流体流动及输送机械(讲解版)

合集下载

流体流动与输送(课件)

流体流动与输送(课件)

人机交互界面
设计友好的人机交互界面,方便 操作人员对流体流动与输送设备
进行监控和操作。
THANK YOU
感谢观看
流体流动与输送(课 件)
目 录
• 流体流动基础 • 流体动力学 • 流体输送设备 • 流体输送工艺 • 流体流动与输送的优化设计
01
流体流动基础
流体的定义与分类
总结词
流体的定义与分类
详细描述
流体是指在受外力作用下,能够流动的物质。根据流体是否具有粘性,可以将流体分为牛顿流体和非牛顿流体。 牛顿流体是指在剪切力作用下,其剪切应力与剪切速率成正比的流体,如水和空气等;非牛顿流体是指在剪切力 作用下,其剪切应力与剪切速率不成正比的流体,如高分子溶液、悬浮液等。

流体流动的能量损失
流动损失的原因
介绍了流体在流动过程中由于摩擦和局部阻力所造成的能量损失 。
流动损失的计算
提供了计算流体流动损失的方法和公式。
减小流动损失的措施
介绍了一些减小流体流动损失的措施和技术,如减小流道粗糙度 、采用减阻剂等。
03
流体输送设备

离心泵
利用离心力使流体获得 能量,从而克服管道阻 力,实现液体的输送。
重力输送
利用重力将粉体从一个地方输送到 另一个地方,常用于高度落差较大 的情况。
05
流体流动与输送的优化设 计
流体流动与输送的能效优化
01
02
03
节能设计
通过优化流体输送管道的 结构和材料,降低流体输 送过程中的阻力,减少能 量损失,提高能效。
高效泵送技术
采用高效、低能耗的泵送 设备,提高流体输送的效 率,降低运行成本。
管道输送
通过管道将液体从一个地方输 送到另一个地方,具有输送效

第二章流体输送机械精品PPT课件

第二章流体输送机械精品PPT课件
2020/10/6
在高速旋转的叶轮当中,液 体质点的运动包括: • 液体随叶轮旋转 ; • 经叶轮流道向外流动。
液体与叶轮一起旋转的速度u1或u2方向与所处圆周的切线方
向一致,大小为:
u1
2r1n
60
u2
2r2n
60
2020/10/6
液体沿叶片表面运动的速度ω1、ω2,方向为液体质点所
处叶片的切线方向,大小与液体的流量、流道的形状等有关
由弹簧的弹力互相贴紧而作相对运动,
2020/10/6
起到密封作用。
2020/10/6
2020/10/6
2020/10/6
2020/10/6
3、离心泵的分类 1)按照轴上叶轮数目的多少
单级泵 轴上只有一个叶轮的离心泵,适用于出口压力 不太大的情况;
多级泵 轴上不止一个叶轮的离心泵 ,可以达到较高的 压头。离心泵的级数就是指轴上的叶轮数,我国 生产的多级离心泵一般为2~9级。
2020/10/6
• 在蜗形泵壳中由于流道的不断扩大,液体的流速减慢,使 大部分动能转化为压力能。最后液体以较高的静压强从排 出口流入排出管道。 • 泵内的液体被抛出后,叶轮的中心形成了真空,在液面压 强(大气压)与泵内压力(负压)的压差作用下,液体便 经吸入管路进入泵内,填补了被排除液体的位置。
油泵 输送石油产品的泵 ,要求密封完善。(Y 型)
杂质泵
2020/10/6
输送含有固体颗粒的悬浮液、稠厚的浆液等的泵 ,又细分为污水泵、砂泵、泥浆泵等 。要求不易 堵塞、易拆卸、耐磨、在构造上是叶轮流道宽、 叶片数目少。
2020/10/6
二、离心泵的基本方程式
1、离心泵基本方程式的导出
假设如下理想情况: 1)泵叶轮的叶片数目为无限多个,也就是说叶片的厚度 为无限薄,液体质点沿叶片弯曲表面流动,不发生任 何环流现象。 2)输送的是理想液体,流动中无流动阻力。

流体流动与输送机械PPT课件

流体流动与输送机械PPT课件

ur
p 4l
(R2
r2)
Pf 32lu / d 2 ——哈根-泊谡叶公式
与范宁公式
Pf
l u2
d2
对比,得:
64 du
64
du
64 / Re
——滞流流动时λ与Re的关系
第20页/共62页
湍流时直管阻力损失
hf
l
d
u2 2
式中 λ为摩擦系数,无因次,其值随流型而变,湍流时还受管壁粗糙度的 影响。
第17页/共62页
4、管壁粗糙度对摩擦系数的影响
f (Re, / d)
光滑管 玻璃管、黄铜管、
u
塑料管
化工管路
粗糙管 钢管、铸铁管
d
ε
管壁粗糙度
绝对粗糙度
壁面凸出部分的平均高度,以ε 表示 。
相对粗糙度
绝对粗糙度与管道直径的比值 即ε /d 。
第18页/共62页
4、管壁粗糙度对摩擦系数的影响
克服局部阻力所引起的能量损失,
可表示成动能
u2 2
的某个倍数,

hf
u2 2
(1-58)

p f
u2 2
(1-58a)
式中ξ为局部阻力系数由实验测定
15:42:22
30
第30页/共62页
2、当量长度法
把局部阻力折算成相应长度的直管阻力,即
(1-59)
常见的管件和阀门的局部阻力系数ξ及当量长度le值可查表1-7(教材 P35)。
p2
1‘
hf
l
2‘
u1 u2
z1 z2 0
P1 P2 hf
第14页/共62页
3、计算圆形直管阻力的通式

第2章流体流动与输送机械2精品PPT课件

第2章流体流动与输送机械2精品PPT课件

09.10.2020
( e ) du
dy
(1-35)
14
四、滞流与湍流
小结
09.10.2020
15
五. 边界层的概念
边界层的存在,对流体流动、传热和传质过程都有重大影响。
(一) 流体在平板上流动边界层的形成和发展
平板上的流动边界层1-8 u<99%us的区域称为流动边界层
边界层的形成,把沿壁面的流动 简化成边界层区与主流区两个区 域,离壁面越近,速度梯度越大, 摩擦应力相当大,不可忽视。
(二)雷诺准数Re
雷诺综合上述诸因素整理出一 个无因次数群——雷诺准数
Re
du
对于流体在直管内的流动
Re≤2000时属于层流; Re>4000时(生产条件下Re>3000)属湍流; Re=2000~4000之间时,属不稳定的过渡区。
09.10.2020
10
四、滞流与湍流
(一)流体内部质点的运动方式
第二章 流体流动与输送机械
主要内容
§2-1 流体静力学基本方程及其应用 §2-2 流体流动的基本方程 §2-3 流体流动现象 §2-4 流体在管内的流动阻力 §2-5 管路计算与管路布置原则 §2-6 流体输送
09.10.2020
2
§2-3 流体流动现象
一. 牛顿粘性定律与流体的粘度 二. 流体类型 三. 流动类型与雷诺准数 四. 滞流与湍流 五. 边界层的概念
水的质点沿着与管轴平行的方向 作直线运动,不产生横向运动。 b称为湍流或紊流 质点除了沿管道向前运动外,还 作不规则的杂乱运动,质点速度 的大小和方向随时间而发生变化
雷诺实验装置1-7
09.10.2020
9
三. 流动类型与雷诺准数

《流体输送输送机械》课件

《流体输送输送机械》课件

安全操作:操作人员应熟悉通风 机的操作规程,确保安全操作
管道系统的运行与维护
定期检查:检 查管道是否有 泄漏、腐蚀等
现象
定期清洗:清 洗管道,防止
堵塞和污染
定期润滑:润 滑管道,防止
磨损和生锈
定期维护:维 护管道,确保
其正常运行
流体输送输送机械的故障 诊断与处理
章节副标题
泵的故障诊断与处理
故障诊断方法:如观察、听 诊、测量等
THEME TEMPLATE
感谢观看
泵的常见施:如更换零件、 调整参数、维修等
预防措施:如定期检查、维 护、更换易损件等
压缩机的故障诊断与处理
故障类型:机 械故障、电气 故障、液压故
障等
故障原因:磨 损、腐蚀、堵
塞、泄漏等
故障诊断方法: 观察、听声音、 测量、分析等
故障处理措施: 更换零件、调 整参数、清洗、
流体输送输送机械的应用
石油、天然气等能源输送 化工、制药、食品等行业的物料输送 城市供水、排水、污水处理等市政工程 农业灌溉、排涝等农业工程 船舶、飞机等交通工具的燃料输送 热力、电力等能源输送
流体输送输送机械的组成 与结构
章节副标题
泵的组成与结构
泵体:容纳 流体,承受 压力
叶轮:将流 体加速,产 生压力
章节副标题
流体输送输送机械概述
章节副标题
定义与分类
定义:流体输送输送机械是一 种用于输送流体的机械设备, 包括泵、压缩机、风机等。
分类:根据流体输送输送机械 的工作原理和用途,可以分为 泵、压缩机、风机等类型。
泵:用于输送液体,包括离心 泵、轴流泵、混流泵等。
压缩机:用于压缩气体,包括 离心压缩机、轴流压缩机、混 流压缩机等。

化工原理流体流动与输送机械精品PPT课件

化工原理流体流动与输送机械精品PPT课件
1.1.1.连续介质的假定
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
(5)流体输送设计型和操作型问题的定量计算。 ∮基本内容:
(1)密度、比容、比重及影响因素;压力、压力的不同表示方法, 流体静止的基本方程;U型管压差计、皮托管、液位计、液封、 流体流动的基本方程、连续性方程、柏努里方程;
(2)粘度、牛顿粘性定律、雷诺数、边界层效应、边界层形成、 边界层分离。
(3)直管阻力、局部阻力、当量长度、当量直径、因次分析法。 (4)简单管路计算,各流量计的结构及测定原理; (5)离心泵基本原理、构造;离心泵基本方程式;离心泵主要特 性参数、特性曲线、安装高度、工作点与流量调节;
17
1 流体流动与输送机械——1.2 流体静力学
(2)双液体U管压差计
适用于压差较小的场合。
密度接近但不互溶的两种指示液A和
C
(A C ) ;
扩大室内径与U管内径之比应大于
10 。
p1 p2 Rg( A C )
18
1 流体流动与输送机械——1.2 流体静力学
(3) 倒U形压差计 指示剂密度小于被测流体密度,
如空气作为指示剂
p1 p2 Rg( 0 ) Rg
(4) 倾斜式压差计 适用于压差较小的情况。
(5) 复式压差计 适用于压差较大的情况。
19
1 流体流动与输送机械——1.2 流体静力学

化工流体流动与流体输送机械概述

化工流体流动与流体输送机械概述

比较项目
物质结构和形态
过程工业
变化
加工工业
不变化
实现方法 各种反应及分离过程 不同的加工工序
所依靠设备 釜、罐、塔器、泵
适当的设备
产品计量
质量或体积(千克、 件数(片、支、粒等) 吨、升等
化学工程与技术的五个二级学科
❖ 化学工程:研究各类化学过程和物理过程的一般原理、
共性规律、工程基础和应用技术;
❖ 物料衡算(Mass Balance): 输入物料量 = 输出物料量 + 累积物料量
稳态过程:输入物料量 = 输出物料量 ❖ 能量衡算(Energy Balance):
输入能量 = 输出能量 + 系统累积能量 稳态过程:输入能量 = 输出能量 ❖ 过程速率 = 过程推动力/过程阻力
本课程的教学内容
❖ 化学工艺:研究化学品的精化原理、生产原理、产品
开发、工艺实施、过程设计和优化;
❖ 生物化工:研究有生物体或生物活性物质参与的过程
的基本原理和工程技术问题;
❖ 应用化学:研究精细化学品、专用化学品、功能材料
及器件等的制备原理和工艺技术;
❖ 工业催化:研究催化剂和催化反应过程的理论基础及
其设计、开发和工业应用。
<3>阻力计算式:
直管:wf=λ(l/d)(u2/2) i.e. hf=λ(l/d)(u2/2g)
局部:wf=ζ(u2/2)
i.e. hf=ζ(u2/2g)
总: Σwf= (λ(l/d)+Σζ)(u2/2) = λ(l+Σle)/d(u2/2)
i.e. Σhf=λ(l/d)(u2/2g) = λ(l+Σle)/d(u2/2g)
(we = 0 ; wf=0) 理想流体

化工原理流体流动与输送机械PPT课件

化工原理流体流动与输送机械PPT课件
1.1.1.连续介质的假定
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
M m M 1 y 1 M 2 y 2 M n y n
y1, y2yn——气体混合物中各组分的摩尔(体积)分数。
11
1 流体流动与输送机Байду номын сангаас——1.1 流体基本性质
1.1.5.压力
流体的压力(p)是流体垂直作用于单位面积上的力,严格 地说应该称压强。称作用于整个面上的力为总压力。
压力(小写)
p
P
A
力(大写) 面积
N [p] m2 Pa
记:常见的压力单位及它们之间的换算关系
1atm =101300Pa=101.3kPa=0.1013MPa
=10330kgf/m2=1.033kgf/cm2
=10.33mH2O =760mmHg
12
1 流体流动与输送机械——1.1 流体基本性质
压力的大小常以两种不同的基准来表示:一是绝对真空, 所测得的压力称为绝对压力;二是大气压力,所测得的压强称 为表压或真空度。一般的测压表均是以大气压力为测量基准。
第1章 流体流动与输送机械
1.1 流体基本性质 1.2 流体静力学 1.3 流体动力学 1.4 流体流动的内部结构 1.5 流体流动阻力 1.6 1.7 流速与流量的测量 1.8 流体输送机械
1
∮计划学时:12学时
∮基本要求:

流体流动及输送机械(讲解版)

流体流动及输送机械(讲解版)

单元测试一:流体流动及输送机械一、填空题1. 流体在圆形直管做层流流动,管中心最大流速为平均流速得 倍,摩擦系数λ与Re 的关系为 。

2,λ=64/Re ;2. U 型管压差计指示液为水,若所测压差不变,要使读数R 增大,应更换一种密度比水 的指示液。

小,A B i ()Rg ρρ-=-P P3. 流体输送机械向流体提供的能量主要用于 和 。

提高流体势能,克服阻力损失;4. 离心泵前必须先灌泵是因为 。

空气密度小,造成的压差或泵吸入口的真空度小而不能将液体吸入泵内;5. 用离心泵将地面敞口容器中的碱液送至离地面10m 高处密闭容器中,容器上方真空表读数为P ,现在表的读数增大,其他管路条件不变,则管路总阻力损失将 。

增大,2V H Kq g ρ∆=+P ,gρ∆P 减小,导致离心泵工作点向右下移动,流量增大,根据阻力损失计算式可知,h f 增大,压头降低,6. 已知某泵的特性曲线为He=30-2.4q v 2,则将其与另一台完全相同的泵串联组合后,串联泵的特性曲线为 He=60-4.8q v 2 ,若并联,并联泵的特性曲线为 He=30-0.6q v 2 。

7. 启动离心泵前,应先 和 ,启动往复泵前,必须检查是否打开 。

关闭出口阀,灌泵,出口阀;8. 某空气转子流量计最大刻度为30 m 3/h ,若用以测量氮气流量(P 、T 相同),则q v,max = m 3/h ,若用以测P=3atm 的空气,则q v,max =m 3/h 。

30.5,19.32; 0f V V R V q q C A PM RT q ρρρ=>>==所以 9. 水由敞口高位槽通过一管路流向压力恒定的反应器,当管路上的阀门开度减小(湍流态变为层流态),水流量将 ,摩擦系数 ,管路总阻力损失 。

(增大,减小,不变)减小,增大,不变;莫迪图判断摩擦系数,高位槽与反应器机守方程判断总阻力损失。

10. 用离心泵在两敞口容器间输液,同一管路中,用离心泵输送密度ρ=1.2ρ水的液体,与输水相比,离心泵的流量 ,扬程 ,轴功率 。

流体流动与输送机械.ppt

流体流动与输送机械.ppt

公式:
1、傅立叶定律
qdQ t
dA n
2、一维稳态导热
平壁 圆筒壁
Q
qA

t1 t2
b A

推动力 热阻
Q总 总推 热动 阻3t力 1t4
bi iA
Q t1 t2 b
Am
Q t1 t4 3
总推动力 i1 总热阻
bi i Ami
i1
液体沸腾:核状沸腾。
ut d2 p
pg 18
( Re<2)
降 尘 室 :能 100% 去 除 的 最 小 颗 粒 满 足 停留L 时 沉 间降H 时间
u
ut
气 体 处 理 能 力 Vs utmiA n底, 与 底 面 积 呈 正 比 , 与 高 度 无 关 。
分 离 条 件
设 备 : 降 尘 室 结 构
第三章 机械分离与固体流态化
旋风分离器:临界直径、分离效率
固 体 流 态 化 重 要 概 念 : 流 态 化 的 几 个 阶 段 性 状 及 其 主 要 特 征 流 化 床 的 主 要 性 质
• 热传导
第四章、第五章小结
概念:导热系数(单位、固液气的相对大小、t对的影响)
临界厚度、等温面、温度梯度
连续性方程:1u1 A1 2u2 A2 (稳定流动)
u1 A1 u2 A2 (不可压缩流体)
u1
d
2 1

u2
d
2 2
(圆管内)
机械能衡算方程: gz1

u12 2

p1
we

gz2

u22 2

p2
wf
要求能够进行 管路计算及分 析:

化工原理 第二章 流体的流动和输送超详细讲解

化工原理  第二章 流体的流动和输送超详细讲解
密度 1 800kg / m3 ,水层高度h2=0.6m,密度为 2 1000kg / m3
1)判断下列两关系是否成立
PA=PA’,PB=P’B。 2)计算玻璃管内水的高度h。
解:(1)判断题给两关系是否成立 ∵A,A’在静止的连通着的同一种液体的同一水平面上
PA PA'
因B,B’虽在同一水平面上,但不是连通着的同一种液
10001.0 13600 0.067 1000 820
0.493m
作业 P71:3、5
要求解题过程要规范:
1、写清楚解题过程——先写公式,再写计算过程, 追求结果的准确性;
2、计算过程中注意单位统一成SI制。
第二节 流体稳定流动时的物料衡算和能量衡算
一、流速与管径的关系 1、流速v =qv/A
解:气压管内水上升的高度
P(表压) P(真空度) h ρ水g ρ水g 80103
1000 9.81 8.15m
3、液位的测定
液柱压差计测量液位的方法:
由压差计指示液的读数R可以计算 出容器内液面的高度。 当R=0时,容器内的液面高度将达 到允许的最大高度,容器内液面愈 低,压差计读数R越大。
流体的单位表面积上所受的压力,称为流体的静压强,
简称压强。
p F A
SI制单位:N/m2,即Pa。1 N/m2 =1Pa
工程制: 1at(工程大气压)= 1公斤/cm2 =98100Pa
物理制: 1atm (标准大气压)=101325Pa
换算关系为:
1atm 760mmHg 10.33mH2O 1.033kgf / cm2 1.0133105 Pa
在1-1’截面受到垂直向下的压力: 在2-2’ 截面受到垂直向上的压力: 小液柱本身所受的重力:

流体输送机械PPT课件

流体输送机械PPT课件

第一节 液体输送机械
3.2黏度的影响:当输送液体的黏度大于常温水的黏度时,泵内液体 的能量损失增大,导致泵的流量、压头减小、效率下降,轴功率增加,
泵的特性曲线均发生变化。理论上应进行校正。但通常由于实际应用 的液体粘度总是小于20×10-6时,如汽油、煤油、轻柴油等,可不必校 正。否则可按下式校正:
对于输送酸、碱以及易燃、易爆、有毒的液体,密封的要求就比 较高,既不允许漏入空气,又力求不让液体渗出。近年来在制药生产中 离心泵的轴封装置广泛采用机械密封。如图2-7所示,它是有一个装 在转轴上的动环和另一个固定在泵壳上的静环所构成,两环的端面借 弹簧力互相贴紧而做相对运动,起到密封作用。
第一节 液体输送机械
第一节 液体输送机械
一、概述 在化工生产过程中,常常需要将流体物料从一个设备 输送至另一个设备;从一个位置输送到另一个位置。当流 体从低能位向高能位输送时必须使用输送机械,用来对物 料加入外功以克服沿程的运动阻力及提供输送过程所需的 能量。为输送流体物料提供能量的机械装置称为输送机械, 分为液体输送机械和气体输送机械。 本节先介绍液体输送机械。 液体输送机械统称为泵。因被输送液体的性质,如黏 性、腐蚀性、混悬液的颗粒等都有较大差别,温度、压力、 流量也有较大的不同,因此,需要用到各种类型的泵。根 据施加给液体机械能的手段和工作原理的不同,大致可分 为四大类,如表2-1所示。
2.3轴封装置:泵轴与泵壳之间的密封成为轴封。其作用是防止 高压液体从泵壳内沿轴的四周漏出,或者外界空气以相反方向漏入泵 壳内的低压区。常用的轴封装置有填料密封和机械密封两种,如下图 所示。普通离心泵所采用的轴封装置是填料函,即将泵轴穿过泵壳的 环隙作为密封圈,于其中填入软填料(例如浸油或涂石墨的石棉绳), 以将泵壳内、外隔开,而泵轴仍能自由转动。

化工基础-流体输送及机械

化工基础-流体输送及机械

化工基础-流体输送及机械导言化工工程是利用物理、化学和生物学原理来设计、操作和控制化学过程的科学和工程学科。

在化工过程中,流体输送和机械装置是不可或缺的组成部分。

本文将介绍化工过程中流体输送和机械装置的基础知识,包括流体输送的原理、流体的性质和流体行为、常见的机械装置以及它们在化工工程中的应用。

一、流体输送的原理1. 流体输送的定义流体输送是指将液体或气体从一个地方输送到另一个地方的过程。

在化工工程中,流体输送通常是通过管道进行的。

2. 管道输送的原理管道输送是流体输送的常见方式之一。

它的原理是利用管道内的压力差来推动流体的流动。

通过控制管道内的压力和流速,可以实现流体在管道中的输送。

二、流体的性质和流体行为1. 流体的性质流体的性质包括密度、粘度、表面张力等。

这些性质对流体的输送和机械装置的设计都有影响。

2. 流体行为在流体输送和机械装置中,流体的行为对于流体的流动和机械装置的性能起到重要的作用。

流体的行为包括流态、流动模式、流动速度等。

三、常见的机械装置1. 泵泵是常见的机械装置之一,用于将液体从一个地方抽出或推入另一个地方。

根据其工作原理和结构,泵可以分为离心泵、容积泵等。

2. 压缩机压缩机是将气体压缩并推送到管道或储罐中的机械装置。

根据其工作原理和结构,压缩机可以分为容积式压缩机、离心式压缩机等。

3. 阀门阀门用于控制管道中流体的流动。

根据其结构和控制方式,阀门可以分为截止阀、调节阀等。

四、流体输送和机械装置在化工工程中的应用流体输送和机械装置在化工工程中有着广泛的应用。

它们可以用于输送各种流体,例如原料、中间产品和最终产品。

同时,它们也可以用于控制和调节流体的流动,以满足化工工程的生产要求。

常见的应用包括液体输送、气体输送、混合和分离等。

例如,在化工生产中,通过泵将液体从储罐输送到反应器中,然后通过压缩机将生成的气体送入分离设备进行分离。

结论流体输送和机械装置是化工工程中不可或缺的组成部分。

化工基础课第三章 流体流动及流体输送设备

化工基础课第三章 流体流动及流体输送设备
为 1.5m,管路阻力损失可按 hf = 5.5u2
计算(不包括导管出口的局部阻力),溶 液密度为 1100kg/m3。
试计算:送液量每小时为 3m3 时,容器 B 内应保持的真空度。
pa
1
22
p真
抽真空
1.5m
B
1
A
解:取容器A的液面1-1截面为基准面,导液管出口为2-2截面, 在该两截面间列柏努利方程,有
z2 g
u22 2
5.5u22
1.5 9.81 6.01.182 1100 2.54104 Pa
ZYNC 化学系
3.3流体压力和流量的测量
1.流体压力的测量---U形管压力计 2.流体流量的测量---孔板流量计、文丘里流量计、
转子流量计
ZYNC 化学系
1.流体压力的测量---U形管压力计
ZYNC 化学系
⑴ 粘度μ的物理意义:
y
设有上、下两块平行放置、 面积很大、相距很近的夹板,板 间充满流体,下板固定,以一推 动力F推动上平板以u恒速运动。
y y
经实验证明,此时: 引入比例系数μ,有:
F u A y
F u A
y
ZYNC 化学系
⑵ 粘度 : 单位:Pa·s,泊P:g·cm-1·s-1
量,其原理与孔板流量计相同。
结构:采取渐缩后渐扩的流道,避免使流体出现边界层分离而
产生旋涡,因此阻力损失较小。
qv u0S0 cvS0
2gR(i )
ZYNC 化学系
文丘里流量计
ZYNC 化学系
⑶ 转子流量计 原理:
流体出口
转子上下截面由于压差(p1-p2)所形成的
向上推力与转子的重力相平衡。稳定位置与流

流体流动与流体输送机械

流体流动与流体输送机械

3
五、管内流动的阻力损失
沿程阻 流体流经直管时的机械能损耗(直 力损失 管阻力损失)
管道
的总
阻力
流体流经各种管件和阀件时,由于流
速大小和方向突然改变,从而产生大 局部阻 量漩涡,导致很大的机械能损失,这 力损失
种损失属于形体阻力损失,它由管件
等局部部位的原因引起,而称为局部
阻力损失
〔1〕沿程阻力损失的计算
a. 流体密度的影响
由离心泵的基本方程(书57、58页的2-8、2-11)可看出, 离心泵的压头、流量均与液体的密度无关,但离心泵所需 的轴功率则随液体密度的增加而增加
b. 黏度的影响
液体粘度的改变将直接改变其在离心泵内的能量损失,因
此,H—Q、N—Q、—Q曲线都将随之而变。
• 转速的影响—比例定律
三管内流体的质量衡算连续性方程从截面11流入的流体质量流量s1应等于从截面22流出的流体质量流量对于不可压缩流体于是得到液体的平均流速与管道流通截面积成反比对于圆管于是得到圆管的平均流速与管道管径的平方成反比如果管路有分支总管中的质量流量为各支管质量流量之和四管内流体的机械能衡算实际流体的机械能衡算由于实际流体有粘性流体在流动过程中流体内部及流体与管内壁产生摩擦流体流动时要消耗机械能以克服阻力造成流体的能量损1kg流体计的不可压缩实际流体的机械能衡算式gzwe外加功能量损失p1静压能单位jkg除以重力加速度则得到单位重量流体为基准的机械能衡算式2g动压头速度头压头损失单位均为则可以得到以单位体积流体为基准的机械能衡算方程压头损失的关系gh伯努利方程理想流体是指没有黏性的流体即黏度的流体则机械能衡算式为
Q1 n1 Q2 n2
H1 ( n1 )2 H 2 n2
N1 ( n1 )3 N2 n2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试一:流体流动及输送机械
一、填空题
1. 流体在圆形直管做层流流动,管中心最大流速为平均流速得 倍,摩擦系数λ与Re 的关系为 。

2,λ=64/Re ;
2. U 型管压差计指示液为水,若所测压差不变,要使读数R 增大,应更换一种密度比水 的指示液。

小,A B i ()Rg ρρ-=-P P
3. 流体输送机械向流体提供的能量主要用于 和 。

提高流体势能,克服阻力损失;
4. 离心泵前必须先灌泵是因为 。

空气密度小,造成的压差或泵吸入口的真空度小而不能将液体吸入泵内;
5. 用离心泵将地面敞口容器中的碱液送至离地面10m 高处密闭容器中,容器上方真空表读数为P ,现在表的读数增大,其他管路条件不变,则管路总阻力损失将 。

增大,2V H Kq g ρ∆=+P ,g
ρ∆P 减小,导致离心泵工作点向右下移动,流量增大,根据阻力损失计算式可知,h f 增大,压头降低,
6. 已知某泵的特性曲线为He=30-2.4q v 2,则将其与另一台完全相同的泵串联组合后,串联泵的特性曲线为 He=60-4.8q v 2 ,若并联,并联泵的特性曲线为 He=30-0.6q v 2 。

7. 启动离心泵前,应先 和 ,启动往复泵前,必须检查是否打开 。

关闭出口阀,灌泵,出口阀;
8. 某空气转子流量计最大刻度为30 m 3/h ,若用以测量氮气流量(P 、T 相同),则q v,max = m 3/h ,若用以测P=3atm 的空气,则q v,max =
m 3/h 。

30.5,19.32
; 0f V V R V q q C A PM RT q ρρρ=>>==所以 9. 水由敞口高位槽通过一管路流向压力恒定的反应器,当管路上的阀门开度减小(湍流态变为层流态),水流量将 ,摩擦系数 ,管路总阻力损失 。

(增大,减小,不变)减小,增大,不变;莫迪图判断摩擦系数,高位槽与反应器机守方程判断总阻力损失。

10. 用离心泵在两敞口容器间输液,同一管路中,用离心泵输送密度ρ=1.2ρ水的液体,与输水相比,离心泵的流量 ,扬程 ,轴功率 。

(增大,减小,不变)不变,不变,增大;
22222222sin cos /V T a V e q r b c H u c g P ρgq H /ηπαα===,,
11. 对离心泵允许安装高度没有影响的是下列情况中的 D 。

A. 安装处大气压;
B. 输送液体温度;
C. 吸入管道的流动阻力;
D. 排出管道的流动阻力
20V k g f (01)C f (1k)[][]0.50.52p p u H H NPSH NPSH NPSH H g g
ρ---=--=+∆+=++∆+∑∑; 二、简答题
1. 离心泵在开车前为何要先关闭出口阀门?
答:离心泵开动时的瞬时启动电流为正常工作电流的5~7倍,为保护电机,关闭
出口阀以减小负荷,减小电流,防止电极因瞬时电流过大而烧毁。

2. 如图所示:A 、B 、C 三点在同一水平面上,d A =d C >d B ,问:(1)当闸阀关闭时,A 、B 、C 三点出的压强哪个大?那个小?或相等?(2)当阀门打开,高位槽水位不变,A 、B 、C 三点出的压强、流量、流速哪个大?那个小?或相等?或不能判断?
提示:(1)根据静力学方程P A =P B =P C ;(2)根据连续性方程可知:q V A = q VB = q VC ;
U A =U C <U B ;根据能量守恒定律:P A >P C ,P A >P B ,而P C 与P B 大小不能判断。

三、计算题 1. 如图所示,用离心泵将水从敞口贮水池输送到敞口高位槽中,已知高位槽的水面离贮水池的水面高度保持为10m ,输送水量用孔板流量计测得。

孔板安装在离高位槽水面0.8m 处,孔径为20mm ,孔流系数为0.61。

管路为φ57×3.5mm 的钢管,直管长度和局部阻力当量长度之和(包括孔板局部阻力当量长度)为250m ,其中贮水池至孔板前测压点A 的直管长度和局部阻力当量长度之和为50m 。

水的密度为1000kg/m 3,粘度为1cp ,摩擦系数近似为λ=0.3164/Re 0.25。

U 形管中指示液均为水银,其密度为13600kg/m 3。

当水的流量为6.86m 3/h 时,试确定:(1)水通过泵所获得的外加能量为多少J/kg?(8分)
(2)在孔板前测压点A 处安装的U 形管压力计中指示液读数R 1为多少cm?(6分)
(3)孔板流量计的U 形管中指示液读数R 2为多少cm? (6分)
解:⑴ u=q v /(0.785d 2)=6.86/(0.785×0.052×3600)=0.971m/s
Re=0.05×0.971×1000/(1×10-3)=48550
λ=0.3164/Re 0.25=0.1364/485500.25=0.0213
取贮水池液面为1-1截面,高位槽液面为2-2截面,列柏努利方程式:
Z 1g+p 1/ρ+u 12/2+he= Z 2g+p 2/ρ+u 22/2+∑h (f 1 – 2)
he=Z 2g +∑h (f 1 – 2)= Z 2g +λ[(l+∑le )/d](u 2/2)
=10×9.81+0.0213×(250/0.05)×(0.9712/2) =98.1+50.2=148.3J/kg
(2)以A 点为2′-2′截面,在1-1与2′-2′截面间列柏努利方程式
Z 1g+p 1/ρ+u 12/2+he= Z 2′g+p 2′/ρ+u 2′2/2+∑h (f 1 – 2′)
(p 2′-p 1)/ρ=(p A -p a )/ρ= he - Z 2′g -(u 2/2)-λ[(l+∑le )/d](u 2/2)
=148.3-9.2×9.81-0.9712/2-0.0213(50/0.05)(0.9712/2)
=148.3-90.252-0.4714-10.04=47.53J/kg ; p A -p a =47.53×1000=47.53×103N/m 2
R 1=(p A -p a )/[g(ρi -ρ)] =47.53×103/[9.81×(13600-1000)]=0.3846m=38.46cm
(3)根据q v =C 0A 0[2gR 2 (ρi -ρ)/ρ]0.5; R 2=(q v /C 0A 0)2ρ/[2g(ρi -ρ)]
式中: C 0=0.61,A 0=0.785×0.022=3.14×10-4m 2;q v =6.86/3600 m 3/s ,
cm 40m 4.0)
100013600(81.921000)1014.361.03600/86.6()(g 2)A C /q (R 24i 200V 2==-⨯⨯⨯⨯⨯⨯=ρ-ρρ=-
2、用离心泵由敞口槽向密闭高位槽送料,特定转速下,泵特性方程为H=42-7.56×104q V 2,(q V 单位m 3/s ),当输送水时,在管内的流量q V =0.01m 3/s 。

现新工况下改送密度为1260kg/m 3的水溶液(其他性质和水相近),密闭容器内维持表压118 kPa 不变,流动均进入阻力平方区,试求:(1)试作图画出新老工况下工作点的变动情况,并说明理由;(6分) (2)求输送溶
液时的流量和有效功率;(10分)
(3)若将高位槽改为常压,还是输送水,则此时送水量为多少m 3/s ?(4分)
解:(1)本题中,泵的特性曲线不变,由于处于阻力平方区则管路特性曲线方程中的K 不变,22V V 248()[]l d H Kq q g g d g λζρρπ+∆∆=+=+∑P P ,由于密闭高位槽表压不变,输送流体密度变大,则总势能ΔP/(ρg)变小(位能不变,压强能变小),管路特性曲线下移,工作点从图中可看出,向右下移动(M 1到M 2),流量增大,压头降低。

(2)输送清水时,设管路特性曲线方程为:
3
222V V V 11810122410009.81H Kq Kq Kq g ρ∆⨯=+=++=+⨯P
联立泵特性曲线方程He=42-7.56×104q V 2,H=He ,当q V =0.01时,得K=1.04×103 S 2/m 5。

当输送溶液时,K 值不变,管路特性曲线方程为:
3
23232
V V V 11810'12 1.041021.55 1.0410(')12609.81H Kq q q g ρ∆⨯=+=++⨯=+⨯⨯P
此方程与泵特性曲线方程联立,可求得输送溶液时的流量V 'q
42-7.56×104(q V ’)2=21.55+1.04×103(q V ’)2;得q V ’=0.01066 m 3/s ,
He=42-7.60×104×0.010662=33.36 m ,
泵有效功率e 4.39e V P gq H kW ρ==
(2)高位槽为常压时,管路特性曲线方程发生变化,压强差△p=0,只有位能差,方程变为:
23232
e V V V 12 1.041012 1.0410('')H Kq q q g ρ∆=+=+⨯=+⨯P 再与泵的特性曲线方程He=42-7.56×104(q V ’’)2联立,得q V ’’=0.0129 m 3/s 。

相关文档
最新文档