变形观测设计方案

合集下载

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案一、背景简介随着城市交通的发展,地铁工程建设日益增多,然而地铁施工过程中可能会引起地面建筑物的变形,因此对地铁施工变形进行监测显得尤为重要。

二、监测对象地铁施工变形监测的对象主要包括地面建筑物以及地下管线等。

三、监测手段1.地表测量:通过对地表标志物进行定点测量,如测角、测距等方法,了解地表的变形情况。

2.遥感监测:利用航空摄影和遥感技术,对地铁工程周边的地形进行全方位监测。

3.地下管线探测:采用地下雷达等技术,对地下管线的情况进行探测,及时排除隐患。

四、监测频率1.实时监测:在地铁施工过程中,对地面建筑物变形进行实时监测,保证施工过程的安全。

2.定期监测:除实时监测外,还需定期对地铁施工周边区域进行监测,及时发现潜在问题。

五、监测报告1.监测数据分析:对监测数据进行系统分析,了解地面建筑物的变形情况。

2.问题排查:如发现地面变形异常,需及时进行问题排查,找出原因并提出解决方案。

3.监测报告撰写:根据监测数据和问题排查结果,编制监测报告,向相关部门汇报情况。

六、应急预案1.事故处理:如发生地面建筑物坍塌等紧急情况,需立即启动应急预案,保障施工现场人员的安全。

2.紧急通知:在出现紧急情况时,需第一时间向相关部门通报,并配合开展应急处理工作。

七、总结与展望地铁施工变形监测是保障地下工程施工安全的重要环节,只有加强监测工作,提高预警能力,才能确保地铁施工的顺利进行。

未来,随着监测技术的不断创新,地铁施工变形监测工作将更加精准、高效。

以上是关于地铁施工变形监测专项施工方案的介绍,希望通过不懈的努力,确保地铁施工的顺利进行,保障城市交通的高效便捷。

建筑变形观测施工方案

建筑变形观测施工方案

建筑变形观测施工方案建筑变形观测施工方案引言:建筑变形观测是在建筑工程施工过程中对建筑物结构变形进行监测和评估的一项重要任务。

通过对建筑物的变形进行定量化分析,可以及时发现和预测潜在的安全隐患,为工程质量的控制和改进提供可靠的依据。

本文将针对建筑变形观测的施工方案进行详细介绍。

一、施工前准备工作在施工前准备阶段,需要进行以下工作:1. 安排变形监测团队:选派有经验的工程师和技术人员组成变形监测团队,负责监测设备的搭建和数据处理分析。

2. 确定观测目标和位置:根据建筑物的结构特点和施工类型,确定变形观测的目标和位置。

通常观测的目标包括整体变形、局部变形等。

3. 选择观测方法和设备:根据观测目标的不同,选择合适的观测方法和设备,如测斜仪、全站仪、测量罗盘等。

二、安装观测设备1. 测斜仪的安装:测斜仪适用于测量建筑物的整体和局部变形。

安装时需要选择合适的点位,固定好设备,并进行仪器调试和标定。

2. 全站仪的安装:全站仪适用于测量建筑物的平面和高程变形。

安装时需要选择适宜的位置,保证仪器的稳定性,并进行校正和校准。

3. 测量罗盘的安装:测量罗盘适用于测量建筑物的方位和旋转变形。

安装时需要选择稳定的基准点,正确设置罗盘位置,并进行罗盘的调零和校准。

三、观测数据采集与处理1. 数据采集:根据事先制定的监测计划,定期对观测设备进行数据采集。

要确保采集到的数据准确可靠,可以采用现场悬挂标志板、人工标定、重复观测等方法进行校正和验证。

2. 数据处理:通过建立观测数据的数据库,并利用专业的数据处理软件对数据进行分析和处理。

根据观测结果,制作变形曲线图和变形速率图,以直观地展示建筑物的变形趋势。

四、变形预警和控制1. 变形预测:根据观测数据的变化趋势,结合建筑物的结构特点和设计要求,进行变形预测。

根据预警结果,及时采取相应的措施,避免发生重大事故。

2. 变形控制:根据变形观测结果,对施工过程中的建筑物进行及时调整和控制。

变形测量方案设计

变形测量方案设计

变形测量方案设计一、测量目的变形测量的主要目的是监测对象在各种因素作用下的变形情况,包括但不限于以下几个方面:1、评估工程建设对周边环境的影响,如新建建筑物对相邻既有建筑物的影响。

2、验证工程设计的合理性,确保结构在施工和使用过程中的安全性。

3、为工程施工提供指导,及时调整施工工艺和参数,避免出现过大的变形。

4、监测地质灾害的发展趋势,如滑坡、崩塌等,提前预警,保障人民生命财产安全。

二、测量内容根据测量目的和对象的不同,变形测量的内容也有所差异。

一般来说,常见的变形测量内容包括以下几个方面:1、水平位移测量:监测对象在水平方向上的移动情况,通常采用全站仪、GPS 等测量仪器进行测量。

2、垂直位移测量:测量对象在垂直方向上的升降变化,常用水准仪、静力水准仪等仪器进行测量。

3、倾斜测量:测定建筑物或构筑物的倾斜程度,可使用倾斜仪、全站仪等设备。

4、裂缝测量:观测建筑物表面裂缝的宽度、长度和发展趋势,通过裂缝观测仪或钢尺进行测量。

5、挠度测量:对于桥梁、大跨度结构等,测量其在荷载作用下的挠度变形,使用挠度计或全站仪等进行测量。

三、测量方法1、传统测量方法水准测量:是一种经典的垂直位移测量方法,通过测量高差来确定点位的高程变化。

具有精度高、操作简单等优点,但测量效率较低。

全站仪测量:可以同时测量水平角、垂直角和距离,适用于水平位移和倾斜测量。

精度较高,但受通视条件限制。

三角高程测量:利用三角原理测量高差,适用于地形起伏较大的地区。

2、现代测量方法GPS 测量:具有全天候、高精度、自动化程度高等优点,适用于大范围的变形监测,但在建筑物内部等信号遮挡严重的区域精度会受到影响。

测量机器人:一种自动化程度很高的全站仪,能够实现自动观测、数据采集和处理,大大提高了测量效率和精度。

激光测量:如激光测距仪、激光扫描仪等,可快速获取物体的空间位置信息,适用于大型结构的变形测量。

四、测量精度要求测量精度的确定应根据测量目的、工程特点以及相关规范标准来确定。

高速铁路路基工程变形观测方案设计与实施

高速铁路路基工程变形观测方案设计与实施

摘要 :随着 国民经济 的增长, 我 国高速铁路飞速发展 , 高铁施 工技术不断进步, 满足 了人 们对于线路质 量、 运 行速度 、 运输量的 高 指标要求 , 是先进技术 的代表 , 在 国际上也享有盛誉。本文介绍 了高速铁路路基. T - 程变形观测 目的、 观 测方法、 及观测方案与实施 , 对
Va l u e Eng i ne e r i n g
・7 5・
高速铁 路路基 工程变形观测方案设计 与实施
De s i g n a n d I mp l e me n t a t i o n o f t h e De f o r ma t i o n Ob s e r v a t i o n i l wa y S u b g r a d e
高速 铁 路技 术 发展 做 出贡 献 。
Ab s t r a c t :W i t h t h e g r o wt h o f t h e n a i t o n M e c o n o my , r a p i d d e v e l o p me n t o f C h i n a ' s h i g h— s p e e d r a i l wa y ,h i g h- s p e e d r a i l c o n s t r u c t i o n t e c h n o l o g y c o n i t n u e s t o p r o g r e s s , a n d me e t s he t p e o p l e ’ S h i g h e r d e ma nd f o r l i n e q u a l i  ̄, r u n n i n g s p e e d a n d he t a mo u n t o f ̄ a n s p o ta r t i o n ,S O

毕业设计:建筑物的变形观测变形监测方案

毕业设计:建筑物的变形观测变形监测方案

毕业设计:建筑物的变形观测变形监测方案嘿,小伙伴,今天我要跟你聊聊一个相当有意思的课题——建筑物的变形观测变形监测方案。

别看这名字有点长,其实它就是一门研究如何监控建筑物变形的技术活儿。

下面我就用我那十年方案写作的经验,带你领略一下这个方案的精彩之处。

咱们得知道,建筑物变形是个啥玩意儿。

简单来说,就是建筑物在外力作用下,形状和尺寸发生变化。

这事儿听起来有点玄乎,但却是建筑安全的大敌。

所以,监测建筑物的变形,就成了咱们这个方案的核心任务。

一、方案背景话说这事儿起源于我国城市化进程的加速,高楼大厦拔地而起,但随之而来的就是建筑安全问题。

尤其是那些大型、超高层的建筑物,一旦出现变形,后果不堪设想。

于是,咱们这个方案应运而生,旨在为建筑物的变形监测提供一套可行的方案。

二、监测目的1.确保建筑物在施工和使用过程中,结构安全、稳定。

2.及时发现和处理建筑物的变形问题,防止事故发生。

3.为建筑物的维护、保养提供科学依据。

三、监测方法1.全站仪测量法:这是一种利用全站仪对建筑物进行三维测量,从而得到建筑物变形数据的方法。

优点是精度高,但成本较高,操作复杂。

2.光学测量法:通过光学仪器对建筑物进行拍照,然后分析照片中建筑物的变形情况。

这种方法成本较低,操作简单,但精度相对较低。

3.激光扫描法:利用激光扫描仪对建筑物进行扫描,得到建筑物的三维模型,进而分析变形情况。

这种方法精度较高,但成本较高,设备要求较高。

4.雷达监测法:通过雷达对建筑物进行监测,实时获取建筑物的变形数据。

优点是实时性强,但精度相对较低。

综合考虑,我们选择了全站仪测量法作为主要监测手段,辅以光学测量法进行验证。

四、监测步骤1.建立监测点:在建筑物上设置一定数量的监测点,用于采集变形数据。

2.数据采集:利用全站仪对监测点进行测量,获取建筑物的三维坐标。

3.数据处理:将采集到的数据输入计算机,进行数据处理,得到建筑物的变形数据。

4.变形分析:根据变形数据,分析建筑物的变形趋势,为处理变形问题提供依据。

建筑沉降变形观测方案技术设计书三篇

建筑沉降变形观测方案技术设计书三篇

建筑沉降变形观测方案技术设计书三篇篇一:建筑沉降变形观测方案技术设计书一、工程概况:***大学***校区教三楼位于校道南侧,东临山丘,南临图书馆,西临教四楼,北面三栋广场,钢筋混凝土结构,地面高六层;场地地形较平坦,地基为粘性土地基。

由**建筑综合设计研究院设计,**公司第三分公司施工,*****公司监理,工程竣工日期为二0XX 年六月。

二、编制依据1、《建筑变形测量规程》(JGJ/T8-20XX )2、《工程测量规范》(GB 50026--20XX )3、《国家一、二等水准测量规范》(GB12987-91)4、****大学***校区教三栋1:500平面图5、教三楼结构情况及周边环境实况三、沉降观测方案(一)沉降观测精度、时间、次数:(1)、观测精度本次采用二级观测精度。

沉降基准网观测采用一级水准测量,往返高差较差或高差闭合差应n 3.0±≤mm ,(n 为测站数),最大不超过n 5.0±≤mm ,沉降观测往返高差较差或高差闭合差应n 0.1±≤mm ,(n 为测站数),最大不超过n 5.1≤mm 。

观测点测站高差中误差:≤0.5mm ;观测的视线长度:≤50m;前后视视距差:≤1.0m;视距累积差≤3.0m;观测成果在限差内按观测距离或测站数分配闭合差计算高程。

观测时一定要爱护观测标志,尺子放在观测点上应用力轻,立尺一定要直,每次把尺子立在观测标志之前,都要把观测标志点和尺子擦干净,以防止观测标或尺底粘泥土而影响观测精度。

(2)观测时间、次数观测周期每月一次,每期观测时间三个小时,总共进行6期观测。

首次观测时间为20XX年12月7日。

首次观测时,应观测多次取其平均值,以提高初始值的可靠性。

(二)基准点和工作点的布设1、观测点的设置:按照设计院的要求,并根据沉降观测的有关规定,布置沉降观测点依据以下原则布设:(1)参照设计图纸;(2)建筑物的各拐角极大转角处;(3)高低层建筑物、纵横墙的交接处两侧;(4)建筑物沉降缝两侧、基础埋深相差悬殊处。

公路工程变形监测方案

公路工程变形监测方案

公路工程变形监测方案1. 背景介绍公路工程是现代交通运输体系中至关重要的一部分,其建设和维护对于社会经济的发展和人民生活的改善都具有重要意义。

然而,由于公路工程受到地质、气候等自然因素的影响,以及车辆、人流等外部因素的作用,公路工程在使用过程中往往会出现一些变形问题,如路面起砂、裂缝、坑洼等,严重影响了道路的通行安全和舒适性。

因此,对公路工程的变形进行有效监测和预警,是保障道路安全和延长其使用寿命的重要措施。

2. 变形监测的目的和意义公路工程变形监测的目的是及时发现和记录公路工程的变形情况,为工程的维护和修建提供科学依据。

通过对公路工程变形的监测,可以及时采取预防和修复措施,避免变形问题加剧,从而保障道路的使用安全和舒适性。

同时,变形监测还可以为公路工程的设计、改建和维护提供重要的数据支持,为公路工程的规划和管理提供科学依据。

3. 变形监测的方法和技术公路工程的变形监测主要采用现场调查和监测技术相结合的方法。

其中,现场调查主要是通过巡视、检测工具和仪器等手段对公路工程进行实地观测和检测,主要包括路面平整度、水平和垂直偏差、裂缝和坑洼等变形情况。

而监测技术主要包括遥感技术、地面监测技术和无人机监测技术等,这些技术可以对公路工程的变形情况进行全方位的、实时的监测和记录。

在遥感技术方面,可以通过卫星影像和航空影像对公路工程的变形进行监测,这种方法可以实现对大范围区域的监测,且成本较低。

在地面监测技术方面,可以使用3S技术(即遥感、地理信息系统和全球定位系统)对公路工程进行变形监测,这种方法可以实现对特定区域和目标的精细化监测。

而无人机监测技术则是一种新兴的监测方法,通过无人机搭载遥感设备对公路工程进行变形监测,可以实现对地形、地貌、变形等情况的高分辨率监测,具有灵活性强、成本低、实时性好等优点。

4. 变形监测的指标和标准公路工程的变形监测需要依据一定的指标和标准进行,主要包括变形程度、变形形态、变形速率、变形区域等指标和标准。

路基、桥梁沉降观测方案

路基、桥梁沉降观测方案

桥梁和路基变形观测实施方案一、沉降观测网沉降观测网可采用全线统一的二等水准网,精度按二等水准测量精度控制,高程采用施工高程控制网系统。

沉降测量点分为基准点、工作基点和沉降观测点。

以设计院交桩并经过复测合格的CPI、CPII二等水准点作为基准点。

基准点应选设在变形影响范围以外便于长期保存的稳定位置。

使用时应做稳定性检查与检验,并应以稳定或相对稳定的点位作为测定变形的参考点。

1、工作基点应设在比较稳定的位置。

对观测条件较好或观测项目较少的工程,可不设立工作基点,在基准点上直接测量沉降观测点。

2、沉降观测点应设在能反映沉降特征的变形体上。

二、沉降观测1.每次观测前,对所使用的仪器和设备进行检验校正,并保留检验记录。

2.每次沉降观测时,宜符合下列规定:(1)采用相同的图形或观测路线和观测方法;(2)使用同一仪器和设备;(3)固定观测人员(4)在基本相同的环境和观测条件下工作。

三、沉降变形监测测量工作基本要求1.水准基点使用时应作稳定性检验,并以稳定或相对稳定的点作为沉降变形的参考点,并应有一定数量稳固可靠的点以资校核。

2.每次观测前,对所使用的仪器和设备应进行检验校正,并保留检验记录。

3.每次沉降变形观测时应符合:(1)严格按水准测量规范的要求施测。

首次观测每个往返测均进行两次读数。

(2)参与观测的人员必须经过培训才能上岗,并固定观测人员。

(3)为了将观测中的系统误差减到最小,达到提高精度的目的,各次观测应使用同一台仪器和设备,前后视观测最好用同一水平尺,必须按照固定的观测路线和观测方法进行,观测路线必须形成附合或闭合路线,使用固定的工作基点对应沉降变形观测点进行观测。

(4)观测时要避免阳光直射,且在基本相同的环境和观测条件下工作。

(5)成像清晰、稳定时再读数。

(6)随时观测,随时检核计算,观测时要一次完成,中途不中断。

(7)对工作基点的稳定性要定期检核,在雨季前后要联测,检查水准点的标高是否有变动。

(8)数据计算方法和计算用工作基点一致。

惠泽水库大坝变形观测的方案设计及实施

惠泽水库大坝变形观测的方案设计及实施

根据 《 混凝土 坝安全监 测技术 规范》 D / L
T 18—20 57 03对变 形监 测 的要 求 ,首 级平 面控 制 网水平 角用 精 度 为 J 级 的全 站 仪 观 测 1 回 , 。 2测 交 会法用 J 级 的全 站 仪观 测 4测 回。位 移 观 测 。 点共 1 5个 ,坝 顶 视 准 轴 上 变 形 观 测 点 为 S 1~ S ,共 8点 。其 中,s 8 4被 闸 墩柱 遮 挡 ,只 能 采 用交 会法 ,用 S 3与 S 4交 会 ,而 S X X 3只与 S 4 X
坝轴线下游河道即向左转弯,为变形观测控制网
的建 立造成 一定 的 困难 。大 坝为混 凝土砌 条石重
力坝 ,最大坝高 6 .m,坝顶 长 2 5 02 2m,坝顶高
程为 4 20 8. m,于 2o 0 6年 6月 建成 并 开 始 蓄 水 ,
蓄水位 最 高 曾达到 44 7 。 目前 库 内水 位为 6 .m 459 。施工期未按 《 5 .m 水利水 电工程施工测量 规范》开展变形 观测,也未建立变形 网。大坝
4 设计 变形观测方案 的探讨
中小 型水利 工程 枢纽 的变形 观测 ,由于受多
种因素的影响 ,往往不能严格按变形观测规范执 行。我们根据历年对我市 中小型水利工程枢纽的 变形观测实践 ,提出一些意见 ,与大家探讨 :
4 1 变 形观 测规 范的选用 . 现 有 的 水 利 电 力 大 坝 变 形 观 测 规 范 ,有
20. o4 07 N .
四 川 水 利
・ l 5・
通视 ,只好采用极坐标法 ,用 S 4 X 观测 ;其余 6
个点用视准线 z 一 2 1 z 观测。坝下游面视准轴上 位移点为 S S6 J 3一 J ,用视准线观测 Z Z 。坝 3一 4 下游面另 3个位移 点 S1 J、S1 J、s2 J 0不在视 准 线上 ,也采用交会法用 S 1 S 2观测。 X 与 X

公路工程路基沉降观测及变形观测实施方案

公路工程路基沉降观测及变形观测实施方案

公路工程项目名称路基沉降观测及变形观测实施方案编制:复核:审批:项目部XXXX年XX月XX日一、工程概况XXXXXXXXXXXXXXX为新增国道主干线XXX胶南至海晏公路的重要关联路段,本项目起点位于XXX,终点位于XXX,路线全长XXXXkm,施工范围为:KXX+000~KXX+000,主线采用双向四车道一级公路标准建设,设计速度80公里/小时,路基宽度24.5米。

桥涵设计汽车荷载采用公路-Ⅰ级。

本标段工程量主要有:路基主线XXXXkm、匝道XXXXkm,主线大桥XX座、通道桥XX座、匝道中桥XX座,涵洞XX道,分离式立交XX处,互通式立交XX处,服务区XX处。

二、编制及测量依据1、《工程测量规范》(GB 50026-2007);2、《公路勘测规范》(JTG C10-2007);3、《国家三、四等水准测量规范》( GB/T 12898-2009);4、《公路工程技术标准》(JTG B01-2011);5、设计图纸;6、设计院交桩成果;7、控制点加密成果。

三、适用范围适用于本标段所有高填深挖路段。

四、观测目的及范围1、观测目的为了确保工程施工质量,保证工程按预期目标顺利进行,必须对路基及高边坡进行沉降观测,以便充分了解边坡和路基的沉降值,沉降变化趋势和稳定情况,从而控制高填土和深挖方速率。

在实际填筑中应严密监视各种埋设仪器的观测指标,及时进行综合分析而定。

根据沉降量资料分析确定规定日期后沉降是否满足要求,根据沉降变化情况指导施工,确保全线施工质量。

2、观测范围本标段的范围KXX+000-KXX+000,包括KXX+677-KXX+000,323M的高填土路基;KXX+000-KXX+659左侧深路堑;KXX+103-KXX+655右侧深路堑;KXX+755-KXX+019左侧深路堑;KXX+267-KXX+444左侧深路堑;KXX+469-KXX+589左侧深路堑;KXX+210-KXX+390左侧深路堑;KXX+703-KXX+906左侧深路堑;KXX+219-KXX+424右侧深路堑;KXX+036-KXX+234左侧深路堑;KXX+716-KXX+925右侧深路堑。

变形监测方案

变形监测方案

变形监测方案近年来,随着建筑物、桥梁和其他工程结构的不断发展,对变形监测的需求也日益增加。

变形监测可以帮助工程师评估结构的稳定性和安全性,并在需要时采取必要的维修或加固措施。

为了设计一个有效的变形监测方案,工程师需要考虑多个因素,包括监测传感器的选择、数据采集和分析方法以及监测周期等。

一、传感器选择在变形监测方案中,传感器的选择至关重要。

传感器应具备高精度和高灵敏度的特点,能够准确测量结构的各种变形参数,如位移、应变、变形速度等。

目前市场上常见的变形监测传感器包括激光位移传感器、应变计、形变计等。

应根据具体实际情况选择适合的传感器,并考虑传感器的可靠性、易用性和经济性。

二、数据采集和分析变形监测不仅需要实时监测结构的变形情况,还需要对数据进行采集和分析。

数据采集可以通过有线或无线方式进行,具体采集方式应根据监测目标的位置和结构特点来确定。

同时,数据采集周期也很重要,应根据工程结构的特点和使用情况,合理确定数据采集的时间间隔。

采集到的数据需要进行处理和分析,以便获取有用的监测信息。

工程师可以采用数据统计和可视化分析等方法,快速识别结构的变形特点,并作出相应的判断和决策。

三、监测周期结构的变形监测通常需要长期持续的观测,以便及时发现和解决可能的问题。

因此,监测周期的确定也是设计变形监测方案时需要考虑的因素之一。

监测周期的选择应基于结构的类型和用途,以及预期的变形情况。

例如,对于高层建筑或大型桥梁等重要结构,监测周期可以设置为每年或每季度进行一次。

而对于一般住宅或小型工程结构,则可以适当延长监测周期,如每两年或每三年进行一次。

四、应急响应和维护措施即使设计了合理的变形监测方案,也不能完全排除不可预见的意外事件。

一旦发生结构变形超过安全范围的情况,工程师需要及时采取应急响应和维护措施,以保证结构的安全性。

如需进行加固或维修,应制定详细的方案,并按照相关的工程标准和规范进行操作。

同时,监测数据也可以为应急响应提供依据,帮助工程师准确评估结构的损伤程度和维修策略。

变形观测设计方案

变形观测设计方案

变形观测设计方案变形观测是一种重要的实验研究方法,它通过对被研究对象在不同时间点的观察,揭示其变化和演化过程。

变形观测设计方案是进行变形观测的基础,下面我将提供一个1200字以上的变形观测设计方案,以帮助您更好地开展研究。

实验目的:本实验旨在通过变形观测,研究地区地壳变形的时空特征及其与地质构造的关系,为地质灾害的防控提供科学依据。

实验内容:本实验将在地区选取若干观测点,采用变形观测技术对地壳运动进行监测。

观测点的选择应考虑地壳变形的主要影响因素,如构造活动、地震活动、岩石性质等。

观测点的布设应尽可能避开人为干扰,并考虑被观测对象的代表性。

实验时间:本实验将持续一年时间,每月进行一次观测。

观测时间的选择应考虑季节变化的影响,并尽量避开恶劣天气条件。

实验方法:1.GPS观测:在每个观测点布设GPS接收器,记录其经纬度和海拔高度,并设置观测间隔为10分钟。

GPS观测可通过卫星信号的接收,精确测量地表点的水平位移和垂直位移。

2. InSAR观测:选择适当的星载雷达卫星,对目标地区进行InSAR (Interferometric Synthetic Aperture Radar)观测。

通过计算雷达信号在地表发生的位移,可以获得地表点的水平位移和垂直位移。

3.GNSS观测:选取两个相距较远但相对稳定的GNSS基准站,在观测区域分别设置移位观测点。

使用GNSS接收器定期进行观测,以获得地表点的水平位移和垂直位移。

4.环境监测:在每个观测点布设环境监测仪器,记录温度、湿度、风速、气压等环境参数。

通过对环境参数的分析,可以了解环境变化对地壳变形的影响。

数据处理:1.GPS数据处理:对每个观测点的GPS数据进行差分处理,得到相对位移数据。

然后将相对位移数据转化为绝对位移数据,以最稳定的基准站为基准。

2.InSAR数据处理:使用InSAR算法处理卫星雷达数据,得到每个观测点的位移数据。

通过多时相的InSAR数据叠加,可以获取地表点的变形速率和变形梯度。

路基沉降观测及变形观测实施方案

路基沉降观测及变形观测实施方案

路基沉降观测及变形观测实施方案一、引言路基沉降观测及变形观测是对公路、铁路等基础设施建设或运营过程中路基沉降、变形等问题进行监测和评估的重要手段,能够提供实时、准确的数据,为工程的设计、施工、运营和维护提供科学依据。

本文将针对路基沉降观测及变形观测的实施方案进行详细介绍。

1.沉降观测点布设根据实际工程情况,确定沉降观测点的布设位置。

通常情况下,观测点要覆盖整个路基范围,选取具有代表性的位置进行观测。

观测点要均匀分布,覆盖各种地质条件和工程环境。

2.观测点标志设置在观测点处设置具有固定位置的标志物,如地脚螺栓等,确保观测点的位置不会发生变化。

标志物要固定可靠,不受外力影响。

3.观测设备选择根据观测需要和实际情况,选择适合的沉降观测设备。

常用的观测设备有测水管、水准仪、全站仪等。

在选择设备时要考虑设备的测量精度、稳定性和可靠性,并进行校准和养护。

4.观测方法根据实际情况,选择合适的观测方法。

常用的观测方法有静态观测、动态观测、连续观测等。

观测方法要与设备配套,确保测量数据的准确性和可靠性。

5.观测频率根据工程的重要性和监测的需要,确定观测的频率。

通常情况下,初期观测频率要高,随着工程的进行,观测频率可以逐渐降低,但要保持一定的连续性。

1.观测点布设根据实际工程情况,确定变形观测点的布设位置。

观测点要能够反映工程变形的情况,覆盖整个工程范围,选取具有代表性的位置进行观测。

2.观测点标志设置在观测点处设置具有固定位置的标志物,确保观测点的位置不会发生变化。

标志物要固定可靠,不受外力影响。

3.观测设备选择根据观测需要和实际情况,选择适合的变形观测设备。

常用的观测设备有测距仪、全站仪、测角仪等。

在选择设备时要考虑设备的测量精度、稳定性和可靠性,并进行校准和养护。

4.观测方法根据实际情况,选择合适的观测方法。

常用的观测方法有静态观测、动态观测、连续观测等。

观测方法要与设备配套,确保测量数据的准确性和可靠性。

5.观测频率根据工程的重要性和监测的需要,确定观测的频率。

建筑物倾斜观测方案

建筑物倾斜观测方案

建筑物倾斜观测方案建筑物倾斜观测是在建筑物设计、施工和使用过程中非常重要的一项工作。

通过对建筑物的倾斜情况进行观测和监测,可以及时发现建筑物的变形和倾斜情况,保障建筑物的安全和稳定。

下面是一份关于建筑物倾斜观测的方案。

一、观测目的建筑物倾斜观测的目的是为了及时发现和监测建筑物的倾斜情况,了解建筑物的变形情况,确保建筑物的安全和稳定。

二、观测内容1. 地基沉降观测:通过对地基的沉降情况进行观测,了解地基的稳定性。

2. 建筑物的倾斜观测:通过对建筑物的倾斜情况进行观测,了解建筑物的变形情况。

3. 结构变形观测:通过对建筑物的结构变形情况进行观测,了解建筑物的结构安全性。

三、观测方法1. 定点观测法:选取建筑物不同部位进行固定观测点的设置,通过定期对这些观测点的测量,了解建筑物的倾斜情况。

2. 摄影测量法:通过航空摄影、卫星遥感等手段,获取建筑物的倾斜照片,通过对照片的分析和处理,了解建筑物的倾斜情况。

3. 激光扫描法:通过激光技术测量建筑物表面的变形情况,了解建筑物的倾斜情况。

4. 传感器监测法:在建筑物中安装倾斜传感器,通过对传感器的监测和数据采集,了解建筑物的倾斜情况。

四、观测频率1. 地基沉降观测:每个季度进行一次观测。

2. 建筑物的倾斜观测:每个月进行一次观测。

3. 结构变形观测:每个季度进行一次观测。

五、观测报告1. 观测数据的记录和整理:对观测所得的数据进行记录和整理,建立观测数据库。

2. 观测数据的分析:对观测数据进行分析和处理,得出相关的结论。

3. 观测报告的撰写:编写观测报告,对观测数据、分析结果以及可能存在的问题进行说明和分析,提出建议和措施。

六、观测装备1. 测量仪器:包括测量仪器、摄影测量仪器、激光扫描仪等。

2. 传感器:包括倾斜传感器、压力传感器等。

3. 观测设备:包括固定观测点、地基沉降观测点等。

七、观测人员观测人员应具备相关的测量技术和数据处理能力,熟悉观测方法和工作流程,具备一定的工程背景和经验。

工程变形监测设计方案

工程变形监测设计方案

工程变形监测设计方案一、前言工程变形监测是指针对工程结构在使用过程中可能发生的变形情况进行实时、精准的监测和控制,以确保工程的安全运行。

根据不同的工程类型、地质条件和使用环境,变形监测需要采用不同的监测方法和技术手段,以满足工程变形监测的精确性、实时性和可靠性要求。

本方案将通过分析变形监测的技术原理、监测方法和应用场景,提出一套全面、有效的工程变形监测设计方案,以期为相关工程领域的实践工作者提供参考和借鉴。

二、工程变形监测的技术原理工程变形监测的技术原理主要涉及传感技术、数据采集和处理技术、通信技术和监控技术等方面。

1. 传感技术传感技术是工程变形监测的核心技术之一,其主要包括位移传感技术、应变传感技术、倾斜传感技术、振动传感技术等。

传感器通过将物理量(如位移、应变、倾斜、振动等)转换为电信号,再经过放大、滤波和模数转换等处理,最终形成可供监测分析的数字信号。

2. 数据采集和处理技术数据采集和处理技术是将传感器监测到的模拟信号采集、转换成数字信号,并通过存储和处理系统进行数据的存储、分析和处理。

这项技术的主要任务是保证采集到的数据真实可靠,并通过数据分析挖掘出有用的信息。

3. 通信技术通信技术是将采集到的监测数据通过网络传输到监测中心的关键环节。

目前常用的通信技术包括有线传输、无线传输、卫星通信、移动通信等,其中无线传输技术应用较为广泛。

通过通信技术,监测中心可以实时获取工程变形的监测数据,做到实时监控。

4. 监控技术监控技术是将采集到的数据进行分析,通过数据分析的结果及时发现工程变形的异常情况,并及时采取相应的措施防止事故的发生,保障工程的安全运行。

三、工程变形监测的常用方法工程变形监测的常用方法包括精密水准测量、全站仪测量、GNSS定位测量、应变片测量、倾斜仪测量等。

1. 精密水准测量精密水准测量是通过测量水准仪的读数变化,研究出工程结构的变形情况。

该方法适用于平面变形的监测,具有精度高、实时性好的优点,但仪器比较昂贵,且需要专业技术人员操作和维护。

隧道沉降变形观测实施方案

隧道沉降变形观测实施方案

隧道沉降变形观测实施方案隧道工程是现代城市建设中重要的基础设施之一,而隧道沉降变形观测则是保障隧道工程安全运行的重要环节。

本文将介绍隧道沉降变形观测的实施方案,以期为相关工程提供可靠的技术支持。

一、观测目的。

隧道沉降变形观测的主要目的在于监测隧道周围土体的变形情况,及时发现并评估隧道工程可能存在的安全隐患,为工程安全运行提供可靠的数据支持。

二、观测方法。

1. 传感器布设,在隧道周围布设合适数量和类型的变形传感器,包括但不限于测斜仪、应变计、位移传感器等,以实现对土体变形的全面监测。

2. 数据采集,利用先进的数据采集设备,对传感器采集到的变形数据进行实时、连续的监测和记录,确保数据的准确性和完整性。

3. 数据分析,对采集到的数据进行专业的分析和处理,及时发现并评估土体变形的趋势和规律,为后续工程安全评估提供依据。

三、观测频次。

1. 初期观测,在隧道工程初期施工阶段,需加强对土体变形的观测,以及时发现并解决施工过程中可能存在的安全隐患。

2. 定期观测,隧道工程竣工后,需进行定期的土体变形观测,以监测隧道周围土体的长期变形情况,为工程的安全运行提供数据支持。

3. 事件观测,在自然灾害、地质灾害等特殊事件发生后,需立即对隧道周围土体进行变形观测,及时评估隧道工程的安全状况。

四、观测报告。

1. 观测报告应包括观测数据的详细记录和分析结果,对土体变形的趋势和规律进行科学、客观的评估。

2. 报告应及时提交给相关部门和工程管理方,为工程安全评估和决策提供可靠的依据。

3. 报告中还应包括对可能存在的安全隐患提出合理的建议和措施,以保障隧道工程的安全运行。

五、观测保障。

1. 观测设备的维护保养,定期对观测设备进行维护保养,确保设备的正常运行和数据的准确性。

2. 观测人员的培训和管理,对观测人员进行专业的培训和管理,提高其观测和数据处理的技术水平和工作质量。

3. 观测方案的优化和改进,根据实际观测情况,及时对观测方案进行优化和改进,提高观测的效率和准确性。

路基沉降观测及变形观测实施方案

路基沉降观测及变形观测实施方案

临潼(靳家)至西安高速公路改扩建工程LX-C02标段路基沉降观测施工方案编制:复核:审批:临潼(靳家)至西安高速公路改扩建工程LX-C02标段项目经理部2014年7月20日目录一、编制依据 ------------------------------- 错误!未定义书签。

二、观测范围及主要内容 --------------------- 错误!未定义书签。

三、沉降观测的组织及设备配备 -------------------------------- 2四、观测计划 ------------------------------------------------ 3五、技术方案的实施 ------------------------------------------ 35.1基准控制网及观测技术方案------------------------------ 35.2基准点、工作基点的埋设-------------------------------- 45.3沉降板的埋设及保护------------------------------------ 45.4位置桩的设置------------------------------------------- 65.5位移、沉降量的测量------------------------------------ 6六、观测成果整理提交 ---------------------------------------- 7一、编制依据1.1 招投标文件1.2 JGJ/T 8-97《建筑变形测量规程》;1.3 GB 50026-93《工程测量规范》;1.4 GB 12897-91《国家一、二等水准测量规范》;1.5 GB/T 18314-2001《全球定位系统(GPS)测量规范》。

二、观测范围及主要内容高填方的分布范围及设置计划见表2-1:总计需要设置5个路基面沉降观测断面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变形观测设计方案
文档仅供参考
湖北送变电武昌直线跨越塔汉阳
直线跨越塔定向爆破对防洪影响
的变形观测方案
编制人:李雁南
审核人:陈剑锋
批准人:徐保林
湖北为天工程勘测设计有限公司
武汉科岛工程检测技术有限公司
目录
一、工程概况与任务........................................... 错误!未定义书签。

二、监测方案的编制依据 ................................... 错误!未定义书签。

三、监测方法与精度要求 ................................... 错误!未定义书签。

四、监测频率与次数........................................... 错误!未定义书签。

五、质量保证体系:........................................... 错误!未定义书签。

六、监测设备与人员组织 ................................... 错误!未定义书签。

七、监测成果报告............................................... 错误!未定义书签。

湖北送变电武昌直线跨越塔汉阳直线跨越塔定向爆破对防洪影响的变形
观测方案
一、工程概况与任务
湖北送输变电武昌直线跨越塔及汉阳直线跨越塔(白沙洲大桥上游4.7公里处屹立于长江二岸)即将拆除重建,要将两塔做定向爆破将其放倒。

为确保长江干堤防洪安全,需对该堤段的防洪影响进行变形观测,根据业主及堤防办要求,我司在该项目中应完成的主要任务为:
1、收集该地块已有地质资料并实地踏勘;
2、分析已有地质基础资料,并结合本项目实际情况进行专业监测设计;
3、根据监测方案进行监测网建设;
4、按专业监测方案要求进行监测;
5、分析监测数据,并按方案及相关文件要求提交监测报告,当遇险情时,及时提出预警。

二、监测方案的编制依据
1、中华人民共和国行业标准《工程测量规范》GB50026--- ;
2、中华人民共和国行业标准《建筑变形测量规范》JGJ 8--- ;
3、《地质灾害防治工程设计规范》(DB50/5029- );
4、中华人民共和国《河道管理条例》、《防汛条例》。

根据该项目规模、威胁对象及破坏后损失程度、变形敏感程度、
《建筑变形测量规程》(JGJ/T8-97)相关技术要求,将本项目定位为专业监测预警监测,等级如下:
基准网按平面二级精度执行,监测网平面位移按三级精度,沉降监测精度按二等水准精度要求。

其余各类监测按相应仪器精度要求执行。

三、监测方法与精度要求
大地变形监测是边坡监测中常见的方法之一,包括大地水平位移监测和垂直位移监测两方面,考虑到本项目边坡测量通视条件较差,本边坡水平位移测量方法采用精密全站仪、水准仪、铟钢尺进行(坐标系统采用重庆独立坐标系,高程系统采用1956年黄海高程),水平角采用全圆方向法观测6测回,垂直角和距离观测2测回。

气象元素在测站上测定,并会同全站仪加、乘常数一起置入仪器,由仪器自动改正。

当遇测量条件较差(温度、视线等)时,相应增加测回数,减小测量误差。

垂直位移采用二等水准测量方法。

水准基点按国家二等水准测量技术要求施测。

并应满足其相邻基点高差中误差≤±1.0mm;每站高差中误差≤±0.3mm;往返较差及附合或环线闭合差≤±0.6 的精度要求。

沉降观测点按国家二等水准测量技术要求进行施测,并应满足其高程中误差≤±1.0mm ;相邻点的高程中误差≤±0.5mm;闭合差≤±0.6。

监测网建设平面精度按二等执行,日常监测按三等精度执行。

垂直位移监测按照二等水准精度要求。

水平位移观测点的水平角、垂直角、距离测量的各项限值、限差按下表执行。

方向观测法的各项限差(″)表3-1
垂直角测量的各项限差(″)表3-2
光电测距各项较差的限值(mm)表3-3
边角网测量的技术要求如下:
三角形角度闭合差≤8.6″
边角网最弱点点位中误差≤4.2mm
平均边长≤500m
测边中误差±2mm
测角中误差±2.5″
最弱边精度≤1:50000
四、监测网设计
1、监测网点布设原则
根据该项目的形体特征、变形特征和赋存条件,因地制宜的进行布设。

监测该主体宏观变形形迹、监测变形破坏的主要诱发因素,能及时提供预报所需的主要监测数据。

监测网点布设要少而精,力争以尽量少。

相关文档
最新文档