晶体缺陷的概念

合集下载

晶体缺陷-位错的基本类型与特征

晶体缺陷-位错的基本类型与特征

混合位错
总结词
混合位错是一种同时具有刃型和螺旋型 特征的晶体缺陷,其特征是晶体中某处 的原子既发生了平移又发生了螺旋式的 位移。
VS
详细描述
混合位错是刃型位错和螺旋位错的组合体 ,其原子位移同时包含了平移和螺旋式的 位移。混合位错通常出现在晶体的复杂区 域,如晶界、相界等。由于混合位错同时 具有刃型和螺旋型位错的特征,其对晶体 的性能影响也较为复杂,需要进行深入研 究。
滑移与攀移
在切应力作用下,位错能够沿滑移面整列移动,称为滑移; 而垂直于滑移面方向的移动称为攀移。这两种运动方式是 位错在塑性变形中的重要表现。
应变梯度与几何必须位错
当材料的局部区域发生不均匀变形时,会产生应变梯度, 进而促使位错的形成和运动,以协调这种不均匀变形。
位错与材料疲劳断裂
01
疲劳裂纹的萌生与扩展
强化机制
加工硬化
在塑性变形过程中,位错的运动和交 互作用导致材料逐渐变硬,即加工硬 化。这是金属材料常用的强化手段。
通过引入位错,可以增加材料的内应 力,从而提高其屈服强度。这种强化 机制称为位错强化。
位错与材料塑性变形
塑性变形机制
位错在受力时能够运动,从而改变材料的形状。这种运动 机制是金属等材料发生塑性变形的内在原因。
在循环载荷作用下,位错容易在材料的应力集中区域(如晶界、相界或
表面)聚集,形成位错塞积群,进而导致疲劳裂纹的萌生。裂纹的扩展
通常沿特定晶体学平面进行。
02
影响疲劳性能的因素
位错的运动和交互作用对疲劳裂纹的萌生和扩展具有重要影响,进而影
响材料的疲劳性能。例如,材料的抗疲劳性能可以通过引入阻碍位错运
动的合金元素来改善。
晶体缺陷的分类

晶体缺陷

晶体缺陷

(1 2)
2ClCl CaCl2 KCl Cai 2VK
(1 3)

KCl
表示KCl作为溶剂。 以上三种写法均符合缺陷反应规则。
实际上(1-1)比较合理。
(2) MgO溶解到Al2O3晶格中
2 MgO 2 Mg V Al O 2OO Al2O3
(1-4)
3 MgO 2 Mg Al Mgi 3OO Al2O3
(1-5)
(1-5〕较不合理。因为Mg2+进入间隙位置不易发生。
练习
写出下列缺陷反应式:
(1) MgCl2固溶在LiCl晶体中(产生正离子空位,生成置换型SS)
(2) SrO固溶在Li2O晶体中(产生正离子空位,生成置换型SS)
有些情况下,价电子并不一定属于某个特定位置的原子,在 光、电、热的作用下可以在晶体中运动,原固定位置称次自 由电子(符号e/ )。同样可以出现缺少电子,而出现电子空 穴(符号h. ),它也不属于某个特定的原子位置。
(6)带电缺陷 不同价离子之间取代如Ca2+取代Na+——Ca · Na Ca2+取代Zr4+——Ca”Zr
Schottky空位的产生
2 杂质缺陷
概念——杂质原子进入晶体而产生的缺陷。原子进入 晶体的数量一般小于0.1%。 种类——间隙杂质 置换杂质 特点——杂质缺陷的浓度与温度无关, 只决定于溶解度。 存在的原因——本身存在
有目的加入(改善晶体的某种性能)
3 非化学计量结构缺陷(电荷缺陷) 存在于非化学计量化合物中的结构缺陷,化合物化学 组成与周围环境气氛有关;不同种类的离子或原子数之比 不能用简单整数表示。如: ;
占据在原来基体原子平衡位置上的异类原 子称为置换原子。 由于原子大小的区别也会造成晶格畸变, 置换原子在一定温度下也有一个平衡浓度值, 一般称之为固溶度或溶解度,通常它比间隙原 子的固溶度要大的多。

《晶体缺陷》课件

《晶体缺陷》课件

热稳定性
晶体缺陷可能影响材料在高温下的稳 定性,降低其使用温度范围。
比热容
晶体缺陷可能影响比热容,改变材料 吸收和释放热量的能力。
光学性能的影响
折射率与双折射
光吸收与散射
晶体缺陷可能导致折射率变化和双折射现 象,影响光学性能。
晶体缺陷可能导致光吸收增强或光散射增 加,改变光学透射和反射特性。
荧光与磷光
热电效应
某些晶体缺陷可能导致热电效应增强,影响 热电转换效率。
介电常数
晶体缺陷可能影响介电常数,改变电场分布 和电容。
电阻温度系数
晶体缺陷可能影响电阻温度系数,改变温度 对电阻的影响。
热学性能的影响
热导率变化
晶体缺陷可能降低材料的热导率,影 响热量传递和散热性能。
热膨胀系数
晶体缺陷可能影响热膨胀系数,影响 材料在温度变化下的尺寸稳定性。

韧性下降
晶体缺陷可能导致材料韧性下 降,使其在受到外力时更容易
脆裂。
疲劳性能
晶体缺陷可能影响材料的疲劳 性能,降低其循环载荷承受能
力。
强度与延展性
晶体缺陷可能影响材料的强度 和延展性,从而影响其承载能
力和塑性变形能力。
电学性能的影响
导电性变化
晶体缺陷可能改变材料的导电性,影响其在 电子设备中的应用。
传感器
基于晶体缺陷的原理,可以设计新型传感器,如压力传感 器、温度传感器和气体传感器等,以提高传感器的灵敏度 和稳定性。
在新能源领域中的应用
太阳能电池
在太阳能电池中,可以利用晶体 缺陷来提高光吸收效率和载流子 的收集效率,从而提高太阳能电
池的光电转换效率。
燃料电池
在燃料电池中,可以利用晶体缺陷 来改善电极的催化活性和耐久性, 从而提高燃料电池的性能和稳定性 。

第4章 晶体缺陷

第4章 晶体缺陷

刃位错的滑移
螺位错的滑移
刃、螺型位错的滑移特点
特征差异:
切应力方向不同 刃型:F⊥l;螺型:F∥l
位错运动方向与晶体滑移方向关系 刃型:运动方向与滑移 方向一致;螺型:运动方向与滑移方向垂直。 统一之处: 两者的滑移情况均与各自的b一致。
b) 位错环(混合型位错)的滑移
A、B处为刃型位错,C、D处为螺型位错,其余各处为 混合型位错。 位错环可以沿法线方向向外扩张而离开晶体;也可以反 向缩小而消失。
透射电镜下观察到的位错线
第三节 位错的能量及交互作用
位错线周围的原子偏离平衡位置,处于较高的能量状 态,高出的这部分能量称为位错的应变能(位错能)
一、位错的应变能
位错的应变能可分为:位错中心畸变能Ec和位错应 力场引起的弹性应变能Ee。 Ec:位错中心点阵畸变较大,需借助点阵模型直接考虑晶体
结构和原子间的相互作用,其能量约为总应变能的1/10~ 1/15,常予以忽略。
和间隙原子的“间隙-空位”对。
Frenkel defect
化合物离子晶体中的两种点缺陷 金属晶体:弗兰克尔缺陷比肖脱基缺陷少得多 离子晶体:结构配位数低-弗兰克尔缺陷较常见
结构配位数高-肖脱基缺陷较重要
间隙原子
定义:晶体中的原子进入晶格的间隙位置而形成 的缺陷。
Interstitial defect

b 2 r
Gb 2 r
b 2 r dr L L Gb
位错线
半原子面
刃型位错的特点
滑移面
a、属于线型位错,但在晶体中为狭长的管道畸变区;
b、是晶体中滑移区与未滑移区的分界线,不一定是 直线,也可以是折线或曲线; c、不能中断于晶体内部

第一节_晶体中的点缺陷

第一节_晶体中的点缺陷

分类:
空位:晶体内部的原子离开其平衡位置后, 留下的原子尺度的空洞。 间隙原子:进入晶体点阵间隙的原子。 自间隙原子:由同类原子形成的间隙原子。 异类间隙原子:由外来杂质原子形成的间 隙原子。 置换原子:占据原来基体原子平衡位置的 异类原子。 置换原子与基体原子半径总有差异,也是 一类点缺陷。
肖脱基缺陷:离位原子迁移到晶体的外 表面或内界面,而形成的空位。
n C exp(SV / k ) exp(EV / kT) Aexp(EV / kT) N
4、空位对金属的物理及力学性能有明显影响 5、空位对材料的高温蠕变、沉淀、回复、表面氧化、 烧结有重要影响
面心立方晶胞
晶格常数:a=b=c; ===90 晶胞原子数:
c
Z
1 1 8 6 4 8 2
Ae
(
E v ) kT
fcc
(2d)2=a2+a2 2a2=4d2 a=√2d 晶胞体积a3,晶胞内的原子数4 体积L3中的空位数=1/8×8=1,单位体积内的空位数为 1/L3=nv, L3=1/nv
四、过饱和空位
过饱和空位:晶体中数量超过了其平 衡浓度的空位。 过饱和空位将对晶体的性能产生影响。 产生过饱和空位的方法: 高温淬火 冷加工 辐照
金属 Au Ag Cu Al Pt W △Em(ev)0.87 0.81 0.94 0.62 0.75 1.87
空位的迁移频率:j=νZexp(Sm/k)exp(-Em/kT) ν-原子振动频率,Z-空位周围原子配位数, Sm-空位 迁移熵,△Em-空位迁移能。
同理,由于热振动,晶体中的间隙原子也可以由一 个间隙位置迁移到另一个间隙位置。
肖脱基缺陷
弗兰克缺陷:离位原子跳入晶体点阵间隙 中,形成一个空位的同时,还形成了一个间隙 原子。

晶体缺陷

晶体缺陷

一、概述1、晶体缺陷:晶体中原子(离子、分子)排列的不规则性及不完整性。

种类:点缺陷、线缺陷、面缺陷。

1) 由上图可得随着缺陷数目的增加,金属的强度下降。

原因是缺陷破坏了警惕的完整性,降低了原子间结合力,从宏观上看,即随缺陷数目增加,强度下降。

2) 随着缺陷数目的增加,金属的强度增加。

原因是晶体缺陷相互作用(点缺陷钉扎位错、位错交割缠结等),使位错运动的阻力增加,强度增加。

3) 由此可见,强化金属的方向有两个:一是制备无缺陷的理想晶体,其强度最高,但实际上很难;另一种是制备缺陷数目多的晶体,例如:纳米晶体,非晶态晶体等。

二、点缺陷3、点缺陷:缺陷尺寸在三维方向上都很小且与原子尺寸相当的缺陷(或者在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷),称为点缺陷或零维缺陷。

分类:空位、间隙原子、杂质原子、溶质原子。

4、肖特基空位:原子迁移到晶体表面或内表面正常结点位置使晶体内形成的空位。

5、弗仑克尔空位:原子离开平衡位置挤入点阵间隙形成数目相等的空位和间隙原子,该空位叫做弗仑克尔空位。

6、空位形成能EV:在晶体中取出一个原子放在晶体表面上(不改变晶体表面积和表面能)所需的能量。

间隙原子形成能远大于空位形成能,所以间隙原子浓度远小于空位浓度。

7、点缺陷为热平衡缺陷,淬火、冷变形加工、高能粒子辐照可得到过饱和点缺陷。

8、复合:间隙原子和空位相遇,间隙原子占据空位导致两者同时消失,此过程成为复合。

9、点缺陷对性能的影响:点缺陷使得金属的电阻增加,体积膨胀,密度减小;使离子晶体的导电性改善。

过饱和点缺陷,如淬火空位、辐照缺陷,还可以提高金属的屈服强度。

三、线缺陷10、线缺陷:线缺陷在两个方向上尺寸很小,另外一个方向上延伸较长,也称为一维缺陷。

主要为各类位错。

11、位错:位错是晶体原子排列的一种特殊组态;位错是晶体的一部分沿一定晶面与晶向发生某种有规律的错排现象;位错是已滑移区和未滑移区的分界线;位错是伯氏矢量不为零的晶体缺陷。

晶体的缺陷

晶体的缺陷
第四章 晶体的缺陷
4.1 晶体缺陷的基本类型
晶体缺陷按几何形态分,有点缺陷、线缺陷和面缺陷
4.1.1 点缺陷
( 1).弗仑克尔(Frenkel)缺陷 正常格点上的原子,无时无刻 不在作围绕平衡点的振动.由 于存在热振动的涨落,振幅达 的原子就会摆脱平衡位置而进 入原子间隙位置.这种由一个 正常原子同时产生一个填隙原 子和一个空穴的缺陷称为弗仑 克尔缺陷。
τ1:空位从一个格点跳到相邻格点所需等待的时间 τ2:填隙从一个间隙跳到下一个间隙所需等待的时间
假设τ2》τ1, 与空位相邻的原子跳入空位所要等待的时间
可得出单位时间内一个原子由正常格点跳到间隙位置变 成填隙原子的几率为
当τ1》τ2时,即空位从一个格点跳到相邻格点所需等 待的时间比填隙原子从—个间隙位经跳到相邻间隙位置 所需等待的时间长得多时,可以近似把空位看作相对静 止.由类似的分析可得
从N个院子中取出n个原子形成n个空位的可能方式数目
N! W N n 形成间隙院子的方式数目为
' N ! W1'' ' N n !n!


有缺陷后晶格的微观状态数目为
' N ! N ! W W1'W1''W0 ' N n !N n(n!) 2
4.3 热缺陷的统计理论
4.3.1 热缺陷的产生几率
弗仑克尔缺陷和肖持基缺陷,存在产生、运动 和复合问题. 当温度一定时,热缺陷的产生和复合达到平衡, 热缺陷的统计平均数目为一定值,热缺陷在晶体内均 匀分布.设晶体是由N个原子构成,空位数目为nl,填 隙原子数目为n2; P代表在单位时间内,一个正常格点 上的原子跳到间隙位置的几率,τ=l/P代表一个正常 格点上的原子成为填隙原子所需等待的时间.

晶体缺陷

晶体缺陷
杂质原子可形成间隙原子和替位原子
固溶体是以某一组元为溶剂,在其晶体点阵中溶 入其他组元原子(溶质原子)所形成的均匀混合 的固态溶体,它保持着溶剂的晶体结构类型。
固溶度:硅中能容纳杂质的最大数目 影响固溶度的因素有很多,主要有以下几个因素: ①杂质的种类。硅与杂质原子的晶体结构相同时, 杂质原子就可以连续不断地置换硅原子。如果两 种原子的晶体结构类型不同,固溶度是有限的。
一般把多出的半原子面在滑移面上边的称为正刃 型位错,记为“┻”;而把多出在下边的称为负 刃型位错,记为“┳”。正、负之分只具相对意 义而无本质的区别。
刃位错的几何特征:
位错线与原子滑移方向相垂直;
滑移面上部分位错线周围原子受压应力作用,原 子间距小于正常晶格间距; 滑移面下部分位错线周围原子受张应力作用,原 子间距大于正常晶格间距。
根据晶体缺陷的几何特征,可以分为四类:
点缺陷:其特征是在三维空间的各个方面上尺寸都很小, 尺寸范围约为一个或几个原子尺度, 故称零维缺陷,包 括空位、间隙原子、杂质或溶质原子等; 线缺陷:其特征是在两个方向上尺寸很小,另外一个方向 上延伸较长,也称一维缺陷,如各类位错;
面缺陷:其特征是在一个方向上尺寸很小,另外两个方向 上扩展很大,也称二维缺陷.晶界、相界、孪晶界和堆垛 层错等都属于面缺陷。
位错的爬升
位错爬升是靠原子或空位的转移来实现的。当原 子从多余半原子面下端转移到别处,或空位从别 处转移到半原子面下端时,位错线便向上爬升, 即正爬升;反之,当原子从别处转移到多余半原 子面下端时,或空位从这里转移到别处去时,位 错线就向下爬升,即负爬升。
刃位错爬升的实质就是构成刃位错的多余半原子 面的扩大或缩小。
位错运动不引起晶体体积的变化,这类运动称为位错的守 恒运动(滑移) 位错运动引起晶体体积的变化,这类运动称为位错的非守 恒运动(爬升)

晶体缺陷名词解释

晶体缺陷名词解释

晶体缺陷名词解释
晶体缺陷是指因晶体的原子不能有序排列,或因晶体中存在多余或欠缺的原子,或晶体中存在附加的离子,而使晶体的特性发生变化的状态。

主要分为四类:位错、衬底格点缺陷、位错团和晶体区域失活。

位错指晶体中原子离开了正常构型排列,进入到其他构型排列中所产生的现象,起到晶体构型的破坏作用。

衬底格点缺陷指在固定位置存在具体数量的空位,从而改变晶体表面的衬底格点,以及晶体面积和晶格常数。

位错团指离子或原子被狭义放射入晶体,它们互相吸引,形成一个团簇。

晶体区域失活指晶体因内部缺陷而导致的情况,使得某些晶格在晶体结构中失去活性,从而增加晶格衰减。

材料科学-晶体缺陷

材料科学-晶体缺陷

具有完善共格关系的界面
具有弹性畸变的共格界面
半共格界面
非共格界面
位错塞积群的一个重要效应是在它的前端引起应力集中。当 有n个位错被外加切应力τ推向障碍物时,在塞积群的前端 将产生n倍于外力的应力集中。
2.4 材料中面缺陷
严格来说,界面包括外表面(自由表面)和内界面。 表面是指固体材料与气体或液体的分界面,它与摩擦、 磨损、氧化、腐蚀、偏析、催化、吸附现象,以及光 学、微电子学等均密切相关;而内界面可分为晶粒边 界和晶内的亚晶界、孪晶界、层错及相界面等。
式中dW为产生dS表面所作的功。表面能也可以单位长度上 的表面张力(N/m)表示。 表面能与晶体表面原子排列致密程度有关,原子密排的 表面具有最小的表面能。所以自由晶体暴露在外的表面通 常是低表面能的原子密排晶面。
2.4.2 晶界和亚晶界
晶界 亚晶界 确定晶界位置用:
(1)两晶粒的位向差θ (2)晶界相对于一个点阵某一平面的夹角φ。 按θ的大小分类:
点缺陷
线缺陷
面缺陷
点缺陷
材料科学基础
第二章
点缺陷是最简单的晶体缺陷,它是在结点上或邻近的微观区域内偏离晶体 结构正常排列的一种缺陷。
晶体点缺陷包括:
空位
间隙原子
杂质
置换原子
点缺陷对结构和性能的影响
材料科学基础
第二章
点缺陷引起晶格畸变,能量升高,结构不稳定,易发生转变。 点缺陷的存在会引起性能的变化:
位错的直接观测: 利用透射电子显微镜(Transmission Electron Microscope,简称TEM)可直 接观察到材料微结构中的位错。TEM观察的第一步是将金属样品加工成电子束可 以穿过的薄膜。在没有位错存在的区域,电子通过等间距规则排列的各晶面时将 可能发生衍射,其衍射角、晶面间距及电子波长之间满足布拉格定律(Bragg's law)。而在位错存在的区域附近,晶格发生了畸变,因此衍射强度亦将随之变 化,于是位错附近区域所成的像便会与周围区域形成衬度反差,这就是用TEM观 察位错的基本原理,因上述原因造成的衬度差称为衍射衬度。 在图7和图8中,中间稍亮区域(晶粒)里的暗线就是所观察到位错的像。由于多 晶材料中不同晶粒的晶体学取向不同,因此晶粒之间亦存在衬度差别,这就是图 7和图8中中间区域较周围区域更亮的原因。值得注意的是,图中位错像所具有的 “蜿蜒”的形态,这是位错线在厚度方向穿过试样(薄膜)的位错在TEM下的典 型形态;还需注意的是图中位错像的终结处实际上是因为位错线到达了试样表面, 而非终结在了试样内部。所有位错都只能以位错环的形式终结于晶粒的内部。

晶体缺陷

晶体缺陷

5
3 、点缺陷的产生及其运动
(1)点缺陷的产生 平衡点缺陷:热振动中的能力起伏。 过饱和点缺陷:外来作用,如高温淬火、辐照、冷加工等。 (2)点缺陷的运动 (迁移、复合-浓度降低;聚集-浓度升高-塌陷)
6
4 、点缺陷与材料行为
(1)结构变化:晶格畸变(如空位引起晶格收缩,间隙
原子引起晶格膨胀,置换原子可引起收缩或膨胀。)
多个位错的运动导致晶体的宏观变形。 比喻:地毯的挪动、蛇的爬行等。
24
2、位错的滑移
a 滑移:位错沿着滑移面的移动。
刃型位错的滑移:具移方向与位错运动方向一致。
25
不同类型位错的运动方式,运动面及运动方向的关系
位错 类型
b 与ξ,v关系 b ┻ ξ,b // v
28
螺型位错的滑移:具有多个滑移面。
切应力方向与位错线平行; 晶体滑移方向与位错运动方向垂直。
从柏氏矢量角度,对任何位错:
切应力方向与柏氏矢量一致; 晶体滑移与柏氏矢量一致。
29
30
31
判断晶体的滑动方向 (右手定则)
当柏氏矢量为b的位错线沿v方向运动时,以位错运动 面为分界线的那部分晶体必沿着b的方向运动
a 在位错周围沿着点阵结点形成封闭回路。
b 在理想晶体中按同样顺序作同样大小的回路。 c 在理想晶体中从终点到起点的矢量即为――。
15
16
(2)柏氏矢量的表示方法
a 表示: b=a [uvw] /n (可以用矢量加法进行运算)。
b 求模:/b/=a [u2+v2+w2]1/2 /n 。
17
(3)柏氏矢量的物理意义与应用
4
2 、点缺陷的平衡浓度
(1)点缺陷是热力学平衡的缺陷-在一定温度下,晶体 中总是存在着一定数量的点缺陷(空位),这时体系的能 量最低-具有平衡点缺陷的晶体比理想晶体在热力学上更 为稳定。(原因:晶体中形成点缺陷时,体系内能的增加 将使自由能升高,但体系熵值也增加了,这一因素又使自 由能降低。其结果是在G-n曲线上出现了最低值,对应的 n值即为平衡空位数。) (2)点缺陷的平衡浓度 C=Aexp(-∆Ev/kT)

材料科学基础第二章晶体缺陷

材料科学基础第二章晶体缺陷

金属 Al Ag Cu
α-Fe
Mg
理论切应力
3830 3980 6480 11000 2630
实验值
0.786 0.372 0.490 2.75 0.393
切变模量 24400 25000 40700 68950 16400
21
dislocation
一 般 金 属 的 G=104~105MPa, 理论剪切强 度应为103~104MPa,实际只有1~10MPa 理论强度比实测值大1000倍以上!! 1934年Taylor, Polanyi和Orowan几乎同 时提出晶体中存在易动的缺陷-位错, 借助于位错运动实现塑性变形。
12
设在温度T时,含有N个结点的晶体中形成n个空位, 与无空位晶体相比:
ΔF=n·ΔEV-T·ΔS
ΔS=ΔSC+n·ΔSV
n个空位引入,可能的原子排列方式:Wc

(N
N! n)!n!
利用玻尔兹曼关系SC=k·lnWC,并利用Stiring公式
令: (F ) 0
n T
13.00
12.75
12.50
12.25
Fe的 电 阻 率 随 淬 火 温 度 的 变 化
12.00
200
400
600
800 1000 1200 1400 1600
Tem perature / oC
17
2.2位错的基本概念 (1)位错理论产生强化材料的重要手段,但是对于变形的微观过 程、加工硬化等尚不能解释。 滑移带现象。当时,普遍认为金属塑性变形是 晶体刚性滑移的结果,滑移面两侧的晶体借助 于刚性滑动实现变形。 1926年弗兰克尔从刚性模型出发,估计了晶 体的理论强度。

晶体缺陷-线缺陷

晶体缺陷-线缺陷

C B
10
二.位错(dislocation)
然而实际晶体中存在的位错往往是混合 型位错,兼具刃型位错和螺型位错的特征。 其滑移矢量既不平行也不垂直于位错线 ,而与位错线相交成任意角度。每一小段位 错线都可分解为刃型和螺型两个分量。
11
三.柏氏矢量
柏氏矢量(Burgers vector)是描述 位错实质的重要物理量
5
二.位错(dislocation)
2.1 位错的定义:晶体的线缺陷表现为各种 类型的位错。即晶体中某处一列或若干列原 子有规律的错排。 2.2 位错的基本类型:从位错的几何结构来 看,可将它们分为两种基本类型,即刃型位 错和螺型位错。
6
二.位错(dislocation)
2.2.1 刃型位错 晶体中已滑移区与未滑移区的边界线垂直于滑移方 向。 G 刃型位错的结构如右图所示, 在晶面ABCD上半部存在多余的 H F 半排原子面EFGH,这个半原子 D 面中断于ABCD面上的EF处,像 一刀刃插入晶体中,使ABCD面 E A 上下两部分晶体之间产生了原 B 子错排,故称“刃型位错”多 余的半排原子面与滑移面的交 线EF就称作刃型位错线。
C
7
二.位错(dislocation)
如图,多余的半排原 子面的插入使上半部 分晶体中的原子受到 挤压,而下半部分晶 体中的原子受到拉伸
8
二.位错(dislocation)
刃型位错的特点:
(1)有一个额外的半原子面; (2)刃型位错线可理解为晶体中已滑 移区与未滑移区的边界线; (3)滑移面必定是同时包含有位错线 和滑移矢量的平面,在其他面上不 能滑移; (4)晶体中存在刃型位错之后,位错 周围的点阵发生弹性畸变; (5)在位错线周围的过渡区(畸变区 )每个原子具有较大的平均能量。

晶体的缺陷与影响因素

晶体的缺陷与影响因素

晶体的缺陷与影响因素一、晶体的基本概念1.晶体的定义:晶体是原子、分子或离子按照一定规律在三维空间作有规律的周期性重复排列所形成的物质。

2.晶体的特点:具有规则的几何形状、透明的光学性质、各向异性的物理性质等。

二、晶体的缺陷1.晶体缺陷的定义:晶体缺陷是指晶体结构中周期性重复排列的失去或破坏。

2.晶体缺陷的类型:a.点缺陷:原子、分子或离子在晶体中的位置上缺失或被其他粒子所替代。

b.线缺陷:晶体中若干个连续的原子、分子或离子排列发生偏离,形成缺陷线。

c.面缺陷:晶体中一个或多个平面上原子、分子或离子的排列发生偏离,形成缺陷面。

三、晶体缺陷的影响因素1.温度:温度对晶体缺陷的影响主要表现在原子、分子或离子的运动上,温度升高,运动加剧,晶体缺陷增多。

2.压力:压力对晶体缺陷的影响主要体现在晶体结构的稳定性上,压力增大,晶体结构稳定性降低,缺陷增多。

3.材料的制备方法:不同的制备方法会导致晶体结构的差异,从而影响晶体缺陷的生成。

4.杂质:杂质的存在会影响晶体中原子、分子或离子的排列,容易产生缺陷。

四、晶体缺陷对材料性能的影响1.点缺陷对材料性能的影响:a.空位缺陷:会使材料的硬度、强度降低,熔点升高。

b.替位缺陷:会使材料的熔点、电导率等发生变化。

2.线缺陷对材料性能的影响:a.位错:会使材料的塑性变形能力增强,强度降低。

b.裂纹:会使材料的强度、韧性降低,易断裂。

3.面缺陷对材料性能的影响:a.晶界:会影响材料的力学性能、扩散性能等。

b.相界面:会使材料的物理性能、化学性能发生变化。

五、晶体缺陷的控制与利用1.控制晶体缺陷的方法:a.优化材料的制备工艺:如控制温度、压力、杂质等。

b.引入合适的掺杂元素:调节晶体缺陷的类型和数量。

2.利用晶体缺陷的方法:a.制造半导体器件:如集成电路、太阳能电池等。

b.制备纳米材料:利用晶体缺陷实现材料的特殊性能。

以上是对晶体缺陷与影响因素的详细介绍,希望对您有所帮助。

晶体缺陷简述

晶体缺陷简述
界面两侧晶体以一特征的非 点阵平移相联系者称平移界 面,包括堆垛层错、反相畴 界和结晶切变面等面缺陷。
孪晶界面
第二类面缺陷称为孪晶界面, 它所分隔开的两部分晶体间以 特定的取向关系相交接, 从而 构成新的附加对称元素,如反 映面、旋转轴或对称中心。
晶粒间界
第三类面缺陷为晶粒间界, 它们是以任意取向关系相 交接的两晶粒间的界面。
由于复合能够减少缺陷的运动激活能, 从而加速了缺陷的运动。本征点缺陷易
子组成非晶态填隙原子团而不存在悬挂键。
这个自间隙原子团有较高的能量和嫡,及较 低的激活能。
与杂质形成微缺陷而影响硅的性能。复
合增强扩散的现象将影响半导体器件的 寿命,可能导致器件在运行中失效。
四、总结
通过查阅相关文献、书籍以及网络资源,分别从几何形态和形成原因两个大方面介 绍了晶体结构缺陷的类型。按照几何形态来分,晶体结构的缺陷主要可分为点缺陷、 线缺陷、面缺陷和体缺陷;而按照形成原因来分,晶体结构的缺陷主要分为热缺陷 (本征缺陷)、杂质缺陷(非本征缺陷)以及非化学计量结构缺陷(非整比化合物)。 在介绍了晶体结构缺陷的类型的基础上,简要介绍了单晶硅中缺陷的类型,在单晶 硅中主要存在以下几种缺陷——点缺陷、线缺陷、面缺陷以及旋涡微缺陷。
置,成为填隙的杂质原子(离子)。 点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。 a 空位 c 替位杂质 b 填隙基质原子 d 填隙杂质
2、线缺陷(一维缺陷)
指在一维方向上偏离理想晶体中的周期性、 规则性排列所产生的缺陷,即缺陷尺 寸在一维方向较长,另外二维方向上很短。如各种位错( dislocation) 线缺陷有下面两种情况: 刃型位错(Edge dislocation) 晶体中某一列或若干列原子发 生有规律的错排的现象 螺型位错(Screw dislocation) 一个晶体的某一部分相对于其余部分发生滑 移,原子平面沿着一根轴线盘旋上升,每绕 轴线一周,原子面上升一个晶面间距

晶体中的缺陷

晶体中的缺陷

空位的移动
原子作热振动,一定温度下原子热振动能量一定,呈统计 分布,在瞬间一些能量大的原子克服周围原子对它的束缚,迁 移至别处,形成空位。
点缺陷的平衡浓度
热力学分析表明:在高于 0K 的任何温度下,晶体最稳定 的状态是含有一定浓度点缺陷的状态。在某一温度下,晶体 自由焓最低时对应的点缺陷浓度为点缺陷的平衡浓度,用 CV 表示。 在一定温度下,晶体中有一定平衡数量的空位和间隙原 子,其数量可近似算出。 设自由能 F=U-TS U为内能,S为系统熵(包括振动熵Sf和排列熵SC) 空位的引入,一方面由于弹性畸变使晶体内能增加;另 一方面又使晶体中混乱度增加,使熵增加。而熵的变化包括 两部分: ① 空位改变它周围原子的振动引起振动熵Sf; ② 空位在晶体点阵中的排列可有许多不同的几何组态,使 排列熵SC增加。
X原子位于晶格间隙位置。 3. 错位原子 错位原子用MX、XM等表示,MX的含义是M原子占据X原子的位
置。XM表示X原子占据M原子的位置。
4. 自由电子(electron)与电子空穴 (hole) 分别用e,和h · 来表示。其中右上标中的一撇“,”代表一个单位负电荷,
一个圆点“ ·”代表一个单位正电荷。
点缺陷基本理论小结
1、点缺陷是热力学稳定的缺陷。 2、不同金属点缺陷形成能不同。 3、点缺陷浓度与点缺陷形成能、温度密切相关
n C exp( SV / k ) exp( EV / kT ) A exp( EV / kT ) N
4、点缺陷对金属的物理及力学性能有明显影响 5、点缺陷对材料的高温蠕变、沉淀、回复、表面氧化、 烧结有重要影响
T CV
100K 300K 500K 10-57 10-19 10-11
700K 900K 1000K 10-8.1 10-6.3 10-5.7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体缺陷的概念
晶体缺陷是指晶体中存在的一种结构性缺陷,它可以分为点缺陷、线缺陷和面缺陷三种类型。

点缺陷是指晶体中存在的一些点状的缺陷,比如说晶格中的原子缺失、杂质原子等。

这些点缺陷会导致晶体的物理和化学性质发生变化。

线缺陷是指晶体中存在的一些线状的缺陷,比如说晶格中的排列错误、晶面错位等。

这些线缺陷会影响晶体的弹性、导电性等性质。

面缺陷是指晶体中存在的一些面状的缺陷,比如说晶面的错位、晶面的扭曲等。

这些面缺陷会影响晶体的力学、光学等性质。

晶体缺陷是晶体中不可避免的存在,它们与晶体的物理和化学性质密切相关,因此对晶体缺陷的研究对于认识晶体的性质、制备高质量晶体具有重要的意义。

- 1 -。

相关文档
最新文档