混合策略线性规划解法课件.

合集下载

线性规划PPT课件

线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义

线性规划 ppt课件

线性规划  ppt课件
约束条件为:
8 25 x1 8 15 x2 1800 8 25 x 1800 1 8 15 x2 1800 x1 0, x2 0
6
线性规划模型:
min z 40 x1 36 x2
5 x1 3 x2 45 x 9 1 s.t. x2 15 x1 0, x2 0
2
两个引例 问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
于加工三种工件.假定这两台车床的可用台时数分别为800和 900,三种工件的数量分别为400、600和500,且已知用二种 不同车床加工单位数量不同工件所需的台时数和加工费用如 下表.问怎样分配车床的加工任务,才能既满足加工工件的要 求,又使加工费用最低?
注:lingo的灵敏度分析需要激活(系统默认是不激活的)为了激活灵敏性分析, 运行LINGO|Options…,选择General Solver Tab, 在Dual Computations列表 框中,选择Prices and Ranges选项。 确认并运行LINGO|Ranges或快捷键 ctrl+R.
在LINGO模型 min 13* x1 9* x 2 10* x3 11* x 4 12* x5 8* x6; 窗口输入: x1 x 4 400;
x 2 x5 600; x3 x6 500; 0.4* x1 1.1* x 2 x3 800; 0.5* x 4 1.2* x5 1.3* x6 900;
Cost
X1 X2 X3 X4 X5 X6 Row Price
影子价格
Slack or Surplus
1 2 3 4 5 6
13800.00 0.000000 0.000000 0.000000 140.0000 50.00000

4.2线性规划ppt课件

4.2线性规划ppt课件
4.2线性规划ppt课件
目录
• 线性规划简介 • 线性规划的求解方法 • 线性规划的软件实现 • 线性规划案例分析 • 线性规划的优化策略
01
线性规划简介
线性规划的定义
线性规划是数学优化技术的一种 ,它通过将问题转化为线性方程 组,并寻找满足一定约束条件的 解,以实现目标函数的最优解。
线性规划问题通常由决策变量、 约束条件和目标函数三部分组成
运输问题
总结词
运输问题是在物流和供应链管理中常见的线性规划应用,旨在优化运输成本和时 间。
详细描述
运输问题通常涉及多个起点、终点和运输方式,需要考虑运输成本、时间、容量 和路线等约束条件。通过线性规划方法,可以找到最优的运输方案,使得总运输 成本最低或运输时间最短。
投资组合优化问题
总结词
投资组合优化问题是在金融领域中常见的线性规划应用,旨 在实现风险和收益之间的平衡。
对偶问题在理论研究和实际应用中都 具有重要的意义,可以用于求解一些 特殊类型的问题,如运输问题、分配 问题等。
对偶问题具有一些特殊的性质,如对 偶变量的非负性、对偶问题的最优解 与原问题的最优解之间的关系等。
初始解的确定
初始解的确定是线性规划求解过程中的 一个重要步骤,一个好的初始解可以大
大减少迭代次数,提高求解效率。

决策变量是问题中需要求解的未 知数,约束条件是限制决策变量 取值的条件,目标函数是要求最
大或最小的函数。
线性规划的数学模型
线性规划的数学模型通常由一 组线性不等式和等式约束以及 一个线性目标函数组成。
线性不等式和等式约束条件可 以用来表示各种资源和限制条 件。
目标函数是决策变量的线性函 数,表示要优化的目标。

线性规划PPT课件

线性规划PPT课件

基解:令所为 有 0, 非求 基出 变的 (1量 .2)的 满解 足 称为基解。
基可行解与可行 足基 (1.3): 的满 基解称为基可 对应基可行解的 为基 可, 行称 基。基 显可 然 解的数目 基解的数 C目 nm
基本最优解与最优基 满: 足(1.1) 的基可行解称为基本 优最 解,
对应m,如果 B是矩A中 阵的一 mm个 阶非奇异 (|B子 |0)矩 ,则阵 称 B是线性规 题的一个基。
基向量与非基向B量 中: 的基 列向量称为,基向 矩阵A中除B之外各列即为非,基 A中 向共 量 有nm个非基向量。
基变量与非基 基变 向P量 j量 对: 应与 的xj变 称量 为基变量;否 基则 变称 量为 。非
将文件存储并命名后,选择菜单 “Solve” 并对提示 “ DO RANGE(SENSITIVITY)ANALYSIS? ”回答“是”,即 可得到如下输出:
“资源” 剩余 为零的约束为 紧约束(有效 约束)
OBJECTIVE FUNCTION VALUE
1)
3360.000
VARIABLE VALUE REDUCED COST
可行解 基 解
基可行解
1.4 线性规划问题的图解法
下面结合例1的求解来说明图解法步骤。
例1
max Z 4 x1 3 x2
2 x1 3 x2 24
s. t 3 x1 2 x2 26
x2
x1, x2 0
Q3(6,4)
第一步:在直角坐标系中分
别作出各种约束条件,求出
3x1+2x2=26
Q2(6,4)
B
条 件
3x1 100
x1,x2 0
l3:3x1 100 l4
l4:x10,l5:x200

第9章 线性规划方法及其应用 ppt课件

第9章 线性规划方法及其应用 ppt课件
当要求决策变量 xj(j1,2,,n)均取0或1时,称(9.1) 为 0 1 整数线性规划问题.
当要求决策变量 xj(j1,2,,n) 既取实数又取整数时, 称(9.1)为混合整数线性规划问题. 我们把满足所有约束条件的解称为线性规划问题(9.1) 的可行解.全体可行解的集合称为问题(9.1)的可行域,
19
9.2 建立线性规划模型的一般步骤
其中称 f c 1 x 1 c 2 x 2 c nx n为目标函数,xj(j1,2,,n) 为决策变量,bj(i =1,2,L,m)为约束常数,后面的式子为 约束条件.这里的 c j,b i,a ij(i 1 ,2 ,L ,m ;j 1 ,2 ,L ,n ) 为常数. 当要求决策变量 xj(j1,2,,n)均为整数时,称(9.1) 为纯整数线性规划问题;
的计划产量分别为 x1,x2,L ,xn 单位,则问题的数学模型

max f c1x1 c2 x2 L cn xn s.t. a11x1 a12 x2 L a1n xn b1,
a21x1 a22 x2 L a2n xn b2 , ........................................... am1x1 am2 x2 L amn xn bm , x j 0 ( j 1, 2,L , n).
3 x1 x2 3 x3 100, x j 0 ( j 1, 2, 3).
其中s . t . 为英文“subject to”的缩写,表示决策变量xj( j 1,2,3) 受 它后面的条件约束. 最优解为x10,x22,5 x325(具体解法后面 介绍),代入总利润的表达式f4x13x27x3 得对应的目标函 数最大值为250.由此得到该企业在现有资源条件下,日生产的最 优安排是:产品A 1 不生产A ,2 生产25吨A ,3 生产25吨,可实现最大 利润250千元/日.

混合整数线性规划教育课件

混合整数线性规划教育课件
⑴.若( LP )没有可行解,则( IP )也没有可行解,停止 计算。
⑵.若( LP )有最优解,并符合( IP )的整数条件,则 ( LP )的最优解即为( IP )的最优解,停止计算。
⑶.若( LP )有最优解,但不符合( IP )的整数条件,转 入下一步。为讨论方便,设( LP )的最优解为:
0 不在Ai建厂
模型: min Z
m
cij xij fi yi
i 1
n
xij ai yi
(i 1.2 m)
j 1
m
xij b j
i1
(j 1.2 n)xij0,源自yi0 或 1 (i
1.2
m、 j 1.2 n)
(二)、整数规划的数学模型
一般形式
n
maxZ(或min Z) cj xj j1
x1 . x2. x3
(0)
( 0. 0. 0 ) 0 ( 0. 0. 1 ) 5 ( 0. 1. 0 ) -2 ( 0. 1. 1 ) 3 ( 1. 0. 0 ) 3 ( 1. 0. 1 ) 8 ( 1. 1. 0 ) 1 ( 1. 1. 1 ) 4
B B 零件 方
个数 式
零件
1
零件
n 毛坯数
A1
b a11 a1 n 1
b A m
a m 1 a mn m
设:xj
表示用Bj
(j=1.2…n)
n
种方式下料根数
模型: min Z x j
j 1
n
aij x j bi
(i 1.2 m)
j 1
x
j
0
(j 1.2 n)且为整数
例二、某公司计划在m个地点建厂,可供选择的地点有 A1,A2…Am ,他们的生产能力分别是a1,a2,…am(假设生

线性规划PPT优秀课件

线性规划PPT优秀课件

y
1
x+y-1>0
1
O
x+y-1<0 x+y-1=0
x
复习二元一次不等式表示平面区域的范例 例1 画出不等式2x+y-6<0表示的平面区域。 y
6
注意:把直
线画成虚线以 表示区域不包 括边界
O
2x+y-6=0
3
x
复习二元一次不等式表示平面区域的范例 y
5Hale Waihona Puke 例2 画出不等式组 x+y=0
x y 5 0 x y 0 x 3
探索结论
复习判断二元一次不等式表示哪一 侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
可行域
(5,2)
(1,1)
线性规划
例1 解下列线性规划问题: 求z=2x+y的最大值和最小值,使式中x、y满足下 列条件: 2x+y=0 y
解线性规划问题的一般步骤:
2x+y=-3 y x 1 1 第一步:在平面直角坐标系中作出可行域; C( , ) 2 2 第二步:在可行域内找到最优解所对应的点; x y 1 O y 1 第三步:解方程的最优解,从而求出目标函数 B(2,-1) 2x+y=3
x-y=7 C(3,6) y=6

线性规划课件ppt

线性规划课件ppt
根据实际问题的特点,选择适合的线性规划模型进行建模和优化。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。

混合整数线性规划 PPT

混合整数线性规划 PPT

1、先不考虑整数约束,解( IP )的松弛问题( LP ), 可能得到以下情况之一:
⑴.若( LP )没有可行解,则( IP )也没有可行解,停止 计算。
⑵.若( LP )有最优解,并符合( IP )的整数条件,则 ( LP )的最优解即为( IP )的最优解,停止计算。
⑶.若( LP )有最优解,但不符合( IP )的整数条件,转 入下一步。为讨论方便,设( LP )的最优解为:
因此,可将集合内的整数点一一找出,其最 大目标函数的值为最优解,此法为完全枚举法。
如上例:其中(2,2)(3,1)点为最 大值,Z=4。
目前,常用的求解整数规划的方法有:
割平面法和分支定界法; 对于特别的0-1规划问题采用隐枚举法和匈 牙利法。
二、分支定界法
(一)、基本思路
n
max Z c j x j j 1
单 销地 厂址 价
A1 A2
Am
销量
生产 建设
B1 B2 B n 能力 费用
c11 c12 c1n a1 f1
c21 c22 c2n a2 f 2


cm1 cm 2 cmn am f m b1 b2 bn
设: xij 表示从工厂运往销地的运量(i=1.2…m、
j=1.2…n),
例二、某公司计划在m个地点建厂,可供选择的地点 有A1,A2…Am ,他们的生产能力分别是a1,a2,…am(假设
生产同一产品)。第i个工厂的建设费用为fi
(i=1.2…m),又有n个地点B1,B2, … Bn 需要销售这种产品, 其销量分别为b1.b2…bn 。从工厂运往销地的单位运费 为Cij。试决定应在哪些地方建厂,即满足各地需要, 又使总建设费用和总运输费用最省?

线性规划模型 ppt课件

线性规划模型 ppt课件

例:求解线性规划问题的最优解
maxz2x23x3x4
x1x2x35 s.t. 2x2x246x3x3x4x5624
x1,x2,x3,x4,x5 0
1 1 1 0 0 0 1 4 1 0
0 2 6 0 1
解:(1)构造初始单纯单纯形表(第1、4 、5列构成的矩阵可逆)所以可取
x0(5,0,0,6,24)
分析和建立模型
(1)确定决策变量:设 x( i i 1, 2, 3, 4)
为第i种矿石的选取的数量(单位10kg) ; (2)确定目标函数:
目标应该是使得总费用最小,即
f 1 0 x 1 1 5 x 2 3 0 x 3 2 5 x 4
达到最小;
(3)确定约束条件:选定的四种矿石的数量 应该满足铸件对三种成分的需求量,并且矿石数 量应该是非负的,即
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
例 (配料问题)某铸造厂生产铸件 ,每件需要20千克铅,24千克铜和30 千克铁。现有四种矿石可供选购,它们 每10千克含有成分的质量(千克)和 价格(元)如图。问:对每个铸件来说 ,每种矿石各应该选购多少,可以使总 费用最少?试建立数学模型。
x( i i 1, 2, 3, 4)
具有以上结构特点的模型就是线性规划模型
,记为LP(Linear Programming),具有以 下一般形式:
s.t.
max(or min) f c1x1 c2 x2 cn xn

线性规划及其基本理论演示文稿ppt

线性规划及其基本理论演示文稿ppt
4000 (千工日)
要求在充分利用各种资源条件下使建造住宅的总面积为最 大(即求安排各住宅多少m2),求建造方案。
线性规划问题举例
【例1.2】最优生产计划问题。某企业在计划期内计划生产甲、乙、丙三种 产品。这些产品分别需要要在设备A、B上加工,需要消耗材料C、D,按工 艺资料规定,单件产品在不同设备上加工及所需要的资源如表1.1所示。已 知在计划期内设备的加工能力各为200台时,可供材料分别为360、300公斤; 每生产一件甲、乙、丙三种产品,企业可获得利润分别为40、30、50元,假 定市场需求无限制。企业决策者应如何安排生产计划,使企业在计划期内总 的利润收入最大?
线性规划数学模型
建立数学模型的步骤:
Step1 分析实际问题; Step2 确定决策变量; Step3 找出约束条件; Step4 确定目标函数; Step5 整理、写出数学模型。
线性规划问题举例
【例1.1】某市今年要兴建大量住宅,已知有三种住宅体系可以大量兴建,各 体系资源用量及今年供应量见下表:
【解】这是一个条材下料问题 ,设切口宽度为零。 设一根圆钢切割成甲、 乙、丙三种轴的根数分别为y1,y2,y3,则切割方式可用不等式 1.5y1+y2+0.7y3≤4表示,求这个不等式关于y1,y2,y3的非负整数解。象这样 的非负整数解共有10组,也就是有10种下料方式,如表1.3所示。
表1.3 下料方案
需要人数 星期
需要人数
300

480
300

600
350

550
400
商场人力资源部应如何安排每天的上班人数,使商场总的营业员 最少。
线性规划问题举例
【例1.4】合理用料问题。某汽车需要用甲、乙、丙三种规 格的轴各一根,这些轴的规格分别是1.5,1,0.7(m), 这些轴需要用同一种圆钢来做,圆钢长度为4 m。现在要制 造1000辆汽车,最少要用多少圆钢来生产这些轴?

线性规划教学课件、

线性规划教学课件、

Z=7x1+12x2 4 x 2 360
(一)可行解、最优解 90 x2
s.t.
4 3
x x
1 1
5 x2 10 x 2
200 300
x 1 , x 2 0
1.可行解:满足所有约束 条件(包括非负条件) 的解。
9x1+4x2 360
最优解
可行解的集合称为可行
集,或可行域。
40
2.最优解:使目标函数达 30 到极值的解(理应属于 可行解集)。
2、可行域为非封闭的无界区域 (a)有唯一的最优解; (b)有一个以上的最优解; (c)目标函数无界(即虽有可行解,但在可行
域中,目标函数可以无限增大或无限减小),因 而没有最优解。 3、可行域为空集,因而没有可行解。
第三节 线性规划问题解的性质
一、线性规划问题解的概念原LP: 9Mxa1 x
线性规划教学课件、
线性规划的基本特点
LP是运筹学中应用最广泛的方法之一; LP是运筹学中最基本的方法之一,网络分析、整
数规划、目标规划和多目标规划等都是以LP为基 础的; 解决稀缺资源最优分配的有效方法,是付出的费 用最小或获得的收益最大 线性规划的研究对象
有一定的人力、财力、资源条件下,如何合理安 排使用,效益最高;
9 4 1

B1=
4
5
0
3 10 0
|B1|= 9 5 0+4 0 3+4 10 1-3 5 1- 4 4 0- 4 10 1≠0
2.基向量、基变量
基向量:对应于上述基B,组成B的向量称为基向量,记作
pj(j=1,2,…,m)
9

p1=
4 3
4

线性规划解的概念性质及图解法PPT课件

线性规划解的概念性质及图解法PPT课件

5—
4 —B
C
B 3—
2—
1 — 可行域
0 || |
A
12 3
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
4x1 16
4 x2 12
D
x1 + 2x2 8
E
| || | | | 4 56 7 8 9
x1
第4页/共38页
(1.2)得到
,x41=4,
5 B2 10
x1 5
1 0
,
-5x第11209x页1x/共4 38页32
基本解为 X (2) (- 2 , 0, 0, 4, 0)T
5
X (1) ( 2 ,1,0,0,0)T 5
X (2) (- 2 , 0, 0, 4, 0)T 5
由于 X(1)是基0本解,从而它是基本可行解,在
第1页/共38页
例1的数学模型
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
x1 x2
第2页/共38页
❖图解法
步骤 一: 由全 部约 束条 件作 图求 出可 行域;
x2
9—
8—
7—
6—
5 — (0, 4) 4—
3—
2—
1 — 可行域
习题4
max s.t.
z = 5x1 + 3x2 x1 + x2 ≤ 1 x1 + 2x2 ≥ 4 x1,x2 ≥ 0
第15页/共38页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1:求解“齐王赛马”问题。 已知齐王的赢得矩阵A
3 1 1 A 1 1 1
i
1 3 1 1 1 1
1 1 3 1 1 1
1 1 1 3 1 1
1 1 1 1 3 1
求得
i j j
max min aij 1 min max aij 3
1 1 1 1 1 3
x1+3x2+3x3+3x4+5x5+3x6 ≥1 3x1+x2+3x3+3x4+3x5+5x6 ≥1
xi ≥ 0,i=1,2,…,6
可解得解为:x1=x4=x5=0, x2=x3=x6=0.111, v′=3, x1′=x4′=x5′= 0, x2′=x3′=x6′=1/3, 即X′* =(0,1/3,1/3,0,0,1/3)T,所以甲的最优策略为 作出策略2、3、6的概率都为0.333,而作出1、4、5 的概率为0,此时 V′G=V′=3。
Y 1, Y 20
1/V= Y1+Y2=1/7
所以,V=6.993
Y1’= Y1V = 1/2 Y2’= Y2V = 1/2 于是乙的最优混合策略为: 以 ½ 的概率选1;以 ½ 的概率选2 ,最优值 V=7。 返回原问题:
当赢得矩阵中有非正元素时,V0 的条件不一定成 立,可以作下列变换: 选一正数 k,令矩阵中每一元素 加上 k 得到新的正矩阵A’,其对应的矩阵对策 G’= { S1, S2, A’} 与 G ={ S1, S2, A } 解相同,但VG = VG’ – k。
建立对G′={S1,S2,A′}中求甲方ห้องสมุดไป่ตู้佳策略的线性规划如下:
Min x1+x2+x3+x4+x5+x6 约束条件:
5x1+3x2+3x3+x4+3x5+3x6 ≥1
3x1+5x2+x3+3x4+3x5+3x6 ≥1 3x1+3x2+5x3+3x4+3x5+x6 ≥1
3x1+3x2+3x3+5x4+x5+3x6 ≥1
同样可以建立对策G′={S1,S2,A′}中求乙方最佳策略的线性规划如下: Min y1+y2+y3+y4+y5+y6 约束条件: 5y1+3y2+3y3+3y4+y5+3y6 ≤1 3y1+5y2+3y3+3y4+3y5+y6 ≤1 3y1+y2+5y3+3y4+3y5+3y6 ≤1 y1+3y2+3y3+5y4+3y5+3y6 ≤1 3y1+3y2+3y3+y4+5y5+3y6 ≤1 3y1+3y2+y3+3y4+3y5+5y6 ≤1 yi≥0,i=1,2,…,6 可解得解为: y1=y4=y5=0.111, y2=y3=y6=0, v′=3, y1′=y4′=y5′= 1/3, y2′=y3′=y6′=0,即Y′* =(1/3,0,0,1/3,1/3,0)T。 所以田忌的最优混合策略为作出策略1、4、5的概率都为1/3,而作 出2,3,6的概率为0,此时VG=VG′-k=1。
aij min max aij 。
i j j i
一个自然的想法:对甲(乙)给出一个选取不同策 略的概率分布,以使甲(乙)在各种情况下的平均赢得 (损失)最多(最少)-----即混合策略。
求解混合策略的问题有图解法、迭代法、线性方程法和
线性规划法等,我们这里只介绍线性规划法,其他方法略。
例:设甲使用策略1的概率为X1′,使用策略2的概率
为X2′ ,并设在最坏的情况下,甲赢得的平均值为V(未
知)。
5 9
A=
8 6
STEP 1
1) X1′+X2′=1
X1′, X2′0
2)无论乙取何策略,甲的平均赢得应不少于V: 对乙取1: 5X1’+ 8X2’ V 对乙取2: 9X1’+ 6X2’ V 注意 V>0,因为A各元素为正。 STEP 2 作变换: X1= X1’/V ; X2= X2’/V 得到上述关系式变为: X1+ X2=1/V (V愈大愈好)待定 5X1+ 8X21 9X1+ 6X21 X 1, X 20
建立线性模型: min X1+X2 s.t. 5X1+8X21 9X1+6X21 X 1, X 2 0
X1= 0.048 X2= 0.095 所以,V=6.993
返回原问题:
X1’= X1V= 0.336
X2’= X2V= 0.664
于是甲的最优混合策略为: 以0.336的概率选1策略, 以0.664的概率选2策略,简 记为X﹡=(0.336,0.664)T , 最优值V=6.993。
j
i
策略2
策略1
当甲取策略2 ,乙取策略1时,甲实际赢得8比预 期的多2,乙当然不满意。考虑到甲可能取策略2这一点, 乙采取策略2。若甲也分析到乙可能采取策略2这一点, 取策略1,则赢得更多为9 … 。此时,对两个局中人甲、 乙来说,没有一个双方均可接受的平衡局势,其主要原
因是甲和乙没有执行上述原则的共同基础,即 max min
故不存在纯策略问题下的解,可求其混合策略。 A中有负元素,可以取k=2,在A的每个元素上加2得到 3 3 3 1 3 5 A’如下:
3 3 A' 1 3 3 5 3 3 3 1 3 3 5 1 3 3 3 3 5 3 1 3 3 3 5 1 3 3 3 5
同样可求乙的最优混合策略: 设乙使用策略1的概率为Y1′ Y1′+Y2′=1
设乙使用策略2的概率为Y2′
失的平均值,越小越好。
Y1′,Y2′0
设在最坏的情况下,甲赢得的平均值为V。这也是乙损
作变换: Y1= Y1’/V , Y2= Y2’/V
建立线性模型: max Y1+Y2 Y1= 1/14 Y2= 1/14 8Y1+6Y21 s.t. 5Y1+9Y21
§3 矩阵对策的混合策略
若不存在va=v=vb,则局中人甲、乙两 方没有最优纯策略,就要考虑如何 随机地使用自己的策略,使对方捉 摸不到自己使用何种策略。即使用 混合策略。
设矩阵对策 G = { S1, S2, A }。当 max min a min maxj aij i ij j 时,不存在最优纯策略。 例:设一个赢得矩阵如下: min 5 9 5 A = max 6 i 8 6 6 max 8 9 min 8
相关文档
最新文档