——Pulse Width Modulation(PWM)伺服驱动器——Servo Driver软起动器——Soft Starter步进——Step-by-Step控制阀——Control Valver流量计——Flowmeter仪表——Instrument记录仪——Recorder传感器——Sensor智能传感器——Smart Sensor智能变送器——Smart Transducer虚拟仪器——Virtual Instrument主站/从站——Master Station/Slave station操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Station。

工业控制英语缩写

工业控制英语缩写

计算机数控(CNC)
远程测控终端——Remote Terminal Unit(RTU)
上位机——Supervisory Computer
图形用户界面(GUI)
人工智能——Artificial Intelligent(AI)
智能终端——Intelligent Terminal
现场总线——Fieldbus
以太网——Ethernet
变频器——Inverter
脉宽调制——Pulse Width Modulation(PWM)
伺服驱动器——Servo Driver
软起动器——Soft Starter
步进——Step-by-Step
控制阀——Control Valver
可编程计算机控制器——Programmable Computer Controller(PCC)
工厂自动化——Factory Automation(FA)
过程自动化——Process Automation(PA)
办公自动化——Office Automation(OA)
管理信息系统——Management Information System(MIS)
流量计——Flowmeter
仪表——Instrument
记录仪—— Recorder
传感器——Sensor
智能传感器——Smart Sensor
智能变送器——Smart Transducer
虚拟仪器 ——Virtual Instrument
主站/从站——Master Station/Slave station
操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Station

工业控制常用英语单词及缩写

工业控制常用英语单词及缩写

工业控制常用英语单词及缩写工业控制常用英语单词及缩写转帖]工业控制常用英语单词及缩写集散控制系统——Distributed Control System(DCS)现场总线控制系统——Fieldbus Control System(FCS)监控及数据采集系统——Supervisory Control And Data Acqusition(SCADA)可编程序控制器——Programmable Logic Controller(PLC)可编程计算机控制器——Programmable Computer Controller(PCC)工厂自动化——Factory Automation(FA)过程自动化——Process Automation(PA)办公自动化——Office Automation(OA)管理信息系统——Management Information System(MIS)楼宇自动化系统——Building Automation System人机界面——Human Machine Interface(HMI)工控机——Industrial Personal Computer(IPC)单片机——Single Chip Microprocessor计算机数控(CNC)远程测控终端——Remote Terminal Unit(RTU)上位机——Supervisory Computer图形用户界面(GUI)人工智能——Artificial Intelligent(AI)智能终端——Intelligent Terminal模糊控制——Fuzzy Control组态——Configuration仿真——Simulation冗余——Redundant客户/服务器——Client/Server网络——Network设备网——DeviceNET基金会现场总线——foundation fieldbus(FF)现场总线——Fieldbus以太网——Ethernet变频器——Inverter脉宽调制——Pulse Width Modulation(PWM)伺服驱动器——Servo Driver软起动器——Soft Starter步进——Step-by-Step控制阀——Control Valver流量计——Flowmeter仪表——Instrument记录仪——Recorder传感器——Sensor智能传感器——Smart Sensor智能变送器——Smart Transducer虚拟仪器——Virtual Instrument主站/从站——Master Station/Slave station操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Station。

自动化常用英文缩写

自动化常用英文缩写

自动化常用英文缩写自动化技术在现代工业和生活中起着至关重要的作用,它提高了生产效率,降低了成本,并且使我们的生活更加便利。

在自动化领域中,有许多常用的英文缩写,这些缩写在技术文献、报告和讨论中经常出现。

下面是一些常见的自动化英文缩写及其解释:1. PLC(Programmable Logic Controller):可编程逻辑控制器。

PLC是一种用于控制工业过程的数字计算机,它可以监测输入信号,执行逻辑运算,并控制输出信号,以实现自动化控制。

2. SCADA(Supervisory Control and Data Acquisition):监控与数据采集系统。

SCADA系统用于监控和控制工业过程,它能够实时采集数据、监测设备状态,并通过人机界面提供操作员对工业过程的控制和管理。

3. HMI(Human Machine Interface):人机界面。

HMI是一种用户与机器之间进行交互的界面,它通常使用触摸屏、键盘和鼠标等设备,提供实时数据显示、操作控制和报警提示等功能。

4. DCS(Distributed Control System):分布式控制系统。

DCS是一种用于控制大型工业过程的系统,它由多个分布在不同位置的控制器组成,通过网络进行通信和协调,实现对整个工业过程的集中控制。

5. PID(Proportional-Integral-Derivative):比例积分微分控制。

PID控制是一种常用的控制算法,它根据目标值和实际值之间的偏差,计算出控制器的输出信号,以实现对系统的稳定控制。

6. CNC(Computer Numerical Control):计算机数控。

CNC是一种通过计算机控制工具路径和运动轴的技术,用于加工和制造各种产品,如机械零件、汽车零部件和电子元件等。

7. MES(Manufacturing Execution System):制造执行系统。

MES是一种用于管理和控制制造过程的系统,它与企业资源计划(ERP)系统和设备控制系统集成,实现对生产计划、物料追踪和质量管理等方面的监控和协调。

自动化常用英文缩写

自动化常用英文缩写

自动化常用英文缩写自动化是现代工业生产中的重要组成部分,它可以提高生产效率、降低成本,并提高产品质量。

在自动化领域中,有许多常用的英文缩写词汇,下面将列举一些常见的自动化英文缩写及其解释。

1. PLC:Programmable Logic Controller(可编程逻辑控制器)PLC是一种用于工业控制系统的数字计算机,它可以对输入信号进行逻辑处理,并根据预设的程序控制输出信号,用于自动化生产线的控制和监测。

2. SCADA:Supervisory Control and Data Acquisition(监控与数据采集)SCADA系统用于监控和控制工业过程中的设备和参数。

它通过传感器和执行器采集数据,并将数据传输到中央控制室,以便操作员进行远程监控和控制。

3. DCS:Distributed Control System(分布式控制系统)DCS是一种用于工业自动化控制的系统,它由多个控制器组成,分布在不同的位置,并通过网络进行通信和协调。

DCS系统可以实现对整个工厂或过程的集中控制和监控。

4. HMI:Human Machine Interface(人机界面)HMI是一种用于人机交互的设备或软件界面,它将人与自动化系统连接起来,允许操作员通过触摸屏、键盘或鼠标与自动化设备进行交互和控制。

5. CNC:Computer Numerical Control(数控)CNC是一种通过计算机控制工具运动和加工的技术。

它使用预先编写的程序来控制机床的运动,实现高精度和高效率的加工过程。

6. MES:Manufacturing Execution System(制造执行系统)MES是一种用于管理和监控制造过程的软件系统。

它可以跟踪和记录生产过程中的各个环节,并提供实时数据和报告,以帮助制造商优化生产计划和资源分配。

7. RFID:Radio Frequency Identification(射频识别)RFID是一种无线通信技术,用于自动识别和跟踪物体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

INDUSTRIAL AND COLLABORATIVE CONTROL SYSTEMS- A COMPLEMENTARY SYMBIOSIS –-Looking at today‟s control system one can find a wide variety of implementations. From pure industrial to collaborative control system (CCS) tool kits to home grown systems and any variation in-between. Decisions on the type of implementation should be driven by technical arguments Reality shows that financial and sociological reasons form the complete picture. Any decision has it‟s advantages and it‟s drawbacks. Reliability, good documentation and support are arguments for industrial controls. Financial arguments drive decisions towards collaborative tools. Keeping the hands on the source code and being able to solve problems on your own and faster than industry are the argument for home grown solutions or open source solutions. The experience of many years of operations shows that which solution is the primary one does not matter, there are always areas where at least part of the other implementations exist. As a result heterogeneous systems have to be maintained. The support for different protocols is essential. This paper describes our experience with industrial control systems, PLC controlled turn key systems, the CCS tool kit EPICS and the operability between all of them.-INTRODUCTIONProcess controls in general started at DESY in the early 80thwith theinstallation of the cryogenic control system for the accelerator HERA (Hadron-Elektron-Ring-Anlage). A new technology was necessary because the existing hardware was not capable to handle standard process controls signals like4 to 20mA input and output signals and the software was not designed to run PIDcontrol loops at a stable repetition rate of 0.1 seconds. In addition sequence programs were necessary to implement startup and shutdown procedures for the complex cryogenic processes like cold boxes and compete compressor streets.Soon it was necessary to add interfaces to field buses and to add computing power to cryogenic controls. Since the installed D/3 system[1] only provided an documented serial connection on a multibus board, the decision was made to implement a DMA connection to VME and to emulate the multibus board‟s functionality. The necessary computing power for temperature conversions came from a Motorola MVME 167 CPU and the field bus adapter to the in house SEDAC field bus was running on an additional MVME 162. The operating system was VxWorks and the application was the EPICS toolkit.Since this implementation was successful it was also implemented for the utility controls which were looking for a generic solution to supervise their distributed PLC‟s.A SELECTION OF PROCESS CONTROL SYSTEMS AT DESYDCS (D/3)As a result of a market survey the D/3 system from GSE was selected for the HERA cryogenic plant. The decision was fortunate because of the DCS character of the D/3. The possibility to expand the system on the display- and on the I/O side helped to solve the increasing control demands for HERA. The limiting factor for the size of the system is not the total number of I/O but the traffic on the communication network. This traffic is determined by the total amount of archived data not by the data configured in the alarm system. The technical background of this limitation is the fact that archived data are polled from the display servers whereas the alarms are pushed to configured destinations like alarm-files, (printer) queues or displays.SCADA Systems with DCS Features (Cube)The fact that the D/3 system mentioned above had some hard coded limitations with respect to the Y2K problem was forcing us to look for an upgrade or a replacement of the existing system. As a result of a call for tender the company Orsi with their product Cube came into play [2]. The project included a complete replacement of the installed functionality. This included the D/3 as well as the integration of the DESY field bus SEDAC and the temperature conversion in VME. The project started promising. But soon technical and organizational problems were pushing the sche dule to it‟s limits which were determined by the HERA shutdown scheduled at that time. The final acceptance test at the vendors site showed dramatic performance problems. Two factors could be identified as the cause of these problems. The first one was related to the under estimated CPU load of the 6th grade polynomial temperature conversion running at 1 Hz. The second one was the additional CPU load caused by the complex functionality of the existing D/3 system. Here it was underestimated that each digital and analog input and output channel had it‟s own alarm limits in the D/3 system. In a SCADA like system as Cube the base functionality of a channel is to read the value and make it available to the system. Any additional functionality must be added. Last not least the load on the network for polling all the alarm limits – typically for a SCADA system – was also driving the network to it‟s limits.Finally the contract with Orsi was cancelled and an upgrade of the D/3 system was the only possible solution. It was finally carried out in march 2003.In any case it should be mentioned that the Cube approach had the advantage of a homogeneous configuration environment (for the Cube front end controllers) – compared with heterogeneous environments for …pure‟ SCAD A systems.SCADA (PVSS-II)The H1 experiment at the HERA accelerator decided to use PVSS-II for an upgrade of their slow control systems[3]. The existing systems were developed by several members of the H1 collaboration and were difficult to maintain. Thedecision to use PVSS as a replacement was driven by the results of an extensive survey carried out at CERN by the Joint Controls Project [4]. PVSS is a …pure‟ Supervisory And Data Acquisition System (SCADA). It provides a set of drivers for several field buses and generic socket libraries to implement communication over TCP/IP. The core element is the so called event manager. It collects the data (mostly by polling) from the I/O devices and provides an event service to the attached management services like: control manager, database manager, user interface, API manager and the built in HTTP server. The PVSS scripting library allows to implement complex sequences as well as complex graphics. Compared with other SCADA systems PVSS comes with one basic feature: it provides a true object oriented API to the device‟s data.One major disadvantage of SCADA systems is the fact that two databases, the one for the PLC and the one for the SCADA system must be maintained.Integrated environments try to overcome this restriction.EPICSEPICS has emerged at DESY from a problem solver to a fully integrated control system. Starting from the data collector and number cruncher for the cryogenic control system, EPICS made it‟s way to become the core application for the DESY utility group. In addition it is used wherever data is available through VME boards or by means of Industry Pack (IP) modules. For those cryogenic systems which are not controlled by the D/3 system EPICS is used with it‟s complete functionality. In total ab out 50 Input Output Controller (IOC) are operational processing about 25 thousand records.1 EPICS as a SCADA SystemThe utility group ( water, electrical power, compressed air, heating and air conditioning) is using a variety of PLC‟s spread out over th e whole DESY site.EPICS is used to collect the data from these PLC‟s over Profibus (FMS and DP) and over Ethernet (Siemens H1 and TCP). The IOC‟s provide the interfaces to the buses and collect the data. The built in alarm checking of the EPICS records is used to store and forward alarm states to the alarm handler (alh) of the EPICS toolkit. In addition tools like the channel archiver and the graphic display (dm2k) are used. The default name resolution (by UDP broadcast) and the directory server (name server) are used to connectclient and server applications over TCP. All of these are basically SCADA functions.The textual representation of all configuration files ( for the IOC, the graphic tool, the alarm handler and the archiver) provides a flexible configuration scheme. At DESY the utility group has developed a set of tools to create IOC databases and alarm configuration files from Oracle. This way the controls group provides the service to maintain the EPICS tools and the IOC‟s while the users can conc entrate on the equipment being controlled.2 EPICS as a DCS SystemBesides the basic components of a SCADA system EPICS also provides a full flavoured Input Output Controller (IOC). The IOC provides all of the function a DCS system requires, such as: a standard set of properties implemented in each record, built in alarm checking processed during the execution of each record;control records like PID etc.; configuration tools for the processing engine. The flexible naming scheme and the default display and alarm properties for each record ease the connection between the operator tools and the IOC‟s. The flexible data acquisition supports the poll mode as well as the publish subscribe mode.The latter reduces the traffic drastically.PLC‟sPLC‟s provide n owadays the same rich functionality as it was known from stand alone control systems in the past. Besides the basic features like the periodic execution of a defined set of functions they also allow extensive communication over Ethernet including embedded http servers and different sets of communication programs. Besides the communication processors, display processors can be linked to PLC‟s to provide local displays which can be comprised as touch panels for operator intervention and value settings.These kind of PLC‟s are attractive for turn key systems which are commissioned at the vendors site and later integrated into the customers control system. Intelligent I/ONew developments in I/O devices allow to …cluster‟ I/O in even smaller groups and connec t theses clustered I/O channels directly to the control system. PLC‟s are not any more necessary for distributed I/O. Simple communication processors for any kind of field buses or for Ethernet allow an easy integration into the existing controls infrastructure. Little local engines can run IEC 61131 programs.The differences between PLC‟s and intelligent I/O subsystems fade away.FUNCTIONALITYThe ever lasting question why control systems for accelerators and other highly specialized equipment are often home grown or at least developed in a collaboration but only in rare cases commercial shall not be answered here. We try to summarize here basic functionalities of different controls approaches. Front-end ControllerOne of the core elements of a control system is the front-end controller. PLC‟s can be used to implement most of the functions to control the equipment. The disadvantage is the complicated access to the controls properties. For instance all of the properties of a control loop like the P, I and D parameter, but also the alarm limits and other additional properties must be addressed individually in order to identify them in the communication protocol and last not least in the display-, alarm- and archive programs. In addition any kind of modifications of theseembedded properties is difficult to track because two or more systems are involved. This might be one strong argument why control loops are mainly implemented on the IOC level rather than PLC‟s.1 I/O and Control LoopsComplex control algorithms and control loops are the domain of DCS alike control systems. The support for sets of predefined display and controls properties is essential. If not already available (like in DCS systems) such sets of generic properties are typically specified throughout a complete control system (see namespaces).2 Sequence/ State programsSequence programs can run on any processor in a control system. The runtime environment depends on the relevance of the code for the control system.Programs fulfilling watchdog functions have to run on the front-end processor directly. Sequence programs for complicated startup and shutdown procedures could be run on a workstation as well. The basic functionality of a state machine can be even implemented in IEC 61131. Code gen erators can produce …C‟ code which can be compiled for the runtime environment.3 Supported HardwareThe support for field buses and Ethernet based I/O is a basic functionality for SCADA type systems it is commercially available from any SCADA system on the market. The integration of specific hardware with specific drivers and data conversion is the hard part in a commercial environment. Open API‟s or scripting support sometimes help to integrate custom hardware. If these tools are not provided for the control system it is difficult –if not impossible - to integrate custom hardware.New industrial standards like OPC allow the communication with OPC aware devices and the communication between control systems. One boundary condition for this kind of functionality is the underlying operating system. In the case of OPC it is bound to DCOM which is a Microsoft standard. UNIX based control systems have a hard time to get connected. Only control systems supporting multiple platforms can play a major role in a heterogeneous environments.As a result the limited support for custom- or specialized hardware may give reason for the development of a new control system.Display and OperationBesides the front-end system the operator interfaces play a major role for the acceptance of a control system. SCADA tools come with a homogeneous look and feel throughout their set of tools. Toolkits implemented in a collaboration might vary because the individual tools were developed by different teams.1 GraphicSynoptic displays are the advertising sign for any control system. Commercial synoptic displays come with a rich functionality and lots of special features.Starting to make use of all these features one will find out that all individual properties of the graphic objects must be specified individually. Since SCADA systems must be generic they cannot foresee that an input channel does not only consist of a value but also consists of properties like display ranges and alarm values. Defining all of these properties again and again can be a pretty boring job.Some systems allow to generate prototypes of graphic objects. These prototype or template graphics are complex and need a specialist to generate them.DCS or custom synoptic display programs can make use of the common set of properties each I/O point provides. This predefined naming scheme will fill in all standard property values and thus only require to enter the record –or device name into the configuration tool. A clear advantage for control systems with a notion of I/O objects rather than I/O points.2 AlarmingAlarms are good candidates to distinguish between different control system architectures. Those systems which have I/O object implemented also provide alarm checking on the front-end computer. Those systems which only know about I/O points have to add alarm checking into the I/O processing. While the I/O object approach allows to implement alarm checking in the native programming language of the front-end system, I/O point oriented systems typically have to implement this functionality in their native scripting language. This is typically less efficient and error prone because all properties must be individually configured. This leads to a flood of properties. Not only the error states for each I/O point wind up to be individual I/O points but also the alarm limits and the alarm severity of each limit must be defined as I/O points if it is desired to be able to change their values during runtime.Besides this impact on the configuration side the processing and forwarding of alarms makes the difference between SCADA and DCS systems. Since SCADA systems inherently do not …know‟ about alarms, each alarm state must be polled either directly from the client application or in advanced cases from an event manager which will forward alarm states to the clients. In any case a lot of overhead for …just‟ checking alarm limits. DCS system again have the advantage that clients can either register themselves for alarm states und thus get the information forwarded or are configured to send alarmchanges to certain destinations spread around the control system. The latter case is only possible for systems which in total are configured with all the nodes taking part in the controls network.3 Trending and ArchivingTrending has become an important business in control systems architectures.Trends are necessary to trace error conditions or for post mortem and performance analysis of the controlled plant. Besides some customimplementations which are capable to store the data of complete control objects, most of the trending tools archive scalar data. Additional features like conditional trending or correlation plots make up the difference between individual implementations.4 Programming InterfacesWith respect to open programmin g interfaces PLC‟s and DCS systems have a common strategy. They are running reliably because there‟s no way to integrate custom code which could interfere with the internal processing. As a consequence the customer has to order …specials‟ - which are extremely expensive – or forget about it and use the system as a black box.Since SCADA systems by definition must be able to communicate with a variety of I/O subsystems they already have some built in API‟s which allow to integrate custom functionality.Specially collaborative systems need a certain openness to fulfill all the requirements from various development groups. Programming interfaces on all levels like font-end I/O, front-end processing, networking etc. are mandatory. A clear advantage for this type of system.5 RedundancyIf redundancy means the seamless switch which takes over all the states and all the values of the I/O and all states of all programs currently running, it is a domain of only a few DCS systems. Custom or CCS implementation do not provide this kind of functionality. Maybe because of the immense effort and the fact that it is only required in rare cases.Besides processor redundancy, redundant networks or I/O subsystems are available for certain commercial DCS systems. Again –a domain which is not covered by SCADA or CCS implementations.Advanced safety requirements may be covered by redundant PLC subsystems.These are for instance installed in (nuclear) power plants. Requirements for Personal Protection Systems (PPS) can sometimes only be fulfilled by redundant PLC‟s. In process controls redundant PLC‟s are only used in rare cases.6 NamespaceThe flat namespace of SCADA systems has already been described in the alarm section. Some SCADA systems (like PVSS-II) provide the notion of control objects or structured data which is a rare case. In all other cases so called field objects must be specified. These are objects which consist of a list of properties (implemented as I/O points) and a set of methods ( implemented asmacros or function calls). One of these approaches is the UniNified Industrial COntrol System (UNICOS) at CERN [5].DCS systems and most of the custom/ collaborative systems are record –or device oriented. The difference being that typically one record is connected to asingle I/O point and provides this way all sub features of a record implementation like individual engineering units, display- and alarm limits. The device oriented approach allows to connect several I/O points. The major difference being the fact that an object oriented device implementation provides methods and states for a device while (EPICS) records only serve a certain set of built in functions.Naming hierarchies are not specific to a type of implementation. They are available for some systems of any kind. For sure hierarchical naming schemes are desirable.IMPLEMENTATION STRATEGIESAfter having shown all the possible controls approaches it is time to have a look at the implementation of control systems.Starting from the I/O level one has to decide whether commercial solution are required, feasible or wanted. Special I/O does not always require custom solution for the font-end controller. Signals can be converted into standard signals but this does not apply for all kinds of signals. Resolution, repetition rates and signal levels might require custom developments which must be integrated into the overall control architecture. Even if the signals can not be connected to standard I/O interfaces it might be possible to develop I/O controllers which implement a field bus interface which allow the integration with commercial control systems.Once this level of integration is not possible custom front-end controllers like VME crates come into play.Besides the decision whether special I/O requires dedicated custom solutions one has to decide who will do which part of the work? Does for instance the necessity of VME crates prohibit the delivery of a …turn key‟ system built by industry? Or does a PLC based front-end system require a commercial SCADA system for high level controls?Turn Key SystemsIt is a clear trend in industry to deliver turn key systems. It allows a modular design of the whole system. Individual components can be subcontracted to several companies and tested locally. Once delivered to the construction site the primary acceptance tests have already been passed and the second phase, to integrate the subsystem into the global control system begins.While the detailed specification of control loops etc. is now part of the subsystems contract, the customer has to specify clearly how much information of the subsystem must be made available, what the data structures will look like and which connection (field bus/ Ethernet) will be used.Most turn key systems are delivered with PLC‟s. Th e construction of the Swiss Light Source (SLS) has shown that also a VME based I/O system running a CCS – in this case EPICS – can be successfully commissioned [6].PLC Based SystemsPLC based systems are a consequence of the turn key ansatz. The next obvious approach might be to look besides commercial PLC‟s also for commercial SCADA systems. The advantage is clearly the same like for the PLC: stable software, no programming – only configuration, support and good documentation.At DESY we have successfully established a relation between the controls group which provides a CCS service based on EPICS and the utility group which uses the EPICS configuration tools to set up their control environment. The big advantage though being that the EPICS code can be adjusted to the special requirements from both sides.Industrial SolutionsThe difference between CCS solutions and commercial solutions is fading away as soon as industry starts to deliver and support collaborative control systems. At KEK a company was contracted to supply programmers for the KEK-B upgrade.These programmers were trained in writing drivers and application code for EPICS. As a result the KEK-B control system is a mixture of software developed partly by industry and partly in house. This is another example for an industrial involvement for a CCS implementation.COSTThe question: “Was is the total cost of ownership (TCO) of a PC?” has kept people busy since PC‟s exist. The answers vary to all extremes. The question what is the TCO of a control system might give similar results.If you go commercial you have to pay for the initial licenses the implementation which is typically carried out by the supplier or by a subcontractor, and you pay for the on going software support which might or might not include the update license fee.If you go for a collaborative approach, you might contract a company or implement everything on your own. A question of …time and money‟ as industry says. You will have more freedom and flexibility for your implementations but also a steeper learning curve. You can rely on the collaboration to provide new features and versions or you can contribute yourself. A major difference calculating the long term costs for a control system.At DESY one can roughly estimate that the (controls application)-support for a commercial approach – here D/3 - and the -support for a collaborative approach –here EPICS - is nearly the same. The software support and upgrade license fee is equivalent to one and a half FTE‟s – which is about the manpower necessary to support new hardware and to upgrade EPICS.CONCLUSIONSDepending on the size and the requirements for a controls project the combination of commercial solutions and solutions based on a collaborative approach is possible in any rate between 0 and 100 percent. This applies for all levels from implementation tolong term support. Special requirements on safety issues or a lack of manpower might turn the scale commercial. The necessity to interface special hardware, special timing r equirements, the …having the code in my hands‟ argument or the initial costs for commercial solutions will turn the scale collaborative. As long as collaborative approaches like EPICS stay up to date and run as stable and robust as commercial solutions, both will keep their position in the controls world in a complementary symbiosis.外文翻译译文工业控制系统和协同控制系统当今的控制系统被广泛运用于许多领域。

相关文档
最新文档