二叉树的存储结构
数据结构(二十四)二叉树的链式存储结构(二叉链表)
数据结构(⼆⼗四)⼆叉树的链式存储结构(⼆叉链表) ⼀、⼆叉树每个结点最多有两个孩⼦,所以为它设计⼀个数据域和两个指针域,称这样的链表叫做⼆叉链表。
⼆、结点结构包括:lchild左孩⼦指针域、data数据域和rchild右孩⼦指针域。
三、⼆叉链表的C语⾔代码实现:#include "string.h"#include "stdio.h"#include "stdlib.h"#include "io.h"#include "math.h"#include "time.h"#define OK 1#define ERROR 0#define TRUE 1#define FALSE 0#define MAXSIZE 100 /* 存储空间初始分配量 */typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 *//* ⽤于构造⼆叉树********************************** */int index=1;typedef char String[24]; /* 0号单元存放串的长度 */String str;Status StrAssign(String T,char *chars){int i;if(strlen(chars)>MAXSIZE)return ERROR;else{T[0]=strlen(chars);for(i=1;i<=T[0];i++)T[i]=*(chars+i-1);return OK;}}/* ************************************************ */typedef char TElemType;TElemType Nil=''; /* 字符型以空格符为空 */Status visit(TElemType e){printf("%c ",e);return OK;}typedef struct BiTNode /* 结点结构 */{TElemType data; /* 结点数据 */struct BiTNode *lchild,*rchild; /* 左右孩⼦指针 */}BiTNode,*BiTree;/* 构造空⼆叉树T */Status InitBiTree(BiTree *T){*T=NULL;return OK;}/* 初始条件: ⼆叉树T存在。
二叉树的存储结构及基本操作
二叉树的存储结构及基本操作二叉树是一种常见的数据结构,广泛应用于计算机科学领域。
二叉树具有其独特的存储结构和基本操作,下面将详细介绍。
一、二叉树的存储结构二叉树的存储结构通常有两种形式:顺序存储和链式存储。
1. 顺序存储顺序存储是将二叉树中的所有元素按照一定的顺序存储在一段连续的内存单元中,通常采用数组来表示。
对于任意一个节点i,其左孩子节点的位置为2*i+1,右孩子节点的位置为2*i+2。
这种存储方式的优点是访问速度快,但需要预先确定节点总数,且不易于插入和删除操作。
2. 链式存储链式存储是采用指针的方式将二叉树的节点链接起来。
每个节点包含数据元素以及指向左孩子节点和右孩子节点的指针。
链式存储方式的优点是易于插入和删除操作,但访问速度较慢。
二、二叉树的基本操作1. 创建二叉树创建二叉树的过程就是将数据元素按照一定的顺序插入到二叉树中。
对于顺序存储的二叉树,需要预先分配内存空间;对于链式存储的二叉树,可以直接创建节点对象并链接起来。
2. 遍历二叉树遍历二叉树是指按照某种规律访问二叉树中的所有节点,通常有前序遍历、中序遍历和后序遍历三种方式。
前序遍历的顺序是根节点-左孩子节点-右孩子节点;中序遍历的顺序是左孩子节点-根节点-右孩子节点;后序遍历的顺序是左孩子节点-右孩子节点-根节点。
对于顺序存储的二叉树,可以采用循环结构实现遍历;对于链式存储的二叉树,需要使用指针逐个访问节点。
3. 查找元素在二叉树中查找元素,需要根据一定的规则搜索所有节点,直到找到目标元素或搜索范围为空。
对于顺序存储的二叉树,可以采用线性查找算法;对于链式存储的二叉树,可以采用深度优先搜索或广度优先搜索算法。
4. 插入元素在二叉树中插入元素需要遵循一定的规则,保证二叉树的性质。
对于顺序存储的二叉树,插入操作需要移动大量元素;对于链式存储的二叉树,插入操作相对简单,只需修改指针即可。
5. 删除元素在二叉树中删除元素同样需要遵循一定的规则,保证二叉树的性质。
二叉树的储存结构的实现及应用
二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。
二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。
本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。
一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。
通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。
顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。
1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。
通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。
在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。
1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。
二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。
哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。
二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。
每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。
链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。
2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。
通过指针来连接各个节点,形成一个二叉树的结构。
在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。
叉树的存储结构(顺序二叉三叉)
插入和删除操作只需修改指针,时间复杂度较低。
查找操作的比较
顺序存储结构
查找操作需要从根节点开始逐层遍历,时间 复杂度较高。
链式存储结构
由于节点之间通过指针连接,查找操作可以 更快地定位到目标节点,时间复杂度较低。
PART 06
总结
叉树存储结构的重要性
高效的数据存储
叉树的存储结构能够高效地存储 大量数据,并且能够快速地访问、
修改和删除节点。
方便的算法实现
叉树的存储结构为算法的实现提供 了便利,例如二叉搜索树、堆排序 等算法可以在叉树存储结构上实现。
灵活的数据结构
叉树的存储结构可以根据实际需求 进行选择,例如顺序存储结构和链 式存储结构,以满足不同的应用场 景。
顺序存储结构和链式存储结构的适用场景选择
顺序存储结构
适用于节点数量固定且内存空间充足的场景 ,可以快速地访问任意节点,但插入和删除 操作需要移动大量节点,时间复杂度较高。
通过紧凑的存储结构,叉树的存储结 构可以减少空间浪费,从而更有效地 利用存储空间。
支持高效算法
叉树的存储结构可以支持高效的算法 实现,例如遍历、查找、插入和删除 等操作。
PART 02
顺序存储结构
顺序存储结构的定义
• 顺序存储结构是指将叉树中的节点按照某种顺序(如层序或按 值)连续地存储在数组中。每个节点在数组中的位置与其在叉 树中的位置相对应。
顺序存储结构的优缺点
存储空间利用率高
节点在数组中的位置与其在叉树 中的位置一一对应,因此不需要 额外的指针或链接来存储节点之 间的关系。
随机访问速度快
由于节点在数组中是连续存储的 ,因此可以通过索引直接访问任 意节点,速度较快。
数据结构之二叉树(BinaryTree)
数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。
⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。
定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。
(这⾥的左⼦树和右⼦树也是⼆叉树)。
值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。
具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。
⽆序树的⼦树⽆左右之分。
2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。
这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。
完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。
如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。
性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。
证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。
数据结构-二叉树的存储结构和遍历
return(p); }
建立二叉树
以字符串的形式“根左子树右子树”定义 一棵二叉树
1)空树 2)只含一个根 结点的二叉树 A 3)
B C
A
以空白字符“ ”表示
以字符串“A ”表示
D
以下列字符串表示 AB C D
建立二叉树 A B C C
T
A ^ B ^ C^ ^ D^
D
建立二叉树
Status CreateBiTree(BiTree &T) {
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树 3 visit(T->data); } // 访问结点 4 Inorder(T->rchild, visit); // 遍历右子树
后序(根)遍历
若二叉树为空树,则空操
根
左 子树
右 子树
作;否则, (1)后序遍历左子树; (2)后序遍历右子树; (3)访问根结点。
统计二叉树中结点的个数
遍历访问了每个结点一次且仅一次
设置一个全局变量count=0
将visit改为:count++
统计二叉树中结点的个数
void PreOrder (BiTree T){ if (! T ) return; count++; Preorder( T->lchild); Preorder( T->rchild); } void Preorder (BiTree T,void( *visit)(TElemType& e)) { // 先序遍历二叉树 1 if (!T) return; 2 visit(T->data); // 访问结点 3 Preorder(T->lchild, visit); // 遍历左子树 4 Preorder(T->rchild, visit);// 遍历右子树 }
二叉树的存储结构
二叉树的存储结构二叉树是一种常见的数据结构,在计算机科学中被广泛应用。
它的存储结构有多种形式,包括顺序存储和链式存储。
下面将详细介绍这些存储结构。
1.顺序存储:顺序存储是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一个数组中。
对于完全二叉树来说,这种存储方式最为简单有效,可以节省空间。
但是对于一般的二叉树,由于节点的数量不固定,会浪费一定的存储空间。
具体的存储方式可以按照如下的规则进行:-对于二叉树的第i个节点(i从1开始计数),其左子节点存储在数组中的位置为2i,右子节点存储在位置为2i+1、根节点存储在位置为1、这种存储方式可以方便地根据节点的索引计算出其子节点的索引。
- 如果一些位置没有节点,则用一个特殊的标记(如null或者0)代替。
-这种存储方式要求节点按照其中一种顺序进行填充,通常采用层序遍历的方式进行填充。
-在进行节点遍历的时候,可以根据节点的索引来判断其父节点的位置,从而方便地进行遍历。
虽然顺序存储可以节省存储空间,但是在插入和删除节点时涉及到数组元素的移动,效率比较低。
2.链式存储:链式存储是通过节点之间的引用关系来实现。
每个节点包含一个数据域和两个指针域,分别指向其左子节点和右子节点。
链式存储充分利用了指针的特性,可以方便地进行插入和删除节点的操作。
同时,链式存储可以灵活地处理任意形状的二叉树,不需要事先确定节点的数量。
具体的链式存储方式有以下几种:-树的孩子兄弟表示法:每个节点包含两个指针,一个指向其第一个子节点,另一个指向其下一个兄弟节点。
这种表示方式适用于任意形状的二叉树,但是树的操作比较复杂。
-二叉链表表示法:节点包含三个指针,一个指向其左子节点,一个指向其右子节点,另一个指向其父节点。
这种表示方式适用于二叉树,可以方便地进行遍历和操作。
-线索二叉树:在二叉链表表示法的基础上,加入了线索信息。
节点的左指针指向其前驱,右指针指向其后继。
这种方式可以方便地进行中序遍历,节省了遍历时的存储开销。
自考软件基础(数据结构--树与二叉树)
B
C
D
E
F
G
H
I
J
第 5 /209页
第二节 二叉树
一、定义
南昌大学
二叉树是一种重要的树形结构,它的特点是:二叉树可以为空(节点个
数为0),任何一个节点的度都小于或等于2,并且,子树有左、右之分,
其次序不能任意颠倒。 二叉树有5种基本形态,如图10-2所示。
第 6 /209页
第二节 二叉树
南昌大学
struct node
{ datatype data; struct node *Lchild,*rchild:
};
第 15 /209页
第二节 二叉树
南昌大学
例10-5 写出图10-8a所示二叉树的链式存储结构。其链式结构如图10-8b 所示。可以看出:具有n个节点的二叉树链式存储共有2n个链,其中只 有n-1个用来存放该节点的左、右孩子,其余的n +1个指针域为空。
解:第一步:由后序遍历结果确定整个二叉树根为A,由中序结果确定
A的左、右子树。 后序遍历结果: 中序遍历结果:
第 24 /209页
第三节 二叉树的遍历
第二步:确定A的左子树。 1)后序遍历结果:
南昌大学
中序遍历结果:
2)确定B的右子树: ①后序遍历结果:
第 25 /209页
第三节 二叉树的遍历
②中序遍历结果:
南昌大学
第 9 /209页
第二节 二叉树
下面介绍两种特殊的二叉树。
南昌大学
(1) 满二叉树指深度为k,且有2k-1个节点的二叉树。或者说除叶子节点外,
其它节点的度都为2的二叉树。
(2) 完全二叉树一个满二叉树的最下层从右向左连续缺少n (n>=0)个节点 的二叉树。 图10-3为满二叉树和完全二叉树示例。
《算法导论》读书笔记之第10章 基本数据结构之二叉树
《算法导论》读书笔记之第10章基本数据结构之二叉树摘要书中第10章10.4小节介绍了有根树,简单介绍了二叉树和分支数目无限制的有根树的存储结构,而没有关于二叉树的遍历过程。
为此对二叉树做个简单的总结,介绍一下二叉树基本概念、性质、二叉树的存储结构和遍历过程,主要包括先根遍历、中根遍历、后根遍历和层次遍历。
1、二叉树的定义二叉树(Binary Tree)是一种特殊的树型结构,每个节点至多有两棵子树,且二叉树的子树有左右之分,次序不能颠倒。
由定义可知,二叉树中不存在度(结点拥有的子树数目)大于2的节点。
二叉树形状如下下图所示:2、二叉树的性质(1)在二叉树中的第i层上至多有2^(i-1)个结点(i>=1)。
备注:^表示此方(2)深度为k的二叉树至多有2^k-1个节点(k>=1)。
(3)对任何一棵二叉树T,如果其终端结点数目为n0,度为2的节点数目为n2,则n0=n2+1。
满二叉树:深度为k且具有2^k-1个结点的二叉树。
即满二叉树中的每一层上的结点数都是最大的结点数。
完全二叉树:深度为k具有n个结点的二叉树,当且仅当每一个结点与深度为k的满二叉树中的编号从1至n的结点一一对应。
可以得到一般结论:满二叉树和完全二叉树是两种特殊形态的二叉树,满二叉树肯定是完全二叉树,但完全二叉树不不一定是满二叉树。
举例如下图是所示:(4)具有n个节点的完全二叉树的深度为log2n + 1。
3、二叉树的存储结构可以采用顺序存储数组和链式存储二叉链表两种方法来存储二叉树。
经常使用的二叉链表方法,因为其非常灵活,方便二叉树的操作。
二叉树的二叉链表存储结构如下所示:1 typedef struct binary_tree_node2 {3 int elem;4 struct binary_tree_node *left;5 struct binary_tree_node *right;6 }binary_tree_node,*binary_tree;举例说明二叉链表存储过程,如下图所示:从图中可以看出:在还有n个结点的二叉链表中有n+1个空链域。
计算机数据结构知识点梳理 二叉树的定义及其主要特征
当 n ≠ 2k , 即 n 不是2的方幂或者 n = 2k 但是一棵满二叉树,其高度为
。
当 n = 2k 但是非满二叉树,其高度为
。
②有n个结点的完全k叉树的高度为
。
性质5推广:一棵满k叉树,如果按层次顺序从1开始对全部结点编号,
①编号为p=1的结点无父结点,否则编号为p结点的父结点的编号是
(k≥2);
[题1]若一棵二叉树有126个结点,在第7层(根结点在第1层)至多有( )个结点。
A.32
B.64
C.63
D.不存在第7层
分析:根据二叉树的性质,第7层至多有64(27-1)个结点,但是题目中给出了二叉树的结点 总数126,由此来判断第7层是否可以有64个结点?
要在二叉树的第7层达到最多的结点个数,其上面6层必须是一个满二叉树,深度为6的满 二叉树有63(26-1)个结点,由此可以判断出此二叉树的第7层不可能达到64个结点,最 多是126-63=63个结点。
(2)完全二叉树:一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到 右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树 中的位置相同,则这棵二叉树称为完全二叉树。它的特点是:叶子结点只能出现在最下 层和次下层,且最下层的叶子结点集中在树的左部。
任何完全二叉树中度为1的结点只有0个或1个。
中的所有结点从1开始顺序编号,则对于任意的序号为i的结点,有:
(1)如果i>1,则序号i的结点的双亲结点的序号为 ;如果i=1,则序号为i的结点是根 结点,无双亲结点。
(2)如果2i≤n,则序号为i的结点的左孩子结点的序号为2i;如果2i>n,则序号为i的结 点无左孩子。
(3)如果2i+1≤n,则序号为i的结点的右孩子结点的序号为2i+1;如果2i+1>n,则 序号为i的结点无右孩子。
05二叉树
}
if (Parent->Lchild == NULL) /* Parent所指结点左子树为空 */ Parent->Lchild = ptr;
else
{
/* Parent所指结点左子树非空 */
ptr->Lchild = Parent->Lchild;
Parent->Lchild = ptr;
}
二叉树可以是空的,空二叉树没有任何结 点; 二叉树上的每个结点最多可以有两棵子树, 这两棵子树是不相交的; 二叉树上一个结点的两棵子树有左、右之 分,次序是不能颠倒的。
图5-2 两棵不同的二叉树
从二叉树中的一个结点往下,到达它的 某个子、孙结点时所经由的路线,称为一条 “路径”。对于路径来说,从开始结点到终 止结点,中间经过的结点个数,称为路径的 “长度”。从根结点开始、到某个结点的路 径长度,称为该结点的“深度”。
一棵一般的二叉树,是由如下的3类结点组成的: 根结点——二叉树的起始结点; 分支(或内部结点)——至少有一个非空子树 (即度为1或2)的结点 叶结点——没有非空子树(即度为0)的结点。 有两种特殊的二叉树:满二叉树和完全二叉树。
所谓“满二叉树”,是指该二叉树的每 一个结点,或是有两个非空子树的结点,或 是叶结点,且每层都必须含有最多的结点个 数。
性质5-2 树高为k(k≥0)的二叉树, 最多有2k+1−1个结点。 【证明】由性质5-1可知,在树高为k的 二叉树里,第0层有20个结点,第1层有21个 结点,第2层有22个结点,„„,第k层有2k 个结点。因此,要求出树高为k的二叉树的 结点个数,就是求和:
20 + 21 + 22 +„+ 2k
第6章树和二叉树2
深度遍历策略
二叉树由根、左子树、右子树三部分组成
二叉树的遍历可以分解为: 访问根(D) 遍历左子树(L) 遍历右子树(R) 有六种遍历方法: D L R,L D R,L R D, D R L,R D L,R L D
A B C
D G
E
F
约定先左后右,有三种遍历方法: 分别称为先序遍历、中序遍历、后序遍历
6.2.3 二叉树的存储结构
二、二叉树的链式存储表示 1、二叉链表(P126) typedef struct BiTNode { lchild data rchild TElemType data; struct BiTNode *lchild, *rchild; // 左右孩子指针 } BiTNode, *BiTree; A B D
B D G E
C F
后序遍历(LRD)
后序遍历动态演示
A B D G
D, G, E, B, F, C, A
C
E F
2007-1 试题
对下图所示的二叉树进行后序遍历(左子树、 右子树、根结点)的结果是 (42) 。
5 2 4 6 3 1
(42)A. 5 2 3 4 6 1 C. 2 6 4 1 3 5
if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历 }//endif }//endwhile }//InOrderUnrec
6.3.1 遍历二叉树
后序遍历的非递归算法描述
后序遍历时,每遇到一个结点,先把它推入栈中,让PopTim=0。在遍历其 左子树前,改结点的PopTim=1,将其左孩子推入栈中。在遍历完左子树后,还 不能访问该结点,必须继续遍历右子树,此时改结点的PopTim=2,并把其右孩 子推入栈中。在遍历完右子树后,结点才退栈访问。
二叉树顺序存储结构和链式存储结构
二叉树顺序存储结构和链式存储结构二叉树是一种非常重要的数据结构,它在计算机科学中有着广泛的应用。
在二叉树中,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以用两种方式进行存储,分别是顺序存储结构和链式存储结构。
一、二叉树顺序存储结构二叉树顺序存储结构是将二叉树中的节点按照层次顺序依次存储在一个一维数组中。
具体来说,假设二叉树的深度为d,那么数组的长度就应该为2^d-1。
对于任意一个节点i,它的左子节点的下标为2i,右子节点的下标为2i+1,它的父节点的下标为i/2。
二叉树顺序存储结构的优点是可以快速地访问任意一个节点,因为它们在数组中是连续存储的。
同时,由于不需要额外的指针来存储节点之间的关系,因此空间利用率比较高。
但是,它的缺点也很明显,那就是当二叉树的深度比较大时,数组中会存在大量的空节点,造成空间浪费。
二、二叉树链式存储结构二叉树链式存储结构是将二叉树中的每个节点看作一个对象,每个对象包含三个属性,分别是节点的值、左子节点的指针和右子节点的指针。
通过这种方式,可以将二叉树中的节点按照任意顺序存储在内存中。
二叉树链式存储结构的优点是可以有效地利用内存空间,因为只有实际存在的节点才会占用内存。
同时,由于每个节点都有指向左右子节点的指针,因此可以方便地进行节点的插入、删除和查找操作。
但是,它的缺点也很明显,那就是需要额外的指针来存储节点之间的关系,因此空间利用率比较低。
三、二叉树顺序存储结构和链式存储结构的比较二叉树顺序存储结构和链式存储结构各有优缺点,具体使用哪种方式取决于具体的应用场景。
一般来说,如果需要频繁地进行节点的插入、删除和查找操作,那么应该选择链式存储结构;如果需要快速地访问任意一个节点,那么应该选择顺序存储结构。
二叉树的存储结构还可以根据具体的应用场景进行优化。
例如,在某些情况下,可以使用哈希表来存储二叉树中的节点,以提高访问速度和空间利用率。
二叉树是一种非常重要的数据结构,它的存储结构对于算法的效率和空间利用率有着重要的影响。
二叉树的顺序存储结构代码
二叉树的顺序存储结构代码二叉树的顺序存储结构代码一、前言二叉树是一种重要的数据结构,常用于实现搜索、排序等算法。
在实际应用中,为了方便对二叉树进行操作,需要将其存储在计算机中。
本文介绍了二叉树的顺序存储结构代码。
二、二叉树的顺序存储结构1. 定义二叉树的顺序存储结构是指将二叉树中所有节点按照层次遍历的顺序依次存储到一个数组中。
2. 实现方法(1)计算数组长度:由于一个深度为k的满二叉树共有2^k-1个节点,因此可以通过计算出给定深度k下最多可能存在的节点数来确定数组长度。
(2)按层次遍历顺序存储节点:从根节点开始,按照从左到右、从上到下的顺序依次将每个节点存入数组中。
如果某个节点为空,则在数组中用特定符号表示。
3. 代码实现以下是C++语言实现的二叉树顺序存储结构代码:```#include <iostream>#include <cmath>using namespace std;#define MAXSIZE 1000 // 数组最大长度#define EMPTY '#' // 空节点标记// 二叉树结点struct TreeNode {char value; // 结点值};// 二叉树顺序存储结构class SeqBinaryTree {private:TreeNode nodes[MAXSIZE]; // 存储结点的数组int depth; // 树的深度public:SeqBinaryTree(char *values, int len) { // values为层次遍历序列,len为序列长度depth = ceil(log2(len+1)); // 计算树的深度for (int i = 0; i < MAXSIZE; i++) { // 初始化数组nodes[i].value = EMPTY;}for (int i = 0; i < len; i++) { // 将节点按层次遍历顺序存入数组中nodes[i].value = values[i];}}void print() { // 输出二叉树中所有结点值for (int i = 0; i < pow(2,depth)-1; i++) {if (nodes[i].value != EMPTY) {cout << nodes[i].value << " ";}}}};// 测试代码int main() {char values[] = {'A','B','C','#','#','D','E'};SeqBinaryTree tree(values,7);tree.print(); // 输出结果:A B C # # D E}```三、总结本文介绍了二叉树的顺序存储结构代码实现方法,该方法可以方便地对二叉树进行操作。
c语言使用括号表示法输入二叉树并转化为二叉树的链式存储结构 -回复
c语言使用括号表示法输入二叉树并转化为二叉树的链式存储结构-回复C语言中二叉树的链式存储结构是一种常见且有效的数据结构,可以以节点的形式表示二叉树,使得对二叉树的操作更加灵活和高效。
在这篇文章中,我们将详细讨论如何使用括号表示法输入二叉树并转化为二叉树的链式存储结构。
第一步:了解二叉树的定义和特点在开始讨论之前,我们需要先明确二叉树的定义和特点。
二叉树是一种树形结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的链式存储结构利用节点之间的指针连接,将二叉树的节点表示为一个结构体。
typedef struct TreeNode {int data; 节点数据struct TreeNode* leftChild; 左子节点指针struct TreeNode* rightChild; 右子节点指针} TreeNode;第二步:了解括号表示法和二叉树的对应关系括号表示法是一种使用括号和逗号表示二叉树结构的方法。
在括号表示法中,每个节点的左子节点可以被表示为“(”,右子节点可以被表示为“)”,而逗号用于分隔每个节点。
例如,下面是一个使用括号表示法表示的二叉树:((4), ((7), (8, (6)), (9, ()), ()), (2), ((5), ((1), ()), (3, (), (10))))第三步:构建转化函数使用括号表示法输入的二叉树需要经过一定的处理,才能将其转化为二叉树的链式存储结构。
为了完成这个转化过程,我们可以定义一个递归函数,该函数接收一个字符串作为输入,并返回根节点的指针。
TreeNode* convertToBinaryTree(char* str) {static int index = 0;TreeNode* root = NULL;if (str[index] == '(') {index++;if (str[index] != ')') {root = malloc(sizeof(TreeNode));sscanf(&str[index], "d", &root->data);root->leftChild = convertToBinaryTree(str);root->rightChild = convertToBinaryTree(str);}index++;}return root;}第四步:编写测试代码为了验证上述转化函数的正确性,我们需要编写一些测试代码。
第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。
数据结构实验四——二叉树链式
实验报告四
实验课名称:数据结构与程序设计实验
实验名称:二叉树链式存储结构
班级:学号:姓名:时间:
一、问题描述
●二叉链表的C语言描述
●基本运算的算法——建立二叉链表、先序遍历二叉树、中序遍历二叉树、后序遍历二叉
树、后序遍历求二叉树深度
二、数据结构设计
typedef struct BiTNode{
ElemType data; //数据域
struct BiTNode *lchild ,*rchild; //左右孩子结点指针
}BiTNode,*BiTree; //树结点、树结构体变量
根据二叉链表的概念来设计数据结构,分为3个域,一个数据域,另外两个指针域分别指向左右孩子结点。
三、算法设计
1)建立二叉链表
2)先序遍历二叉树
3)中序遍历二叉树
4)后序遍历二叉树
5)后序遍历求二叉树深度。
二叉树的顺序存储结构代码
二叉树的顺序存储结构代码介绍二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个子节点。
在计算机中,我们通常使用顺序存储结构来表示二叉树。
顺序存储结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一个数组中。
本文将详细介绍二叉树的顺序存储结构代码,包括初始化、插入节点、删除节点以及遍历等操作。
二叉树的顺序存储结构代码实现初始化二叉树首先,我们需要定义一个数组来存储二叉树的节点。
假设数组的大小为n,则二叉树的最大节点数量为n-1。
# 初始化二叉树,将数组中所有元素置为空def init_binary_tree(n):binary_tree = [None] * nreturn binary_tree插入节点在二叉树的顺序存储结构中,节点的插入操作需要保持二叉树的特性,即左子节点小于父节点,右子节点大于父节点。
插入节点的算法如下:1.找到待插入位置的父节点索引parent_index。
2.如果待插入节点小于父节点,将其插入到父节点的左子节点位置,即数组索引2*parent_index+1处。
3.如果待插入节点大于父节点,将其插入到父节点的右子节点位置,即数组索引2*parent_index+2处。
# 插入节点def insert_node(binary_tree, node):index = 0 # 当前节点的索引值,初始值为根节点的索引值while binary_tree[index] is not None:if node < binary_tree[index]:index = 2 * index + 1 # 插入到左子节点else:index = 2 * index + 2 # 插入到右子节点binary_tree[index] = node删除节点删除节点需要保持二叉树的特性,即在删除节点后,仍然满足左子节点小于父节点,右子节点大于父节点的条件。
删除节点的算法如下:1.找到待删除节点的索引delete_index。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树的存储结构
二叉树是非线性结构,即每个数据结点至多只有一个前驱,但可以有多个后继。
它可采用顺序存储结构和链式存储结构。
1.顺序存储结构
二叉树的顺序存储,就是用一组连续的存储单元存放二叉树中的结点。
因此,必须把二叉树的所有结点安排成为一个恰当的序列,结点在这个序列中的相互位置能反映出结点之间的逻辑关系,用编号的方法从树根起,自上层至下层,每层自左至右地给所有结点编号,缺点是有可能对存储空间造成极大的浪费,在最坏的情况下,一个深度为k且只有k个结点的右单支树需要2k-1个结点存储空间。
依据二叉树的性质,完全二叉树和满二叉树采用顺序存储比较合适,树中结点的序号可以唯一地反映出结点之间的逻辑关系,这样既能够最大可能地节省存储空间,又可以利用数组元素的下标值确定结点在二叉树中的位置,以及结点之间的关系。
图5-5(a)是一棵完全二叉树,图5-5(b)给出的图5-5(a)所示的完全二叉树的顺序存储结构。
(a) 一棵完全二叉树(b) 顺序存储结构
图5-5 完全二叉树的顺序存储示意图
对于一般的二叉树,如果仍按从上至下和从左到右的顺序将树中的结点顺序存储在一维数组中,则数组元素下标之间的关系不能够反映二叉树中结点之间的逻辑关系,只有增添一些并不存在的空结点,使之成为一棵完全二叉树的形式,然后再用一维数组顺序存储。
如图5-6给出了一棵一般二叉树改造后的完全二叉树形态和其顺序存储状态示意图。
显然,这种存储对于需增加许多空结点才能将一棵二叉树改造成为一棵完全二叉树的存储时,会造成空间的大量浪费,不宜用顺序存储结构。
最坏的情况是右单支树,如图5-7 所示,一棵深度为k的右单支树,只有k个结点,却需分配2k-1个存储单元。
(a) 一棵二叉树(b) 改造后的完全二叉树
(c) 改造后完全二叉树顺序存储状态
图5-6 一般二叉树及其顺序存储示意图
(a) 一棵右单支二叉树(b) 改造后的右单支树对应的完全二叉树
(c) 单支树改造后完全二叉树的顺序存储状态
图5-7 右单支二叉树及其顺序存储示意图
结构5-1二叉树的顺序存储
#define Maxsize 100 //假设一维数组最多存放100个元素
typedef char Datatype; //假设二叉树元素的数据类型为字符
typedef struct
{ Datatype bt[Maxsize];
int btnum;
}Btseq;
2.链式存储结构
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。
通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址。
其结点结构为:
其中,data域存放某结点的数据信息;lchild与rchild分别存放指向左孩子和右孩子的指针,当左孩子或右孩子不存在时,相应指针域值为空(用符号∧或NULL表示)。
利用这样的结点结构表示的二叉树的链式存储结构被称为二叉链表,如图5-8所示。
(a) 一棵二叉树(b) 二叉链表存储结构
图5-8 二叉树的二叉链表表示示意图
为了方便访问某结点的双亲,还可以给链表结点增加一个双亲字段parent,用来指向其双亲结点。
每个结点由四个域组成,其结点结构为:
这种存储结构既便于查找孩子结点,又便于查找双亲结点;但是,相对于二叉链表存储结构而言,它增加了空间开销。
利用这样的结点结构表示的二叉树的链式存储结构被称为三叉链表。
图5-9给出了图5-8 (a)所示的一棵二叉树的三叉链表表示。
图5-9二叉树的三叉链表表示示意图
尽管在二叉链表中无法由结点直接找到其双亲,但由于二叉链表结构灵活,操作方便,对于一般情况的二叉树,甚至比顺序存储结构还节省空间。
因此,二叉链表是最常用的二叉树存储方式。
结构5-2二叉树的链式存储
#define datatype char //定义二叉树元素的数据类型为字符
typedef struct node //定义结点由数据域,左右指针组成
{ Datatype data;
struct node *lchild,*rchild;
}Bitree;。