信号与线性系统分析习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=
(4))(sin )(t t f ε= (5))(sin )(t r t f =
(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=
解:各信号波形为
(2)∞<<-∞=-t e t f t ,)(
(3))()sin()(t t t f επ=
(4))(sin )(t t f ε=
(5))(sin )(t r t f =
(7))(2)(k t f k ε=
(10))(])1(1[)(k k f k ε-+=
1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f
(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε
(11))]7()()[6
sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为
(1))2()1(3)1(2)(-+--+=t t t t f εεε
(2))2()1(2)()(-+--=t r t r t r t f
(5)
)2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε
(11))]7()()[6
sin()(--=k k k k f εεπ (12)
)]()3([2)(k k k f k ---=εε 1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=
解:
1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
(1))()1(t t f ε- (2))1()1(--t t f ε (5)
)21(t f - (6))25.0(-t f (7)dt t df )( (8)dx x f t
⎰∞-)(
解:各信号波形为
(1))()1(t t f ε-
(2))1()1(--t t f ε
(5))21(t f -
(6))25.0(-t f
(7)dt t df )
(
(8)dx x f t
⎰∞-)(
1-7
已知序列)(k f 的图形如图1-7所示,画出下列各序列的图形。
(1))()2(k k f ε- (2))2()2(--k k f ε
(3)
)]4()()[2(---k k k f εε (4))2(--k f
(5))1()2(+-+-k k f ε (6))3()(--k f k f
解: 1-9 已知信号的波形如图1-11所示,分别画出
)(t f 和dt t df )(的波形。 解:由图1-11知,
)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对)23(t f -的波形展宽为原来的两倍而得)。将)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示。再将)3(+t f 的波形右
移3个单位,就得到了
)(t f ,如图1-12(c)所示。dt t df )(的波形如图1-12(d)所示。 1-10 计算下列各题。
(1)[]{})()2sin(cos 22
t t t dt
d ε+ (2))]([)1(t
e dt d t t δ-- (5)dt t t t )2()]4sin([2++⎰∞∞-δπ (8)dx x x t
)(')1(δ⎰∞--
1-12 如图1-13所示的电路,写出
(1)以)(t u C 为响应的微分方程。
(2)以)(t i L 为响应的微分方程。
1-20 写出图1-18各系统的微分或差分方程。
1-23 设系统的初始状态为)0(x ,激励为)(⋅f ,各系统的全响应)(⋅y 与激励和初始状态的关系如下,试分
析各系统是否是线性的。
(1)⎰+
=-t
t dx x xf x e t y 0)(sin )0()( (2)⎰+=t dx x f x t f t y 0)()0()()( (3)⎰+=t dx x f t x t y 0)(])0(sin[)( (4))2()()0()5.0()(-+=k f k f x k y k
(5)∑=+
=k j j f kx k y 0)()0()( 1-25 设激励为)(⋅f ,下列是各系统的零状态响应)(⋅zs y 。判断各系统是否是线性的、时不变的、因果的、
稳定的?
(1)dt t df t y zs )()(=
(2))()(t f t y zs = (3))2cos()()(t t f t y zs π= (4))()(t f t y zs -= (5))1()()(-=k f k f k y zs (6))()2()(k f k k y zs -=