钛合金轧制影响因素

钛合金轧制影响因素
钛合金轧制影响因素

轧制压力的影响因素

影响轧制压力的主要因素有:

(1)绝对压下量在轧辊直径和摩擦系数相同的条件下,随着绝对压下量的增加,轧件与轧辊的接触面积加大,轧制压力增加。同时接触弧长增加,外摩擦的影响加剧,平均单位压力增加,轧制压力也随之增大。

(2)轧辊直径在其他条件一定时,随着轧辊直径的加大,接触面积增加,同时接触弧长增加,外摩擦的影响加剧。因而,轧制压力增大。

(3)轧件宽度随着轧件宽度的增加,接触面积增加,轧制压力增大。

(4)轧件厚度随着轧件厚度的增加,轧制压力减小;反之,轧件愈薄,轧制压力愈大。

(5)轧制温度随着轧制温度的升高,变形抗力降低,平均单位压力降低,轧制压力减小。

(6)摩擦系数随着摩擦系数的增加,外摩擦影响加大,平均单位压力增加,轧制压力增大。

(7)轧件的化学成分在相同条件下,轧件的化学成分不同,金属的内部组织和性能不同,轧制压力也不同。

(8)轧制速度热轧时随着轧制速度的增加,变形抗力增加。冷轧时随着变形速度的增大、轧件温度的升高变形抗力有所降低。

轧制压力

轧制压力:辊加于轧件使之产生塑性变形的力。但通常把轧件作用于轧辊上并通过压下螺丝传递给机架的力称为轧制力,即是轧件加于轧辊的反作用力的垂直分量。轧制力在我国习惯称为轧制压力或轧制总压力。正确测定和计算轧制力,对于设计和使用轧机有重大意义。

影响轧制力的因素有两类:(1)影响轧件材料在简单应力状态下变形抗

力σ0的因素,如化学成分、组织、轧制温度和速度、加工硬化等。(2)影响变形应力状态的因素,如轧辊直径、轧件尺寸、表面摩擦、外力(张力或推力)等。确定轧制力的方法有理论计算、经验公式计算和实测法三种。

在熔炼TiNiCr低温超弹性合金(形状记忆合金)时,对Ti、Ni、Cr、C、H、O、N成份的控制,是获得理想合金的关键。首先O含量的增加不仅使相变温度下降,而且使记忆性能和力学性能恶化。O在高温下与Ti发生反应,熔炼时尤为剧烈,同时O和Ti生成的化合物一般是不可逆的,所以要严格控制熔炼时材料中的氧平衡量。还有Ti和耐火材料几乎都会发生反应。其次C含量对TiNiCr低温超弹性合金的力学性能影响不明显,但对热弹性马氏体的相变有影响,C在Ni中有大的溶解度,形成的TiC会阻碍孪晶界的运动及马氏体的再取向,使相变滞后扩大,回复率下降,对形状记忆效应和超弹性都不利。而且,C和单质Ti和Ni均反应,使TiNi合金中的C含量增加,然而C和TiNi合金的反应并不剧烈,可使C质量分数控制在0.05%左右。碳质量分数控制在0.05%左右。所以通常使用三高石墨坩埚真空感应熔炼制备合金锭,这样可降低熔炼时碳的污染,保证碳和氧的含量小于500p。g/L。

固溶热处理:

将合金加热至高温单相区恒温保持,使过剩相充分溶速冷却,以得到过饱和

固溶体的热处理工艺。

时效处理可分为自然时效和人工时效两种,自然时效是将铸件置于露天场地半年以上,便其缓缓地发生变形,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底。

金属的强度和塑性和晶粒大小都有关系。

首先是强度,存在一个霍尔佩奇公式,材料强度随晶粒大小变小而变强,温度升高强度会大幅减小,可是这个公式在纳米晶粒时候不适用,纳米晶的强度增强的更大;但单晶体强度不遵循上述规律,单晶体的强度很强,并且在高温时候仍能保持很强强度。

塑形,是晶粒越细塑形越好。

细化晶粒的方法,

1.凝固控制,包括晶粒细化剂(一般是中间合金),晶粒细化元素;缩短凝固时间,这个不能太过,太多会产生非晶;凝固过程施加电磁搅拌之类的外力物理细晶。

2.已经成锭的可以锻造细化晶粒(这种方法在一定条件下可以制备纳米晶,参考卢柯院士的相应文章);冷加工轧制可以在轧制方向细化晶粒,然后再结晶也可以细化晶粒。

金属冷变形程度的大小对再结晶形核机制和再结晶晶粒尺寸的影响晶体再结晶需要一个最小变形量,称为临界变形量。但变形量小于临界变形量时,不发生再结晶。当高于临界变形量时,能再结晶但晶粒粗大。以后随变形量增加,晶粒尺寸变小。

形核机制有两种:

1、已存在晶界的引出形核:晶粒变形小的时候较易发生这种;

2、亚晶合并形核或直接长大:变形率大的。

再结晶形核是现存于局部高能量区域内的,以多边化形成的亚晶为基础形核。亚晶粒本身是在剧烈应变的基体通过多边化形成的,几乎无位错的低能量地区,它通过消耗周围的高能量区长大成为再结晶的有效核心,因此,随着形变度的增大,会产生更多的亚晶而有利于再结晶形核。

当变形量很小时,储存能不足以驱动再结晶,晶粒尺寸为原始晶粒尺寸。当变形量增大到一定程度时,此时的畸变能已足以引起再结晶,但由于变形程度不大,形核率与长大速率比值很小,因此得到特别粗大晶粒。随着变形量增大,驱动形核与长大的储存能不断增大,而形核率增大较快,使形核率与长大速率比值增大,得到再结晶晶粒越来越细化。

一次再结晶完成时标示着储存能消耗殆尽,若再结晶充分,也说明再结晶晶粒靠在一起了,再结晶晶粒停止长大。对于后面的问题,可以如下理解:形变程度小,意味着再结晶形核的场所少,形核率低,在储存能足够的基础上,这些再结晶新晶粒有充分的空间满足其长大(只要给足温度条件)(能量多,形核少,再结晶新晶粒就可以长得比较粗大);当形变程度大,再结晶的形核率高,再结晶新晶粒形核长大很快遇到相邻再结晶晶

粒,两者都是“干净”的晶粒,提早终止了长大(能量多,形核也多,再结晶新晶粒基本均匀长大,总体长大的相对较小)。所以,才会考虑利用大应变提高形核率细化组织。

入口锥的主要参数是入口锥角β和长度L。入口锥角β的大小要适当,角度过大润滑剂不易储存,易造成拉拔润滑不良;角度过小,则拉拔时产生的金属屑、粉末等不易随润滑剂流掉,堆积于模孔中影响制品的质量,甚至还会造成夹灰、划沟、拉断等缺陷。生产中硬质合金模的入口锥角β大小一般为40°,入口锥的长度L一般取定径带直径的0.6倍。棒材拉拔中润滑锥常用R=4~8mm的圆弧代替。

在回复阶段硬度的变化很小,约占总变化的1/5;在再结晶阶段变化很大,占4/5。硬度一般是和强度成正比例的一个性能指标,所以由此推论,回复过程中强度的变化也应该和硬度的变化相似。

形变引起的硬度和强度的增加量主要取决于位错密度,由此可推出,在回复过程中,位错密度的减小有限,只有达到再结晶阶段时,位错密度才会显著下降。

位错密度的数量级我不清楚了,但是其强度和位错密度的关系差不多是个U型字母,既开始随着位错密度增大,金属强度是降低的,在退火状态下是金属强度最低的时候,之后随着位错密度增加,强度增加,这里就比如说加工硬化,位错增加,硬度提高了

热电偶测温原理

两种不同金属焊接成的闭合电路叫做热电偶。

由于不同金属自由电子的气密度不一样,在焊接处两种金属中的自由电子相互扩散出现差异,致使两金属接触处出现一个电势差,此为接触电动势。

接触电动势除了与两种金属性质有关外还与温度有关,在温度相同的情况下,两接头处电动势数值相等,方向相反,总电动势为零。如果两接头处温度不同,两电动势数值不同,总电动势就不为零,闭合电路就会出现电流,这种由温差引起的电流叫做温差电流。

用温差电偶测量温度的方法是:令一个接头的温度已知,另一接头插入待测温度的物体中,测出电偶内出现的温差电流,便可推知被测温度。加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象,称加工硬化或冷作硬化。随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。

加工硬化简介:

金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。又称冷作硬化。产生原因是,金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等。加工硬化的程度通常用加工后与加工前表面层显微硬度的比值和硬化层深度来表示。

在纳米材料中也会出现加工硬化现象,此时的硬化行为多认为和位错运动密切相关。

加工硬化给金属件的进一步加工带来困难。如在冷轧钢板的过程中会愈轧愈硬以致轧不动,因而需在加工过程中安排中间退火,通过加热消除其加工硬化。又如在切削加工中使工件表层脆而硬,从而加速刀具磨损、增大切削力等。但有利的一面是,它可提高金属的强度、硬度和耐磨性,特别是对于那些不能以热处理方法提高强度的纯金属和某些合金尤为重要。如冷拉高强度钢丝和冷卷弹簧等,就是利用冷加工变形来提高其强度和弹性极限。又如坦克和拖拉机的履带、破碎机的颚板以及铁路的道岔等也是利用加工硬化来提高其硬度和耐磨性的。

固溶强化:

合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度

提高的现象。

原理:

融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。这种通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。

影响因素

(1)溶质原子的原子分数越高,强化作用也越大,特别是当原子分数很低时,强化作用更为显著。

(2)溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。

(3)间隙型溶质原子比置换原子具有较大的固溶强化效果,且由于间隙原子在体心立方晶体中的点阵畸变属非对称性的,故其强化作用大于面心立方晶体的;但间隙原子的固溶度很有限,故实际强化效果也有限。

(4)溶质原子与基体金属的价电子数目相差越大,固溶强化效果越明显,即固溶体的屈服强度随着价电子浓度的增加而提高。

程度:

固溶强化的程度主要取决于两个因素:

1.原始原子和添加原子之间的尺寸差别。尺寸差别越大,原始晶体结构受到的干扰就越大,位错滑移就越困难。

2.合金元素的量。加入的合金元素越多,强化效果越大。如果加入过多太大或太小的原子,就会超过溶解度。这就涉及到另一种强化机制,分散相强化。

3.间隙型溶质原子比置换型原子具有更大的固溶强化效果。

4.溶质原子与基体金属的价电子数相差越大,固溶强化作用越显著。

效果:

1.屈服强度、拉伸强度和硬度都要强于纯金属

2.绝大部分情况下,延展性低于纯金属

3.导电性比纯金属低很多

4.抗蠕变,或者在高温下的强度损失,通过固溶强化可以得到改善

解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。解理断裂常见于体心立方和密排六方金属及合金,低温、冲击载荷和应力集中常促使解理断裂的发生。面心立方金属很少发生解理断裂。

解理断裂通常是宏观脆性断裂,它的裂纹发展十分迅速,常常造成零件或构件灾难性的总崩溃。

解理断裂断口的轮廓垂直于最大拉应力方向。新鲜的断口都是晶粒状的,有许多强烈反光的小平面(称为解理刻面)。解理断口电子图像的主要特征是“河流花样”,河流花样中的每条支流都对应着一个不同高度的相互平行的解理面之间的台阶。解理裂纹扩展过程中,众多的台阶相互汇合,便形成了河流花样。在河流的“上游”,许多较小的台阶汇合成较大的台阶,到“下游”,较大的台阶又汇合成更大的台阶。河流的流向恰好与裂纹扩展方向一致。所以人们可以根据河流花样的流向,判断解理裂纹在微观区域内的扩展方向。

解理断裂的电子图象,具有河流花样,河流花样变化处为小角度倾斜晶界。

微型电动机主轴的解理断裂的电子图象,具有羽毛状花样,在羽毛状花样上还可观察到小的舌状花样。

断裂原因

导致金属零件发生脆性的解理断裂有材料性质、应力状态及环境因素等众多原因。

(1)、从材料方面考虑,一般只有冷脆金属才能发生解理断裂。面心立方金属为非冷脆金属一般不会发生解理断裂。

(2)、构件的工作温度较低,即处在脆性转折温度以下。

(3)、只有在平面状态(即三向拉应力状态)下才能发生解理断裂,或者说构件的几何尺寸属于厚板情况。

(4)、晶粒尺寸粗大。

(5)、宏观裂纹存在。

防止措施

(1)、消除或减小构件上的裂纹尺寸。

(2)、细化晶粒。

(3)、消除或减少金属中的有害杂质。

(4)、采用双钢代替单一的马氏体组织材料。

钛合金特性及加工办法

精心整理 钛合金特性及加工方法 钛合金以其强度高、机械性能及抗蚀性良好而成为飞机及发动机理想的制造材料,但由于其切削加工性差,长期以来在很大程度上制约了它的应用。随着加工工艺技术的发展,近年来,钛合金已广泛应用于飞机发动机的压气机段、发动机罩、排气装置等零件的制造以及飞机的大梁隔框等结构框架件的制造。我公司某新型航空发动机的钛合金零件约占零件总数的11%。本文是在该新机试制过程中积累的对钛合金材料切削特性以及在不同加工方法下表现出的具体特点的认识及所应采取工艺措施的经验总结。 1钛合金的切削加工性及普遍原则 钛合金按金属组织分为a 相、b 相、a+b 相,分别以TA ,TB ,TC 表示其牌号和类型。我公司某新型发动 600 损严重。 要保持刀刃锋利,以保证排屑流畅,避免粘屑崩刃。 切削速度宜低,以免切削温度过高;进给量适中,过大易烧刀,过小则因刀刃在加工硬化层中工作而磨损过快;切削深度可较大,使刀尖在硬化层以下工作,有利于提高刀具耐用度。 加工时须加冷却液充分冷却。 切削钛合金时吃刀抗力较大,故工艺系统需保证有足够的刚度。由于钛合金易变形,所以切削夹紧力不能大,特别是在某些精加工工序时,必要时可使用一定的辅助支承。 以上是钛合金加工时需考虑的普遍原则,事实上,用不同的加工方法时及在不同的条件下存在着不同的矛盾突出点和解决问题的侧重点。 2钛合金切削加工的工艺措施

车削 钛合金车削易获得较好的表面粗糙度,加工硬化不严重,但切削温度高,刀具磨损快。针对这些特点,主要在刀具、切削参数方面采取以下措施: 刀具材料:根据工厂现有条件选用YG6,YG8,YG10HT。 刀具几何参数:合适的刀具前后角、刀尖磨圆。 较低的切削速度。 适中的进给量。 较深的切削深度。 选用的具体参数见表1。 表1车削钛合金参数表工序车刀前角go ° ° mm m/min mm mm/r 粗车56 精车56 铣削 了3 此外,为使钛合金顺利铣削,还应注意以下几点: 相对于通用标准铣刀,前角应减小,后角应加大。 铣削速度宜低。 尽量采用尖齿铣刀,避免使用铲齿铣刀。 刀尖应圆滑转接。 大量使用切削液。 为提高生产效率,可适当增加铣削深度与宽度,铣削深度一般粗加工为 1.5~3.0mm,精加工为0.2~0.5mm。 磨削 磨削钛合金零件常见的问题是粘屑造成砂轮堵塞以及零件表面烧伤。其原因是钛合金的导热性差,使磨削区产生高温,从而使钛合金与磨料发生粘结、扩散以及强烈的化学反应。粘屑和砂轮堵塞导致磨削比显著

纯钛及钛合金热加工性能全参数

纯钛热加工性能参数 1. 来料牌号及化学成分 注:合金牌号对应标准GB/T3620.1-2007 2.纯钛的物理性能 熔点1668±4℃ 密度ρ=4.5g/cm3 弹性模量E=1.17×105MPa、G=0.44×105Mpa(约为钢的54%)导热系数λ=19.3Wm-1K-1 热膨胀系数10.2×10-6/℃(室温-700℃) 泊松比υ=0.33

3.常温下力学性能 4. 加热规范 板坯在热轧前需要在加热炉中均匀加热, 为防止氧扩散,应限制加热温度和时间,因此,从成材率、表面质量考虑,该扩散层的厚度越薄越好,为此,热轧带卷加热温度的设定应在保证稳定轧制并可卷制成带的情况下,尽可能低。通常工业纯钛在加热炉内最好加热至800~920℃。 纯钛料轧制时的加热制度和终轧温度 5. 轧制过程控制 热轧分为粗轧和精轧。粗轧通常使用可逆式轧机,从厚板坯(80~300mm )的轧制到供精轧机轧制的板材厚度(25~40mm ),需经5~7个道次的轧制。纯钛的粗轧终轧温度为790℃。精轧工序在6~7台串列式轧机进行,可将25~40mm 的板坯连续加工成钛带材(厚3~6mm ),轧制速度可达

300~600m/min。 轧制过程温度控制参数为:钛板坯在加热炉中加热到800~920℃,在910℃出炉;粗轧终轧温度为790℃,连续热轧时钛坯温度控制在650~800℃范围,终轧温度为670℃;在470~490℃温度范围进行卷取。轧制后立即将钛带在输出辊道上用水冷或空冷的方法,以大于5~10℃/s的速度冷却,在低于500℃时卷取,以保证带卷材质均匀。 其它工艺要点有:严格控制初轧及连轧时各机架压下量和各机架上带材的温度;避免辊道对带材表面划伤;每轧3~4块清理一下辊道上的金属沾污;热轧带卷初始阶段,需要建立一个稳定的、大于4MPa/mm2的后张力,防止因带材卷乱或松卷引起划伤。 轧制温度对纯钛的单位压力的影响

钛合金切削中刀具材料选用及加工工艺介绍

.

6mm。 c.切削加工情况:有YG8铣平面,刀具切削轻松,在进刀与工件接触时 以及刀具将工件切透时有振动,中间切削过程平稳,使用磨削液。 留0.5mm 余量进行精铣,可获得R a1.6的表面粗糙度。 2.加工十字形状 a.刀具选择:选用硬质合金立铣刀,刀具材料为Y330。铣刀外径?40。 b.切削参数选择:主轴转速235r/min。 c.切削加工情况:用Y330加工十字形状,手动横向进给,刀具切削轻 松,切削时加磨削液充分冷却。精铣时铣刀底刃修磨R2,后角为1 0°~12°,并用碳化硅油石修磨使切削刃光滑,工件能得到R a1.6 的表面粗糙度。此时后角的选择,尤其是刀具圆弧面后角的选择至 关重要,过大,会在铣削过程中产生振动,容易崩刃,使切削刃产 生锯口,加剧磨损:过小,会造成排屑、断屑困难,切屑还会粘刀, 后刀面与工件磨擦现象严重,刀具磨损加快。因此正确地修磨后角, 可以提高刀具的使用寿命。 3.车削工件内外圆弧表面 刀具材料、几何参数及切削用量的选择如下: a.刀具材料为YG8,45°偏刀断续切削,使用磨削液让切削刃冷却。用工装夹 持工件,每组加工8件,粗车切削用量V=25~38m/min,f=0.3~0.5mm/r, ap=3~5mm.如加工中间内孔,在连续切削的条件下精车,切削用量V=50~7 5m/min,f=0.1~0.2mm/r,ap=0.25~0.8mm。 前角γ=8°~12°能保证刀具强度。 .磨出0.05~0.1mm的负倒棱,增强切削刃强度。 .后角a=15°~20°,以减少后刀面与工件的摩擦,提高刀具寿命。 .粗车时,刃倾角λ=-3°~-5°,精车时刃倾角λ=-3°~0°。 .粗车时,刀尖圆弧半径r0=0.5mm,精车时r0=1~2mm,以增强刀尖强度。 .切削加工情况:通过以上参数选择,工件可获得R a1.6的表面粗糙度,并能有效地提高刀具寿命,主切削刃在刃磨后用碳化硅油石研磨出倒棱,可消除刃磨产生的锯口,提高抗磨损能力,并增强主切削刃强度。 .加工零件两边U形弧槽 图1所示U槽深约24mm,宽18mm,圆弧为28,弧形槽弦长61mm,为半盲槽,加工 后底部弧面及两侧面壁厚为4mm。由于是半盲槽,刀具进入切槽后,铣削阻力增大, 排屑不畅,刀具与切屑挤压现象严重,切削过程中有振动,刀具易崩刃,如继续切 削,刀具将在颈部处折断。加工后的零件表面凹凸不平,表面粗糙度达不到要求。 在选用刀具上,原选用硬质合金立铣刀加工,由于铣削产生的振动使铣刀崩刃,刀 具寿命较短。后改用超硬铝高速钢铣刀(刀具牌号W6Mo5Cr4V2Al)切槽,取得了较满 意的效果。其加工步骤如下: a.先将铣刀底部磨出圆角R2,后角值取8°~12°,并用油石修光。如果刀具

超弹性钛镍形状记忆合金棒材和丝材-编制说明

《超弹性钛镍形状记忆合金棒材和丝材》 编制说明(征求意见稿) 一、 工作简况 1.1本标准项目涉及的产品简况: 本标准针对适用于眼镜架、矫形丝、导引丝、通信天 线等用途的超弹性钛镍形状记忆合金棒材和丝材产品的化学成分、 尺寸、弯曲度、超弹性性 能、力学性能、高低倍组织、表面质量等技术要求、试验方法、检验规则、标志、包装、运 输、贮存等进行了规定。 目前国内钛镍合金生产已具有一定的规模,但与国际相关生产技术相比仍存在差距。在 钛镍合金的熔炼技术方面,美国、日本已走在了世界的前列,例如美国 WahCha ng 公司可以 生产单锭重量达3吨的钛镍合金铸锭。国内一般采用25kg 或50kg 真空中频感应炉生产铸锭, 存在的问题是铸锭规格小、效率低、杂质含量高,产品的成品率仅为 50%左右,不适合规模 化生产。 国外钛镍合金生产广泛采用将大规格铸锭通过挤压方法生产棒坯料, 然后再轧制拉拔成 棒丝材的工艺,其先进的生产线主要是采用了连续式高速轧机, 精轧采用三辊、四辊定径轧 机等,生产线产能较大,但设备复杂,投资较大。 我国钛镍合金棒丝材普遍采用与普通钛合 金相似的加工工艺,即铸锭锻造开坯后轧制、旋锻、拉拔的工艺,生产规模普遍较小,经济 效益低,产品质量和精度与国际先进水平有较大差距,缺乏竞争力。 产品生产工艺路线如下图所示: 图1超弹性钛镍形状记忆合金棒材和丝材生产工艺流程图 1.2任务来源:根据国标委发[2018]60号20192049-T-610,由西安思维金属材料有限公 司、有研亿金新材料股份有限公司、有研医疗器械(北京)有限公司承担国家标准《超弹性 钛镍形状记忆合金棒材和丝材》的编制工作,计划完成年限为 2019年。 1.3标准项目申报单位简况: 西安思维金属材料有限公司于 2012年注册成立,主营业务 为钛镍材料和钛及钛合金丝材及深加工产品的研发、 生产和销售,主导产品为钛镍合金棒材、 丝材、板材及航空航天和工程用钛合金棒丝材两大类产品。公司 2013年经认证成为“陕西 省和西安市民营科技企业”、“西安市高新技术企业”, 2014年经认定为“陕西省中小企 业创新研发中心”; 2015年被认定为国家“高新技术企业”; 2018年被认定为西安市 TOP100企业及“陕西省科技型中小企业” ;并已通过 ISO 9001-2008、ISO14001-2004 及 GB/T28001-2011管理体系认证。公司目前在研科研项目 15余项,其中获得国家、省、市政 府支持的项目 10 余项,获得 2017 年陕西省科技进步三等奖, 西安市科技进步一等奖。 公司 2012 年至今起草制定国家标准、有色金属行业标准 10 余项。公司依托西北有色金属研究院 电热张力矫直 [表面磨削 —? 「表面氧化处理 ----------- ? 拉 丝 成品矫直 扒皮,切冒口 棒、丝坯旋锻 性能检测 入库

钛合金的铣削加工技术

钛合金的铣削加工技术 钛及钛合金因密度小、比强度高、耐腐蚀、耐高温、无磁、焊接性能好等优异综合性能,在航空航天等领域得到越来越广泛应用。但是,钛合金的一些物理力学性能给切削加工带来了许多困难。切削时钛合金变形系数小、刀尖应力大、切削温度高、化学活性高、粘结磨损及扩散磨损较突出、弹性恢复大、化学亲合性高等特点,因此在切削加工过程中容易产生粘刀、剥落、咬合等现象,刀具温度迅速升高,导致刀具磨损,甚至完全破坏。 正因为钛合金具有比强度高、耐腐蚀性好、耐高温等优点,从20世纪50年代开始,钛合金在航空航天领域中得到了迅速的发展。钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。在飞机用材中钛的比例,客机波音777为7%,运输机C-74为10.3%,战斗机F-4为8%。但是由于钛合金价格高,耐磨性差等原因,限制了其使用领域。 近几十年以来,国内外针对航天航空应用所研究的钛合金等均取得了很大进步,许多合金也得到广泛应用。本文针对航天航空产品中钛合金铣削加工技术进行论述,供同行们参考。 1. 钛合金简介 钛是同素异构体,熔点为1 720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类: (1)α钛合金它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 (2)β钛合金它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1 372~1 666MPa;但热稳定性较差,不宜在高温下使用。 (3)α +β钛合金它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α +β钛合金;α钛合金的切削加工性最好,α+β钛合金次之,β钛合金最差。α钛合金代号为TA,β钛合金代号为TB,α +β钛合金代号为2. 钛合金铣削加工时切屑的形成 由于钛合金工件材料有不同的种类,各种材料的切削加工性不同,切削条件不同,切削变形的程度也就不同,因而所产生的切屑形态也就多种多样。归纳起来,可分为以下四种类型:带状切屑、节状切屑(锯齿状切屑)、粒状切屑及崩碎切屑,如图1所示。锯齿状切屑

TC4钛合金拉拔工艺探索

TC4钛合金拉拔工艺探索 摘要:通过对TC4钛合金棒线材冷拉拔加工过程展开研究,选择合理的冷拉拔加工工艺参数,实现了TC4钛合金室温下的冷拉拔生产。 关键词:TC4钛合金冷拉拔加工工艺参数 前言:钛合金具有的良好的耐蚀、比强度、无磁性及高低温性能等特点成为令人瞩目的高性能新材料,二十世纪五十年代以后在军用和民用领域应用都极具活力。在航空航天领域,钛和其合金主要用于航空航天和军事工业上面,钛在航空航天上的应用约占钛总产量的70%左右:在民用方面,高尔夫球头、民用自行车、各种钛制容器(压力容器,化学、电镀液槽)等也进入了人们的生活:医学领域,医用钛合金无毒质轻、比强度高。具有的极好的生物相容性和耐腐蚀性,也是较为理想的医用金属材料、可用于作植入人体的植入物等。此外,建筑行业、农业和畜牧业、核工业、军械方面、汽车行业都出现了良好的发展势头。 TC4(Ti-6Al-4V)钛合金是上世纪五十年代发展起来的一种中等强度α+β两相型钛合金,它含有6%α稳定元素铝和4%β稳定元素钒。该合金凭借其高强度、高的比强度和良好的高温蠕变性等优异的的综合性能,成为航空航天工业中重要的结构材料。这种合金不仅室温抗拉强度极高,而且在高温下也具有较高的抗拉强度。TC4(Ti-6Al-4V)钛合金是各种钛合材料中应用最广泛的一种双相型钛合金,它具有优良的综合性能、良好的工艺塑性、超塑性和耐腐蚀性,适用于各种压力加工成形及各种方式的焊接和机械加工,同时对热应力也存在一定的敏感性TC4钛合金的室温强度高,在150-350℃间具有较好的耐热性。此外,还具有良好的焊接性,焊后不作任何处理即可使用,也可以通过焊后固溶处理和时效处理进一步获得强化。TC4钛合金连接件作为钛合金应用的重要手段,有着简化部件整体加工工序、提高材料利用率、降低成本、减轻结构重量、提高生产效率等方面的优势。在汽车领域中用钛丝制成的弹簧可减重50% ;钛合金线材制成的铆钉连接件已普遍应用于航空航天飞机上;在海水养殖方面,用钛丝织成的养殖网使用15年后仍毫无损坏,且无毒不污染环境;在工具、连接件方面,钛丝用作钛屋顶连接用螺丝、穿孔螺栓

钛合金轧制影响因素资料

轧制压力的影响因素 影响轧制压力的主要因素有: (1)绝对压下量在轧辊直径和摩擦系数相同的条件下,随着绝对压下量的增加,轧件与轧辊的接触面积加大,轧制压力增加。同时接触弧长增加,外摩擦的影响加剧,平均单位压力增加,轧制压力也随之增大。 (2)轧辊直径在其他条件一定时,随着轧辊直径的加大,接触面积增加,同时接触弧长增加,外摩擦的影响加剧。因而,轧制压力增大。 (3)轧件宽度随着轧件宽度的增加,接触面积增加,轧制压力增大。 (4)轧件厚度随着轧件厚度的增加,轧制压力减小;反之,轧件愈薄,轧制压力愈大。 (5)轧制温度随着轧制温度的升高,变形抗力降低,平均单位压力降低,轧制压力减小。 (6)摩擦系数随着摩擦系数的增加,外摩擦影响加大,平均单位压力增加,轧制压力增大。 (7)轧件的化学成分在相同条件下,轧件的化学成分不同,金属的内部组织和性能不同,轧制压力也不同。 (8)轧制速度热轧时随着轧制速度的增加,变形抗力增加。冷轧时随着变形速度的增大、轧件温度的升高变形抗力有所降低。 轧制压力 轧制压力:辊加于轧件使之产生塑性变形的力。但通常把轧件作用于轧辊上并通过压下螺丝传递给机架的力称为轧制力,即是轧件加于轧辊的反作用力的垂直分量。轧制力在我国习惯称为轧制压力或轧制总压力。正确测定和计算轧制力,对于设计和使用轧机有重大意义。 影响轧制力的因素有两类:(1)影响轧件材料在简单应力状态下变形抗

力σ0的因素,如化学成分、组织、轧制温度和速度、加工硬化等。(2)影响变形应力状态的因素,如轧辊直径、轧件尺寸、表面摩擦、外力(张力或推力)等。确定轧制力的方法有理论计算、经验公式计算和实测法三种。 在熔炼TiNiCr低温超弹性合金(形状记忆合金)时,对Ti、Ni、Cr、C、H、O、N成份的控制,是获得理想合金的关键。首先O含量的增加不仅使相变温度下降,而且使记忆性能和力学性能恶化。O在高温下与Ti发生反应,熔炼时尤为剧烈,同时O和Ti生成的化合物一般是不可逆的,所以要严格控制熔炼时材料中的氧平衡量。还有Ti和耐火材料几乎都会发生反应。其次C含量对TiNiCr低温超弹性合金的力学性能影响不明显,但对热弹性马氏体的相变有影响,C在Ni中有大的溶解度,形成的TiC会阻碍孪晶界的运动及马氏体的再取向,使相变滞后扩大,回复率下降,对形状记忆效应和超弹性都不利。而且,C和单质Ti和Ni均反应,使TiNi合金中的C含量增加,然而C和TiNi合金的反应并不剧烈,可使C质量分数控制在0.05%左右。碳质量分数控制在0.05%左右。所以通常使用三高石墨坩埚真空感应熔炼制备合金锭,这样可降低熔炼时碳的污染,保证碳和氧的含量小于500p。g/L。 固溶热处理:

钛合金加工性能

一,钛合金大类综述 钛合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好。另外,钛合金的工艺性能差,切削加工困难,在热加工中,非常容易吸收氢氧氮碳等杂质。还有抗磨性差,生产工艺复杂。 钛合金是航空航天工业中使用的一种新的重要结构材料,比重、强度和使用温度介于铝和钢之间,但比强度高并具有优异的抗海水腐蚀性能和超低温性能。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。 室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表示。 钛合金性能特点: ①使用温度高,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作。②钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。③钛合金在低温和超低温下,仍能保持其力学性能。低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。因此,钛合金也是一种重要的低温结构材料。 二,典型牌号分析 三,难加工原因 钛合金的硬度大于HB350时切削加工特别困难,小于HB300时则容易出现粘刀现象,也难于切削。 ①,变形系数小:这是钛合金切削加工的显著特点,变形系数小于或接近于1。切屑 在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。 ②,切削温度高:由于钛合金的导热系数很小,切屑与前刀面的接触长度极短,切削 时产生的热不易传出,集中在切削区和切削刃附近的较小范围内,切削温度很高。 在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。 ③,单位面积上的切削力大:主切削力比切钢时约小20%,由于切屑与前刀面的接触 长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。因此,要求工艺系统应具有较好的刚性。 ④,冷硬现象严重:由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的 氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。 ⑤,刀具易磨损:毛坯经过冲压、锻造、热轧等方法加工后,形成硬而脆的不均匀外 皮,极易造成崩刃现象,使得切除硬皮成为钛合金加工中最困难的工序。另外,由于钛合金对刀具材料的化学亲和性强,在切削温度高和单位面积上切削力大的条件下,刀具很容易产生粘结磨损。 四,拟采取的措施 1,刀具材料 切削加工钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料,YG类硬质合金比较合适。常用的硬质合金刀具材料有YG8、YG3、YG6X、YG6A、813、643、YS2T和YD15等。2,刀具几何参数

钛合金切削加工知识

首页>行业信息>行业信息> 合金磨削刀具-钛合金的切削加工 摘要:文件地点传真-上海500kV世博输变电工程设备采购招标混凝土机械设备-我国混凝土泵车的研发趋势器材行业企业-2008年是纺织机械发展预测除尘器粉尘气体-现代锅炉除尘设备简介控制器技术空调-我国将制定变频控制器标准终结市场混乱新产品功能水平-中联环卫机械公司五款新产品通过验收波兰装配 厂徐州-扩大欧洲市场份额徐工波兰装配厂落成叉车鸟巢开幕式-龙工叉车为奥运鸟巢极速“变装”出力(图)刀具加工刀片-Kennametal公司推出KB9640新刀具工程机械企业-工程机械租赁业发展前景广阔1.钛合金可分为哪几类?钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,合金,磨削,刀具,丝锥,切屑,砂轮,磨损,铰刀,硬质合金,温度, 1.钛合金可分为哪几类? 钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类: (1) α钛合金:它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 (2) β钛合金:它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。 (3) α+β钛合金:它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+p钛合金次之,β钛合金最差。α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。 2.钛合金有哪些性能和用途? 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过%,但其强度低、塑性高。%工业纯钛的性能为:密度ρ=cm3,熔点为1800℃,导热系数λ=,抗拉强度 σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=×105MPa,硬度HB195。 (1)比强度高:钛合金的密度一般在cm3左右,仅为钢的60%,纯钛的强度接近普通钢的强度,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,见表7-1,可制出单位强度高、刚性好、质轻的零、部件。目前飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。 (2)热强度高:对于α钛合金,在350℃时TA6的巩达422MPa、TA7的σb达491MPa,在500℃时TA8的σb达687MPa;对于α+β钛合金,在400℃时TC4的σb达618MPa、TC10的σb达834 MPa,在450℃时TC6和TC7的σb均达589MPa、TC8的σb达706MPa,在500℃时TC9的σb达785MPa。这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。钛合金的工作温度可达500℃,铝合金则在200℃以下。

轧制温度对TB6钛合金棒材组织和力学性能的影响

轧制温度对TB6钛合金棒材组织和力学性能的影响 发表时间:2017-05-26T09:34:54.720Z 来源:《基层建设》2017年4期作者:黄维鸽 [导读] 摘要:采用三辊螺旋轧机,在Tβ-40℃、Tβ-30℃和Tβ+160℃三种不同温度下对TB6钛合金棒材进行轧制,研究轧制温度对棒材组织和力学性能的影响。 新疆工业职业技术学院新疆乌鲁木齐 830022 摘要:采用三辊螺旋轧机,在Tβ-40℃、Tβ-30℃和Tβ+160℃三种不同温度下对TB6钛合金棒材进行轧制,研究轧制温度对棒材组织和力学性能的影响。研究结果表明,经Tβ-40℃轧制后的组织为等轴组织,Tβ-30℃轧制后的组织为双态组织,Tβ+160℃轧制后的组织为网篮组织;具有等轴组织和双态组织的TB6钛合金棒材的拉伸强度相当,均高于具有网篮组织的,而等轴组织的塑性与网篮组织的相当,但低于双态组织的;综合分析知,经Tβ-30℃轧制后的TB6钛合金棒材的综合力学性能最优。 关键词:轧制温度;TB6钛合金;显微组织;力学性能 引言 TB6钛合金(名义成分为Ti-3Al-8V-6Cr-4Mo-4Zr)是一种亚稳β钛合金,钼当量约19.6,在730℃即可发生α→β相变,通过处理后极限强度可达1400MPa以上,具有密度低、强度高、耐蚀、冷加工和抗疲劳性能优异等特点,常被用来制造弹簧、石油气管路控制装置和各类紧固件等。作为β型钛合金,TB6钛合金在加工过程中具有较好的冷成形能力,但是变形温度低往往会造成合金的微观组织破碎不充分,而变形温度过高则容易引起合金在高温下形成粗大晶粒。因此在生产TB6等β钛合金时,合适的轧制温度是保证合金棒材获得良好组织和力学性能的首要条件。本研究对比了不同轧制温度对固溶态和固溶时效态TB6钛合金棒材组织和性能的影响,以获得能够满足某零件对抗拉强度大于1300MPa、屈服强度大于1200MPa且延伸率大于10%要求的轧制温度;并对该轧制温度下生产的棒材进行了不同温度的时效处理,研究了TB6钛合金在不同时效制度下组织和性能的变化规律。 1、实验 实验所用原材料为北京航空材料研究院钛合金研究所经真空自耗熔炼炉三次熔炼得到的650kgTB6钛合金铸锭,其化学成分见表1。利用金相法测得相变点温度Tβ为795℃。铸锭经过锻造锻成 60mm棒坯,其组织为等轴组织,如图1所示。 三辊螺旋轧机是一种新型、高效和大压下量的轧制设备,螺旋轧制是局部循环加载的非封闭复杂体积变形过程。利用三辊螺旋轧机在Tβ-40℃、Tβ-30℃以及Tβ+160℃三种温度下将 60mm棒材轧制成 20mm棒材,轧制后对棒材进行固溶和时效处理,热处理制度为755℃×2h/WC+515℃×8h/AC。利用LEICADMI3000M光学显微镜对热处理后的棒材进行显微组织观察,INSTRON5887万能材料试验机对热处理后的棒材进行室温拉伸性能测试,CamScan3100扫描电镜对拉伸断口进行分析,对比不同轧制温度对棒材组织和力学性能的影响。 2、结果与讨论 2.1轧制温度对显微组织的影响。钛合金棒材轧制过程中显微组织的变化与变形温度有密切关系,在相变点温度之上与相变点温度之下对棒材进行轧制会得到不同类型的显微组织。图2为经不同温度轧制后TB6钛合金棒材的显微组织。 经Tβ-40℃轧制后棒材的显微组织与原始组织基本相同,均为等轴组织,但轧制后的显微组织中α相含量有所减少,并且经大变形量变形后等轴α相的尺寸也有所减小。经Tβ-30℃轧制后棒材的显微组织为双态组织,由于变形温度进一步接近相变点,α相含量进一步减少,等轴α相长大,其中少量聚集长大成短棒状,尺寸比Tβ-40℃轧制后的大。经Tβ+160℃轧制后棒材的显微组织为网篮组织,轧制温度

钛合金3-钛合金加工工艺分析

钛合金的加工工艺 钛合金有着与钛金属类似的大气高温污染(吸收氢氧氮)、强度高导致的刀具寿命短、导热性差导致的粘刀等等一系列麻烦。此外,热加工带来的金属相不均匀,晶粒粗大,残余应力,等等,也是钛合金热加工的难题。因此,工业纯钛和钛合金基材,在国际上基本是自由贸易(这与高性能碳纤维复合材料的禁运有很大的差异。详情见拙文《浅析碳纤维复合材料在航空航天领域的应用https://www.360docs.net/doc/4b16328308.html,/s/blog_56c70d4b010165l9.html》)然而,买得起未必用得起,正是加工工艺的复杂,将绝大多数国家挡在了钛合金应用的门外。 下面,我们来看***钛合金加工工艺的情况。 一、下料切割工艺 钛合金制件之前,先要将大块钛合金进行初步切割,做下料准备。钛合金的切割,不像一般金属,很难用火焰方法进行,否则高温污染会导致材料脆化。因此多用等离子切割、激光切割、铣切来进行。但是这些方法,要么是材料容易产生热应力离散变形(如激光切割)、或者成本太高无法满足大量生产(如离子束切割),要么是残料率高(如铣切)。因此,人们想出了另一种常温切割方式:高压水切割。 水切割,就是水刀,呵呵。以前咱听说水滴石穿,那可要万年功夫。这次是水切钛断,立等可取啊。 中国航空报载,沈飞公司工艺研究所的首席专家蒲永伟,对水切割技术有深厚积累,潜心研究此项技术的钛切割应用,获得成功,顺利实施了40~100毫米厚的钛合金板材切割。由于是常温操作,切割质量好,且其效率是常规切割方法的50倍以上,材料费大大节约。至今,钛合金的水切割方式,在国内的应用已经接近10年。 二、铸造工艺

铸件加工,需要熔化钛合金进行浇注。同样,由于钛合金的化学活性,熔化的液态钛合金,几乎与所有的耐火材料起反应。因此其熔化和浇注必须在惰性气体(如氩气)保护或者真空环境下进行。 国内应用方面: 中国船舶新闻网报道,中国在消化吸收国外先进技术的基础上,掌握和发展了金属型、捣实型、机加工石墨型,以及氧化物面层陶瓷型壳等钛合金铸造技术,可以生产最大直径达150 0毫米X400毫米,最小壁厚为0.8毫米,单重达到近800千克的整体钛合金铸件,每年铸造钛合金用量达5000吨,具备了钛及钛合金精密铸件的基本生产技术。 根据热加工论坛的报道:我国航天用铸造钛合金的应用始于20世纪80 年代中期,现已有ZTi3,ZTiAl4,ZTiAl5Sn2. 5,ZTiAl6V4,ZTiAl6Zr2MoV等品牌(品牌的第一个字母Z,代表铸造)。 2001年,由北航、华中理工研制的ZTC4 钛合金(即对TC4进行铸造加工后的合金件),利用热等静压和熔模精密铸造成型技术,研制了某型飞机用钛合金精铸件。该铸件外型尺寸为6 30mm ×300mm ×130mm ,最小壁厚2. 5mm ,为复杂的框形结构。 中科院金属研究所网站报道: 2011年5月,沈阳向中国科学院金属研究所研发的钛铝母合金制备技术,通过了英国罗罗公司(Rolls-Royce)的质量审核。 2013年4月17日,罗罗航空发动机公司在沈阳,正式向该所颁发了钛铝涡轮叶片精密铸造技术质量认证证书。

钛合金的切屑加工工艺综述

科技论坛钛合金的切屑加工工艺综述 裴东王波 (中国电子科技集团公司第十八研究所,天津300381 )1钛合金的切屑加工特点钛合金材料由于具有比重小、强度高,特别是在300~400℃高温下仍具有极高强度和抗蚀性等特点,已经成为航空航天工业中最重要的工程材料之一,获得了越来越广泛的应用。 但是,钛合金又是一种典型的难加工材料,切削性能很差。与其它金属材料相比,钛合金有如下切削特点:1.1变形系数小。这是钛合金切削加工的显著特点,由于变形系数小于或接近于1,切屑在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。1.2切削温度高。由于钛合金的导热系数很小(只相当于45号钢的1/5~1/7),切屑与前刀面的接触长度极短,切削时产生的热不易传出,切削温度很高。在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上,造成刀具因磨损加剧而报废。1.3单位面积上的切削力大。主切削力比切钢时约小20%,由于切屑与前刀面的接触长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。1.4冷硬现象严重。由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。2切屑刀具的选择2.1刀具材料切削加工钛合金为降低切削温度和减少粘结,应选用高温硬度好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料。高速钢由于高温硬度低,耐热性差一般不作选择,但在其中参杂钒、 钴和铝等对高速钢进行改性后得到的高钒高速钢(如W12Cr4V4M o)、高 钴高速钢(如W2M o9Cr4VCo8)或铝高速钢(如W6M o5Cr4V2Al 、M 10M o4Cr4V3Al)等刀具材料,却适于制作切削钛合金的钻头、铰刀、 立铣刀、拉刀、丝锥等刀具。硬质合金刀具应该是较为理想的选则,但其中YT 类硬质合金会与钛合金产生剧烈的亲和作用,加剧刀具的粘结磨损,不宜用来切削钛合金;YG 类硬质合金刀具材料有YG8、YG3、YG6X 等都是切屑钛合金的较好选择,一般适用于小批量产品的加工。为了满足大批量钛合金产品的加工,最好选择有耐高温涂层的硬质合金刀具,减少由于刀具磨损而必须进行的换刀操作,提高加工效率。2.2刀具参数2.2.1前角γ0:钛合金切屑与前刀面的接触长度短,前角较小时既可增加刀屑的接触面积,使切削热和切削力不至于过分集中在切削刃附近,改善散热条件,又能加强切削刃,减小崩损的可能性。 一般取γ0=5°~15°。2.2.2后角α0:钛合金已加工表面弹性恢复 大、冷硬现象严重,采用大后角可减小对后刀面造成的摩擦、粘附、 粘结、撕裂等现象,以减小后刀面的磨损。各种切削钛合金刀具的后角基本上都大于等于15°。2.2.3主偏角κr 和副偏角κ'r :切削钛 合金时切削温度高、 弹性变形倾向大,在工艺系统刚性允许的条件下,应尽量减小主偏角,以增加切削部分的散热面积和减小切削刃单位长度上的负荷,一般采用κr =30°,粗加工时取κr =45°。减小 副偏角可以加强刀尖,有利于散热和降低加工表面粗糙度值,一般 取κ'r =10°~15°。2.2.4刃倾角λs :由于毛坯有硬皮和表层组织不均匀,粗车时切削刃容易崩损,为了增加切削刃的强度和锋利程度,应加大切屑的滑动速度,一般取λs =-3°~-5°,精车时λs =0°。2.2.5刀尖圆弧半径r ε:切削钛合金时刀尖是最薄弱的部分,容易崩掉和磨损, 需磨出刀尖圆弧, 一般r ε=0.5~ 1.5mm 。车削时采用负倒棱(b γ=0. 03~0.05mm , γ01=-10°~0°), 断(卷)屑槽的槽底 圆弧半径R n =6~8 mm 。 3切屑参数的选择 钛合金切削加工时,切屑参数的选择一般以采用较低的切削速度、较大的切削深度和进给量为原则。较低的切削速度能够有效降 低切屑刃的温度。有实验数据表明切屑刃在高温段的寿命相比低温段呈现非线性的急速下降,因此降低切屑速度能够延长刀具使用寿命, 提高加工效率。较大的切削深度能够使刀刃避免由于钛合金变形系数小,使前刀面上的滑动摩擦路程大大增大而造成的刀具磨损。同时由于冷硬现象的存在,较大切削深度使刀刃完全进入被切 削的钛合金表面内,有效以防止产生磨损或崩刃现象。 3.1切削速度Vc :切削速度对刀具耐用度影响最大,最好能使刀具在相对磨损最小的最佳切削速度下工作。切削不同牌号的钛合金,由于强度差别较大,切削速度应在刀具厂商提供的最佳切屑速 度的基础上通过试切试验适当调整。 3.2进给量f :进给量对刀具的耐用度影响较小,在保证加工表 面粗糙度的条件下,可选较大的进给量,一般取f=0.1~0.3mm/r 。 进给量太小, 使刀具在硬化层内切削,增加刀具磨损,同时极薄的切屑在高的切削温度下容易自燃,因此不允许f<0.05mm/r 。3.3切削深度αp :切削深度对刀具耐用度的影响最小,一般选用较大的切削深度, 这样不仅可以避免刀尖在硬化层内切削,减小刀具磨损, 还可增加刀刃工作长度,有利于散热,一般取αp =1~5mm 。4切屑液的选择 切削钛合金时,最大的问题就是切屑温度过高对刀具寿命的影响。为了降低切削温度,必须向切削区域内浇注大量的以冷却作用为主的切削液。 切削液应满足导热系数大、比热大、热容量大、汽化热大、汽化速度快、流量大、流速快等要求。一般说来,水比油的导热系数大 3~5倍,比热大1倍,汽化热几乎大10倍左右,故用水溶性切削液 较为合适。车、铣削钛合金时,常采用乳化液,或采用有极压添加剂的水溶性切削液。 极压乳化剂的配方见表1。极压添加剂的水溶性切削液的配方为见表2。对于钻孔、扩孔、铰孔、拉削、攻丝等工序,应该采用润滑作用较大的极压可溶性油作切削液, 如蓖麻油、油酸、硫化油、氯化油等。冷却润滑的方法最好采用高压喷雾冷却法、高压内冷却法等,这样才可起到良好的冷却、润滑作用。切削液流量不少于15~20L /min 。 结束语钛合金的切屑加工时除了合理的选择刀具、切屑参数和切屑液等, 同时还应注意切削加工中不能停止走刀,避免引起钛合金的加工硬化而损坏刀具,特别是在铣屑加工时还应多采用顺铣方式, 有效降低刀刃温度。 这些工艺措施的采用都能有效的延长切屑刀具的寿命,极大提高钛合金的切屑加工效率。摘要:论述了钛合金材料在切屑加工过程中的特点,分析了刀具、切屑参数和切削液等方面对钛合金切削加工的影响,总结了适于钛合金加工的切屑加工工艺。 关键词:钛合金;切屑;工艺;刀具;切屑液 95··

(国际贸易)工业纯钛及TAV钛合金棒材加工贸易单耗标准

(国际贸易)工业纯钛及TAV 钛合金棒材加工贸易单耗标 准

附件4 HDB/YS009-2005 工业纯钛及Ti-6Al-4V钛合金棒材加工贸易单耗标准 (商品编号81089010) 1范围 本标准规定了以海绵钛(商品编号81082010)为原料加工生产工业纯钛及Ti-6Al-4V合金棒材(商品编号81089010)的加工贸易单耗标准。 本标准适用于海关和商务主管部门对以海绵钛加工工业纯钛及Ti-6Al-4V钛合金棒材的加工贸易企业进行加工贸易单耗审批、备案和核销管理。 2定义 本标准采用以下定义: 单耗:指正常生产条件下,生产每单位质量的工业纯钛及Ti-6Al-4V合金棒材所耗用海绵钛的质量单位数。 3单耗标准 3.1原料品质规格 本单耗标准中的海绵钛应符合ГОСТ17746、ASTMB299、JISH2151、 GB/T2524、协议标准等采购合同签订的任壹标准或组合。 3.2成品品质规格 本单耗标准中的工业纯钛及Ti-6Al-4V钛合金棒材应符合AMS、ASM、ASTM、JIS、协议标准等合同签订的任壹标准或组合。

3.3单耗标准

工业纯钛及Ti-6Al-4V钛合金棒材加工贸易单耗标准

HDB/YS009-2005 工业纯钛及Ti-6Al-4V钛合金棒材加工贸易单耗标准编 制说明 1任务来源 为加强加工贸易单耗管理,规范和完善海关和商务管理部门对加工贸易单耗的审批、备案、核销,打击伪报单耗的不法行为,促进加工贸易的健康发展,根据海关总暑办公厅、原国家经贸委办公厅关于下发2002年海关系统加工贸易单耗标准制定任务的通知,特制定工业纯钛及Ti-6Al-4V钛合金棒材加工贸易单耗标准。 本标准由海关总署办公厅、原国家经贸委办公厅委托西安海关负责起草制定。由海关总署加贸司、国家发展改革委经贸司和中国有色金属工业协会组织关联工业协会及企业的工艺、技术专家和海关加工贸易保税专业技术人员组成的评审委员会进行审定。 2制定单耗标准的原则 单耗标准制定原则是以国家标准、行业标准和该行业加工贸易企业的平均生产水平为制定基础,贯彻国家税收政策、产业政策和外贸政策,符合我国加工贸易企业的生产实际,有利于加工贸易企业技术进步和公平竞争,便于海关有效监管和关联单耗数据信息的使用和维护。 3该商品的加工贸易情况 该商品于2001~2004年加工贸易进口海绵钛2642吨,出口情况见下表。

关于钛合金棒材轧制成型的研究进展

关于钛合金棒材轧制成型的研究进展 钛合金棒材多用于机械制造业,由于其强度高、耐高溫和耐腐蚀等特点,其制品应用在军用产品、汽车配件以及钛合金人造骨骼等高精度要求的领域。同时,还常被用在眼镜架等对耐磨强度有较高要求的制造行业。随着科学技术的快速发展,钛合金棒材轧制加工技术也在不断地改进和完善,并更加趋于高效率、高质量和高性能发展方向。文章就针对目前的钛合金轧制成型特点、轧制技术和方法等进行分析,力求从中总结钛合金棒材轧制成型中存在的问题,并结合现有的工业发展形势,探讨适合钛合金棒材轧制成型的发展方向。 标签:钛合金;轧制成型;工艺;方法;发展方向 引言 我国的钛资源丰富,钛合金棒材制品的用途也比较广泛。随着社会经济发展带动起相应的市场经济发展,工业生产也有了更加综合性的要求。对于钛合金制品来说要求高强度、高塑性和高韧性的相互综合。因此,市场化的高要求也激励着钛合金轧制成型工艺和技术的改革与完善。国内针对钛合金的研究水平与国外相比,在新领域内相较国外研究更加深入,而对于传统钛合金的研究方面较为欠缺。所以,我国的钛合金研究在近几年内有了新的突破。文章就针对钛合金棒材轧制成型的特点及相应轧制工艺和过程的研究,结合目前的市场化要求和钛合金应用趋势,探讨关于钛合金棒材轧制成型的研究进展及发展建议。 1 钛合金棒材轧制成型特点 钛合金棒材轧制成型的过程,主要是通过将较大规格的锻棒坯料在轧制后,进行冷却,冷却后的棒材主要呈现针状、细片状或者粗片状等形态。钛合金轧制坯料通过轧制冷却后能够具备较强的韧性和抗拉性能,但此时的钛合金棒材还不具备高强度和高塑性的特点。通常工业化生产要求钛合金棒材的加工能够形成拉伸和疲劳性能较强的等轴组织。但在实际轧制过程中,由于坯料在室温条件下进行冷却从而制约了片状组织的综合性能,只有通过有针对性地变形处理才能够得以轴化,从而适合市场需求。所以,钛合金棒材坯料在轧制过程中的组织轴化是一个重要问题。若轧制变形量较大,则较容易提高组织可变性和力学性能。而在变形量小时,则会影响钛合金的可塑性和强度。同时,在钛合金棒材轧制过程中,要进行多次退火,而这种情形则会急速降低轧件的表面温度,内部温度不降反增,使轧件表面与中心温度形成较大的发差,进而容易造成表面裂纹。所以,轧制的温度一定要控制得当。道次间就成了控制温度和继续变形的轧制空间。只有将大量的孪品进行再结晶才能够有效提高钛合金棒材的综合性能。 2 国内外钛合金的发展方向及技术进展 2.1 国内外钛合金的发展方向

相关文档
最新文档