电压型单相全桥逆变电路讲课稿

合集下载

单相全桥电压型逆变电路

单相全桥电压型逆变电路

单相全桥电压型逆变电路单相全桥电压型逆变电路是一种常用的电力电子变换器,它能将直流电源转换为交流电源,广泛应用于各种电力供应系统和电力调节系统中。

本文将对单相全桥电压型逆变电路的工作原理、优缺点以及应用领域进行详细介绍。

一、工作原理单相全桥电压型逆变电路由四个开关管和相应的控制电路组成。

开关管分别为Q1、Q2、Q3和Q4,通过适当的控制,可以实现对开关管的导通和关断。

在工作过程中,当Q1和Q4导通,Q2和Q3关断时,直流电源的正极连接到电路的A相,负极连接到电路的B 相,此时输出的是正半周的交流电压。

当Q1和Q4关断,Q2和Q3导通时,正负极的连接情况反转,输出的是负半周的交流电压。

通过不断交替导通和关断,可以在输出端获得一段完整的交流电压波形。

二、优缺点单相全桥电压型逆变电路具有以下优点:1. 输出电压稳定:由于采用全桥结构,能够有效地消除直流电源的波动和噪声,输出电压稳定可靠。

2. 输出功率大:全桥结构能够充分利用电源能量,输出功率相对较大。

3. 输出电压可调:通过控制开关管的导通和关断时间,可以实现对输出电压的调节,满足不同需求。

4. 抗干扰能力强:逆变电路可有效抑制外界干扰信号,提高系统的抗干扰能力。

然而,单相全桥电压型逆变电路也存在一些缺点:1. 成本较高:由于需要四个开关管,控制电路和保护电路等,相对于其他逆变电路而言,成本较高。

2. 效率较低:由于开关管的导通和关断需要一定的时间,逆变过程中会产生一定的开关损耗,导致转换效率有所降低。

三、应用领域单相全桥电压型逆变电路具有广泛的应用领域,包括但不限于以下几个方面:1. 电力供应系统:逆变电路可以将直流电源转换为交流电源,用于电力供应系统中的电压和频率调节,满足不同负载的需求。

2. 电动机控制:逆变电路可将直流电源转换为交流电源,用于电动机的控制和驱动,实现电机的速度调节和方向控制等功能。

3. 新能源应用:逆变电路可以将太阳能、风能等新能源转换为交流电源,供应给家庭、工厂等用电设备。

单相全桥逆变电路讲解

单相全桥逆变电路讲解

基础知识介绍 (电容)
常用电容器 铝电解电容器 、钽电解电容器 、薄膜电容器 、 瓷介电容器 、独石电容器 、纸质电容器、微 调电容器 、陶瓷电容器 、玻璃釉电容器 电容极性:引脚长的为正,引脚短的为负。或 标有“+”“—”

基础知识介绍 (电容)
电容器主要特性参数 1、标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。 电容器实际电容量与标称电容量的偏差称误差,在允 许的偏差范围称精度。 精度等级与允许误差对应关系:00(01)-±1%、0 (02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、 Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、 Ⅵ级,根据用途选取。

主电路工作原理及设计

VSIN
50Hz
220V
Fuse
1
5
A
Bridge1
220u/450v
主电路工作原理及设计
Cin1
讲解原理时的单相全桥逆变电路图
MOSFET-N
VT2
MOSFET-N
VT1
MOSFET-N
VT4
MOSFET-N
VT3
10mH
Inductor
L
?
1
Res3
R
K
?
Jin
1
2
主电路工作原理及设计(滤波电容选择 )

无极性电容Cin2 的确定:为了供给逆变平滑 的直流电压,必须在输入整流电路和逆变器之 间加入滤波电容,以减小整流输出后直流电的 交流成分。滤波电容一般采用电解电容器,因 其滤波电解电容器自身串联等效电阻(Res)和 串联等效电感(Les)的存在直接影响滤波效果, 所以在电解电容Cin1两端并联高频无极性电容 Cin2,使高频交流分量从Cin2中通过。

电力电子课程设计-IGBT单相电压型全桥无源逆变电路

电力电子课程设计-IGBT单相电压型全桥无源逆变电路

1引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

2工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

IGBT是三端器件,具有栅极G、集电极C和发射极E。

它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。

其等效电路和电气符号如下:图1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。

当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。

当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2 电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

单相全桥逆变电路讲解.

单相全桥逆变电路讲解.
单相全桥逆变电路讲解
首先介绍学习硬件电路的重要性和必要性


重要性:找工作面试、考研面试和在以后工作 中都是很好的基础,起到良好的作用。 以此为基点,展开,引用李泽元老师的话: “现在知识面很宽很大,不可能面面具到,且 搞的人很多,要找一个自已感兴趣的点,深入 研究,动手实践做实验,在实验中发现问题和 解决问题,然后再扩展。”
整体安排
一、基础知识讲解(计划两至三个半天)

开关管(MOSFET和IGBT)知识、电阻 电
容等基本知识、芯片 管脚功能(IR2110 、 SG3525、LM339、 MUR8100 、IRFP450 )

主电路、控制电路的工作原理、参数的 确定
整体安排
二、PROTEL介绍 、原理图绘制(计划三个半天) 两个图,主电路和控制电路(各1.5个半天) 初步认识元器件封装,画原理图尽量选正确的封 装 三、 生成PCB、手动布线(计划两个半天) 两个PCB图,主电路和控制电路(各一个半天) 认真核对元器件封装,检查PCB的各种规则
基础知识介绍 (MOSFET)

MOSFET:可控开,可控关 什么是MOSFET “MOSFET”是英文MetalOxide Semicoductor Field Effect Transistor的缩写,译成中文是“金属 氧化物半导体场效应管”。它是由金属、氧化物 (SiO2或SiN)及半导体三种材料制成的器件。所谓功 率MOSFET(Power MOSFET)是指它能输出较大的工 作电流(几安到几十安),用于功率输出级的器件。
电阻:导电体对电流的阻碍作用称为电阻,用 符号R 表示,单位为欧姆、千欧、兆欧,分别 用Ω、kΩ、MΩ表示。 电阻器的分类 一种分类:固定电阻器(R)、电位器(W)、 敏感电阻器、贴片电阻器

《电力电子技术》电子课件(高职高专第5版) 4.3 电压型逆变电路

《电力电子技术》电子课件(高职高专第5版)  4.3 电压型逆变电路

0 2
2
(4.3.1)
输出电压瞬时值为:
uo
n 1, 3 , 5 ,
2U d n
s in nt
(4.3.2)
其中, 2f s 为输出电压角频率。
当 n=1时其基波分量的有效
值为:
U O1
2U d
2
0.45U d
(4.3.3)
图4.3.1 电压型半桥逆变电路及 其电压电流波形
4.3.1 电压型单相半桥逆变电路
图4.3.1 电压型半桥逆变电路 及其电压电流波形
4.3.1 电压型单相半桥逆变电路
2、工作原理:
在一个周期内,电力晶体 管 周正T1和偏T,2的半基周极反信偏号,各且有互半补。
若负载为纯电阻,在[0,π] 期 T2通π2截间 ,]期止,T间1,T截1,则有止T驱,u20有动则=U驱信ud0动。号=-信在导Ud号[通π。导,, 动 信信 号若号 ,负截 由载止于为,感纯尽性电管负感载T,1有中T驱的2无动电驱 流i。不能立即改变方向,于 是 D1导通续流,u0=-Ud /2 。
3、特点: 优点: 简单,使用器件少;
缺点:
1)交流电压幅值仅为Ud/2; 2)直流侧需分压电容器; 3)为了使负载电压接近正弦波通常在输出端要接LC 滤波器,输出滤波器LC滤除逆变器输出电压中的高次 谐波。 4、应用:用于几kW以下的小功率逆变电源;
4.3.2 电压型单相全桥逆变电路
电路工作原理:
(4.3.7)
图4.3.2 电压型单相全桥逆变 电路和电压、电流波形图
4.3.2 电压型单相全桥逆变电路
3)阻感负载RL
0≤ ωt ≤ θ期间,T1和T4有驱动信号, 由于电流i0为负值,T1和T4不导通,D1、

(完整word版)单相全桥逆变电路原理

(完整word版)单相全桥逆变电路原理

单相全桥型逆变电路原理电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间+-VD 3VD 4单相半桥电压型逆变电路工作波形全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得其中基波幅值Uo1m 和基波有效值Uo1分别为上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2ddo1m 27.14U U U ==πdd1o 9.022U U U ==πOONu o U - U m ioVD 1 VD2VD1VD 2⎪⎭⎫⎝⎛+++= t t t U u ωωωπ5sin 513sin 31sin 4d ouo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现t 1时刻前V 1和V 4导通,输出电压u o为u dt 1时刻V 3和V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时导通,所以输出电压为零各IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形u u u u i o u o 实际就是调节输出电压脉冲的宽度• 各IGBT 栅极信号为180°正偏,180°反偏,且V 1和V 2栅极信号互补,V 3和V 4栅极信号互补• V 3的基极信号不是比V 1落后180°,而是只落后θ ( 0<θ <180°)• V 3、V 4的栅极信号分别比V 2、V 1VD 3VD 4采用移相方式调节逆变电路的输出电压u u u u i o u o t 2时刻V 1和V 2栅极信号反向, V 1截止, V 2不能立即导通,VD 2导通续流,和VD 3构成电流通道,输出电压为-U d到负载电流过零开始反向, VD 2和VD 3截止, V 2和V 3开始导通, u o 仍为- U du u u u i o u o t 3时刻V 3和V 4栅极信号再次反向, V 3截止, V 4不能立刻导通, VD 4导通续流, u o 再次为零 输出电压u o 的正负脉冲宽度各为θ ,改变θ ,可调节输出电压。

电压型单相全桥逆变电路

电压型单相全桥逆变电路

电压型单相全桥逆变电路(1) 介绍单相全桥逆变电路,也称为半桥逆变电路,是一种基于一个正弦波源和一种特定的桥接结构,以及装有晶体管或管器的电路,用来将电动机或机器的交流电源驱动至输出。

该电路通过控制其中的电流,可以改变功率、频率、电压这些特征。

(2) 电路原理单相全桥逆变电路具有一个正弦波源和一种特定的桥接结构。

该桥接结构是由4 个MOSFET晶体管或管器组成的,它们可以在30°的激励周期内在正常工作时交替开启,这将会使输出的单相桥路上的电压发生切换,因此可以得到一个正弦波脉冲输出,从而能够驱动负载的电机。

(3) 优点1. 单相全桥逆变电路具有低成本、易于维护以及精度高的优点,能够根据需要快速调节输出电压,可以超调电压使功率达到最高;2. 此类电路可以存储有限的能量,在整个操作中基本没有损失;3. 其具有灵敏控制功能,可以有效控制输入电压频率和电压;4. 它可以允许电压和电流在负载范围内自由切换,可以在有限的时间内进行快速调整;5. 此类电路结构简单,对交叉导体的影响小,能够有效抗干扰。

1. 单相全桥逆变电路的控制精度不是很高,受到电源供应和负载的影响较大;2. 结构复杂,由于其中使用的介质晶体管的开关特性,在工作过程中有时会发生失控现象;3. 高压噪声也会影响电路性能;4. 高压及电压脉宽比较窄,且控制精度不如高压直流调节电路高。

(5) 结论单相全桥逆变电路相对于传统单相变换电路,友好的结构,低成本,易于维护以及高能量转换效率的优点在很多应用中备受青睐。

但其较窄的脉冲宽度和较低的控制精度也被忽视不计。

因此,对于不同的应用,要充分考虑单相全桥逆变电路的优点和缺点,以便选择最合适的解决方案。

单双极性SPWM单相桥电压型逆变电路课程设计单极性

单双极性SPWM单相桥电压型逆变电路课程设计单极性

单双极性SPWM单相桥电压型逆变电路课程设计单极性单极性PWM控制方式调制信号ur为正弦波,载波uc在ur的正半周为正极性的三角波,在ur的负半周为负极性的三角波。

在ur的正半周,V1保持通态,V2保持断态。

当ur>uc时使V4导通,V3关断,uo=Ud。

当ur<uc时使V4关断,V3导通,uo=0。

在ur的负半周,V1保持断态,V2保持通态。

当ur<uc时使V3导通,V4关断uo=-Ud。

当ur>uc时使V3关断,V4导通,uo=0。

主电路在每个开关周期内输出电压在正和零(或负和零)间跳变,正、负两种电平不会同时出现在一个开关周期内,故称为单极性SPWM。

七、单极性SPWM调制分析载波比和调制深度的定义与双极性SPWM相同。

它不适于半桥电路,而双极性SPWM在半桥、全桥电路中都可以使用。

与双极性SPWM相同,在m<=1和fc>>f的条件下,单极性SPWM逆变电路输出的基波电压u1的幅值U1m满足如下关系:U1m=mUd即输出电压的基波幅值随调制深度m线性变化,故其直流电压利用率与双极性时也相同。

就基波性能而言,单极性SPWM和双极性SPWM完全一致,但在线性调制情况下它的谐波性能优于双极性调制:开关次整数倍谐波消除,值得考虑的最低次谐波幅值较双极性调制时小得多,所需滤波器也较小。

八、建立单极性SPWM仿真模型单极性SPWM触发信号产生图:为[101]。

对脉冲电路进行封装:触发电路中三角载波(Triangle)参数设置:“TimeValue”为[01/fc/21/fc],“OutputValue”单极性SPWM主电路:触发电路参数设置:Ud=300v,R=1欧,L=2mH九、进行单极性SPWM仿真1、仿真时间设为0.06键入MATLAB语言命令:>>ubplot(4,1,1)>>ubplot(4,1,2)仿真结果如下:单极性SPWM单相逆变器m=0.8,N=15时的仿真波形图仿真结果分析:输出电压为单极性SPWM型电压,脉冲宽度符合正弦变化规律。

电压型单相全桥逆变电路工作原理

电压型单相全桥逆变电路工作原理

电压型单相全桥逆变电路工作原理引言电压型单相全桥逆变电路是一种常见的电力电子器件,广泛应用于交流电源、UP S电源和电力传输等领域。

本文将介绍该电路的工作原理及其相关知识。

1.电压型单相全桥逆变电路概述电压型单相全桥逆变电路是一种将直流电源转换为交流电源的电路,其主要由四个功率开关管(IG B T或MO S FET)、变压器和滤波电容组成。

它通过逆变操作,将直流电压转换为交流电压,并通过滤波电容将输出电压平滑化。

该电路能够提供高质量的交流电源输出,并且具有较高的效率。

2.电路结构电压型单相全桥逆变电路的基本结构如下图所示:+------------++-----------+|逆变桥|||+------------++-----------+其中,V in为输入直流电压,Vo ut为输出交流电压,逆变电路为四个功率开关管构成的全桥电路。

3.工作原理电压型单相全桥逆变电路的工作原理如下:正半波过程-:当Vi n为正电压时,I GB T1和IG BT4导通,IG B T2和I G BT3关闭,电路呈现如下情况:+------------++-----------+|正半桥|||+------------++-----------+V i n通过二极管D1和D3将正半边电源分配给滤波电容,使V ou t为正交流电压。

负半波过程-:当Vi n为负电压时,I GB T1和IG BT4关闭,IG B T2和I G BT3导通,电路呈现如下情况:+------------++-----------+|负半桥|||+------------++-----------+V i n通过二极管D2和D4将负半边电源分配给滤波电容,使V ou t为负交流电压。

通过正负半波过程的交替工作,电压型单相全桥逆变电路能够稳定地输出交流电压。

4.特点与应用电压型单相全桥逆变电路具有以下特点和应用:特点-:-稳定的输出:通过滤波电容的作用,输出电压纹波较小,电压稳定。

(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

IGBT是三端器件,具有栅极G、集电极C和发射极E。

它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。

其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。

当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。

当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,和整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的使用。

2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

IGBT是三端器件,具有栅极G、集电极C和发射极E。

它可以看成是一个晶体管的基极通过电阻和MOSFET相连接所构成的一种器件。

其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。

当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。

当山脊和发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且和负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

单相全桥逆变电路课设

单相全桥逆变电路课设

目录一.应用概述 (2)1.1逆变电路 (2)1.2电压型单相全桥逆变电路电路图 (2)1.3电路简述及参数选取二.MARLAB仿真 (3)2.1 Simnlink组建电路模型 (3)2.2 参数设定 (3)2.3 仿真结果 (5)三.设计心得 (6)四.参考文献 (7)一.应用概述1.1逆变电路所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。

当把转换后的交流电直接送回电网,即交流测接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。

通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。

1.2电压型单相全桥逆变电路电路图1.3 电路简述及参数选取它共有4个桥臂,可以看成由两个半桥电路组合而成。

两对桥臂交替导通180度。

输出电压和电流波形与半桥形状相同,幅值高出一倍。

改变输出交流电压的有效值只能通过改变直流电压Ud来实现。

输出电压定量分析Uo成傅立叶级数基波幅值基波有效值当uo为正负各180度时,要改变输出电压有效值只能改变Ud来实现。

可采用移相方式调节逆变电路的输出电压,称为移相调节。

各栅极信号为180度正偏,189度反偏,且T1和T2互补,T3和T4互补关系不变。

T3的基极信号比T1落后q,T3、T4的栅极信号分别比T2、T1的前移180-q,uo成为正负各为q的脉冲,改变q即可调节输出电压有效值。

二.MARLAB仿真2.1 Simnlink组建电路模型电压型全桥逆变电路结构图:2.2 参数设定对阻感负载的设置如下:VT1的触发电平参数设置VT2的触发电平参数设置VT3的触发电平参数设置VT4的触发电平参数设置2.3仿真结果2.3.1触发脉冲波形2.3.2电压电流波形三.设计心得学习了单相全桥逆变电路的工作原理,了解单相电压性全桥逆变电路的工作特性。

直流、交流电功率变换称为逆变,了解直流、交流电功率转换的基本原理,学会观察方波模式下的电压型和电流型逆变器的特征,输出电压大小和波形的PSW控制基本原理。

电压型单相全桥逆变电路

电压型单相全桥逆变电路

1. 引言逆变电路所谓逆变,就就是与整流相反,把直流电转换成某一固定频率或可变频率得交流电(DC/AC) 得过程。

当把转换后得交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后得交流电直接供给负载时,则称为无源逆变。

通常所讲得逆变电路,若不加说明,一般都就是指无源逆变电路。

1 、电压型逆变器得原理图当开关S1、S4闭合,S2、S3断开时负载电压uo为正;当开关S1、S4 断开 ,S2、 S3 闭合时 ,uo 为负 ,如此交替进行下去 ,就在负载上得到了由直流电变换得交流电,uo得波形如图7、4(b)所示。

输出交流电得频率与两组开关得切换频率成正比。

这样就实现了直流电到交流电得逆变。

2、电压型单相全桥逆变电路它共有 4 个桥臂 ,可以瞧成由两个半桥电路组合而成。

两对桥臂交替导通180°。

输出电压与电流波形与半桥电路形状相同 ,幅值高出一倍。

改变输出交流电压得有效值只能通过改变直流电压Ud 来实现。

输出电压定量分析基波幅值基波有效值当uo 为正负各180°时,要改变输出电压有效值只能改变Ud 来实现可采用移相方式调节逆变电路得输出电压 ,称为移相调压。

各 栅极信号为1800正偏,1800反偏,且T1与T2互补,T3与T4互 补关系不变。

T3得基极信号只比T1落后q ( Ovq v180o),T3、 T4得栅极信号分别比T2、T1得前移180oq,uo 成为正负各为 q 得脉冲,改变q 即可调节输出电压有效值。

3 MATLAB 仿真Simulink 组建电路模型及实验结果 电压型全桥逆变电路结构图:[mJI —b 一 ■ ■ j/怜—* 帽 H ■Ci'n-rt llMTJHn ■-■I*Fir>*iFU阻感性质下得仿真:T1 T4得脉冲信号I匝, ■辽H■DC [WVMnnrTr*~J'MHMl£呂nrls-bfcs❷4 is foj u呂老with < fiitd st老p aoLvtJ fri mthin i discrel e portion of a m&dtl UKinc a varikbl* it«p lolvex.Pt.r*[natTime Ct) : \A IDE I i tude :P e.ri o d (s eus):T TI I se Ri&th (y cf period):Phase delay (leczj :T2 T3得脉冲信号:discrete pcftion of a modjel 口sine a vaiiahle st ep sollfer.Params tersPulse t jpt:Pulse Width 仞of r eriodj :带电阻情况下la Vab波形Pulse Tims圈就OK Cu<c*I Help AkplyOK Cancftl H^lp toly Inf arD^rat vector p^rim at sr s is 1-DMui itude:Period (secs);Tim* (t) : I Vs* slmulAt ion. UneSO£ lutemret vtc-t&r 壮metets is 1-EPhase delay [sec5)zIQ1U-n电感负载下得la波形Vab波形阻感负载时Loc^ Taraxeters::ferLe:ff KLLUcancI —ImDltments a series SLCKe^istance (Oluns):IsInductance (fO :Cinaci tancf fF):H E宜stir 电EeiL*M I tfojieRL负载电流波形OE Carte*! H*1Phranck分析:在直流电源电压Vd 一定时,输出电压得基波大小不可控,且输出电压中谐波频率低、数值大,直流电源电流Id脉动频率低且脉动数值大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压型单相全桥逆变
电路
1.引言
逆变电路所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。

当把转换后的交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。

通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。

1. 电压型逆变器的原理图
当开关S1、S4闭合,S2、S3断开时,负载电压u o为正;当开关S1、S4断开,S2、S3闭合时,u o为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o的波形如图7.4(b)所示。

输出交流电的频率与两组开关的切换频率成正比。

这样就实现了直流电到交流电的逆变。

t
(b)
(a)
u o
t3
t2
t1
i o
u o
Z
u o
i o
U d
_
+
S3
S2S
4
S1
2. 电压型单相全桥逆变电路
它共有4个桥臂,可以看成由两个半桥电路组合而成。

两对桥臂交替导通180°。

输出电压和电流波形与半桥电路形状相同,幅值高出一倍。

改变输出交流电压的有效值只能通过改变直流电压U d 来实现。

输出电压定量分析 u o 成傅里叶级数
基波幅值
基波有效值
⎪⎭

⎝⎛+++=
t t t U u ωωωπ5sin 513sin 31sin 4d o d
d
o1m 27.14U U U ==
π
d
d
1o 9.022U U U ==
π
当u o为正负各180°时,要改变输出电压有效值只能改变U d来实现
可采用移相方式调节逆变电路的输出电压,称为移相调压。

各栅极信号为180º正偏,180º反偏,且T1和T2互补,T3和T4互补关系不变。

T3的基极信号只比T1落后q ( 0<q <180º),T3、T4的栅极信号分别比T2、T1的前移180º-q,uo成为正负各为q 的脉冲,改变q 即可调节输出电压有效值。

3MATLAB 仿真
Simulink组建电路模型及实验结果
电压型全桥逆变电路结构图:
阻感性质下的仿真:
T1 T4的脉冲信号:
T2 T3的脉冲信号:
带电阻情况下
Ia Vab 波形
电感负载下的Ia波形
Vab波形
阻感负载时
RL负载电流波形
输入电流Id的波形
分析:
在直流电源电压Vd一定时,输出电压的基波大小不可控,且输出电压中谐波频率低、数值大,直流电源电流Id脉动频率低且脉动数值大。

因此为了使负载获得良好的输出电压波形和减小直流电源电流的脉动,必须采用较大的LC输出滤波器和LdCd输入滤波器。

4.结束语
通过这次的作业,在使用MATLAB的过程中遇到了许多问题,在对这些问题的解决过程中渐渐学会一些关于这套软件的使用方法,在查找MATLAB软件使用方法的时候找到了相关的专业论坛,这为以后学习生活提供了很多帮助,可以在与别人的交流过程中学到更多的知识。

5.参考文献
《电力电子变换和控制技术》高等教育出版社陈坚
《电力电子及其仿真》江苏技术师范学院刑绍邦
《电力电子技术应用电路》机械工业出版社王文郁石玉
《石新春电力电子技术》中国电力出版社石新春。

相关文档
最新文档