2017有理数混合运算经典习题及答案 (2)

合集下载

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]-1ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba +的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48)÷82-(-25)÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32)÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51)×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac0;如果0,0<<cbb a ,那么ac 0; (2)若042=-++++c c b a ,则abc= ;-a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4)÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73(2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a =1,则a____0;若||a a =-1,则a______0. 4.(教材变式题)若a<b<0,那么下列式子成立的是() A .1a <1b B .ab<1 C .a b <1 D .a b>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-30 2. 计算2223(23)-⨯--⨯=( )A.0 B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<-B. 342(2)2(2)-<-<-C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<- 5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( )A.-2 B.-3 C.-4 D.4二.填空题1.有理数的运算顺序是先算,再算,最算;如果有括号,那么先算。

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)

【素质优化训练】
1.(1)>,>; (2)24,-576; (3)2 或 6.[提示:∵ x =2 ∴x2=4,x=±2]. 2.(1)-31; (2)-8 19 ; 27
【生活实际运用】 B
(3)224
有理数的四则混合运算练习 第 2 套
◆warmup
知识点 有理数的混合运算(一)
1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(- 1 )-(-2)=______. 3
有理数的混合运算练习题(含答案)(大综合 17 套)
有理数混合运算练习题及答案 第 1 套
同步练习(满分 100 分) 1.计算题:(10′×5=50′)
(1)3.28-4.76+1 1 - 3 ; 24
(2)2.75-2 1 -3 3 +1 2 ; 64 3
(3)42÷(-1 1 )-1 3 ÷(-0.125); 24
53
25
=(- 2 )×( )+1+ 1 - 1
5
25
=____+1+ 5 2 10
=_______.
◆Exersising
7.(1)若-1<a<0,则 a______ 1 ; (2)当 a>1,则 a_______ 1 ;
a
a
(3)若 0<a≤1,则 a______ 1 . a
8.a,b 互为相反数,c,d 互为倒数,m 的绝对值为 2,则 | a b | +2m2-3cd 值是( )
(3)-1 1 ×[1-3×(- 2 )2]-( 1 )2×(-2)3÷(- 3 )3
2
34
4
(4)(0.12+0.32) ÷ 1 [-22+(-3)2-3 1 × 8 ];

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数的混合运算计算题(50题)(解析版)

有理数的混合运算计算题(50题)(解析版)

有理数的混合运算的计算题(50题)1.(2022秋•靖西市期末)计算:(1)5﹣(+4)﹣(﹣2)+(﹣3);(2)6÷(﹣3)﹣(―12)×(﹣4)﹣22.【分析】(1)先把减法转化为加法,然后根据有理数加法计算即可;(2)根据有理数的乘方、有理数的乘除法和减法计算即可.【解答】解:(1)5﹣(+4)﹣(﹣2)+(﹣3)=5+(﹣4)+2+(﹣3)=0;(2)6÷(﹣3)﹣(―12)×(﹣4)﹣22一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.=(﹣2)﹣2﹣4=﹣8.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.2.(2022秋•大竹县校级期末)计算:(1)(―12+16―38)×(﹣24)(2)﹣13﹣2×[2﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12﹣4+9=8+9=17;(2)原式=﹣1﹣2×(﹣7)=﹣1+14=13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2023•梧州二模)计算:(﹣3)×2+|﹣4|﹣(﹣2)3.【分析】先计算乘法、绝对值和有理数的乘方,再计算加减.【解答】解:(﹣3)×2+|﹣4|﹣(﹣2)3=﹣6+4﹣(﹣8)=﹣6+4+8=6.【点评】本题考查了有理数的混合运算,掌握有理数的混合运算顺序:先算乘方,再算乘除,最后计算加减,如果有括号,先计算括号里面的是关键.4.(2022秋•长顺县期末)计算(―1)3―(―1)+(―6)÷(―12 ).【分析】先算乘方,再算除法,最后算加减法即可.【解答】解:(―1)3―(―1)+(―6)÷(―1 2 )=(﹣1)+1+(﹣6)×(﹣2)=(﹣1)+1+12=12.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•兴宁区校级模拟)计算:(﹣2+4)×3+(﹣2)2÷4.【分析】先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(﹣2+4)×3+(﹣2)2÷4=2×3+4÷4=6+1=7.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.6.(2023•钦州一模)计算:﹣(﹣2)+22×(1﹣4).【分析】先计算乘方和括号内的运算,再计算乘法,最后计算减法即可.【解答】解:原式=2+4×(﹣3)=2﹣12=﹣10.7.(2023春•松江区期末)计算:(516―14)×(―4)2―32+14.【分析】先算括号内的和乘方,再算乘除法,最后算加法即可.【解答】解:原式=116×16﹣9+14=1﹣9+1 4=―31 4.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.(2022秋•海丰县期末)计算:﹣6÷2+(13―34)×12+(﹣3)2【分析】根据有理数混合运算顺序和运算法则计算可得.【解答】解:原式=﹣3+4﹣9+9=1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.9.(2023春•黄浦区期中)计算:229×(―1)9―(―115)2÷(―0.9)2.【分析】先算乘方,再算乘除,最后算加减.【解答】解:229×(―1)9―(―115)2÷(―0.9)2=209×(﹣1)―3625÷0.81=―209―169=―369=﹣4.【点评】本题考查了有理数的混合运算,掌握运算顺序和运算法则是解题的关键.10.(2023春•杨浦区期末)计算:―32―(23―32)÷|―16|.【分析】先算乘方,再化简绝对值算除法,最后算加减.【解答】解:原式=﹣9﹣(23―32)÷16=﹣9﹣(23―32)×6=﹣9﹣(23×6―32×6)=﹣9﹣(4﹣9)=﹣9﹣(﹣5)=﹣9+5=﹣4.【点评】本题考查了实数的运算,掌握实数的运算法则、运算律和运算顺序是解决本题的关键.11.(2023•七星区校级模拟)计算:(﹣2)3+|﹣8|+(﹣36)÷(﹣3).【分析】原式先算乘方及绝对值,再算除法,最后算加法即可得到结果.【解答】解:原式=﹣8+8+12=12.【点评】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.12.(2023春•青秀区校级月考)计算:23×(―12+1)÷(2―3).【分析】先计算乘方和括号内的式子,然后按照乘除混合运算顺序计算即可.【解答】解:原式=8×12÷(―1)=4×(﹣1)=﹣4.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.(2022秋•西宁期末)计算:―14―16×[2―(―3)2].【分析】根据有理数的混合运算的顺序计算.【解答】解:―14―16×[2―(―3)2]=﹣1―16×(2﹣9)=﹣1―16×(﹣7)=﹣1+7 6=1 6.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.14.(2023春•长宁区期末)计算:(2―0.4)×416÷(―123)―14.【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(2―0.4)×416÷(―123)―14=1.6×256×(―35)﹣1=85×256×(―35)﹣1=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法:先乘方、再乘除、最后加减.15.(2022秋•宁明县期末)―22+|5―8|+24÷(―3)×13【分析】先乘方和括号里的,再乘除,最后加减.【解答】解:―22+|5―8|+24÷(―3)×13=―4+3+24×(―13)×13=―1―83 =―113.【点评】本题考查的是有理数的混合运算的能力,要注意运算顺序及符号的处理.16.(2023•大连一模)计算:(―2)3―(16+38―0.75)×|―24|.【分析】先算括号里面的,再算乘方,乘法,最后算加减即可.【解答】解:原式=﹣8﹣(16+38―0.75)×24=﹣8﹣(16×24+38×24―34×24)=﹣8﹣(4+9﹣18)=﹣8﹣(﹣5)=﹣3.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.17.(2023春•长宁区期末)计算:―22+(―43)―13×[(―2)3+1].【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘除,后计算加减,有括号的先计算括号内的,据此解答即可.【解答】解:原式=﹣4―43―13×(―8+1)=―4―43―13×(―7) =―4―43+73=―4+(73―43) =﹣4+1=﹣3.【点评】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.18.(2023•兰陵县二模)计算:﹣16÷(﹣2)3﹣22×|―12|+(﹣1)2023.【分析】根据有理数的混合运算法则计算即可.【解答】解:―16÷(―2)3―22×|―12|+(―1)2023=―16÷(―8)―4×12―1 =2﹣2﹣1=﹣1.【点评】本题主要考查了有理数的混合运算,掌握相应的运算法则是解答本题的关键.19.(2023春•普陀区期末)计算:―32+(―214)÷32+(38―512)×24.【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(―94)×23+38×24―512×24=﹣9+(―32)+9﹣10=﹣9+9―32―10=﹣1112.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.20.(2023•桂平市三模)计算:―32×|―29|+(―1)2023―5+(―54).【分析】先根据平方运算、绝对值运算、(﹣1)n 计算,再由有理数加减运算法则求解即可得到答案.【解答】解:―32×|―29|+(―1)2023―5+(―54)=―9×29―1―5―54=―2―1―5―54=―(2+1+5+54) =―914.【点评】本题考查了有理数加减混合运算,平方运算、绝对值运算、(﹣1)n 计算,掌握相关运算法则是解决问题的关键.21.(2023春•普陀区期末)计算:―32+(―214)÷32+(38―512)×24.【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(―94)×23+38×24―512×24=﹣9+(―32)+9﹣10=﹣9+9―32―10=﹣1112.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.22.(2023春•黄浦区期中)计算:(―1112+34)×(―42)+(―213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(―1112+912)×(﹣16)―73×27=―16×(﹣16)―23=83―23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(2022秋•大冶市期末)计算:﹣14+[4﹣(38+16―34)×24]÷5.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:﹣14+[4﹣(38+16―34)×24]÷5=﹣1+[4―38×24―16×24+34×24]÷5=﹣1+[4﹣9﹣4+18]÷5=﹣1+9÷5=﹣1+1.8=0.8【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.计算:﹣14﹣(0.5﹣1)÷13×[5﹣(﹣3)2].【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣(―12)×3×(﹣4)=﹣1﹣6=﹣7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.计算:|4﹣412|+(―12+23―16)÷112―22―(+5).【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=|―12|+(―12+23―16)×12﹣4﹣5=12―6+8﹣2﹣4﹣5=﹣812.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(2022秋•汝阳县期末)―14―(1―0.5)×(―113)×[2―(―3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1―12×(―43)×(2﹣9)=﹣1―143=―173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.27.(2022秋•滕州市校级期末)计算(1)(―79+56―34)×(﹣36);(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和括号内的式子、再算乘法、最后算减法即可.【解答】解:(1)(―79+56―34)×(﹣36)=―79×(﹣36)+56×(﹣36)―34×(﹣36)=28+(﹣30)+27=25;(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|=﹣1―12×13×|1﹣25|=﹣1―12×13×24=﹣1﹣4=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.28.(2022秋•禹城市期中)计算(1)36﹣27×(73―119+227)(2)﹣72+2×(﹣3)2﹣(﹣6)÷(―13)2.【分析】(1)利用乘法分配律化简即可;(2)先乘方,再乘除,最后算加减即可;【解答】解:(1)原式=36﹣63+33﹣2=4.(2)原式=﹣49+2×9﹣(﹣6)×9=﹣49+18+54=﹣31+54=23加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则进行计算,有时可以利用运算律来简化运算.29.(2022秋•武昌区期末)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)―24―(13―1)×13[6―(―3)].【分析】(1)利用有理数的加减运算的法则进行解答即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10)=﹣7﹣5﹣4+10=﹣6;(2)―24―(13―1)×13[6―(―3)]=﹣16﹣(―23)×13×9=﹣16+2=﹣14.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.30.(2022秋•洛江区期末)计算:(1)(12―23―34)×(﹣24).(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)利用乘法分配律展开,再进一步计算即可;(2)先计算乘方和括号内运算,再计算乘法,最后计算加法即可.【解答】解:(1)原式=12×(﹣24)―23×(﹣24)―34×(﹣24)=﹣12+16+18=22;(2)原式=﹣1―12×13×(2﹣9)=﹣1―16×(﹣7)=﹣1+76=16.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.31.(2022秋•运城期末)计算:(1)(―1)2023―12×14+|―3|;(2)―32÷(―2)2×|―113|×6+(―2)3.【分析】(1)先进行乘方,乘法,去绝对值运算,再进行加减运算;(2)先进行乘方,去绝对值运算,再进行乘除运算,最后算加减.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)原式=―9÷4×43×6―8=―9×14×43×6―8=﹣18﹣8=﹣26.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是关键.32.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(―13)2+(34―16+38)÷(―124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34―16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.33.(2022秋•庐江县期中)计算:(1)―12÷3×[3﹣(﹣3)2];(2)﹣52×|1―1615|―|―13|+34×[(―1)3―7].【分析】(1)先算乘方和括号内的式子,然后计算括号外的乘除法即可;(2)先算乘方和括号内的式子,然后计算括号外的乘法,最后算加减法即可.【解答】解:(1)―12÷3×[3﹣(﹣3)2]=―12×13×(3﹣9)=―16×(﹣6)=1;(2)﹣52×|1―1615|―|―13|+34×[(―1)3―7]=﹣25×115―13+34×(﹣1﹣7)=―53―13+34×(﹣8)=―53―13+(﹣6)=﹣8.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.34.(2022秋•鞍山期末)计算:(1)(134―78―712)÷(―78)+(―34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134―78―712)÷(―78)+(―34)=(74―78―712)×(―87)+(―34)=74×(―87)―78×(―87)―712(―87)―34=﹣2+1+23―34=―1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(―12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•花山区校级期中)计算(1)32+5×(﹣6)﹣(﹣4)2÷(﹣8);(2)﹣22×|﹣3|+(﹣6)2×(―512)﹣|+18|÷(―12)3.【分析】(1)先算乘方,再算乘除法,最后算加减;(2)先算乘方化简绝对值,再算乘除法,最后算加减.【解答】解:(1)原式=9+5×(﹣6)﹣16÷(﹣8)=9﹣30+2=﹣19;(2)原式=﹣4×3+36×(―512)―18÷(―18)=﹣12﹣15+1=﹣26.【点评】本题考查了有理数数的混合运算,掌握有理数的运算法则、运算律及运算顺序是解决本题的关键.36.(2022秋•安陆市期中)计算:(1)﹣15+(﹣23)+32;(2)(﹣2)2×3﹣(﹣2)3÷4;(3)(―79+56―34)×(﹣36);(4)75×(13―12)×37÷54.【分析】(1)按照有理数加减法法则进行计算即可;(2)先乘方,再乘除,最后算减法即可;(3)运用乘法分配律进行计算即可;(4)先算括号,再进行乘除计算即可.【解答】解:(1)原式=﹣15﹣23+32=﹣38+32=﹣6;(2)原式=4×3﹣(﹣8)÷4=12﹣(﹣2)=14;(3)原式=―79×(―36)+56×(―36)―34×(―36)=28﹣30+27=25;(4)原式=75×(26―36)×37÷54=75×(―16)×37÷54=―110×45=―2 25.【点评】本题考查了有理数的混合运算,熟练有理数的混合运算法则是解题的关键.37.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34―13―56)×(﹣12);(4)﹣12021﹣(―13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(―54)×3=15;(3)(34―13―56)×(﹣12)=34×(﹣12)―13×(﹣12)―56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(―13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(―13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(―13)+1=―1 3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.38.(2022秋•单县期中)计算:(1)24+(﹣14)﹣(﹣16)+8;(2)(﹣81)÷94×49÷(﹣16);(3)﹣42﹣3×22×(13―12)÷(﹣113).【分析】(1)利用有理数的加减运算计算;(2)先把除法变成乘法,再计算;(3)先算乘方和括号,再算乘除,最后算加减.【解答】解:(1)24+(﹣14)﹣(﹣16)+8=24﹣14+16+8=10+16+8=34;(2)(﹣81)÷94×49÷(﹣16)=(﹣81)×49×49×(―116)=1;(3)﹣42﹣3×22×(13―12)÷(﹣113)=﹣16﹣3×4×(―16)×(―34)=﹣16―3 2=﹣171 2.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的法则和运算顺序.39.(2022秋•德州期中)计算:(1)―14―16×[3+(﹣3)2]÷(﹣112);(2)(―12+23―56)÷(―118);(3)(512+34―58+712)÷(―724)―227;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2].【分析】(1)先算乘方,再算乘除,有括号先算括号里面的,最后算加减运算;(2)把除变成乘,去括号,再相乘,再加减运算;(3)把除变成乘,去括号,再相乘,再加减运算;(4)先算乘方和小括号,再算乘除,最后加减运算.【解答】解:(1)―14―16×[3+(﹣3)2]÷(﹣112)=﹣1―16×(3+9)×(―23)=﹣1―16×12×(―23)=﹣1+4 3=1 3;(2)(―12+23―56)÷(―118)=(―12+23―56)×(﹣18)=(―12)×(﹣18)+23×(﹣18)―56×(﹣18)=9﹣12+15=﹣3+15(3)(512+34―58+712)÷(―724)―227=(512+34―58+712)×(―247)―227=(―107)―187+157―2―227=﹣4+157―227―2=﹣4﹣1﹣2=﹣7;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2]=﹣1―12×12×(2﹣9)=﹣1―12×12×(﹣7)=﹣1+7 4=3 4.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和混合运算的顺序.40.(2022秋•(1)﹣9﹣5﹣(﹣12)+(﹣3);(2)―14―16×[3―(―3)2];(3)(―60)×(34―56+112);(4)16÷(―2)2―(―12)3×(―4).【分析】(1)先化简符号,再算加减法;(2)先算乘方和括号内的,再算乘法,最后计算加减法;(3)利用乘法分配律展开计算;(4)先算乘方,再算乘除,最后计算加减.【解答】解:(1)﹣9﹣5﹣(﹣12)+(﹣3)=﹣9﹣5+12﹣3(2)―14―16×[3―(―3)2]=―1―16×(3―9) =―1―16×(―6) =﹣1+1=0;(3)(―60)×(34―56+112)=(―60)×34―(―60)×56+(―60)×112 =﹣45+50﹣5=0;(4)16÷(―2)2―(―12)3×(―4)=16÷4―(―18)×(―4) =4―12=72.加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用运算律来简化运算.41.(2022秋•新野县期中)计算题:(1)(―1)5+5÷(―14)―(1―4);(2)―22+313×(―65)+1÷(―14)2;(3)(75―2110―2815)÷(―710)+(―83);(4)[323÷(―2)―114×(―0.2)2÷110]÷(―13)―23.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;(3)将除法变为乘法,根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(―1)5+5÷(―14)―(1―4)=﹣1+5×(﹣4)+3=﹣1﹣20+3=﹣18;(2)―22+313×(―65)+1÷(―14)2=﹣4+103×(―65)+1×16=﹣4﹣4+16=8;(3)(75―2110―2815)÷(―710)+(―83)=(75―2110―2815)×(―107)+(―83) =75×(―107)―2110×(―107)―2815×(―107)+(―83)=―2+3+83+(―83) =1;(4)[323÷(―2)―114×(―0.2)2÷110]÷(―13)―23=[113×(―12)―54×(15)2×10]×(―3)―8 =[―116―120×10]×(―3)―8 =―116×(﹣3)―120×10×(﹣3)﹣8=112+32―8=﹣1.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.42.计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(―35)×53;(3)﹣22×7﹣(﹣3)×6+5;(4)(113+18―2.75)×(﹣24)+(﹣1)2014+(﹣3)3.【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×53×53=―1259;(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=―43×24―18×24+114×24+1﹣27=﹣32﹣3+66﹣26=5.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.43.计算:(1)(18―13+16)×(―24);(2)|―2|×(―1)2013―3÷12×2;(3)―12―(1―0.5)×13×[2―(―3)]2;(4)7×(―36)×(―87)×16.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)―13×(﹣24)+16×(﹣24)=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1―12×13×25=﹣1+7 6=―31 6;(4)原式=48.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.44.(2022秋•崇川区月考)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)314+(﹣235)+534+(﹣825);(3)(23―110+16―25)÷(―130);(4)﹣12020+(﹣2)3×(―12)﹣|﹣1﹣6|.【分析】(1)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(2)利用有理数加法的运算律解答即可;(3)将有理数的除法转换成乘法后,利用乘法的分配律解答即可;(4)先算乘方,再算乘法,最后算加减.【解答】解:(1)原式=﹣20+3+5﹣7=﹣(20+7)+(3+5)=﹣27+8=﹣19;(2)原式=(314+534)+(﹣235―825)=9+(﹣11)=﹣2;(3)原式=(23―110+16―25)×(﹣30)=23×(﹣30)―110×(﹣30)+16×(﹣30)―25×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12)=﹣20+3﹣5+12=(﹣20﹣5)+(3+12)=﹣25+15=﹣10;(4)原式=﹣1+(﹣8)×(―12)―|﹣7|=﹣1+4﹣7=(﹣1﹣7)+4=﹣8+4=﹣4.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.45.(2022秋•邗江区月考)计算:(1)(―12―13+34)×(―60);(2)392324×(―12);(3)(―11)×(―25)+(―11)×235―(―11)×15;(4)―14―(1―0.5)×13×[2―(―2)2].【分析】(1)利用乘法的分配律解答即可;(2)将带分数适当变形后利用乘法的分配律解答即可;(3)利用乘法的分配律解答即可;(4)利用有理数的混合运算的法则:先算乘方,括号内的,再算乘法,最后算减法.【解答】解:(1)原式=―12×(﹣60)―13×(﹣60)+34×(―60)=30+20﹣45=50﹣45=5;(2)原式=(40―124)×(﹣12)=40×(﹣12)―124×(﹣12)=﹣480+1 2=﹣4791 2;(3)原式=(﹣11)×(―25+25―15)=(﹣11)×2=﹣22;(3)原式=﹣1―12×13×(2﹣4)=﹣1―12×13×(﹣2)=﹣1+1 3=―2 3.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.46.(2022秋•衡南县期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(―45)×13+(―45)×2﹣(―45)×5(3)﹣22+5×(﹣3)﹣(﹣4)÷4(4)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)从左向右依次计算即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)首先计算乘方和乘除法,然后从左向右依次计算,求出算式的值是多少即可.(4)首先计算乘方和括号里面的运算,然后计算乘法和减法,求出算式的值是多少即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣34+18﹣13=﹣29(2)(―45)×13+(―45)×2﹣(―45)×5=(―45)×(13+2﹣5)=(―45)×10=﹣8(3)﹣22+5×(﹣3)﹣(﹣4)÷4=﹣4﹣15+1=﹣18(4)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2]=﹣1―16×(﹣7)=﹣1+7 6=1 6【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.47.(2022秋•魏都区校级月考)计算:(1)(+32)―512―52+(―712);(2)9+5×(﹣3)﹣(﹣2)2÷4;(3)(56+14―512―38)×(﹣24);(4)﹣14﹣1÷6×[3﹣(﹣3)2].【分析】(1)将有理数的加减混合运算统一成加法后,利用有理数的加法的运算律解答即可;(2)先算乘方,再算乘除,最后算加减;(3)利用乘法的分配律解答即可;(4)先算乘方与括号内的,再算乘除,最后做减法.【解答】解:(1)原式=32―512―52―712=(32―52)﹣(512+712)=﹣1﹣1=﹣2;(2)原式=9+(﹣15)﹣4÷4=9﹣15﹣1=﹣6﹣1=﹣7;(3)原式=56×(﹣24)+14×(﹣24)―512×(﹣24)―38×(﹣24)=﹣20﹣6+10+9=﹣26+19=﹣7;(4)原式=﹣1﹣1×16×(3﹣9)=﹣1﹣1×16×(﹣6)=﹣1﹣(﹣1)=0.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算法则运算是解题的关键.48.(2022秋•兰山区校级月考)计算.(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213―(+1013)+(﹣815)﹣(+325);(3)﹣12+|﹣8|÷(3﹣5)﹣(﹣2)3;(4)(―13+56―38)×(﹣24);(5)(14+16―12)×12+(﹣2)3÷(﹣4).【分析】(1)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(2)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(3)先算乘方与括号内的,再算加减即可;(4)利用乘方的分配律解答即可;(5)利用乘方的分配律解答,先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=3﹣63+259+41=(3+259+41)﹣63=303﹣63=240;(2)原式=213―1013―815―325=(213―1013)+(﹣815―325)=﹣8﹣113 5=﹣193 5;(3)原式=﹣1+8÷(﹣2)﹣(﹣8)=﹣1+(﹣4)+8=﹣5+8=3;(4)原式=―13×(﹣24)+56×(﹣24)―38×(﹣24)=8+(﹣20)+9=17﹣20=﹣3;(5)原式=14×12+16×12―12×12+(﹣8)÷(﹣4)=(3+2+2)﹣6=7﹣6=1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.49.(2022秋•宜兴市月考)计算:(1)(﹣2)×(﹣4)﹣(﹣5)×10;(2)7÷(―712)×(12―13);(3)﹣14+3×(﹣2)2﹣(﹣2)3.(4)112×57―(―57)×212+(―12)÷125;(5)(15―14―512)×60;(6)(―1.25)×25―23÷(―113)2.【分析】(1)先算乘法,再算减法即可;(2)先计算括号内的式子,然后计算乘除法即可;(3(4)先变形,然后根据乘法分配律计算即可;(5)根据乘法分配律计算即可;(6)先算乘方,再算乘除法,最后算减法即可.【解答】解:(1)(﹣2)×(﹣4)﹣(﹣5)×10=8+50=58;(2)7÷(―712)×(12―13)=7×(―127)×16=﹣2;(3)﹣14+3×(﹣2)2﹣(﹣2)3=﹣1+3×4﹣(﹣8)=19;(4)112×57―(―57)×212+(―12)÷125=32×57+57×52―12×57=(32+52―12)×57=72×57=52;(5)(15―14―512)×60=15×60―14×60―512×60=12﹣15﹣25=﹣28;(6)(―1.25)×25―23÷(―113)2=(―54)×25―8÷169=―12―8×916 =―12―92=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.50.(2022秋•渝中区校级月考)有理数的计算:(1)﹣42×|12―1|﹣(﹣5)+2;(2)(﹣56)×(﹣1516)÷(﹣134)×47;(3)﹣12020﹣[(﹣3)2×(―23)﹣(﹣7)×17];(4)(―34―59+712)÷136;(5)314×5+6×(﹣314)﹣(﹣3)×(﹣314);(6)(13―15)+(―15)2+|―13|+(﹣1)4+(0.25)2013×42014.【分析】(1)先算乘方和去绝对值,然后算乘法,最后算加减即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和中括号内的式子,然后计算括号外的减法即可;(4)先把除法转化为乘法,然后根据乘法分配律计算即可;(5)先变形,然后根据乘法分配律计算即可;(6)先算乘方和括号内的式子,然后计算括号外的乘法,最后算加法即可.【解答】解:(1)﹣42×|12―1|﹣(﹣5)+2=﹣16×12+5+2=﹣8+5+2=﹣1;(2)(﹣56)×(﹣1516)÷(﹣134)×47=﹣56×2116×47×47=﹣24;(3)﹣12020﹣[(﹣3)2×(―23)﹣(﹣7)×17]=﹣1﹣[9×(―23)+1]=﹣1﹣(﹣6+1)=﹣1﹣(﹣5)=﹣1+5=4;(4)(―34―59+712)÷136=(―34―59+712)×36=―34×36―59×36+712×36=﹣27﹣20+21=﹣26;(5)314×5+6×(﹣314)﹣(﹣3)×(﹣314)=314×5﹣6×314―3×314=314×(5﹣6﹣3)=134×(﹣4)=﹣13;(6)(13―15)+(―15)2+|―13|+(﹣1)4+(0.25)2013×42014=215+125+13+1+(0.25×4)2013×4=215+125+13+1+12013×4=215+125+13+1+1×4=215+125+13+1+4=1075+375+2575+1+4=538 75.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.。

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14-1ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba +的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数的混合运算练习题含答案大综合套

有理数的混合运算练习题含答案大综合套

精心整理有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案第1套同步练习(满分100分)1.计算题:(10′×5=50′) (1)3.28-4.76+121-43;((((2.((((1.(1)如是0,0>>cb ba,那么ac 0;如果0,0<<cb ba ,那么ac 0; (2)若042=-++++c cb a ,则abc= ;-a 2b 2c 2= ;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx= .2.计算:(1)-32-;)3(18)52()5(223--÷--⨯- (2){1+[3)43(41--]×(-2)4}÷(-5.043101--); (3)5-3×{-2+4×[-3×(-2)2-(-4)÷(-1)3]-7}. 【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,A C 12x=±◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa =1,则a____0;若||aa=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a <1bB.ab<1 C.ab<1D.ab>15.下列各数互为倒数的是()A.-0.13和-13B.-52和-27C.-1和-11D.-41和46.(-25=(-25◆7.(1(38.a,A.1B.5 C.11D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10(2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个B.4个C.2个D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a >1b>1B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15(2)-3[-5+(1-0.2÷35)÷(-2)](3)◆12.,10,(1)答案1.(13.>[7.(111.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=1 24×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13] =15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控12.解:(1)4-(-6)÷3×10(2)(10-6+4)×3 (3)([1. 计算(-2. 3. 计算-4. A.0 5. 计算156. A.1 7. 8. A.42-9. C.42-10. 2-11. A.4 B.-4 C.2 D.-2 12. 如果210,(3)0a b -=+=,那么1b a+的值是() 13.A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算,再算,最算;如果有括号,那么先算。

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】(七年级数学)92267(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5); (5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68; (3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1; (4))432()413(-+-;(5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2);(5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18); (3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ --(-)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算(1)-7+13-6+20; (2)-+-+10; (3)(-53)+51-54;(4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)-+(-); (2)(-)-21+(-51); (3)21-(-)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)-(-)+(-); (2)(-8)-(-15)+(-9)-(-12);(3)+(-41)-(-)+21; (4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-; (2)(-)+3-+(-52); (3)31+(-45)+; (4)7-(-21)+; (5)49-(-)-53; (6)(-56)-7-(-)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨; (8)(- )+ 1098 + +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-+++(-)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)--(-413)+-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2) (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-12、【答案】 (1)51; (2)-25; (3)-1516; (4); (5)74; (6)0;(7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-或-1016 9、【答案】 (1)20; (2); (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1); (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1); (2)-; (3)30; (4)9; (5)69; (6)-6; (7); (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。

有理数的混合运算练习题答案(大综合17套)

有理数的混合运算练习题答案(大综合17套)

有理数的混合运算练习题(答案)(大综合17套)有理数混合运算练习题及答案 第1套【同步达纲练习】1.(1)—0。

73 (2)—121; (3)—14; (4)-181; (5)—2。

9 2.(1)—351 (2)-1161; (3)— 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,〉; (2)24,—576; (3)2或6。

[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)—8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套课堂测控:1.(1)—80 (2)535 2.(1)—14(2)8 3.>,< 4.D 5.C 6.34,—310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控: 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=—20×15×14+5×(—3)×115=—1—1=-2 (2)原式=124×(—45)×(—56)×(-619)-14÷14=124×(-419)—1=-1114-1=—11114(3)原式=-3[—5+(1-15×53)÷(-2)]=—3[-5+23×(-12)]=—3[—5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3(3)(10—4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题第3套一、选择1、B2、A3、B4、C5、B6、A二、填空2、负数3、—124、—35、—66、7、8、-15三。

计算题-18 0—23 43-8 -45 —2821—120——91—200—90 —1 —600 -1——8四、1、-24 2、—2009或2009有理数加、减、乘、除、乘方测试 第4套一、选择1、D2、D3、B4、D5、A6、B7、A8、C 二、填空9、2055 10、0 11、24 12、97- 13、—37 14、50 15、26 16、9 三、解答 17、43-18、61- 19、-13 拓广探究题20、∵a 、b 互为相反数,∴a +b =0;∵m 、n 互为倒数,∴mn =1;∵x 的 绝对值为2, ∴x =±2,当x =2时,原式=—2+0-2=—4;当x =—2时,原式=-2+0+2=0 21、(1)、(10—4)-3×(-6)=24 (2)、4—(-6)÷3×10=24 (3)、3×[]24)6(104=-++综合题22、(1)、∵5-3+10-8-6+12-10=0 ∴ 小虫最后回到原点O , (2)、12㎝(3)、5+3-+10++8-+6-+12++10-=54,∴小虫可得到54粒芝麻〔有理数加减法运算练习〕一、加减法法则、运算律的复习。

有理数混合运算(习题及答案)

有理数混合运算(习题及答案)

有理数混合运算(习题)例题示范例1:2112(2)(3)2102543.⎛⎫-÷⨯--⨯-+ ⎪⎝⎭① ②③ 思路分析观察结构,划为①②③三个部分,对①②部分,每步推进一点点.例如,第②部分,先将带分数化为假分数,再计算.过程示范1840.25(3)1432 3132 3134 3⎛⎫=⨯⨯--⨯-+ ⎪⎝⎭⎛⎫=---+ ⎪⎝⎭=-++=-原式例2:115(36)1(3)4612⎛⎫-⨯-+---- ⎪⎝⎭① ②思路分析观察结构,划为①②两个部分,对每一部分按照对应的运算顺序及法则求解.另外,第①部分,通常先用36乘括号里的每一项,负号放到括号的外面.过程示范(9615)1318218220=--+--+=--=--=-原式巩固练习1.3116(2)23322÷---⨯-÷⨯.2.3211511(2)224623⎛⎫⎛⎫⎛⎫-⨯---⨯+÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.20151347(154)(1)620512⎛⎫-⨯⨯--+-+- ⎪⎝⎭.4.21922.510.245⎡⎤⎛⎫÷--+⨯- ⎪⎢⎥⎝⎭⎣⎦.5.320151515(2)(1)212÷--⨯+-.6.1957315719434331⨯-⨯+⨯-⨯.7.211(455)365455211545545365⨯-+⨯-⨯+⨯.8.111111112016201520152014322-+-++-+-….9.计算:135799S =+++++….10.计算:23504444S =++++….思考小结1.裂项常用到以下关系式:(1)1a b ab a+=+______;(2)1(1)a a =+_____________;(3)1()a a b =+_____________.2.计算:1121231259233444606060S ⎛⎫⎛⎫⎛⎫=++++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…….思路分析观察式子特征,直接计算比较复杂,但是每个括号里面的部分,后一项和前一项的差不变,所以考虑对每个括号里的部分进行____________.具体计算如下:∵1121231259233444606060S ⎛⎫⎛⎫⎛⎫=++++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……121321(_________________)233444S ⎛⎫⎛⎫=+++++++ ⎪ ⎪⎝⎭⎝⎭…∴2S =_______________________________________________∴S =_________________【参考答案】 巩固练习1.354-2.43.54.2525.-16.-12007.1540008.201520169.250010.51443- 思考小结1.(1)1b ;(2)111a a -+;(3)111b a a b ⎛⎫- ⎪+⎝⎭.2.倒序相加59581606060⎛⎫+++ ⎪⎝⎭...12359++++ (885)。

有理数的混合运算练习题及答案

有理数的混合运算练习题及答案

有理数的混合运算练习题及答案有理数的混合运算练习题及答案有理数是数学中的一个重要概念,它包括整数和分数。

有理数的运算是数学中的基础知识,掌握有理数的混合运算对于学习数学是至关重要的。

在本文中,我将为大家提供一些有理数的混合运算练习题及答案,希望能帮助大家巩固对有理数运算的理解。

题目一:计算下列各题的结果。

1. (-3) + 5 - (-2) - 42. 2/3 × (-1/4) ÷ 2/53. 1/2 + (-3/4) - (-1/3)4. (-5) × 2/3 ÷ (-1/4)5. (-2/3) + (-1/2) - (-5/6)答案一:1. (-3) + 5 - (-2) - 4 = -3 + 5 + 2 - 4 = 02. 2/3 × (-1/4) ÷ 2/5 = -1/6 ÷ 2/5 = -5/123. 1/2 + (-3/4) - (-1/3) = 1/2 - 3/4 + 1/3 = -1/124. (-5) × 2/3 ÷ (-1/4) = -5 × 2/3 ÷ (-1/4) = 405. (-2/3) + (-1/2) - (-5/6) = -2/3 - 1/2 + 5/6 = 1/6题目二:将下列各题转化为带分数的形式。

1. (-15) ÷ (-4)2. 17 ÷ (-3)3. (-21) ÷ 54. 25 ÷ (-8)答案二:1. (-15) ÷ (-4) = 3 3/42. 17 ÷ (-3) = -5 2/33. (-21) ÷ 5 = -4 1/54. 25 ÷ (-8) = -3 1/8题目三:计算下列各题的绝对值。

1. |-6|2. |-2/3|3. |4 - 7|4. |(-5) × (-3)|答案三:1. |-6| = 62. |-2/3| = 2/33. |4 - 7| = 34. |(-5) × (-3)| = 15题目四:计算下列各题的相反数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的混合运算习题
一.选择题
1.计算( )
3
(25)-⨯=A.1000
B.-1000
C.30
D.-30
2.计算( )
2
2
23(23)-⨯--⨯=A.0
B.-54
C.-72
D.-18
3.计算11(5)()555
⨯-÷-⨯=
A.1
B.25
C.-5
D.35
4.下列式子中正确的是( )
A. B. 4
2
32(2)(2)
-<-<-342
(2)2(2)-<-<-C. D. 4
3
2
2(2)(2)-<-<-2
3
4
(2)(3)2
-<-<-5.
的结果是( )
422(2)-÷-A.4
B.-4
C.2
D.-2
6.如果,那么
的值是( )2
10,(3)0a b -=+=1b
a
+A.-2 B.-3
C.-4
D.4
二.填空题
1.有理数的运算顺序是先算
,再算
,最算
;如果有括号,那么先算。

2.一个数的101次幂是负数,则这个数是 。

3. 。

7.20.9 5.6 1.7---+=4. 。

5. 。

2
3
2(1)---=67
((51313
-
+--=6. 。

7.。

211
(1722
-
--+-=7
37()()848
-÷-=8. 。

21
(50)(510
-⨯+
=三.计算题、
2
(3)2--⨯12411
(()(23523+-++-+-11
( 1.5)4 2.75(5)
42
-+++-
8(5)63-⨯--31
45()2-⨯-25
()(( 4.9)0.656
-+----
22
(10)5(5-÷⨯-323
(5)()5
-⨯-25(6)(4)(8)
⨯---÷-
161
2((2)472⨯-÷-2
(16503(2)5
--+÷-32(6)8(2)(4)5
-⨯----⨯
21122
((2)2233-+⨯--19971
1(10.5)3
---⨯2232
[3()2]23
-⨯-⨯--
4
2
1
1(10.5)[2(3)]3
---⨯⨯--4(81)( 2.25)(169-÷+⨯-÷232
((1)0
43
-+-+⨯
2
15[4(10.2)(2)]5---+-⨯÷-666
(5)(3)(7)(312(3)
777
-⨯-+-⨯-+⨯-
23
5
()(4)0.25(5)(4)8
-⨯--⨯-⨯-23122
(3)(1)6293
--⨯-÷-2
1
3443811-⨯⨯÷- ;
12
5
)5.2()2.7()8(⨯
-⨯-⨯-6.190)1.8(8.7-⨯⨯-⨯-74
1
2(54721(5÷-⨯⨯-÷- )251(4)5(25.0-
⨯⨯-⨯--3)411()213()53(÷-÷-⨯-2)2
1
(214⨯-÷⨯-四、1、已知求的值。

,032=-++y x xy y x 43
5
212
+--2、若a,b 互为相反数,c,d 互为倒数,m 的绝对值是1,求的值。

m cd b a 2009)(-+
有理数加、减、乘、除、乘方测试
一、选择
1、已知两个有理数的和为负数,则这两个有理数( )
A 、均为负数
B 、均不为零
C 、至少有一正数
D 、至少有一负数
2、计算的结果是( )
3)2(23
2
-+-⨯A 、—21 B 、35 C 、—35 D 、—293、下列各数对中,数值相等的是( )
A 、+32与+23
B 、—23与(—2)3
C 、—32与(—3)2
D 、3×22与(3×2)2
4、某地今年1月1日至4日每天的最高气温与最低气温如下表:
日 期1月1日1月2日1月3日1月4日最高气温5℃4℃
0℃
4℃
最低气温
0℃
℃2-℃
4-℃
3-其中温差最大的是(

A 、1月1日
B 、1月2日
C 、1月3日
D 、 1月4日5、已知有理数a 、b 在数轴上的位置如图所示,下列结论正确的是(

A 、a >b
B 、ab <0
C 、b —a >0
D 、a +b >0
6、下列等式成立的是( )
A 、100÷
×(—7)=100÷ B 、100÷
×(—7)=100×7×(—7)71⎥⎦
⎤⎢⎣⎡-⨯)7(717
1
C 、100÷
×(—7)=100××7 D 、100÷
×(—7)=100×7×7717
1
7
1
7、表示的意义是(

6
)5(-A 、6个—5相乘的积 B 、-5乘以6的积 C 、5个—6相乘的积 D 、6个—5相加的和
8、现规定一种新运算“*”:a *b =,如3*2==9,则()*3=( )b a 2
32
1
A 、
B 、8
C 、
D 、
6
1
8
12
3二、填空
9、吐鲁番盆地低于海平面155米,记作—155m ,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高
m
10、比—1大1的数为
11、—9、6、—3三个数的和比它们绝对值的和小
12、两个有理数之积是1,已知一个数是—,则另一个数是 7
1
2
13、计算(-2.5)×0.37×1.25×(—4)×(—8)的值为
14、一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调
出33台,调出40台,则这个仓库现有电脑 台
15、小刚学学习了有理数运算法则后,编了一个计算程序,当他输入任意一个有理数时,显示屏上出现的结果总等于
所输入的有理数的平方与1的和,当他第一次输入2,然后又将所得的结果再次输入后,显示屏上出现的结果应是
16、若│a —4│+│b +5│=0,则a —b = ;
若,则=_____ ____。

0|2|)1(2
=++-b a b a +三、解答
17、计算:
411()413()212()411()211(+----+++-4
15(310()10(815-÷-⨯-÷
8+(―)―5―(―0.25)
232223)2()2()2(2--+-+---4
1
7×1÷(-9+19) 25×+(―25)×+25×(-)
2
14
34
32
14
1 (-79)÷2+×(-29) (-1)3-(1-)÷3×[3―(―3)2]
4
19
42
1
18、(1)已知|a|=7,|b|=3,求a+b 的值。

(2)已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求的值x n
m c
b mn --++
-2四、综合题
19、小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5
, -3, +10 ,-8, -6, +12, -10
问:(1)小虫是否回到原点O ?(2)小虫离开出发点O 最远是多少厘米?
(3)、在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?
答案
一、选择1、D 2、D 3、B
4、D
5、A
6、B
7、A
8、C
二、填空9、2055 10、0
11、24
12、 13、—37
9
7
-
14、50 15、26
16、9
三、解答17、 18、 19、—13
4
3
-
6
1
-
拓广探究题
20、∵a 、b 互为相反数,∴a +b =0;∵m 、n 互为倒数,∴mn =1;∵x 的 绝对值为2,∴x =±2,当x =2时,原式=—2+0—2=—4;当x =—2时,原式=—2+0+2=021、(1)、(10—4)-3×(-6)=24
(2)、4—(—6)÷3×10=24
(3)、3×[
]24)6(104=-++综合题
22、(1)、∵5-3+10-8-6+12-10=0 ∴ 小虫最后回到原点O ,
(2)、12㎝
(3)、++++++=54,∴小虫可得到54粒芝麻
53-10+8-6-12+10-。

相关文档
最新文档