椭圆的标准方程教学设计

合集下载

《椭圆及其标准方程》教学设计一等奖3篇

《椭圆及其标准方程》教学设计一等奖3篇

4、《椭圆及其标准方程》教学设计一等奖一、教学内容解析1、地位与作用:本章是北师大版选修1—1的第二章《圆锥曲线与方程》,是高中数学解析几何的第二大部分。

解析几何是数学中一个重要的分支,它联系了数学中的数与形、代数与几何等最基本对象之间的联系。

在北师大版必修2中,学生已掌握了在平面直角坐标系下研究直线和圆的方法,本章教材进一步利用三种基本圆锥曲线深化代数与几何的关系。

本章教材内容的顺序是:椭圆→抛物线→双曲线→曲线与方程。

这样安排的用意是,先学圆锥曲线,再学曲线与方程,这样的顺序更有利于学生的学习,符合学生从特殊到一般,具体到抽象的认知规律。

在圆锥曲线的学习过程中,不断的渗透曲线与方程的思想,为学生理解并掌握“曲线与方程”这一概念奠定了基础。

本节是北师大版选修1—1的第二章《圆锥曲线与方程》第1节的内容,主要学习椭圆的定义、标准方程及其简单的应用,分为两课时,本节课是第1课时,主要学习椭圆的定义及其标准方程。

教材以椭圆为基础和重点说明了求方程并利用方程讨论几何性质的一般方法,然后在认知抛物线和双曲线中得到了巩固和应用,因此《椭圆及其标准方程》这一节课起到了承上启下的作用。

2、教材处理顺序教材在椭圆的定义这个内容的安排上是:先从直观上认识椭圆,再从画法中提炼出椭圆的几何特征,由此抽象概括出椭圆的定义,最后是椭圆定义的简单应用。

这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解。

教材在本节内容中只研究了中心在原点,焦点在轴上的椭圆的标准方程,让学生自己去归纳焦点在轴上的椭圆的标准方程。

这样的处理给学生提供了一次探究和交流的机会。

有利于学生对抛物线标准方程的理解,有利于学生思维能力的提高和学习兴趣的培养。

3、数学思想方法本节内容蕴含了:数形结合思想、转化化归思想等。

在推导椭圆标准方程过程中让学生体会移项再平方去根号的方法。

高中数学“椭圆的定义与标准方程”教学设计

高中数学“椭圆的定义与标准方程”教学设计

精品案例高中数学“椭圆的定义与标准方程”教学设计文|景朝英一、教材分析对于本课内容,新课标提出要引导学生经历具体情境,并从中抽象出椭圆产生过程,概括并理解椭圆定义,并掌握标准方程。

椭圆的定义与标准方程的研究方法和之后需要学习的双曲线、抛物线并没有什么区别,而且教材对椭圆研究也非常重视,所以本部分知识起着承上启下的作用。

此外,本节内容还涉及数形结合意识、转化思想等,因此教师在对这部分内容进行教学时需要将这些数学思想融入其中。

二、教学目标1.理解椭圆概念,掌握椭圆标准方程,能够运用坐标法解决几何问题。

2.用坐标法推导椭圆标准方程,锻炼发现、概括、认知规律以及解决实际问题的能力。

3.感受椭圆具有的对称美和简洁美,并增强数形结合思想。

4.培养直观想象、数学建模和数学运算等数学学科素养。

三、教学重点椭圆定义和椭圆两种形式标准方程的理解、掌握,能够运用坐标法解决几何问题。

四、教学难点引导学生经历椭圆标准方程推导过程,培养学生的直观想象、数学建模和数学运算等数学学科素养。

五、学情分析高二学生在之前的学习中已经接触过一些圆锥曲线概念,如圆、椭圆等,但他们的抽象思维能力和数形结合意识还不太强,而椭圆的定义与标准方程这部分内容涉及的概念较为抽象,需要学生具备较强的抽象思维能力,而且本章学习重点是数形结合,需要学生建立代数方程与椭圆之间的联系,所以在本节教学中教师一定要注意这一点。

根据教材内容、学生实际情况以及课本要求,本课教学可采用如下策略:1.用问题探索活动引起学生学习兴趣,促使学生主动思考。

2.借助实验探究活动让学生亲身感受椭圆画图过程,帮助学生更好地理解椭圆定义。

3.引导学生动手、动脑推导椭圆标准方程,帮助学生更深刻地理解概念,掌握其标准方程。

4.引导学生回忆圆方程求解步骤,通过知识迁移建立椭圆直角坐标系,通过列式运算推导出椭圆标准方程。

5.对典型求解椭圆标准方程例题进行变式,引导学生采用不同的求解方法和思路,帮助学生掌握这类习题本质。

椭圆的标准方程教案设计

椭圆的标准方程教案设计

《椭圆的标准方程》教学设计一、教案背景1、面向对象:中职高三高考班学生2、学科:数学3、课时:1课时4、课前准备:(1)预习课文了解椭圆的定义(2)一支铅笔、两个图钉、一根绳子、一块硬纸板二、教学课题《椭圆的标准方程》教学设计三、教材分析(一)教材地位分析:本节课选自广东省教育厅推荐教材《中等职业学校教学用书(选修)》的第四章4.2.1《椭圆的标准方程》,继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.(二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略.(三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生初次学习解析几何在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.四、教学方法直观观察、动手操作、讨论探究、归纳抽象、总结规律五、教学过程六、板书设计七、教学反思本教学设计先由问题出发,创设情境,激发学生对对数的兴趣;在讲授新课部分,先通过调动学生的动手试验画图的方式画出椭圆,由学生自己归纳总结椭圆的定义,老师强调定义中的必需条件。

在椭圆标准方程的推导过程中一步一步引导学生进行推导化简,真真体现了课堂以学生为主,老师为导的教学思想。

附录2222222222111116914416161a b x y x y x y m m +=+=+=+例:口答:下列方程哪些表示椭圆?若是,请判断焦点在哪个坐标轴上?并指明,,写出焦点坐标。

椭圆标准方程教学设计

椭圆标准方程教学设计

椭圆标准方程教学设计椭圆是解析几何中非常重要的一个概念,它在数学、物理、工程等领域都有着广泛的应用。

椭圆的标准方程是描述椭圆形状的基本公式,掌握椭圆标准方程对于理解椭圆的性质和应用至关重要。

本教学设计旨在帮助学生深入理解椭圆标准方程的概念和性质,掌握其相关的计算方法和应用技巧。

一、椭圆的基本概念。

1.1 椭圆的定义。

椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a的点P的轨迹。

F1和F2称为椭圆的焦点,2a称为椭圆的长轴长度。

1.2 椭圆的标准方程。

椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)是椭圆的中心坐标,a和b分别是长轴和短轴的长度。

二、椭圆标准方程的推导。

2.1 椭圆的定义推导标准方程。

根据椭圆的定义,可以推导出椭圆的标准方程。

首先,设椭圆的焦点为F1(-c, 0)和F2(c, 0),则根据焦点定义可得PF1 + PF2 = 2a。

根据点到两点距离的公式可得√((x+c)² + y²) + √((x-c)² + y²) = 2a,经过整理可得椭圆的标准方程。

2.2 椭圆标准方程的性质。

椭圆标准方程的推导过程中,可以引入椭圆的离心率、焦距等概念,从而深入探讨椭圆的性质。

例如,离心率e的定义和计算公式,焦距2ae与长轴长度2a之间的关系等。

三、椭圆标准方程的应用。

3.1 椭圆标准方程的图像绘制。

通过椭圆标准方程,可以快速绘制椭圆的图像。

根据标准方程中的中心坐标、长短轴长度等信息,可以确定椭圆的位置和形状,从而进行准确的图像绘制。

3.2 椭圆标准方程的实际问题应用。

椭圆在现实生活中有着广泛的应用,例如卫星轨道、天体运动、声学等领域。

通过椭圆标准方程,可以建立相关的数学模型,解决实际问题,探讨椭圆的应用价值。

四、教学设计实施。

4.1 教学目标。

通过本教学设计,学生应能够掌握椭圆的基本概念和标准方程的推导方法,理解椭圆标准方程的性质,掌握椭圆标准方程的应用技巧。

《椭圆的标准方程》教学设计.doc

《椭圆的标准方程》教学设计.doc

《椭圆的标准方程》教学设计翟荣俊教材:苏教版《数学》选修系列2-1一、教学背景分析(一)教材的地位与作用《椭圆的标准方程》是继学习必修2圆以后又一二次曲线的实例。

从知识上说,它是对前面所学的运用坐标法研究曲线的又一次实际演练,同吋它也是进一步研究椭圆几何性质和双曲线、抛物线的基础;从方法上说,它为我们后面研究双曲线、抛物线这两种圆锥曲线提供了基本模式和理论基础。

椭圆的标准方程是圆锥曲线方程研究的基础,它的学习方法对整个这一章具有导向和引领作用o(二)对教学H标的阐述根据课程标准的要求,本节教材特点及学生的认知情况,把教学H标拟定如下:1.知识与技能口标:进一步理解椭圆的定义;掌握椭圆的标准方程,理解椭圆标准方程的推导;会根据条件写出椭圆的标准方程;能用标准方程判定是否是椭圆;2.过程与方法H标:通过寻求椭圆的标准方程的推导,帮助学生领会观察、分析、归纳、数形结合等思想方法的运用;在相互交流、合作探究的学习过程屮,使学生养成合理表述、科学抽象、规范总结的思维习惯,逐步培养学牛在探索新知过程屮进行推理的能力和数学知识的运用能力;3•情感态度与价值观H标:通过主动探究、合作学习、相互交流,进一步认识数学的理性与严谨,感受探索的乐趣与成功的喜悦,增加学生的求知欲和口信心;培养他们不怕困难、勇于探索的优良作风,增强学生审美体验,提高学生的数学思维的情趣,给学牛以成功的体验,逐步认识到数学的科学价值、应用价值和文化价值,从而形成学习数学知识的积极态度。

本教案的设计着眼点是让学生集体参与、主动参与,让学生动手、动脑,通过观察、猜想、归纳等合情推理,鼓励学生多向思维、积极活动、勇于探索。

所以,在平等的教学氛围屮,让学生体验数学学习的成功与快乐,增加学生的求知欲和自信心;培养学生不怕困难、勇于探索的优良作风,增强学生审美体验,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度是本节课要达成的情感H标。

椭圆及其标准方程教学设计

椭圆及其标准方程教学设计

椭圆及其标准方程教学设计椭圆及其标准方程教学设计1前言:新课程改革实施以来,教学模式发生了重大的改变,由以往的“一言堂”形式向多种“开放式”教学模式进行转变,在教育观念的不断转变下,对于我们的一线老师也提出了更高的要求,新形势下,要想成为一名合格的老师,就需要不断的加强自己的业务能力,使自己能够变成一名受学生尊重和喜爱的老师,从而更好的提高学生的教学成绩。

基于以上原因,本人尝试制定出椭圆及其标准方程第一课时的教学设计如下:一,教材分析本节课是《全日制普通高中课程标准实验教科书》(选修1-1)(人民教育出版社课程教材研究所中学数学教材实验研究组编著)第二章《圆锥曲线与方程》第一节《椭圆》的第一课时。

在学习本课之前,我们已经学习了直接和圆的相关内容,使学生对于曲线和方程的概念有了一定的了解,同时,对于利用坐标法来研究几何也有了一定的认识,对于数形结合思想也有了一定的了解,从根本上来讲,本节课也属于曲线方程的一个延伸,也是利用坐标法来研究几何图形的进一步加强,本节课的掌握情况的好坏,将直接影响后面双曲线和抛物线的学习。

对于学好圆锥曲线也有重要的意义。

椭圆这一节课体现出来的一些学习方法对于后面双曲线和抛物线的学习有一个重要的引导作用,但是本节课也难度较大,对于缺乏数形结合能力,不爱作图的学生来廛,学习起来是非常困难的,尤其是我所要教授的是一群普通高中的学生,更是难上加难的。

二,学习对象分析1.学习对象本节课重点讲解内容是椭圆,经过上一节课的学习,学生有了一些求点的轨迹问题的知识基础和能力,但是由于我们的学生作为普通高中的一名学生,在高中招走700名学生后,才进入到我们学校的学生来讲,他们的起点低,学习习惯不好,导致了我们的教学难度的加大,所以,从研究圆,跨越到椭圆,学生会存在一定学习上的障碍,教学过程中更要注意这方面的教学。

对于学生的抽象思维,分析能力都是一个较大的考验。

2.知识基础上课前,要对学生对于直线和圆的方程,以及曲线和方程部分知识点进行适当的回顾,将学生拉到利用坐标法来解决实际问题的过程中来。

椭圆的标准方程教学设计

椭圆的标准方程教学设计

椭圆的标准方程教学设计一、教学目标(一)知识目标1、使学生理解椭圆的定义,掌握椭圆的标准方程及推导;2、掌握焦点、焦点位置与方程关系、焦距;(二)能力目标通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力;(三)学科渗透目标通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力二、教材分析1.重点:椭圆的定义和椭圆的标准方程.(解决办法:用活动探究画椭圆,并且用几何画板动画演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)2.难点:椭圆的标准方程的推导.(解决办法:推导分4步完成,每步讲解,关键步骤加以补充说明.)3.疑点:椭圆的定义中常数加以限制的原因.(解决办法:分三种情况说明动点的轨迹.) 三、教学过程(一)创设情境,引入概念1、思考:什么是椭圆?生活中有哪些椭圆形状的东西?2、生活中的椭圆实物图片欣赏。

(二)实验探究,形成概念探究:画椭圆1、动手实验:学生分组动手画出椭圆。

2、动画演示,描绘出椭圆轨迹图形。

深入探究:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?3、概括椭圆定义引导学生概括椭圆定义椭圆定义:平面内与两个定点F1 ,F2距离的和等于常数(大于F1 F2)的点的轨迹叫椭圆。

教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

思考:焦点为F1 F2的椭圆上任一点P满足什么条件,用数学关系式来表达?|PF1|+ |PF2|=2a(2a>2c>0)(三)研讨探究,推导方程1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?建系、设点、列式、化简。

2、研讨探究思考:如何建立坐标系,使求出的方程更为简单?动点P 到两定点F 1,F 2的距离之和为10,|F 1F 2|为8,则动点P 的轨迹为?经历由特殊到一般的过程,推导方程学生更易于接受。

两种方案 方案一 方案二按方案一建立坐标系,师生研讨探究得到椭圆标准方程选定方案二建立坐标系,同理可得出教师指出:我们所得的两个方程 和 都是椭圆的标准方程。

椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计一、教学目标:1、知识与技能目标(1)掌握椭圆的定义及焦点、焦距的概念,能正确推导椭圆的标准方程.(2)掌握求椭圆标准方程的定义法和待定系数法.2、过程与方法目标(1)经历椭圆的形成过程,培养学生运动变化的观点,训练学生的动手的能力、合作学习能力和运用所学知识解决实际问题的能力.(2)通过联系曲线方程的求法,推导椭圆的标准方程,培养学生运用类比、分类讨论、数形结合思想解决问题的能力.3、情感态度与价值观目标(1)通过小组合作,培养学生的协作、友爱精神,体验成功的快乐.(2)激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.二、重点、难点:重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想;难点:椭圆标准方程的推导与化简.三、教学方法:探究式教学法,即教师通过问题诱导f启发讨论f探索结果,引导学生直观观察f归纳抽象f总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四、教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.五、教学设计情景引入学习探究(一)材料2:地球围绕着太阳旋转;材料3:“嫦娥三号”升空录像.引入课题:椭圆及其标准方程.动手实验:(1)取一定长的细绳,把它的两个端点固定在黑板的同一点处,套上铅笔,拉紧绳子,旋转一周,会得到什么图形?(2)把绳子的两个端点拉开一段距离,再套上铅笔旋转,又会得到什么图形?(3)继续拉远两个端点的距离,直到把绳子拉直,又会得到什么图形?(4)动画演示椭圆的形成过程.师:引导学生观察:椭圆在实际生活中是很常见师:引导学生观察动画,地球运行轨道是椭圆;问“嫦娥三号”的运行轨道是什么?生:常娥三号着陆先是按椭圆轨道运行,再直线着陆.师:板书课题.请学生拿出课前准备的硬纸板、细线、铅笔实验(1)教师演示,学生观察思考.实验(2)、(3),各小组学生利用手中工具在图板上进行实验,一起合作画椭圆.利用学生熟知的地理规律:地球围绕太阳转引入,让学生感到亲切自然;通过“嫦娥三号”的升空录像,让学生感受现实,激发学生的兴趣,培养爱国思想.通过做实验,让学生动手实践,体验椭圆的形成过程,加深对椭圆定义的理解将学生分为四人一组,通过分组讨论、研究,增强学生的合作意识.学习探究(二)【学情预设】学生可能会建系如下几种情况:方案一:把匚、F2建在X轴上,以FF的中点为原点;12方案二:把匚、F2建在X轴上,以匚为原点;方案三:把匚、F2建在x轴上,以F原点;2方案四:把匚、F2建在X轴上,以.F2与x轴的左交点为原点;方案五:把匚、F2建在x轴上,以FF与x轴的右交点为原点;12经过比较确定方案一.下面我们来建立椭圆的方程建系:以F,F所在的直线为x轴,以12线段F]F2的垂直平分线为y轴建立直角坐标系xOy.设点:设点M(x,y)是椭圆上的任意一点,点M到F,F的距离和为2a,焦距12为2c(c〉0),则.(—c,0),F2(C,0)列式:由定义:|M「1+叫=2a,即(2)如何设点?(3)怎样列式?⑷如何化简?建立椭圆的方程是本节课的难点,为降低难度,让学生回顾求曲线方程的步骤,以已有的知识来探求新的知识,温故知新,教师再加以正确的引导,新知会自然形成.生:回顾求曲线方程的步骤:⑴建系,⑵设点,⑶列式,⑷化简.师:引导学生按求曲线方程的步骤建立椭圆的方程.生:思考,回答:(1)怎样建立适当的坐标系生:分析化简的方法,在J(x+c)2+y2+J(x-c)2+y2=2a练习本上完成化简.化简:整理,得(a2一c2)x2+a2y2=a2(a2一c2)•.•a〉0,c〉0,2a〉2c a2(a2—c2)>0.方程的两边都除以a2(a2—c2),得教学环节教学过程师生互动设计思想学习探究(二)OF=OF=c12则|MO|=、.;a2-c2,令b=\;'a2-c2,则b2=a2-c2,那么方程变为:=1(a>b>0).多媒体展示动画:将椭圆的焦点放在y轴上结论:当焦点在y轴是时,椭圆的方程为:y2x2—+一=1(a>b>0).a2b2多媒体展示图表:让学生对照图形、方程理解记忆.师:请同学们在图中找出长度等于a,c的线段,则师:引导学生推出椭圆的标准方程.师:指出其焦点在x轴上,坐标为F](―c,0),F2(C,0)生:观察图像,识记方程.活动过程:点拨-----板演-----点评师:若焦点放在y轴上,方程又怎样?生:小组讨论椭圆的方程,相互交流、补充,得出结论.生:分析方程、图形,识记椭圆的标准方程.师:引导学生如何根据方程判断焦点的位置?实践体验1、你能判断下列椭圆的焦点位置生:根据所学椭圆的标吗?并写出焦点坐标.⑵25x2+16y2=400.准方程,思考后回答.师生共同矫正.生:总结如何判断焦点的位置?椭圆的标准方程的导出,放手给学生有很大的难度,这里采取有意义的接受学习的方式,教师对照图形,加以引导,让学生明白方程中字母的几何意义,对方程的理解有很大的作用.展示动画,通过类比的方法,让学生对照焦点在x轴的情形,写出焦点在y轴上时,椭圆的标准方程.通过图表便于对比,加深学生对两个方程及几何意义的认识.尝试练习,加深对方程及几何意义的理解.六、板书设计:七、布置作业:。

《椭圆及其标准方程》教学设计(精选3篇)

《椭圆及其标准方程》教学设计(精选3篇)

《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。

这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。

它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。

二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。

但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。

基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。

使同学真正成为课堂的主体。

三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。

2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。

3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。

(2)进行数学美育的渗透,用哲学的观点指导学习。

五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。

教学难点:标准方程的推导。

四、说教学过程(一)、创设情景,导入新课。

(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。

2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。

设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。

《椭圆的标准方程》教案

《椭圆的标准方程》教案

《椭圆及其标准方程》教学设计教材:湖南教育出版社《普通高中教科书.数学.选择性必修第一册§3.1.1节》一、内容分析本节课是高中数学选择性必修第一册《第3章圆锥曲线与方程》的第一课,是继学习圆以后运用"曲线和方程"理论解决具体的二次曲线的又一实例,也是圆锥曲线这一章的一节入门课。

从知识上说,它是对前面所学的运用坐标法研究曲线的几何性质的又一次实际演练,巩固用坐标化的方法求动点轨迹方程;重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣;通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美.同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为我们研究双曲线、抛物线这两种圆锥曲线提供了基本模式和理论基础。

因此,这节课有承前启后的作用,是本章和本节的重点。

课程标准要求对椭圆定义与方程的研究,能将曲线与方程对应起来,能将几何问题坐标化,体现了函数与方程、数与形结合的重要思想。

而这种思想,将贯穿于整个高中阶段的数学学习。

二、教学目的学习椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

三、重点难点重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求椭圆方程。

难点:椭圆标准方程的建立和推导。

四、核心素养●直观想象、●数学运算、○数据分析、●数学抽象、●逻辑推理、●数学建模.五、教学准备希沃白板5课件.六、教学流程->->->七、教学过程动画演示: 取一条定长的细绳,把它的两端分别固定在纸上的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖.问题1:若绳长等于两点F1,F2的距离,画出的轨迹是什么曲线?问题2:若绳长大于两点F1,F2的距离,画出的轨迹是什么曲线?回答椭圆是满足什么条件的点的轨迹?力。

(二)新知探索在实验过程我们发现:1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.思考:(1)椭圆定义中将“大于|F1F2|”改为“等于|F1F2|”的常数,其他条件不变,点的轨迹是什么?点的轨迹是线段F1F2.(2)椭圆定义中将“大于|F1F2|”改为“小于|F1F2|”的常数,其他条件不变,动点的轨迹是什么?当距离之和小于|F1F2|时,动点的轨迹不存在.2.椭圆标准方程的推导.选取建系方案,让学生动手,尝试推导.以过1F、2F的直线为x轴,线段12F F的垂直平分或线为y轴,建立平面直角坐标系.设)0(221>=ccFF,点),(yxM为椭圆上任意一点,则{}aMFMFMP221=+=,得()()aycxycx22222=++++-,(想一想:下面怎样化简?)(1)教师为突破难点,进行引导设问:我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?化简,得)()(22222222caayaxca-=+-.1.引导学生交流讨论:椭圆和圆之间的联系和区别,从而得到椭圆的定义。

椭圆及其标准方程教案

椭圆及其标准方程教案

椭圆及其标准方程教案•相关推荐椭圆及其标准方程教案(精选5篇)作为一位杰出的教职工,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

那么应当如何写教案呢?以下是小编为大家整理的椭圆及其标准方程教案(精选5篇),仅供参考,希望能够帮助到大家。

椭圆及其标准方程教案1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程。

(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力。

(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。

教学重点:椭圆的定义和椭圆的标准方程。

教学难点:椭圆标准方程的推导。

教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。

教具准备:多媒体课件和自制教具:绘图板、图钉、细绳。

教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片。

(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程。

提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆。

(公开课) 椭圆的标准方程教学设计

(公开课) 椭圆的标准方程教学设计

(公开课) 椭圆的标准方程教学设计1. 简介本节公开课将介绍椭圆的标准方程。

椭圆是数学中的重要概念,在几何、物理等领域有着广泛应用。

通过本节课的研究,学生将了解椭圆的基本性质和标准方程的推导过程。

2. 教学目标- 理解椭圆的基本定义和特点;- 掌握椭圆的标准方程的推导方法;- 能够通过已知信息确定椭圆的标准方程。

3. 教学内容3.1 椭圆的基本定义和性质- 介绍椭圆的定义:通过焦点、直线和离心率等概念描述椭圆的形状;- 解释椭圆的离心率与形状之间的关系;- 说明椭圆的几何性质:对称性、焦点和直线的关系等。

3.2 推导椭圆的标准方程- 阐述标准方程的定义和作用;- 介绍推导椭圆标准方程的方法:从焦点、直线的定义出发,逐步推导得出标准方程;- 演示推导过程,注重逻辑性和清晰性。

3.3 确定椭圆的标准方程- 给出一定的几何信息,要求学生确定对应的椭圆标准方程;- 引导学生分析几何信息,运用推导的方法确定椭圆的标准方程;- 练题和实例演练,以巩固学生的掌握程度。

4. 教学方法- 讲授法:通过讲解椭圆的基本定义和性质,教导学生掌握椭圆的核心概念;- 示范法:演示椭圆的标准方程的推导过程,引导学生理解推导的步骤和思路;- 练法:通过练题和实例演练,培养学生独立运用推导方法的能力;- 讨论互动法:积极引导学生参与讨论,分享思路和答案。

5. 教学评估- 检测学生对椭圆定义和性质的理解程度;- 考察学生推导椭圆标准方程的能力;- 评估学生根据已知信息确定椭圆标准方程的独立思考能力。

6. 教学资源- 教材:指定教材相关章节;- 多媒体设备:投影仪、电脑等,用于展示演示和讲解内容;- 练题:提供适量的练题和实例。

7. 教学时间本公开课预计使用45分钟。

8. 教学扩展- 引导学生研究椭圆在几何、物理等实际问题中的应用;- 探索其他椭圆相关内容,如离心率的影响、椭圆方程的图像等。

以上是本节公开课的教学设计,希望通过本课的学习,学生能够对椭圆的标准方程有更深入的理解和掌握。

椭圆标准方程教学设计

椭圆标准方程教学设计

决。
2、再用多媒体的 直观性的特点来 让学生很清晰的 了解椭圆的形成
(3):椭圆上的点到两个焦点的距离之和记为 2a,焦距 过程,有利于学
记为 2c,即 F1F2=2c。 备注:①a>c>0
生更好的掌握椭 圆的定义。
② p 为椭圆上的点 PF1+PF2=2a
-1-
思考 1:(1)求椭圆的方程可分为几步? (提示学生回忆求圆的方程的步骤)
得图形也像椭圆。
提供丰富的知识
问题 1:它们是不是数学上的椭圆?怎样来检验所得的曲 背景,调动学生
线是不是椭圆?
的好奇心,激发
情景 3、让学生试着举出生活中的有关椭圆的例子。 学生学习新知识
的兴趣,引出课
题。
将一条无弹性的细绳的两端用图钉固定,一支铅笔的笔 1、先让学生自己
尖沿细绳运动,能得到什么图形?所得的图形上的点始 动手操作实验,
课题
椭圆的标准方程
教学设计 教学过程
教学目标
教学重点 教学难点 教学方法 教学手段 教学环节
创 设 情 景
动 画 演 示
东海县石榴高级中学 刘瑶玲
创设情景
动画演示
推导方程
结构分析
巩固练习
课堂小节 布置作业
1、知识与技能:
①掌握椭圆两种形式的标准方程
②能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准
如图所示的坐标系。
y
用方法一思路比
② 设点:设 p(x,y)是椭圆上的任意一点,
较清晰自然,但
∵F1F2=2c,则 F1(-c,o), F2(c,o);
P
是需要两次平
椭 圆 标
③根据条件 PF1+PF2=2a 得

《椭圆的标准方程的求法》一等奖说课稿3篇

《椭圆的标准方程的求法》一等奖说课稿3篇

1、《椭圆的标准方程的求法》一等奖说课稿我说课的课题是“椭圆及其方程——椭圆的标准方程的求法”,这是人教版高中数学(必修)数学第二册(上)第八章第一节“椭圆及其方程”的第二课时。

下面我从说教材、说教法、说学法、说教学过程等几个环节,向各位评委谈谈我对这节课的理解和教学设计。

㈠说教材在第七章中,学生已学过利用坐标法求简单曲线的方程和利用方程去研究曲线的性质.在本章的学习中,对椭圆、双曲线、抛物线的研究都按照定义、方程、几何性质等几项来讨论,最后再将三者有机的柔和起来,其中椭圆为学习圆锥曲线的重点。

从应用来看,圆锥曲线在生活、科学技术中有着广泛的应用。

针对上述分析,结合高中数学课程标准和教材,同时考虑到高二学生的认知规律,特制定如下教学目标、教学重点和难点。

⑴教学目标①知识型目标:1.求椭圆的标准方程.2.求符合条件的点的轨迹方程.②能力型目标:1.掌握椭圆标准方程的特征量a、b的确定.方法2.掌握点的轨迹条件满足某曲线的定义时,用定义法求其标准方程.③德育型目标:学会从具体问题中寻求关系建立数学模型.⑵教学重点、难点求椭圆的标准方程是教学重点;定义法的应用是教学难点。

㈡说教法和学法⑴教学方法为更好的把握教学内容的整体性和联系性,在教学中以讨论、探索为核心构建课堂教学,培养学生应用数学的意识,提出有适度有启发的问题,引导学生积极探索、反思,切实改进学生的学习方法。

⑵学法指导①引导学生探索问题,帮助他们排除障碍,形成解题的通性通法。

②使学生通过交流、探索、说过程培养学生分析问题和语言表达能力。

㈢说教学过程本节课我设计了六个环节,具体如下:⑴把握基础知识,突出分类与整合的思想试题1填空1. 椭圆的定义是--------------------------------------------------------------------数学语言是--------------------------------------------------------------------2. 焦点在x轴上的椭圆的标准方程是-----------------------------------------------------------3. 焦点在y轴上的椭圆的标准方程是-----------------------------------------------------------4. 椭圆的三个特征量是--------------------------,它们之间的关系是--------------------------. 通过直接提问,相互补充,完善规范知识的准确性;设计意图:再现基础知识,体会分类与整合。

椭圆及其标准方程教学设计

椭圆及其标准方程教学设计

椭圆及其标准方程(一)教学设计1 教学分析1.1 教材内容分析高中数学教学以发展学生数学学科核心素养为导向, 创设合适的教学情境, 启发学生思考, 引导学生会用数学的眼光观察世界, 会用数学的思维思考世界, 会用数学的语言表达世界。

要以数学学科知识为载体, 让学生掌握处理新问题的基本思想和方法并获得基本活动经验。

椭圆及其标准方程是圆锥曲线的起始课, 主要内容是研究椭圆的定义及其标准方程, 属于概念性知识。

从知识上讲, 本节是在必修课程《数学2》中直线和圆的基础上, 对解析法的又一次实际运用, 同时也是进一步研究椭圆几何性质的基础;从方法上讲, 为进一步研究双曲线、抛物线提供了基本模式和理论基础;从教材编排上讲, 三种圆锥曲线独编为一章, 体现椭圆的重要地位。

解析几何的意义主要表现在数形结合的思想上.在研究椭圆定义和方程的过程中, 几何直观观察和代数严格推导相互结合, 同时要借助圆作类比, 用类比的思想为学生的思维搭桥铺路.因此本节课内容起到了承上启下的重要作用, 是本章和本节的重点.1.2 学情分析学生已有认知基础: 学生已经学习了圆的概念及其方程, 还有曲线与方程, 初步认识了解析几何课程的特征, 即是一门借助坐标法研究几何的学科, 并且已经初步体验到了数形结合的基本思想;学生有动手体验和探究的兴趣, 有一定的观察分析和逻辑推理的能力;学生有建立圆的概念和方程的经历。

达成目标所需认知基础: 解析法的数形结合思想和解析法的步骤.已有基础与需要基础之间的差异:关于椭圆概念的获得, 学生容易通过几何图形发现轨迹上的点的特征。

但学生不容易形成概念体系并用精准的语言描述。

在概括椭圆的定义时, 需要教师作适当的启发, 然后再用数学语言进行精确的描述。

推导椭圆标准方程时会遇到两个困难, 首先是坐标系如何建立才能使椭圆方程更简单, 需要类比圆的方程的建立方法, 根据椭圆的对称性建立直角坐标系。

其次是如何化简方程使其最简洁, 学生已有的知识与能力不能完全胜任独立解决的要求, 需要教师作适当的讲解。

椭圆及其标准方程教学设计共3篇 椭圆的标准方程教学设计

椭圆及其标准方程教学设计共3篇 椭圆的标准方程教学设计

椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计下面是分享的椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计,供大家品鉴。

椭圆及其标准方程教学设计共1《椭圆及其标准方程》教学设计山西省太原师范学院附属中学薛翠萍一、教学内容解析椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线是平面解析几何研究的主要对象圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力二、教学目标设置:1.知识与技能目标(1)学生能掌握椭圆的定义明确焦点、焦距的概念.(2)学生能推导并掌握椭圆的标准方程.(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.2.过程与方法目标:(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.3.情感态度与价值观目标:(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、学生学情分析1.能力分析①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.2.认知分析①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,③学生已经初步掌握研究直线和圆的基本方法.3.情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用” 的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.五、教学过程:(一)复习引入1.说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.(2)、使学生更直观、形象地了解后面要学的内容;2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.意图:(1)通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性(2)多媒体演示向学生说明椭圆的具体画法,更直观形象.(二)讲解新课由学生画图及教师演示椭圆的形成过程,引导学生归纳定义.1 椭圆定义:平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距练习1:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于8,则P点的轨迹是练习2:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于6,则P点的轨迹是通过两个练习思考:椭圆定义需要注意什么(2a大于意图:让学生通过练习反思画图,归纳定义,理解定义,突破了重点.(1)、当2a|F1F2|时,是椭圆;(2)、当2a=|F1F2|时,是线段;(3)、当2a)2.根据定义推导椭圆标准方程:要求(1)学生在画板上建立适当的坐标系,(2)根据定义推导椭圆的标准方程.同时引导学生类比圆回顾解析几何研究问题的特点及求轨迹方程步骤意图:让学生自己去建系推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输简洁美”为“发现简洁美”.教师结合猜想加以引导.化简无理方程为难点通过发现问题解决问题突破难点.正确推导过程如下:解:取过焦点设则,又设M与距离之和等于()(常数)为椭圆上的任意一点,椭圆的焦距是().的直线为轴,线段的垂直平分线为轴,,化简,得由定义义)令代入,得,,(学生通过自己画图建系的过程找到的几何意,两边同除得此即为椭圆的一个标准方程它所表示的椭圆的焦点在轴上,焦点是程学生思考:若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,中心在坐标原点的椭圆方,只要将方程中的调换,即可得,也是椭圆的标准方程请学生观察归纳两个方程的特征,从而区别焦点在不同坐标轴上的椭圆标方程;过程中要渗透数学对称美教学.理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在个轴上即看与这两个标准方程中,都有分母的大小的要求,因而焦点在哪3.精心设计课堂练习使学生在实际应用中进一步巩固知识,运用知识突破重难点:(1)判断下列方程是否表上椭圆,若是,求出的值① ;②;③;④意图:学生感悟椭圆标准方程的结构特点.(2)椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为)A.5B.6 C.4D.10意图:学生理解椭圆定义与标准方程关系.(3)椭圆的焦点坐标是()A.(±5,0)B.(0,±5) C.(0,±12)意图:学生感悟椭圆标准方程中焦点位置以及a,b,c的关系.(4)化简方程:意图:培养学生运用知识解决问题的能力..(±12,0) (D椭圆及其标准方程教学设计共2椭圆及其标准方程教学反思椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆的标准方程教学设计【教学内容】新课标人教版选修2-1第二章第二节第一课时内容:2.2.1椭圆及其标准方程【教材分析】教材的地位与作用:⑴从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练;⑵从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础。

所以说,无论从教材内容,还是从教学方法上都起着承上启下的作用.本小节安排两课时:第一课时:椭圆的定义及标准方程的推导;第二课时:运用椭圆的定义求曲线的轨迹方程。

【学生情况分析】在学习椭圆之前,学生对曲线与方程有了一定的了解;基本能运用求曲线方程的一般方法求曲线的方程。

椭圆是常见的图形,学生对椭圆已有一定的感性认识,例如:行星的运动轨迹等等。

【教学目标】1. 知识目标:A识记:①掌握椭圆的定义及其标准方程;②区分椭圆的两种类型的标准方程及其对应的图形;③能根据a、b、c的值写出椭圆的标准方程。

B理解:①理解椭圆的焦点、焦距的意义;②会推导椭圆的标准方程;③能掌握a、b、c之间的关系,会由其中的两个求出第三个。

C掌握:学会运用定义法、待定系数法和数形结合等方法解题。

2. 能力目标:①培养学生建立适当坐标系的解析法解题能力。

②巩固与发展学生的定义法解题、待定系数法解题和数形结合的解题能力。

③引导学生探究、操作、运用数学思想(待定系数法)等,从而提高学生实际动手、合作学习以及运用知识解决实际问题的能力。

3. 情感目标:①培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

②通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。

③在教学中充分揭示“数”与“形”的内在联系,体会形数美的统一,激发学生学习数学的兴趣,培养学生勇于探索、开拓创新的精神.。

【教学重点和难点】重点:椭圆的定义及椭圆的标准方程;难点:椭圆标准方程的建立和推导.【教学方法】体验式、多媒体演示【教学过程设计】(一)复习同学们,前一段时间我们重点学习了求曲线的轨迹方程的两种方法,提问:方法一是基本法,其求动点轨迹的一般步骤是什么?;方法二是待定系数法,其解题步骤又是什么?(说明:通过回忆性质的提问,明示这节课所要学的内容与原来所学知识之间的内在联系,并为后面椭圆的标准方程的推导及用待定系数法求椭圆方程作好准备。

)(二)引入我们曾经运用方法一成功地推导出了圆的标准方程,今天我们又要运用这种方法继续研究一种特殊曲线的方程。

现在先看一个实例问题(演示行星运行的轨道),请同学们注意观察地球绕太阳运转的轨迹形状象什么?(进一步使学生明确学习椭圆的重要性和必要性,借助地理模型的直观性,使学生印象加深,以便更好地掌握椭圆的形状。

)(三)新授1、引导学生发现椭圆的定义:根据地球绕太阳运转的事例思考:提问:点满足什么条件运动时形成的轨迹是椭圆呢?让学生进行分组讨论。

(平面内两个定点分别是F1和F2,且该两点之间的距离是2c,点M是平面内任意一点,M到两点F1和F2的距离之和是2a,显然2a>2c)提问:满足上述条件的点M是否只有一个点呢?根据学生的回答画点,然后连线,看来并不是只有一个点满足条件,而是有无数个点都满足条件。

如果继续旋转就可以得到满足条件的所有的点。

让我们来看一看最终可以得到什么图形?(是一个椭圆)提问:有什么办法可以更好的画椭圆的图象呢?让学生在讨论后尝试动笔画一个椭圆。

教师在黑板上根据定义画一个椭圆。

2、师生共同归纳概括椭圆的定义:平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(一般用2c表示)。

3、椭圆的定义的再认识:提问:在椭圆的定义中为什么要满足2a>2c?去掉这个条件可不可以呢?先让学生思考,讨论。

正面直接解决这个问题,显然比较难,这时我们常采用“正难则反”的思考策略。

而其反面是:(1)当2a=2c时,到两定点距离等于定长的点的轨迹是什么?(2)当2a<2c时,到两定点距离等于定长的点的轨迹是什么?让学生自己画图归纳,然后自己给学生总结。

由此可知:1、命题“到两定点距离等于定长的点的轨迹是一个椭圆”是错误的。

正确的是应分三种情况:(1)当2a>2c时,到两定点距离等于定长的点的轨迹是一个椭圆:(2)当2a=2c时,到两定点距离等于定长的点的轨迹是一条线段;(3)当2a<2c时,到两定点距离等于定长的点的轨迹不存在。

这恰是同学们今后运用定义解题时应当注意的。

2、不论M如何移动,三角形MF1F2的周长恒为定值,等于2a+2c.4、学生推导椭圆的标准方程的过程:提问:如何求轨迹的方程?(引导学生推导椭圆的标准方程)推导中注意:(1)、推导方程的方法--------求曲线方程的一般方法(用对称法建立坐标系)(2)、推导方程的难点--------方程的化简(要抓住“怎样消去方程中的根式”这一关键问题,演算虽较繁,也能迎刃而解)(3)推导方程的做法---------以学生分组探索为主、老师点拨为辅完成(4)如果焦点在轴上,则焦点为F1(0,)、F2(0,c),这时只要将方程中,互换就可得到它的方程板书:椭圆的标准方程的推导过程。

椭圆的标准方程:()()5、椭圆的标准方程的再认识:(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是1。

(2)椭圆的标准方程中三个参数a、b、c满足a2=b2+c2。

(3)由椭圆的标准方程可以求出三个参数a、b、c的值。

(见练习1)(4)椭圆的标准方程中,焦点的位置由分母的大小来确定。

(5)椭圆的标准方程是由三个参数a、b、c及焦点位置唯一确定,即只要知道三个参数a、b、c的值,就可以写出椭圆的标准方程。

因此我们需要求椭圆的标准方程时,应该运用待定系数法(其步骤是:先设方程、再求参数、最后写出方程),其关键是求a、b的值。

6、例题精析(让学生自己动手)例1、(1)求出满足a=4,b=1,焦点在x轴上的椭圆的标准方程。

(2)求出满足a=4,c=,焦点在y轴上的椭圆的标准方程。

例2、平面内两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程例3、已知∆ABC的周长为36,求∆ABC的顶点C的轨迹方程。

7、例题点评:例1补充说明:注意椭圆的标准方程的形式书写,大家应熟练掌握两种形式的标准方程。

例2补充说明:1、我们是把焦点建立在x轴上从而解决了问题,问可不可以把焦点建立在y轴上呢?2、把焦点建立在x轴上或y轴上,这是问题的两种不同的解法,而不是两种情况,我们在解题时只需选择其中之一即可。

3、理解椭圆的定义,熟练地掌握椭圆方程的推导方法(尤其是建立坐标系的方法)是解决本题的关键。

例3补充说明:1、充分利用椭圆的定义使本题的解法巧妙,计算简单。

否则若设动点坐标再求轨迹方程时,则方法会比较复杂。

2、注意三个参数a、b、c应满足关系式:a2=b2+c23、注意曲线方程的完备性。

(四)课堂练习1、形成性练习(1)指出下列椭圆中a、b、c的值,并说出焦点所在的坐标轴①②(2)若方程表示焦点在轴上的椭圆,则的取值范围是______。

2、巩固性练习(1)已知椭圆上一点P到一个焦点的距离为3,则P到另一个焦点的距离是()A 2B 3C 5D 7(2)椭圆的焦距为2,则m的值为()A 5B 3C 3或5D 6(3)已知∆ABC的周长为36,AB边长为10,求∆ABC顶点C的轨迹方程3、发展性练习已知P是椭圆上一点,其中F1,F2为其焦点,且∠F1PF2=600,求三角形F1PF2的面积。

(五)小结:(先由学生归纳,教师根据情况补充。

)本节课学习了椭圆的定义及标准方程,应注意以下几点:①椭圆的定义中,②椭圆的标准方程中,焦点的位置看,的分母大小来确定③、、的几何意义(六)、作业布置P80:3、4(1)(3)椭圆的标准方程导学案要求:①掌握椭圆的定义、几何图形、标准方程。

②简单理解数形结合思想。

自习作业:(1)已知椭圆的方程为: ,则a=_____,b=_______,c=_______,焦点坐标为:____________焦距等于______;若CD 为过左焦点F 1的弦,则∆F 2CD 的周长为________(3)已知椭圆的方程为: ,则 a=_____,b=_______,c=_______, 焦点坐标为:__________,焦距等于_________; 若曲线上一点P 到焦点F 1的距离为3,则点P 到另一个焦点F 2的距离等于_________,则∆F 1PF 2的周长为___________课后作业:一、习题2.2 第1、2题(课外练习)二、已知B 、C 两个定点,且|BC |=6,且△ABC 的周长等于16,求顶点A 的轨迹方程。

三、已知椭圆1C :1422=+y x ,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率(离心率等于ac )。

(1)求椭圆2C 的方程(2)设O 为坐标原点,点A 、B 分别在椭圆1C 和2C 上,OA OB 2=。

求直线AB 的方程。

1162522=+y x 15422=+y x。

相关文档
最新文档