第三节_有机化合物红外光谱谱图的基本特征
各类化合物的红外光谱特征讲解
各类化合物的红外光谱特征讲解红外光谱是一种广泛应用于化学、生物、材料科学等领域的分析技术,通过检测样品吸收或散射的红外辐射来获取样品的结构信息。
不同类型的化合物在红外光谱中表现出不同的特征,下面将分别讲解有机化合物、无机化合物和生物大分子的红外光谱特征。
1.有机化合物有机化合物在红外光谱中显示出多个特征峰,主要包括C-H伸缩振动和C=O伸缩振动。
C-H伸缩振动出现在2800-3000 cm-1的范围内,不同类型的C-H键有不同的峰位,例如烷基的C-H伸缩振动通常在2850-3000 cm-1之间,而芳香族的C-H伸缩振动在3000-3100 cm-1之间。
C=O伸缩振动出现在1650-1800 cm-1的范围内,不同类型的C=O键有不同的峰位,酮和醛的C=O伸缩振动通常在1700-1750 cm-1之间,羧酸的C=O伸缩振动在1700-1725 cm-1之间。
除了C-H伸缩和C=O伸缩振动,有机化合物还表现出其他特征峰。
N-H伸缩振动通常出现在3100-3500 cm-1之间,-O-H伸缩振动通常出现在3200-3600 cm-1之间。
C-C键伸缩振动和C-C键弯曲振动出现在1200-1700 cm-1之间,其峰位和强度可以提供有关分子结构和取代基的信息。
2.无机化合物无机化合物的红外光谱特征主要来自于它们的晶格振动。
晶体振动通常发生在低频区域,比如300-400 cm-1之间的范围。
晶体振动提供了关于化学键的存在和类型的信息,比如金属-氧化物和金属-氮化物的化学键常常表现出特征峰。
此外,一些无机离子的拉曼活动频率也可以通过红外光谱观察到。
3.生物大分子生物大分子包括蛋白质、核酸和糖类等,它们在红外光谱中显示出独特的特征。
蛋白质和核酸的红外光谱特征主要来自于其各种化学键的振动。
蛋白质中的肽键C=O伸缩振动通常在1650-1675 cm-1之间,背景中峰位较强。
糖类的伸缩振动一般在1000-1200 cm-1之间,不同类型的糖类有不同的峰位和强度。
第三章红外光谱IR
烷烃吸收峰
正己烷的红外光谱图
2,2,4-三甲基戊烷的红外光谱图
2、不饱和烃
• 烯烃 • 炔烃 • 芳香烃
2、1 烯烃 烯烃双键的特征吸收
影响双键碳碳伸缩振动吸收的因素
• 对称性:对称性越高,吸收强度越低。 • 与吸电子基团相连,振动波数下降,吸
收强度增加。 • 取代基的质量效应:双键上的氢被氘取
代后,波数下降10-20厘米-1。质量效应 • 共轭效应:使波数下降约30厘米-1 。
1-己烯的红外光谱图
~3060cm-1: 烯烃C—H伸缩振动;~1820:910cm-1倍频; ~1650cm-1: C=C伸缩振动;~995,905cm-1: C=CH2 非平面摇摆振动
顺式和反式2,2,5,5-四甲基己烯红外光谱 a 顺式 b 反式
v~
=
1
——
K
2C M
M = m1 m2 m1 + m2
双原子分子红外吸收的频率决定于折合质量和键力常数。
C-H C-C C-O C-Cl C-Br C-I
-1 cm
3000
1200 1100
800
550
500
v cm-1
力常数/g.s-2
CC 2200~2100
12~18105
C=C 1680~1620
C-H面外弯曲振动吸收峰位置(cm-1) 670
770-730,710-690 770-735
810-750,710-690 833-810
780-760,745-705 885-870,825-805 865-810,730-675
810-800 850-840 870-855
870
各类取代苯的倍频吸收和面外弯曲振动吸收
有机波谱解析-第三章_红外光谱
由于红外光谱吸收强度受狭缝宽度、温度和溶剂等因素影 响,故不易精确测定,在实际分析中,只是通过与羰基等强吸 收峰对比来定性研究。
谱带强度与振动时偶极矩变化有关,偶极矩变化愈 基团极性 大,谱带强度愈大;偶极矩不发生变化,谱带强度为0, 即为红外非活性。 电子效应
红外吸收强度 偶极距变化幅度 振动偶合
伸缩振动(
as
)两种形式。
弯曲振动:原子垂直于化学键方向的运动。又可以分
它们还可以细分为摇摆、卷曲等振动形式。
为面内弯曲振动()和面外弯曲振动( )两种形式,
+和-表示垂直于纸面方向的前后振动。
亚甲基的振动形式
三、分子振动与红外吸收峰的关系
理论上具有特定频率的每一种振动都能吸收相应 频率的红外光,在光谱图对应位臵上出现一个吸收 峰。实际上,因种种原因分子振动的数目与谱图中
纵坐标为: 百分透过率(%) 横坐标为: 波长(µ m)或波 数(cm-1)。
环戊烷
也可用文字形式表示为:2955cm-1(s)为CH2的反对称伸缩振动 (υasCH2),2870cm-1(m)为CH2的对称伸缩振动(υsCH2) 1458cm-1(m) 为CH2的面内弯曲振动(δ面内CH2),895cm-1(m)为CH2的面外弯曲振动 (面外CH2)
诱导效应大于共轭效应, C=O 蓝移至 1735 cm-1
三、空间效应
(1)空间位阻 破坏共轭体系的共平面性,使共
轭效应减弱,双键的振动频率蓝移(增大)。
CH(CH3)2 O O O
CH3 CH3
CH3 CH(CH3)2
CH3
1663cm-1
1686cm-1
1693cm-1
(2)环的张力:环的大小影响环上有关基 团的频率。
各类有机化合物的红外光谱
4. 芳烃
芳烃的特征吸收:(与烯烃类似) 芳烃的特征吸收:(与烯烃类似) :(与烯烃类似
• υ=C-H 3000~3100 cm-1 (芳环C-H伸缩振动) 3000~ 芳环C 伸缩振动) =C- • υC=C =C 1650~ 芳环骨架伸缩振动) 1650~1450 cm-1(芳环骨架伸缩振动) • γ面外=C-H 900~650 cm-1 用于确定芳烃取代类型 900~ 用于确定 确定芳 取代类型 C 芳环取代基性质无关 而与取代个数有关, 取代基性质无关, (与芳环取代基性质无关,而与取代个数有关,取代 基个数越多, 芳环上氢数目越少, 基个数越多,即芳环上氢数目越少,振动频率越 低。) • γ面外=C-H C 2000~ 倍频 2000~1600 cm-1(w) 用于确定芳 用于确定芳烃取代类型
C4H9-O-C4H9 -
丁醚的红外光谱图
1210-1000cm –1是醚键的不对称伸缩振动 υC-O-C 是醚键的不对称伸缩振动 -
7. 胺和铵盐
CH3CH2CH2CH2NH2
丙胺的红外光谱图
CH3CH2CH2NH3+Cl-
丙胺盐的红外光谱图
8.羰基化合物 8.羰基化合物 • 因υC=O 非常特征,羰基化合物易与其他 非常特征, 有机物区分。 有机物区分。 • 不同的羰基化合物的区分主要依据: 不同的羰基化合物的区分主要依据: • υC=O 位置 • 其他辅助信息
3. 炔烃
端基炔烃有两个主要特征吸收峰: 端基炔烃有两个主要特征吸收峰: 一是叁键上不饱和C 伸缩振动υ 约在3300cm 一是叁键上不饱和C-H伸缩振动υ≡C-H约在3300cm-1处产 叁键上不饱和 生一个中强的尖锐峰 二是C 伸缩振动υ 吸收峰在2140 二是C≡C伸缩振动υ≡C-C吸收峰在2140 ~2100cm-1。 位于碳链中间则只有υ 若C≡C位于碳链中间则只有υ≡C-C在2200cm-1左右一个尖 在对称结构中, 峰,强度较弱。如果在对称结构中,则该峰不出现。 强度较弱。如果在对称结构中 则该峰不出现。
红外谱图基础知识
第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。
红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。
2、红外光谱的特点:特征性强、适用范围广。
红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。
红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。
3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。
(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。
(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。
4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。
5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。
波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。
通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。
(2)将吸收峰以文字形式表示:如下图可表示为,3525cm-1(m),3097cm-1(m),1637cm-1(s)。
这种方法指出了吸收峰的归属,带有图谱解析的作用。
各类化合物的红外光谱特征
各类化合物的红外光谱特征红外光谱是一种常用的分析技术,可以用于识别和表征不同化合物的结构和功能团。
不同类型的化合物在红外光谱中显示出特定的吸收峰,这些峰对应于特定的振动模式和化学键。
有机化合物的红外光谱特征:1. 烷烃:烷烃的红外光谱特征主要包括C-H伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,烷烃显示出强的C-H伸缩振动峰。
在1450-1375 cm-1区域,烷烃显示出C-H弯曲振动峰。
2. 卤代烃:卤代烃的红外光谱特征主要包括C-X伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,卤代烃显示出C-H伸缩振动峰。
在700-600 cm-1区域,卤代烃会显示出C-X伸缩振动峰(X表示卤素)。
3. 醇:醇的红外光谱特征主要包括O-H伸缩振动峰和C-O伸缩振动峰。
在3650-3200 cm-1区域,醇显示出非常强的O-H伸缩振动峰。
在1050-1000 cm-1区域,醇会显示出C-O伸缩振动峰。
4. 酸:酸的红外光谱特征主要包括O-H伸缩振动峰和C=O伸缩振动峰。
在3650-3200 cm-1区域,酸显示出非常强的O-H伸缩振动峰。
在1750-1690 cm-1区域,酸会显示出C=O伸缩振动峰。
5. 醛和酮:醛和酮的红外光谱特征主要包括C=O伸缩振动峰和C-H伸缩振动峰。
在1750-1690 cm-1区域,醛和酮会显示出强的C=O伸缩振动峰。
在3000-2850 cm-1区域,醛和酮显示出C-H伸缩振动峰。
6. 酯:酯的红外光谱特征主要是C=O伸缩振动峰和C-O伸缩振动峰。
在1750-1690 cm-1区域,酯显示出强的C=O伸缩振动峰。
在1250-1100 cm-1区域,酯会显示出C-O伸缩振动峰。
7. 醚:醚的红外光谱特征主要是C-O伸缩振动峰。
在1250-1100cm-1区域,醚会显示出C-O伸缩振动峰。
8. 腈:腈的红外光谱特征主要是C≡N伸缩振动峰。
在2250-2100cm-1区域,腈会显示出C≡N伸缩振动峰。
4-3红外光谱解析
面外变形(=C-H) 1000-700 cm-1 (有价值)
(=C-H)
R1
H
CC
970 cm-1(强)
H
R2
R1
R3 CC
790-840 cm-1
R2
H (820 cm-1)
R1
R2 (=C-H)
H
CC H
800-650 cm-1 (690 cm-1)
R1 C C H 990 cm-1
H
H 910 cm-1 (强)
1195 cm-1
C H3 C C H3 CH
3
1405-1385cm-1 1372-1365cm-1
1:2 1250 cm-1
c) CH2面外变形振动—(CH2)n—,证明长碳链的存在。 n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 )
n=3 730 ~740 cm-1 (中 ) n≥ 720 cm-1 (中强 )
1300cm-1 ~ 910 cm-1区域是C-O、C-N、C-F、C-P、C-S、 P-O、Si-O等单键的伸缩振动、C=S、S=O、P=O等双键 的伸缩振动、部分含氢基团的变形振动吸收。
910 ~ 650 cm-1区域是烯烃、芳烃的C-H的面外弯曲振动吸 收位置,对结构敏感,吸收峰可用来确认化合物的顺反构 型或苯环的取代类型。
第三节 红外光谱解析
一、官能团区和指纹区
红外光谱
官能团区:4000~1300cm-1(1350) 2.5~7.7μm
指纹区:1300~600cm-1(1350~650) 7.7~16.7μm
官能团区:X-H的伸缩振动以及各种双键、叁键的伸缩 振动吸收峰出现的区域,此区域内峰较稀疏,是鉴定 工作最有价值的区域。
有机化合物红外光谱谱图的基本特征
烯烃
3030 cm-1 (弱)=C-H链中烃; 3080(强)=CH2端位烯烃。
1680-1630 -C=C-(弱)
反式:-CH=CH 顺式:-CH=CH
970-960cm-1 770-665cm-1
06:34:30
例2:化合物C6H12的红外光谱如下,写 出其结构式。
06:34:30
在这区域可能还会有另外的吸收出现。 (a)间位二取代在725~680cm-1有强吸收。 (b)1、2、3-三取代化合物另外在745~705cm-1有
强吸收。 (c)1、3、5 - 三取代化合物另外在755~675cm-1
有强吸收。
06:34:30
芳烃
• 3030、1600、1580、 1500、1450.
• 解:
06:34:30
壬烯
06:34:30
06:34:30
1-己烯的红外光谱图
06:34:30
06:34:30
06:34:30
三、炔烃
• ≡C-H 3300 cm-1 一取代炔烃:
R-C≡C-H 2140 cm-1 -2100cm-1 二取代炔烃: R-C≡C-R 2260 cm-1 -2190 cm-1
在饱和烃中 1380cm-1为烷 基异构化情况;
1460cm-1为烷烃 中的-CH2-,
同时在720cm-1证 明。
饱和烃
例1:化合物C9H20的红外光谱如下,写出 其结构式。
06:34:30
• 解:计算不饱和度:
06:34:30
06:34:30
庚烷CH3(CH2)5CH3的红外光谱图
CH3
06:34:30
• 解:
06:34:30
各类化合物的红外光谱特征讲解
各类化合物的红外光谱特征讲解红外光谱是一种重要的分析技术,可以用于确定化合物的结构和化学键的类型。
在红外光谱图中,横坐标表示波数(单位为cm⁻¹),纵坐标表示吸收强度或透射率。
有机化合物:1. 烷烃:烷烃的红外光谱图通常没有明显的峰。
C-H键的拉伸振动一般在3000-2900 cm⁻¹范围内,C-H键的弯曲振动通常在1450 cm⁻¹附近。
2. 烯烃:烯烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1650-1600 cm⁻¹范围内。
C-H键的拉伸振动和弯曲振动与烷烃类似。
3. 芳香烃:芳香烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1600-1475 cm⁻¹范围内。
C-H键的拉伸和弯曲振动在3100-3000 cm⁻¹和1500-1000 cm⁻¹范围内。
4. 醇和酚:醇和酚的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-3200 cm⁻¹范围内。
C-O键的拉伸振动通常在1300-1000 cm⁻¹范围内。
5. 酮:酮的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-C和C-H键的伸缩振动可以在3000-2850cm⁻¹范围内观察到。
6. 醛:醛的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-H键的拉伸振动通常在2850-2700 cm⁻¹范围内。
7. 酸:酸的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-2500 cm⁻¹范围内。
C=O伸缩振动通常在1800-1600 cm⁻¹范围内。
9. 酯:酯的红外光谱图中通常有一个称为C=O伸缩振动的特征峰,在1750-1735 cm⁻¹范围内。
第三节 红外光谱
影响谱带位置(位移)因素
诱导效应
原子电负性的影响:一定极性的共价键中,不同电负性原子取代产生 振动频率发生变化。 无机化合物中,相同阴离子团与不同阳离子结合时,阴离子团的基本 频率受到影响。
键应力的影响
Si-O结合时,Si位于正四面体的中心,键角为109°28‘,但Si-O四面 体结合时,Si-O键角改变,引起键能变化,产生振动频率的位移。 孤立的Si-O结构中,伸缩振动频率小于1000cm-1 ,当两个Si-O四面 体结合时,形成Si-O-Si键,伸缩振动频率增大至1080cm-1 。
当红外辐射光照射到薄片上时,引起温度升高,TGS极化度 改变,表面电荷减少,相当于“释放”了部分电荷,经放大, 转变成电压或电流方式进行测量。 碲镉汞检测器(MCT检测器)是由宽频带的半导体碲 碲镉汞检测器 化镉和半金属化合物碲化汞混合形成,其组成为Hg1-xCdx Te , x≈0.2,改变x值,可获得测量波段不同灵敏度各异的各种 MCT检测器。 5. 记录系统
红外光谱实验技术
发展历史
19世纪初发现红外线 20世纪初,单光束手动式仪器 1947,第一代以棱镜做色散元件的双光束红外光谱仪 问世 1960,第二代以光栅做色散元件的双光束红外光谱仪 投入使用 1978,第三代干涉型傅立叶变换红外光谱仪投入使用 近年,第四代激光红外光谱仪问世
红外光谱仪
测绘物质红外光谱的仪器称为红外光谱仪,又称红 外分光光度计,主要包括红外辐射源、色散元件、 检测器、放大器和记录系统。色散元件大致演变过 程为棱镜、光栅、干涉型傅立叶变换、激光器等阶 段。
高分子材料的研究分析和鉴别高聚物不同类型的高聚物及结构相近的高聚物定量测定聚合物的链结构聚合物反应的研究高聚物结晶过程的研究高聚物物理老化的研究高分子共混相溶性研究高聚物取向研究材料表面的研究红外附件技术??有机物方面有机物方面红外光谱红外光谱88个重要区段与有机物官能团特征频率个重要区段与有机物官能团特征频率特征频率区特征频率区区区段段波数波数cmcm11振动类型振动类型伸缩振动区2不饱和ch伸缩振动区33003010烯烃和芳环3饱和ch伸缩振动区30002800区区段段波数波数cmcm11振动类型振动类型5羰基19001650伸缩振动区6双键16751500伸缩振动区烯烃和芳环7饱和ch面内弯曲振动区14751300指纹区指纹区区区段段波数波数cmcm11振动类型振动类型8不饱和ch面外弯曲振动区1000650
各类化合物的红外光谱特征
各类化合物的红外光谱特征各类化合物的红外光谱特征有机化合物的数⽬⾮常⼤,但组成有机化合物的常见元素只有10种左右,组成有机化合物的结构单元即称为基团的原⼦组合数⽬约有⼏⼗种。
根据上述讨论,基团的振动频率主要取决于组成基团原⼦质量(即原⼦种类)和化学键⼒常数(即化学键的种类)。
⼀般来说,组成分⼦的各种基团如C-H、C-N 、C=C、C=O 、C-X等都有特定的红外吸收区域(特征吸收峰),根据特征吸收峰可以推断物质的结构。
所以,有必要对各类有机化合物的光谱特征加以总结。
⼀、烷烃1. νC-H 3000~2840 C-H伸缩振动频率2. δC-H 1460 和1380 C-H弯曲振动频率3.C-C 1250-800当化合物具有四个以上邻接的CH2基团时,⼏乎总是在(715-725,通常在720cm-1处)有谱带(CH2以内摇摆),它在鉴别上是有⽤的。
⼆、烯烃1. ν=C-H 3010-31002.νC=C1680-16003. δC-H1000-700三、炔烃1. ν≡C-H 3300-3250 峰形较窄,易于OH和NH区别开。
2. δ≡C-H 900-610 宽的谱带3. ν C≡C2140-2100 ⼀元取代炔烃RC≡CH|| 2260-2190 ⼆元取代炔烃四、芳⾹烃1.νC-H 3080-30102.νC-C 1650-1450 2~4个吸收峰3. ⾯外弯曲振动(g=C-H ) 900-650五、醇和酚羟基化合物1. νO-H 3700-3500(游离的醇和酚,峰尖、强)|| 3500-3200(缔和的羟基,峰形强⽽宽)2. δO-H 1500~13003. νC-O 1250~1000六、醚1.脂肪醚1150-10602.芳⾹醚1270 ~ 1230(为Ar-O 伸缩)1050 ~ 1000 cm-1(为R-O 伸缩)3.⼄烯醚:1225-12005、在环氧⼄烷类中有三条特征谱带可作为这种基团的存在的标志:1280-1240 环的不对称伸缩振动|| 950-810cm-1 环的对称伸缩振动|| 840-750cm-1七、羰基化合物(包括醛、酮、羧酸、酯、酸酐和酰胺等)1.酮1725-17052.醛1740-1720 2820-2720出现两个强度相等的吸收峰3.羧酸(1)νO-H 3200-2500(液体及固体羧酸)|| 3550(在⽓相或极稀的⾮极性溶剂溶液中)(2)nC=O 1730-1700(2)νC-O 1250附近(强峰)(3)δO-H 1400cm-1和920cm-1区域有两个强⽽宽的吸收峰(4)羧酸盐1580cm-1 和1400cm-1 之间的两个谱带4.酯(1) νC=O1750-1735(2) νC-O-C 1330-10305.酸酐(1)n C=O 在1860-1800cm-1和1800-1750cm-1出现两个强的吸收峰(2) n C-O-C 开链的在1180-1045cm-1,⽽环状酸酐在1310-1200cm-16.酰胺: 兼有胺和羰基化合物的特点(1)νN-H稀溶液中伯酰胺出现两个中等强度的峰,分别在3500cm-1和3400cm-1附近,浓溶液和固体中由于有氢键发⽣,将移向3350-3180cm-1低频区仲酰胺在很稀溶液中,在3460-3420cm-1处只出现⼀个谱带,浓溶液中或固体中缔和体出现在3330cm-1(3)δN-H弯曲振动(酰胺II带)伯酰胺游离态在1600cm-1处,缔合态在1650-1620处,仲酰胺游离态在1550-1510处;缔和体在1570-1515处(4)酰胺还有C-N吸收带(酰胺III带),它们的吸收位置如下:伯酰胺1420-1400cm-1(中);仲酰胺1305-1200cm-1(中)叔酰胺700-620cm-1(中)⼋、胺和胺盐1.胺:胺有三个特征吸收带即:nNH、δ N-H和nC-N吸收带(1)nNH 3550-3250(2)δ N-H 1650-15402.铵盐伯胺和仲胺的νNH νNH3+ 伯胺盐在3000-2800cm-1之间出现强和宽的吸收带伯胺盐的δNH3+出现在1600-1575cm-1和1550-1504cm-1处两个吸收带仲胺盐的νNH2+ 出现在2700-2250cm-1 区域;δ NH2+ 出现在1620-1560cm-1区域叔胺盐的νNH+ 在2700-2250cm-1 区域出现⼀个强的宽带或⼀组较尖的谱带。
第三章 红外光谱
不特征
胺
类别
键和官能团
C=O R-CHO C=O
拉
1750-1680 2720
伸
(cm-1)
说
明
醛、酮
羧酸
1770-1750(缔合时在1710) 气相在3550,液固缔合时在 3000-2500(宽峰) 1800 1860-1800 1735 1690-1650 3520,3380(游离)缔合降低100 2260-2210 1800-1750
1670(弱-无)
ห้องสมุดไป่ตู้
无
共轭烯烃
与烯烃同
向低波数位移,变宽
与烯烃同
吸收峰 振
动
化合物
C=C,CC,C=C-C=C C-H拉伸 (或伸缩) 苯环 3310-3300 一取代 对称 2140-2100弱 无
C-H弯析
炔烃
较强
非对称二取代2260-2190弱
700-600 强
芳烃
取代芳烃
3110-3010中
一、红外光谱的八个峰区
4000-1500cm-1区域又叫官能团区. 该区域出现的吸 收峰,较为稀疏,容易辨认. 1500-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的
吸收峰,其特点是谱带密集、难以辨认。
二、重要官能团的红外特征吸收
C-H拉伸(或伸缩)
1600中 1500强
1580弱 1450弱-无
670弱 倍频 2000-1650 一取代770-730, 710-690强 二取代
同芳烃
同芳烃
邻- 770-735强 间- 810-750强 710-690中 对- 833-810强
泛频 2000-1660
各类化合物红外光谱特征
各类化合物的红外光谱特征有机化合物的数目非常大,但组成有机化合物的常见元素只有10种左右,组成有机化合物的结构单元即称为基团的原子组合数目约有几十种。
根据上述讨论,基团的振动频率主要取决于组成基团原子质量(即原子种类)和化学键力常数(即化学键的种类)。
一般来说,组成分子的各种基团如C-H、C-N 、C=C、C=O 、C-X等都有特定的红外吸收区域(特征吸收峰),根据特征吸收峰可以推断物质的结构。
所以,有必要对各类有机化合物的光谱特征加以总结。
一、烷烃1. νC-H 3000~2840 C-H伸缩振动频率2. δC-H 1460 和1380 C-H弯曲振动频率3.C-C 1250-800当化合物具有四个以上邻接的CH2基团时,几乎总是在(715-725,通常在720cm-1处)有谱带(CH2以内摇摆),它在鉴别上是有用的。
二、烯烃1. ν=C-H 3010-31002.νC=C1680-16003. δC-H1000-700三、炔烃1. ν≡C-H 3300-3250 峰形较窄,易于OH和NH区别开。
2. δ≡C-H 900-610 宽的谱带3. ν C≡C2140-2100 一元取代炔烃RC≡CH|| 2260-2190 二元取代炔烃四、芳香烃1.νC-H 3080-30102.νC-C 1650-1450 2~4个吸收峰3. 面外弯曲振动(g=C-H ) 900-650五、醇和酚羟基化合物1. νO-H 3700-3500(游离的醇和酚,峰尖、强)|| 3500-3200(缔和的羟基,峰形强而宽)2. δO-H 1500~13003. νC-O 1250~1000六、醚1.脂肪醚1150-10602.芳香醚1270 ~ 1230(为Ar-O 伸缩)1050 ~ 1000 cm-1(为R-O 伸缩)3.乙烯醚:1225-12005、在环氧乙烷类中有三条特征谱带可作为这种基团的存在的标志:1280-1240 环的不对称伸缩振动|| 950-810cm-1 环的对称伸缩振动|| 840-750cm-1七、羰基化合物(包括醛、酮、羧酸、酯、酸酐和酰胺等)1.酮1725-17052.醛1740-1720 2820-2720出现两个强度相等的吸收峰3.羧酸(1)νO-H 3200-2500(液体及固体羧酸)|| 3550(在气相或极稀的非极性溶剂溶液中)(2)nC=O 1730-1700(2)νC-O 1250附近(强峰)(3)δO-H 1400cm-1和920cm-1区域有两个强而宽的吸收峰(4)羧酸盐1580cm-1 和1400cm-1 之间的两个谱带4.酯(1) νC=O1750-1735(2) νC-O-C 1330-10305.酸酐(1)n C=O 在1860-1800cm-1和1800-1750cm-1出现两个强的吸收峰(2) n C-O-C 开链的在1180-1045cm-1,而环状酸酐在1310-1200cm-16.酰胺: 兼有胺和羰基化合物的特点(1)νN-H稀溶液中伯酰胺出现两个中等强度的峰,分别在3500cm-1和3400cm-1附近,浓溶液和固体中由于有氢键发生,将移向3350-3180cm-1低频区仲酰胺在很稀溶液中,在3460-3420cm-1处只出现一个谱带,浓溶液中或固体中缔和体出现在3330cm-1(3)δN-H弯曲振动(酰胺II带)伯酰胺游离态在1600cm-1处,缔合态在1650-1620处,仲酰胺游离态在1550-1510处;缔和体在1570-1515处(4)酰胺还有C-N吸收带(酰胺III带),它们的吸收位置如下:伯酰胺1420-1400cm-1(中);仲酰胺1305-1200cm-1(中)叔酰胺700-620cm-1(中)八、胺和胺盐1.胺:胺有三个特征吸收带即:nNH、δ N-H和nC-N吸收带(1)nNH 3550-3250(2)δ N-H 1650-15402.铵盐伯胺和仲胺的νNH νNH3+ 伯胺盐在3000-2800cm-1之间出现强和宽的吸收带伯胺盐的δNH3+出现在1600-1575cm-1和1550-1504cm-1处两个吸收带仲胺盐的νNH2+ 出现在2700-2250cm-1 区域;δ NH2+ 出现在1620-1560cm-1区域叔胺盐的νNH+ 在2700-2250cm-1 区域出现一个强的宽带或一组较尖的谱带。
有机化合物的红外光谱
一、 红外光谱的七个重要区段
1. O-H、N-H 伸缩振动区。 2. Y-H 伸缩振动区(Y=C、S、B、P 等)。 3. 三键及累积双键伸缩振动区。 4. C=O伸缩振动区。 5. C=C伸缩振动区。 6. C-H面内弯曲振动、C-O及C-N伸缩振动区。 7. C-H面外弯曲振动区。
游离 3700~3500 cm-1 s(尖) 缔合 3450~3200 cm-1 vs (较宽)
伯胺双峰,仲胺单峰,叔胺无峰。
(4) v N-H(酰胺)
伯酰胺
3450~3225 cm-1 s(略宽),双峰
仲酰胺
~3330 cm-1
s (略宽)单峰,
δN-H 倍频峰 3070 cm-1 (w) 伯酰胺双峰,仲酰胺单峰,叔酰胺无峰。
(2)饱和C-H伸缩振动频率通常在3000cm-1以下: v CH3 2960、2870cm-1, v Cቤተ መጻሕፍቲ ባይዱ2 2930、2850cm-1 vCH 2890cm-1。
(3)醛氢的 vC-H 与δ CH 的倍频产生费米共振,出现双峰: 2840 、 2720cm-1。
(4)环丙烷的 vC-H 在3060cm-1附近,随着环的增大,频率下 降至3000cm-1以下。
1:2 1250 cm-1
c) CH2面外变形振动—(CH2)n—,证明长碳链的存在。 n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 )
n=3 730 ~740 cm-1 (中 ) n≥ 722 cm-1 (中强 )
d) CH2和CH3的相对含量也可以由1460 cm-1和1380 cm-1的峰 强度估算强度
芳氢的δ 面外吸收峰 位于900~650cm-1,可出 现1~3个强吸收峰,这些峰的位置、数目要随芳环 上的取代基的位置和数目而变化,由此可以判断芳 环的取代状况。P.64~65.
有机波谱分析课件第三章++红外光谱
影响吸收峰数目的因素:
吸收峰减少原因:没有偶极矩变化的振动不产生红外吸 收;吸收频率相同,简并为一个吸收峰;有时频率接近, 仪器分辨不出,表现为一个吸收峰;有些吸收程度太弱, 仪器检测不出;有些吸收频率超出了仪器的检测范围。
吸收峰增多原因:产生倍频峰( 0 2、 3) 和组频峰(各种振动间相互作用而形成)——统称泛频; 振动偶合—相邻的两个基团相互振动偶合使峰数目增多; 费米共振—当倍频或组合频与某基频峰位相近时,由于相 互作用产生强吸收带或发生峰的分裂,这种倍频峰或组频 峰与基频峰之间的偶合称为费米共振
(一)红外吸收光谱仪主要部件
红外光谱主要部件有:光源、样品池、单色器、检测器、 放大记录系统
根据红外吸收光谱仪的结构和工作原理不同可分为:色散 型红外吸收光谱仪和傅立叶变换红外吸收光谱仪(FI-IR)
1、光源
能发射高强度连续红外辐射的物质,常采用惰性固体作光源
能斯特灯—由锆、钇、铈或钍的氧化物 特点:发射强度大,尤其在高于1000cm-1的区域;稳定
可测定固、液、气态样品:
气态:将气态样品注入抽成真空的气体样品池 液态:液体样品可滴在可拆池两窗之间形成薄的液膜或将 液体样品注入液体吸收池中 固态:1~2mg 固体样品 + 100~200 mg KBr 研磨混 匀后 压成 1mm 厚的薄片
用于测定红外光谱的样品有较高的纯度(>98%),样 品中不应含有水分
有机结构分析课件
第三章 红外光谱
化学化工学院: 裴 强
QQ: 23403960;Tel: 15937681641 E-mail: peiqiang_6@
学习要求:
1、了解红外光谱的一般原理 2、了解红外光谱的特点及实验方法 3、掌握官能团的吸收波数与结构的关系 4、掌握红外光谱解析的步骤、熟练运用红外光 谱解析有机分子结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题 判断有无芳烃的存在,并指出其波数。
14:16:13
14:16:13
14:16:13
例题:化合物C9H12的红外光谱如下,写 出其结构式。
14:16:13
解:
14:16:13
例题:下图为一个含有C、H、O的有机化合物的 光谱图,试问: (1)这个化合物是脂肪族还是芳香族? (2)是醇类还是酮类? (3)是否含有双键或叁键?
解:
14:16:13
壬烯
14:16:13
1-己烯的红外光谱图
14:16:13
14:16:13
14:16:13
14:16:13
三、炔烃
≡C-H 3300 cm-1 一取代炔烃:
R-C≡C-H 2140 cm-1 -2100cm-1 二取代炔烃: R-C≡C-R 2260 cm-1 -2190 cm-1
14:16:13
推测C8H8纯液体
解:1)U =1-8/2+8=5 2)峰归属 3)可能的结构
14:16:13
H C CH2
五、醇和酚
(1)醇和酚都含有羟基,有三个特征吸收带:OH、 OH和C-O。
(2)羟基的伸缩振动OH在3670~3230cm-1(S)。 游离的羟基OH尖,且大于3600cm-1; 缔合羟基移向低波数,峰加宽,小于3600cm-1。 缔合程度越大,峰越宽,越移向低波数处。 水和NH在此有吸收。
(b)芳香族醚和乙烯基醚: Ph-O-R、Ph-O-Ph和R-C=C-O-R’
1310~1020cm-1为
as COC
强吸收
1075~1020cm-1为
s COC
强度较弱
14:16:13
(2)一般情况下,只用IR来判别醚是困难的。 因其他一些含氧化合物,如醇、羧酸、酯类都会 在1100~125=CH在900-650cm-1,按其位置、吸收峰个 数及强度可以用来判断苯环上取代基个数及取代模式。
14:16:13
(5)苯环质子的面外变形振动的倍频及组合频在 2000~1650cm-1。也可以用于确定苯环取代类型。
(6)其他 除了上述按邻接氢判断在900~650cm-1的谱带外,在
(2)=CH出现在3100-3000cm-1,常在3030cm-1附近。
(3)苯环的骨架振动:在1625-1450cm-1之间,可能有几个吸收, 强弱及个数皆与结构有关。
其中以~1600cm-1和~1500cm-1两个吸收为主。 苯环与其他基团共轭时,~1600cm-1峰分裂为二,在~1580cm-1 处又出现一个吸收。~1450cm-1也会有一吸收。
第三节 有机化合物红外光谱谱图的基本特征
首先计算不饱和度:
当U=0时,表示分子是饱和的,应为链状饱和烃及其不含 双键的衍生物;
U=1时,可能有一个双键或脂环; U=2时,可能有两个双键或脂环,也可能有一个叁键; U=4时,可能有一个苯环。
14:16:13
➢3000cm-1为分界线: >3000cm-1为不饱和烃 <3000cm-1为饱和烃,另外可能是醇、酚、
CH2
CH3
14:16:13
CH
CH3
CH3
红外光谱
二、 烯烃
(1)烯烃有三个特征吸 区 (a)3100~3000cm-1 , =CH (b)1680~1620cm-1 , C=C (a) 、(b)用于判断烯键
的存在与否。 (c)l000~650cm-1,烯碳上质子的面外摇摆振动
=CH,用于判断烯碳上取代类型及顺反异构。
胺
14:16:13
一、饱和烷烃
(a)CH的伸缩振动:基本在2975~2845cm-1之间,包括 甲基、亚甲基和次甲基的对称及不对称伸缩振动。 (b)CH的变形振动:在1460附近、1380附近及 720~810cm-1会出现有关吸收。
(c)C-C环的骨架振动,在720~1250cm-1。
14:16:13
这区域可能还会有另外的吸收出现。 (a)间位二取代在725~680cm-1有强吸收。 (b)1、2、3-三取代化合物另外在745~705cm-1有强
吸收。 (c)1、3、5 - 三取代化合物另外在755~675cm-1有
强吸收。
14:16:13
芳烃
3030、1600、1580、 1500、1450. 670cm-1苯 看3030、1600~1400 有2~4个吸收峰,可 确定为芳香烃化合物。 从900 cm-1 -650 cm-1 区域出现的峰来确定 取代基的数目和位置。
14:16:13
醇:
O-H:3700-3200(变) 游离O-H: 3670-3580 缔合O-H: 3550-3230 OH: 1410-1260(w) C-O: 1250-1000(s) OH: 750-650 (s)
酚:
O-H: 3705-3125(s) C=C: 1650-1430(m)
14:16:13
1-辛醇的红外光谱图
14:16:13
14:16:13
苯酚的红外光谱图
14:16:13
14:16:13
14:16:13
六、醚
(1)醚的特征吸收为碳氧碳键的伸缩振动
as CO
C
和 s
。
COC
(a)脂肪族醚(R-O-R):
脂肪族醚中
s C
O
C
弱。
在 as COC
1150~1050cm-1(S)
14:16:13
烯烃
3030 cm-1 (弱)=C-H链中烃; 3080(强)=CH2端位烯烃。
1680-1630 -C=C-(弱)
反式:-CH=CH 顺式:-CH=CH
970-960cm-1 770-665cm-1
14:16:13
例2:化合物C6H12的红外光谱如下,写 出其结构式。
14:16:13
14:16:13
例3:化合物C6H10的红 外光谱如下,写出其 结构式。
解:
己炔 HC≡C-CH2-CH2-CH2-CH3
14:16:13
14:16:13
14:16:13
四、芳香烃
(1)苯环在四个区有其特征吸收:3100~3000、2000~1650、 1625~1450及900~650cm-1.
饱和烃
在饱和烃中 1380cm-1为烷基 异构化情况;
1460cm-1为烷烃中 的-CH2-,
同时在720cm-1证 明。
例1:化合物C9H20的红外光谱如 下,写出其结构式。
14:16:13
解:计算不饱和度:
14:16:13
庚烷CH3(CH2)5CH3的红外光谱图
14:16:13
CH3
CH