2016年江苏省对口单招数学试卷与答案
2016年南京市对口单招一模数学试卷答案
南京市职业学校2013级对口单招第一次调研性统测数学试卷 答案及评分参考一、单项选择题(本大题共10小题,每小题4分,共40分)1 2 3 4 5 6 7 8 9 10 DCCCBACCBA二、填空题(本大题共5小题,每题4分,共20分) 11.A+C 12.0 13.180 14.15 15.3三、简答题(本大题共8小题,共90分) 16.(本题满分8分)由题意231620x x--≥ ……………………1分∴234x x -≤ ……………………2分223434x x x x ⎧-≤⎪∴⎨-≥-⎪⎩………………1分 ∴14x x R -≤≤⎧⎨∈⎩……………2分14x ∴-≤≤………………1分即函数的定义域为{|14}x x -≤≤……………………1分17.(本题满分10分)解:(1)∵函数()f x 是定义在实数集R 上的奇函数∴()00f = ……………………2分 ∴()0310f m =++=∴4m =- ……………………2分(2)∵4m =- ∴()211422g x x x =-+-- ∴()()21142g x x =--- …………………2分 ∴当1x =时, max 4y =- …………………1分∵当1x =-时, (1)6g -=-,当2x =时, 9(2)2g =- ∴当1x =-时, min 6y =- ……………2分∴()g x 在区间[1,2]-上的最大值为-4,最小值为-6 …………………1分 18.(本题满分12分)解:(1)21cos 21()cos sin cos sin 222x f x x x x x +=+=+ 21sin(2)242x π=++……………………………………………2分 ∵1sin(2)14x π-≤+≤21()22f x ∴+的最大值为…………………………………………1分 (2)222,242k x k k Z πππππ-≤+≤+∈………………………………1分∴3,88k x k k Z ππππ-≤≤+∈ ………………………………1分 ∴函数()f x 的单调增区间为3[,]()88k k k Z ππππ-+∈………………1分 (3)∵cos cos b C c B =,2sin sin sin a b cR A B C=== ∴sin cos sin cos B C C B =∴sin()0B C -= ∴B C =3AB AC ∴==……………………………………2分 又 ∵21()sin()28222A f A ππ+=++=21325cos 2210A ++= ∴3cos 5A = ∵(0,)A π∈ ∴24sin 1cos 5A A =-= ………………2分 ∴118sin 25ABCS AB AC A ∆=∙∙= ……………………………………2分19.(本题满分12分)解:(1)记“甲在1或2跑道且乙不在5、6跑道”为事件A ……………1分114234661()5C C A P A A ⋅⋅∴== ……………4分 即甲在1或2跑道且乙不在5、6跑道的概率为15………………………………1分 (2)记“甲乙之间恰好间隔两人”为事件B ………………………1分223423661()5A A A PB A ⋅⋅∴== ……………4分 即甲乙之间恰好间隔两人的概率为15…………………………………………1分 20.(本题满分12分)解:(1)∵121()n n a S n N ++-=∈ ∴121n n S a +=-()n N +∈∴121n n S a -=- ∴12n n n a a a +=- ……………………1分∴ 13n n a a += ∴13n na a += …………………1分 ∴{}n a 是等比数列,公比q =3∴1111133n n n n a a q ---==⨯=……………………………2分 (2)∵313log log 3n n n b a n +===,∴(1)123 (2)n n n T n +=++++=………4分 (3)∵11112(1)1n n c T n n n n ===-++ ………………2分 ∴10011111(1)()...()223100101R =-+-++-=11001101101-= ………………2分 21.(本题满分10分)解:设生产甲种机器x 台,乙种机器y 台,利润为z 万元由题意3020300510110,0x y x y x y +≤⎧⎪+≤⎨⎪≥⎩目标函数68z x y =+……………………………5分 作可行域如图,目标函数z 在A 处取得最大值302030044,95101109x y x A x y y +==⎧⎧⇒⇒⎨⎨+==⎩⎩()……………………2分 代入得目标函数z 的最大值为96(万元)………………………………2分即应生产甲种机器4台,乙种机器9台,才能使利润达到最大,最大利润为96万元…1分22.(本题满分12分) 解:(1)当720x ≤≤时[]2000+40020)(52)y x x =-⋅--(=24001280070000x x -+-………………………2分 当20x >时[]200010020)(52)y x x =--⋅--(=2100470028000x x -+- ………………………2分∵21004700280000x x -+-≥ ∴2040x <≤ ………………1分224001280070000720,=1004700280002040,x x x x N y x x x x N ++⎧-+-≤≤∈⎪∴⎨-+-<≤∈⎪⎩…………………………1分 此函数的定义域为{|740,}x x x N +≤≤∈……………………………………1分 (2)当720x ≤≤时,224001280070000400(16)32400y x x x =-+-=--+ 即当16x y =时,有最大值32400元……………………………………2分 当2040x <≤时,22100470028000100(23.5)27225y x x x =-+-=--+ 即当2324x y =或时,有最大值27200元…………………………2分 所以当销售价格为16元时,可获得最大利润32400元。
2016年盐城市对口单招调研试卷(二)数学二调答案【精选】
2009年盐城市对口单招调研试卷(二)答案一、选择题:题号123456789101112答案ABC C A C B B BABC二、填空题:13.14.[-1,1)2π15.21016.117.a<b<c18.278三、解答题:19.解:∵tan (-)=2,∴tan =-2.παα∴tan =[ tan [-(-)]===1.βααβ)tan(tan 1)tan(tan βααβαα-+--3)2(132⨯-+--20. ∵{a n }为等比数列 ∴=q=常数nn 1a a -∴b n -b n-1=-===常数1n 2log a 1n 12log a -n1n 12a log a -12log q ∴数列{b n }为等差数列∴b 2+b 4=2b 3,由b 2+b 4=12得∴b 3=6又b 3+b 5=16,∴b 5=10∴d==253b b 53--∴b 1=2∴b n =2n4∴S 100==10100100(2200)2+21.解:(1)213235C C 35C ⋅=(2)123235C C 310C ⋅=(3)ξ456P310610110E(ξ)=4×+5×+×6+=31061011024522.解:(1)y=(x-30)[60+2(70-x)]-500=-2x 2+260x-6500(30≤x≤70)=-2(x-65)2+1950当单价实为65元时,日均获利最多为1950元(2)日均获利最多的方式时,获总利为:(65-30)×7000-×500=195000元70006052+⨯销售单价最高时,获总利为:(70-30)×7000-×500=221500元(其中取整数117)700060700060221500-117×500=26500元∴销售单价最高时获利最多,多26500元。
23.解:(1)连AC 交BD 于O∵ABCD-A 1B 1C 1D 1是长方体∴AB 1⊥平面B 1BCC 1又∵BE⊥B 1C 由三垂线定理得ADB 1A 1C 1D 1EF8BE⊥A 1C又∵AB=BC∴ABCD 为正方形∴AC⊥BD而A 1A⊥平面ABCD ,由三垂线定理得A 1C⊥BD∴A 1C⊥平面BED(2)连EO∵C 1C⊥平面ABCDCO⊥BD∴EO⊥BD∴∠EOC 为二面角E-BD-C 的平面角。
2016年盐城市对口单招一模数学试卷参考答案
盐城市2016年普通高校单独招生第一次调研考试试卷数学参考答案一、选择题:二、填空题:11. (57)10 12. 46 13.113756元 14.10 15.223+ 三、解答题:16.解:⑴由题意得:⎩⎨⎧==⇒⎩⎨⎧=+=+12213b a b b a ,12)(+=∴x x f ……………4分 ⑵不等式即为:12122+≥+-xx x,即为:xxx -≥222即为:022≤-x x ,∴原不等式的解集为{}.20≤≤x x ……………8分17.解:⑴当1=a 时:)34(log )(22+-=x x x f0342>+-x x ,∴函数的定义域为{}.31><x x x 或……………4分⑵由题意得:不等式1)34(log 22>+-a x ax 恒成立即不等式02342>-+-a x ax 恒成立当0=a 时,不等式即为024>--x ,不符合 当0≠a 时,有⎩⎨⎧<-->0)23(4160a a a ,解得:3131+>a综上,a 的取值范围为3131+>a ……………………………………10分 18.解:⑴由题意得:A R A B R B A A R sin 22cos sin 2sin sin sin 22⋅=⋅+⋅即为:A A B B A sin 2)sin 1(sin sin sin 22=-⋅+,即为:A B sin 2sin =,∴2=ab……………………………………………6分⑵由题意得:2222222222)32(3232a c a b c a b ab c a b +=⇒⎪⎩⎪⎨⎧=-=⇒⎪⎩⎪⎨⎧+==又ac b c a B 2cos 222-+=,∴caB 2)31(cos +=,∴21cos ,cos 0,cos 4522B B B B =>==又故所以……………………………12分 19.解:⑴由题意得:6184931=⨯=P ……………………………………6分 ⑵摸球不超过三次,包括第一次摸到红球,第二次摸到红球,第三次摸到红球,这三个事件是互斥的,∴1277286978297922=⨯⨯+⨯+=P .……………………………12分 20.解:⑴由题意得:⎩⎨⎧+++=+++=+++)2)(1()1()1(121n n S a n n n S na n n n n两式作差,得:)1()2)(1()1(112+-+++=-++++n n n n a na a n n n n 即:)1(2)1()1(12+=+-+++n a n a n n n ,即:212=-++n n a a ∴数列{}n a 为等差数列,其首项21=a ,公差2=d∴n n S n a n n +==2,2…………………………………………4分 ⑵由⑴知,1)1(242++==n n n b ,且41=+nn b b 则数列{}n b 为等比数列,且首项161=b ,公比4=q∴3)14(1641)41(16-=--=n n n T …………………………………………8分 ⑶由⑴知,11112+-=+=n n n n c n ∴101100)10111001()3121()211(100321100=-++-+-=++++= c c c c R ……12分 21.解:⑴由题意得:⎩⎨⎧++-=++-=c b c b 4167392 ,解得:⎩⎨⎧-==2512c b∴11)6(251222+--=-+-=x x x y∴当营运6年时,总利润最大,为11万元……………………………………6分 ⑵年平均利润225212)25(12=-≤+-==xx x y w ,(当且仅当5=x 时,等号成立)∴当营运5年时,年平均利润最大,为2万元. ……………………………………12分 22.解:设每天安排生产A,B 两种产品各为x 个、y 个,产值为z 万元则:y x z 127max +=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+10103001032005430049y x y x y x y x ……………………………………3分作出以上不等式组所表示的平面区域(如下图),即可行域.……………………………6分 作直线0127:=+y x l ,把直线l 向右上方平移至1l 的位置时,直线经过可行域上的点D ,此时y x z 127+=取最大值.解方程组⎩⎨⎧=+=+20054300103y x y x 得D 的坐标为)24,20(∴4282412207max =⨯+⨯=z∴当每天生产A 产品20 个和B 产品24 个时,既完成了生产计划,又能为国家创造最多的产值. …………………………………………………………………………10分23.解:⑴由题意得:⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧+===1221222222b a c b a c a c ,∴椭圆方程为1222=+y x ………4分 ⑵设直线l 方程为)1(+=x k y0224)21(22)1(222222=-+++⇒⎩⎨⎧=++=k x k x k y x x k y ,设),(),,(2211y x B y x A 则2221214kk x x +-=+,∴221212122)(k kk x x k y y +=++=+ ∴AB 中点坐标为)21,212(222kkk k ++- 代入直线方程,得:021212222=+-+-k kk k ,解得:210-=或k∴直线AB 方程为0120=++=y x y 或…………………………………………………8分⑶设圆的标准方程为222)()(r b y a x =-+-则:⎪⎩⎪⎨⎧=+=+--=+r a r b a r b a 2)1(222222,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=±=-=23221r b a∴圆的方程为49)2()21(22=±++y x .……………………………………………14分。
2016江苏对口单招高考试卷数学
江苏省2016年普通高校对口单招文化统考在意事项1.邓;试卷共L1页,包含选择题(第1題~第甌题,共死题)、非选择题(第刃题十第63 题,共7题人帛卷满分対的分,考试时间为他分钟.考晡耒后,谣将本试卷和答 题一并交回, 2. 答题前,请箸坯将自己的姓茗、蓍试证号用0. 5雀米罢悒墨水的签字笔壇写在试卷及答题 卡的规定ftgo戈请认真核对监琴员在答题卡上所粘贴的条形码上的姓每考试证号与您直人是否相符・4.作答选择题(第丄题~第56題),必须用2E 铅瑩将答题卡上时应选顷的方框涂满、涂為 如需改机 请用掾皮1察干帝后*再选涂其它答案.作答非选择题,必须用①5竜来黒色墨 水刖签宇举在答题卡上的指定位萱作答,在其它位暨作答一律无放。
数学试卷一、单项选择题(本大题共 10小题,每小题4分,共40分,在下列每小题中,选出一个正 确答案,将答案卡上对应选项的方框涂满、涂黑)1•设集合 M ={-1, 0,a },N ={0,1}若 N3•二进制数(1011011)2转化为十进制数的结果是()A.(89) 10B.( 91)10C.(93)10D.(95) 104.已知数组 a 二(0,1,1,0),b = (2,0,0,3),则 2a +b 等于()A.(2,4,2,3)B.( 2,1,1,3)C.(4,1,1,6)D.(2,2,2,3)5•若圆锥的侧面展开图为半径是2的半圆,则该圆锥的高是(绝密★启用前A. 3 D.2希生在答題前请认真阅读本注意. 洛題答M ,则实数a 的值为()A.-1B.02•复数z 丄的共轭复数为(1 iA.1 hB.1 】i2 2 2 2C.1D.2)C.1 iD.1 i16.已知 sin a +cos a=—,且 5 一,则C0S2 a 的值为( 7 A. 2517.若实数a ,b 满足一 a 2 7 B.-25 — ab ,则ab 的最小值为(b4c.-25D.24 25A. 2 2B.2 C2、2D.48.甲、乙两人从5门课程中各选修 A.24 种 B.36 种 2门,则甲、乙所选的课程中恰有 1门相同的选法共有()D.60 种C.48 种9•已知两个圆的方程分别为 2y 6 0,则它们的公共弦长等于A. 3B.2 C2.3 D.3 10.若函数 f(x){cos x f (x 1) x 1 ,x > 0 0,则 1 A.- 2 二.填空题(本大题共 5小题,每小题11.题11图是一个程序框图,若输入 3 B.— 2 5 D.— 2 4分,共20分) x 的值为-25,则输出的x 值为 C.2 12.题12表是某项工程的工作明细表,则完成此项工程的总工期的天数是 肚11图工作代码 紧前工作 紧后工作工期(天)A 无 D , E 7B 无C 2 CBD ,E 3 DF2 EF1题12表13.设函数f (x )是定义在R 上的偶函数,对任意 x R ,都有f (x 4) f (x ) f (2),若f(1) 2,则 f(3)等于 14.已知圆C 过点A (5,1),B ( 1,3)两点,圆心在 y 轴上,则圆C 的方程为15. 若关于x的方程x m . 1 x恰有两个实根,则实数m的取值范围是___________________三、解答题(本大题共8小题,共90分)16. ( 8分)求函数y log2(x25x 5)的定义域。
2016江苏对口单招高考试卷数学
页脚内容1绝密★启用前江苏省2016年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分,在下列每小题中,选出一个正确答案,将答案卡上对应选项的方框涂满、涂黑)1.设集合M ={-1,0,a },N ={0,1},若N ⊆M ,则实数a 的值为( )A.-1B.0C.1D.22.复数iz -=11的共轭复数为( ) A.i 2121+ B.i 2121- C.i -1 D.i +13.二进制数(1011011)2转化为十进制数的结果是( )A.(89)10B.(91)10C.(93)10D.(95)10 4.已知数组a =(0,1,1,0),b =(2,0,0,3),则2a +b 等于( )页脚内容2A.(2,4,2,3)B.(2,1,1,3)C.(4,1,1,6)D.(2,2,2,3) 5.若圆锥的侧面展开图为半径是2的半圆,则该圆锥的高是( )A.3B.23 C.21D.26.已知sin α+cos α=51,且432παπ≤≤,则cos2α的值为( )A.257-B.257C.2524D.2524- 7.若实数a ,b 满足ab ba =+21,则ab 的最小值为( ) A.22- B.2 C.22 D.48.甲、乙两人从5门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法共有( ) A.24种 B.36种 C.48种 D.60种9.已知两个圆的方程分别为422=+y x 和06222=-++y y x ,则它们的公共弦长等于( )A.3B.2C.32D.310.若函数00cos 1)1(,{)(≤+-=x x x x f x f >π,则⎪⎭⎫ ⎝⎛35f 的值为( ) A.21 B.23 C.2 D.25页脚内容3二.填空题(本大题共5小题,每小题4分,共20分)11.题11图是一个程序框图,若输入x 的值为-25,则输出的x 值为 。
12.题12表是某项工程的工作明细表,则完成此项工程的总工期的天数是 。
江苏省2016年普通高校对口单招数学试卷及答案
江苏省2016年普通高校对口单招文化考试数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一 个正确答案,请将答题卡上对应选项的方框涂满、涂黑)1.设集合{1,0,},{0,1}M a N =-=,若N M ⊆,则实数a 的值为( ) A.1- B.0 C. 1 D.22.复数11z i =-的共轭复数为( ) A.1122i + B.1122i - C.1i - D.1i +3.二进制数2(1011011)转化十进制数的结果是( ) A.()1089 B.()1091 C.()1093 D.()10954.已知数组(0,1,1,0),(2,0,0,3)a b ==,则2a b +等于( ) A.(2,4,2,3) B.(2,1,1,3) C.(4,1,1,6) D.(2,2,2,3)5.若圆锥的侧面展开图为半径是2的半圆,则该圆锥的高是( )B.2 C.12D.2 6.已知1sin cos 5αα+=,且324ππα≤≤,则cos 2α的值为( )A.725- B. 725 C.2425 D.2425-7.若实数,a b 满足12a b+=ab 的最小值为( )A.-B.2C.D.48.甲、乙两人从5门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法共人有( )A.24种B.36种C.48种D.60种9.已知两个圆的方程分别为224x y +=和22260x y y ++-=,则它们的公共弦长等于( )B.2C.D.3 10.若函数cos ,0()(1)1,0x x f x f x x π≤⎧=⎨-+>⎩,则53f ⎛⎫⎪⎝⎭的值为( )A.12 B.32 C.2 D.52二、填空题(本大题共5小题,每小题4分,共20分)11.题11图是一个程序框图,若输入x 的值为25-,则输出x 的值为 。
12.题12表是某项工程的工作明细表,则完成此项工程的总工期的天数是 。
2016年苏南五市职业学校对口单招第二次调研性统测数学试卷
≠⊂2016年苏南五市职业学校对口单招第二次调研性统测数学试卷本试卷分第Ⅰ卷(客观题)和第Ⅱ卷(主观题)两部分.第Ⅰ卷1页至2页,第Ⅱ卷3页至8页.两卷满分150分.考试时间120分钟.第Ⅰ卷(共40分)注意事项:1.答第Ⅰ卷前,考生务必按规定要求填涂答题卡上的姓名、考试证号、考试科目等项目. 2.用2B 铅笔把答题卡上相应题号中正确答案的标号涂黑.答案不涂写在答题卡上无效.一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上相应题号中正确答案的字母标号涂黑) 1.已知集合}3|1||{<-=x x A ,实数12+=a ,则下列正确的是A .A a ∉B .A ∈∅C .}{aA D .∅=}{a2.复数i z 211+=,i z 322+-=,则21z z +对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是 A .[0,1] B .[0,1) C .[0,1)(1,4] D .(0,1)4.用数字1,2,3,4,5组成没有重复数字的三位数,其中奇数共有 个. A .18 B .24 C .36 D .485.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是 A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖6.若34(sin )(cos )55Z i θθ=-+-是纯虚数,则)4sin(πθ-=A. 102-B. 1027C. 1027-D. 1027或102- 7.已知角α的顶点与坐标原点重合,始边与x 轴正半轴重合,终边在直线x y 2=上,则=-)2cos(απA .54-B .53- C .53 D .54-或538.若m 是2和8ABCD9.将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为 A .1133y x =-+B .113y x =-+ C .33y x =- D .31y x =+ 10.若圆C 的半径为1,圆心在第一象限,且与直线134=-y x 和x 轴都相切,则该圆的参数方程是A .⎪⎩⎪⎨⎧+=+=θθsin 37cos 3y x ,)(为参数θ B . ⎩⎨⎧+=+=θθsin 1cos 2y x ,)(为参数θC .⎩⎨⎧+=+=θθsin 2cos 1y x ,)(为参数θD .⎪⎩⎪⎨⎧+=+-=θθsin 1cos 21y x ,)(为参数θ市、县(区) 姓名_____________ 考试证号………………………密…………封…………线…………内…………不…………要…………答…………题………………………2016年苏南五市职业学校对口单招第二次调研性统测数学试卷第Ⅰ卷(共40分)一、选择题第Ⅱ卷(共110分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的各项目.2.第Ⅱ卷共6页,考生须用钢笔或圆珠笔将答案直接答在试卷上,作图可用铅笔. 3.考试结束,考生将第Ⅱ卷、第Ⅰ卷和答题卡一并交回.二、填空题(本大题共5小题,每小题4分,共20分)11.化简:CD AB AB += .12.小张在对口单招三年级一模考试中成绩如下:语文102分,数学120分,英语84分,专业综合234分,在制作各科成绩 所占总分比例的饼图时,数学所对应的圆心角为 .13.阅读右面第13题的程序框图,则输出S = .第13题图14.为促进开发区建设,决定修建一条高等级公路,工序间的关系如下表:它的关键路径是 .15.已知向量)2,(2x a =,),1(x b -=,函数⎪⎩⎪⎨⎧≥⋅<-=1,1,12)(x b a x x x f ,若3)(-=m f ,则=m .三、解答题(本大题共8小题,共90分)16.(本小题满分8分) 解不等式:3)2(log 221-≥-x x .17.(本小题满分10分) 已知二次函数)(x f y =在(,2]-∞上是增函数,在[2,)+∞上是减函数,图象的顶点在直线1y x =-上,并且图象经过点(1,8)--. (1)求二次函数)(x f y =的解析式; (2)求)(2x f y =在区间[0,3]上的最小值.18.(本小题满分10分)在ABC △中,内角A B C ,,对边的边长分别是a ,b ,c ,已知2c =,3C π=. (1)若向量),4(b m -=,)1,(-=a n 且n m //,求a ,b ; (2)若sin 2sin B A =,求ABC △的面积.19.(本小题满分12分)袋中装有大小相同的黑球、白球和红球,袋中共有10个球.从中任意摸出1个球,得到黑球的概率是52;从中任意摸出2个球,至少得到1个白球的概率是97.求: (1)从中任意摸出2个球,得到的都是黑球的概率; (2)袋中白球的个数.20.(本小题满分12分)已知各项均为正数的数列}{n a 满足)(log 1log 133*+∈=+N n a a n n ,62=a .(1)求数列}{n a 的通项公式;(2)若36log 23n n ab =,数列}{n b 的前n 项和为n S ,求n S ;(3)令n S c n n 4+=,求}1{nc 的前n 项和n T .21.(本小题满分12分) 为推进“节能减排,绿色生态”建设.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为80000200212+-=x x y ,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低;(2)该单位每月能否获利?如果获利,则每月最大利润是多少;如果不获利,则每月最多亏损多少?22.(本小题满分12分)已知铁矿石A 和B 的含铁率为a ,冶炼每万吨铁矿石排放2CO 为b 吨,每吨铁矿石的价格为c 万元,具体数据如下表:某冶炼厂至少要生产吨铁,若要求2的排放量不超过吨,则购买铁矿石的费用最少为多少万元?23.(本小题满分14分)在平面直角坐标系xOy 中,点P 到两点(0,,(0的距离之和等于4,设点P 的轨迹为C . (1)写出C 的方程;(2)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?2016年苏南五市职业学校对口单招第二次调研性统测数学试卷 答案及评分参考一、单项选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共5小题,每题4分,共20分)11.AB 12.080 13.55 14.F C B A →→→ 15.13-或 三、解答题(本大题共8小题,共90分) 16.解:原不等式可化为8log )2(log 21221≥-x x ……………………………2分所以⎪⎩⎪⎨⎧>-≤-028222x x x x ………………………………………4分解得⎩⎨⎧<>≤≤-0242x x x 或………………………………………6分即4202≤<<≤-x x 或………………………………………7分 所以原不等式的解集是}4202|{≤<<≤-x x x 或…………………8分 17.解:(1)由题意得,对称轴为2x =,顶点坐标为(2,1)…………………2分 设)0(,1)2()(2≠+-=a x a x f ………………………………………3分 把(1,8)--代入,得1a =-………………………………………4分 ∴ 341)2()(22-+-=+--=x x x x f ……………………………5分 (2)令)(x f u =,则u y 2=]3,0[∈x∴当1)(2max max ===x f u x 时,∴当3)(0min min -===x f u x 时,………………………………………7分又上是增函数在R y u2=………………………………………8分 所以,81203min ===-y x 时,………………………………………10分 18. 解:(1)由余弦定理得,224a b ab +-=,……………………2分n m //14-=-∴ba 得4ab =.……………………3分联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =.………………………………………………5分(2)由正弦定理,已知条件化为2b a =,……………………………………………………………………6分联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =b =.………………………………8分所以ABC △的面积1sin 23S ab C ==.…………………………………………………………10分 19. 解:(1)由题意知,袋中黑球的个数为.45210=⨯………………………………2分 记“从袋中任意摸出两个球,得到的都是黑球”为事件A ,…………4分则 .152)(21024==C C A P ……………………5分(2)记“从袋中任意摸出两个球,至少得到一个白球”为事件B ,设袋中白球的个数为x ,…………………………………………………6分则)(1)(B P B P -=……………………7分971210210=-=-C C x ……………………10分 得到145==x x 或10<x ,5=∴x ……………………12分20. 解:(1)由)(log 1log 133*+∈=+N n a a n n得1log log 313=-+n n a a 所以1log 13=+n n a a ……………………1分 即31=+nn a a ……………………2分 所以数列}{n a 是等比数列,公比3=q ……………………3分又62=a所以,12232--⨯==n n n qa a ……………………4分 (2)36log 23n n a b =42-=n ……………………6 分 又21=-+n n b b ,21-=b所以数列}{n b 是以首项为-2,公差为2的等差数列……………………7分 所以n b b S n n ⨯+=21n n 32-=……………………8分 (3)111)1(1112+-=+=+=n n n n n n c n ……………………10分 所以n n c c c T 11121+---++= )111()3121()2111(+-+---+-+-=n n 11111+=+-=n n n ……………………12分 21.解:(1)由题意可知,二氧化碳的每吨平均处理成本为y x =12x +80000x -200…………………2分200=200 当且仅当12x =80000x,即x =400时等号成立…………………5分 故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.……………………………………………………………6分(2)不获利.设该单位每月获利为S 元,则S =100x -y=100x -21200800002x x ⎛⎫-+⎪⎝⎭…………………8分 =-12x 2+300x -80000 =-12(x -300)2-35000<0 所以不获利.……………………10分又]600,400[∈x当400=x 时,40000max -=S当600=x 时,80000min -=S ……………………………11分故该单位每月不获利,每月最多亏损80000元.……………………12分22. 解:设购买A 、B 两种铁矿石分别为x 吨、y 吨,购买铁矿石的费用为z 万元,则y x z 63+=……………………2分 由题意可得约束条件为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≥+002219.110721y x y x y x ……………………5分 作出可行域如图:……………………………8分 解⎪⎪⎩⎪⎪⎨⎧=+=+2219.110721y x y x ,解得⎩⎨⎧==21y x , 所以)2,1(A ……………………………………10分 由图可知,目标函数y x z 63+=在点)2,1(A 处取得最小值,152613min =⨯+⨯=z ……………………………………………………………………………………11分答:购买铁矿石的费用最少为15万元. ……………………………………………………12分23. 解:(1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(03)(03),,,为焦点,长半轴为2的椭圆.它的短半轴222(3)1b =-=, 故曲线C 的方程为2214y x +=. ······································································· 4分 (2)设1122()()A x y B x y ,,,,其坐标满足2214 1.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=,故1212222344k x x x x k k +=-=-++,. ····························································· 6分 OA OB ⊥,即12120x x y y +=.而2121212()1y y k x x k x x =+++, 于是222121222223324114444k k k x x y y k k k k -++=---+=++++.所以12k =±时,12120x x y y +=,故OA OB ⊥. ················································ 8分 当12k =±时,12417x x +=,121217x x =-.(AB x ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=, 所以46517AB =. ······················································································ 14分。
2016对口单招数学第三次模拟试卷
2016年江苏省对口单招数学模拟试卷(满分:150 时间:120分钟)一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合则()2.是“cos2”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.已知函数则角为()A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知复数满足则复数()A. B. C. D.5.已知向量且则的值为()A. B. C. D.6.展开式的中间项为()A. B. C. D.7.在等差数列中,若则的值为()A.24B.22C.20D.-88.在正方体中,侧面对角线与上底面对角线所成的角等于()A. B. C. D.9.若直线与直线垂直,则()A.2B.-3或1C.2或0D.0或110.抛物线C:的焦点为F,弦AB过焦点F,则以AB为直径的圆与抛物线C 的准线的位置关系是()A.相离B.相切C.相交D.无法确定一、选择题答题卡:题号12345678910答案二、填空题(本大题共5小题,每小题4分,共20分)11.将二进制转换成十进制为 .12.函数的单调增区间是 .13.已知则的最小值是 .14.工作代码 紧前工作紧后工作工期/天A 无D,E 7B 无C 2CBD,E3D A,C F 2E A,CF 1F D,E 无1S=0,T=0,n=0T > SS= S+5n=n+2T=T+n输出T 结束开始是(第14题) (第15题)15.某项工程的明细表如图所示,此工程的关键路径是 .三、解答题(本大题共8小题,共90分)16.(本题满分8分)已知函数(1)求函数的定义域;(2)解不等式.17.(本题满分10分)在中,AB=2,BC=3,CA=4.(1)判断的形状;(2)求sinA的值;(3)求的面积.18.(本题满分12分)已知在等差数列中,,,.求:(1)x的值;(2)数列的通项公式;(3)的值.19.(本题满分12分)已知函数是定义在上的增函数,并且对于x>0,y>0有(1)求的值;(2)若,解不等式.20. (本题满分12分)为了了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x、y的含量(单位:毫克)。
2016江苏信息职业技术学院单招数学模拟试题及答案
考单招——上高职单招网2016江苏信息职业技术学院单招数学模拟试题及答案一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的.1.复数所对应的点在A.第一象限B.第二象限C.第三象限D.第四象限2.函数的定义域为A.B.C.(1,+∞)D.3.已知,且的最大值是3,则的值为A.1 B.-1 C.0 D.24.已知,,则向量与向量的夹角是A.B.C.D.考单招——上高职单招网5.某学校有高一学生720人,现从高一、高二、高三这三个年级学生中采用分层抽样的方法,抽取180人进行英语水平测试.已知抽取的高一学生数是抽取的高二学生数、高三学生数的等差中项,且高二年级抽取40人,则该校高三学生人数是A.480 B.640 C.800 D.9606.若是两个不重合的平面,是两条不重合的直线,现给出下列四个命题:①若则;②若,则;③若,则;④若,则.其中正确的命题是A.①②B.②④C.③④D.②③④7.数列的前100项的和等于A.B.C.D.考单招——上高职单招网8.命题甲:函数图象的一条对称轴方程是;命题乙:直线的倾斜角为,则A.甲是乙的充分条件B.甲是乙的必要条件C.甲是乙的充要条件D.甲是乙的不充分也不必要条件9.如图过抛物线焦点的直线依次交抛物线与圆于A,B,C,D,则=A.4 B.2 C.1 D.10.函数在区间(,1)上有最小值,则函数在区间(1,上一定A.有最小值B.有最大值C.是减函数D.是增函数考单招——上高职单招网二.填空题:本大题共5小题,每小题4分,共20分,把答案填在题中横线上.11.设全集为实数集R,若集合,则集合等于.12.展开式的常数项为.13.如图,已知PA⊥平面ABCD,四边形ABCD是正方形,且PA=AD,则PB与AC所成的角的大小为.414.将1,2,3,……,9这九个数字填在如图所示考单招——上高职单招网的9个空格中,要求每一行从左到右依次增大,每一列从上到下也依次增大,数字4固定在中心位置时,则所有填空格的方法有种.15.在一张纸上画一个圆,圆心为O,并在圆O外设置一个定点F,折叠纸片使圆周上某一点与F点重合,设这一点为M,抹平纸片得一折痕AB,连MO并延长交AB于P.当点在圆上运动时,则(i)P的轨迹是;(ii)直线AB与该轨迹的公共点的个数是.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)乒乓球世锦赛决赛,由马琳对王励勤,实行“五局三胜”制进行决赛,在之前比赛中马琳每一局获胜的概率为,决赛第一局王励勤获得了胜利,求:(1)马琳在此情况下获胜的概率;(2)设比赛局数为,求的分布及E.考单招——上高职单招网17.(本小题满分12分)已知函数,,且函数的图象是函数的图象按向量平移得到的.(1)求实数的值;(2)设,求的最小值及相应的.18.(本小题满分14分)如图,正三棱柱ABC一A1B1C1的底面边长是2,侧棱长是,D为AC的中点.(1)求证:B1C//平面A1BD;(2)求二面角A1一BD一A的大小;(3)求异面直线AB1与BD之间的距离.考单招——上高职单招网19.(本小题满分14分)是正数数列的前n项的和,数列S12,S22、……、S n2 ……是以3为首项,以1为公差的等差数列;数列为无穷等比数列,其前四项的和为120,第二项与第四项的和为90.(1)求;(2)从数列{}中依次取出部分项组成一个无穷等比数列,使其各项和等于,求数列公比的值.20.(本小题满分14分)已知函数(为实数).(1)若在[-3,-2 )上是增函数,求实数的取值范围;(2)设的导函数满足,求出的值. 21.(本小题满分14分)已知双曲线C的中心在原点,对称轴为坐标轴,其一条渐近线方程是,且双曲线C过点.(1)求此双曲线C的方程;考单招——上高职单招网(2)设直线L过点A(0,1),其方向向量为(>0),令向量满足.问:双曲线C的右支上是否存在唯一一点B,使得.若存在,求出对应的的值和B的坐标;若不存在,说明理由.参考答案一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的.1.D2.B3.A4.C5.D6.D7.A8.A9.C 10.D二.填空题:本大题共5小题,每小题4分,共20分,把答案填在题中横线上.11.12.13.14.1516.(本小题满分12分)解:(1)马胜出有两种情况3:1 或3:2,则马胜的概率为.……………………………… 6分(2),,………………… 8分考单招——上高职单招网,………………………………………………10分所以分布列如下:……………………………………………………………………………………………12分17.(本小题满分12分)解:(1)因为,,所以.…………………………………………………………………………6分(2)因为,所以当时,取得最小值.……………………12分18.(本小题满分14分)考单招——上高职单招网解:(1)证明(略)…………………………………………………………………… 4分(2)…………………………………………………………………………… 9分(3)……………………………………………………………………………14分19.(本小题满分14分)解:(1){S n}是以3为首项,以1为公差的等差数列;所以S n2=3+(n–1)=n+2 因为a n>0,所以S n=(n∈N).………………………………………………… 2分当n≥2时,a n=S n–S n–1=–又a1=S1=,所以a n=(n∈N).…………………………………………… 4分设{b n}的首项为b1,公比为q,则有,………………………… 6分所以,所以b n=3n(n∈N).…………………………………………………… 8分考单招——上高职单招网(2)由(1)得=()n,设无穷等比数列{c n}首项为c1=()p,公比为() k,(p、k∈N),它的各项和等于=,……………………………………………………………10分则有,所以()p=[1–()k],………………………………………11分当p≥k时3p–3p–k=8,即3p–k(3k–1)=8,因为p、k∈N,所以只有p–k=0,k=2时,即p=k=2时,数列{c n}的各项和为.……………………………………………12分当p<k时,3k–1=8.3k–p,因为k>p右边含有3的因数,而左边非3的倍数,所以不存在p、k∈N,综合以上得数列公比的值为.………………………………………………14分20.(本小题满分14分)解:(1)由题意得0对一切∈[-3,-2 )恒成立,考单招——上高职单招网即2-0对一切∈[-3,-2 )恒成立.…………………………………2分∴2, =,……………………………………4分当∈[-3,-2 )时,-(-)2+<-(2-)2+=-6,∴>- . ……………………………………………………6分∴,所以的取值范围是(-∞,-]. …………………………………7分(2)因为=2-[2(1-)+ ],当时,则为单调递减函数,没有最大值.……………………………9分当>0时, ∵<1 ∴2(1-)>0 ,>0,∴. ………………………………………………………………11分由2(1-)+ 得=1由于=1+>1,舍去.所以当=1-时,.……………………………………13分考单招——上高职单招网令2-2=1-2,解得=或=-2,即为所求. (1)4分21.(本小题满分14分)解:(1)依题意设双曲线C的方程为:,点P代入得.所以双曲线C 的方程是.……………………………………………… 4分(2)依题意,直线的方程为(),……………………………… 5分设为双曲线右支上满足的点,则到直线的距离等于1,即. (6)分①若,则直线与双曲线右支相交,故双曲线的右支上有两个点到直线的距离等于1,与题意矛盾. (8)分②若(如图所示),则直线在双曲线的右支的上方,故,从而有.考单招——上高职单招网又因为,所以有,整理,得.……(★)………10分(i)若,则由(★)得,,即.……………………………………………………………………………12分(ii)若,则方程(★)必有相等的两个实数根,故由,解之得(不合题意,舍去),此时有,,即.综上所述,符合条件的的值有两个:,此时;,此时.………………………………14分。
2015—2016年度苏州市职业学校对口单招 数学一模试卷
2015—2016年度苏州市职业学校对口单招调研测试卷(一)数 学 2016.1本试卷分第Ⅰ卷(客观题)和第Ⅱ卷(主观题)两部分。
两卷满分150分,考试时间120分钟。
第Ⅰ卷(共40分)一、选择题(本大题共10小题,每小题4分,共40分)1. 已知集合M ={3,2a },N ={a ,b },若M ∩N ={2},则M ∪N 为 A .{}2,3,4B. {}1,2,3C. {}2,3,8D. {}2,3,162.已知向量(a x =,b =,若a b ⊥ ,则a b - 等于A .1 B. 8C.D. 3.设lg 0()10 0x x x f x x >⎧=⎨≤⎩,则((2))f f -等于A .1100 B. 2 C. 1100- D. 2- 4. 已知圆C 的圆心是直线10x y -+=与x 轴的交点,且圆C 与直线30x y ++=相切,则圆C 的方程为A .22(1)2x y ++= B. 22(1)2x y -+= C. 22(1)8x y ++= D. 22(1)8x y -+=5. 在1、2、3、…、9的九个数字里任取四个数字排成一个首末两个数字都是奇数的四位数,这样的四位数的个数有A .1680个 B. 840个 C. 420个 D. 3024 6. 等边圆柱(底面直径和高相等的圆柱)的底面半径与球的半径相等,则等边圆柱的表面积与球的表面积之比为 A .23 B. 32 C. 12D. 1 7. 已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则f (log 32)等于 A .199 B. 179 C. 289D. 898. 函数f (x )=A sin(ωx +φ),(A ,ω,φ是常数,A >0,ω>0)的部分图象如图所示,则f (0)等于A .62 B. C. 2D. 129.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,则角β等于A .6π B. 4π C. 3π D. 6π或3π 10. 关于x 的方程||x 2-3x -4=a (12)a <<的实数解的个数有A .1个 B. 2个 C. 3个 D. 4个2015—2016年度无锡市职三教学调研测试卷(一)数 学 2016.1第Ⅰ卷(共40分)二.填空题(本大题共5小题,每小题4分,共20分,请将答案填写在题中横线上)11.将十进制数10(101)换算成二进制数,即10(101) .12. 阅读题12图所示的流程图.若输入x 的值为8,则输出y 的值是__________. 13. 题13表给出了某项工程的工作明细表,则完成此项工程所需总工期的天数是_________.题13表(题12图)14. 设数组a =(3,4,2), b =(2,3,5)-,c =(1,1,2)-,则a ·b +c ·b = ________.15.双曲线221169x y -=上一点P 到右焦点的距离是实轴两端点到右焦点距离的等差中项,则P 点到左焦点的距离为________.三. 解答题 (本大题共8小题, 共90分, 解答应写出文字说明、证明过程或演算步骤)16. (本题满分8分)已知函数22()log (6)f x x x =-++. (1) 求函数的定义域; (2) 解不等式()20f x ->.17. (本题满分8分)已知复数,6)(,2=--=+-i z z z z 其中为i 为虚数单位,(1)求复数z ;(2)若复数z 是实系数一元二次方程02=++c bx x 的根,求c b ,的值.袋中有3只红球和2只黑球,现从袋中随机取出3只球,若取得一只红球得2分,取得一只黑球得1分,求下列事情的概率:(1){}2A =恰好取得只球红; (2){}4B =得分.19. (本题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,满足b cosC +12c =a .(1) 求角B ;(2) 若a ,b ,c 成等比数列,判断△ABC 的形状.已知函数211()2()2f x x x b a a =-->. (1)若()f x 在[)2+∞,上是单调函数,求a 的取值范围;(2)若()f x 在[]2,3-上的最大值为6,最小值为3-,求b a ,的值.21. (本题满分14分)已知数列{a n }各项均为正数,其前n 项和为S n ,点(a n ,S n )在曲线(x +1)2=4y 上. (1) 求{a n }的通项公式;(2) 设数列{b n }满足b 1=3,令1n n b b a +=,①求证:数列{}1n b -为等比数列;②求数列{b n }的前n 项和为T n .已知销售甲、乙产品每吨的利润分别为5万元和2万元.试问生产甲、乙两种产品各多少吨时,该厂每周获得的利润最大?23. (本题满分14分)已知椭圆1C :)0(12222>>=+b a b y a x 的离心率为33,直线l :2+=x y 与以原点为圆心、以椭圆1C 的短半轴为半径的圆相切; (1)求椭圆1C 的方程;(2)若直线l :2+=x y 与椭圆1C 交于A 、B 两点,求线段AB 的中点坐标; (3)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线l 1过点1F 且垂直于椭圆1C 的长轴,动直线l 2垂直l 1于点P ,线段2PF 的垂直平分线交l 2于点M ,求点M 的轨迹2C 的方程.2015—2016年度苏州市职三教学调研测试卷(一)数 学 参考答案 2016.1(本大题共5小题,每小题4分,共20分) 11.2(1100101)12.3 13.36 14.9 15.13三、解答题 (本大题共8小题, 共90分, 解答应写出文字说明、证明过程或演算步骤) 16.(8分)解:(1)∵260x x -++>, …………………1分∴260x x --< ∴23x -<<∴函数的定义域为(2,3)-. …………………3分 (2)由题意,22log (6)20x x -++->,∴22log (6)2x x -++>,∴264x x -++>,∴12-<<x …………………2分又 23-<<x所以不等式的解集为(1,2)-. …………………2分17.(8分)解:(1)设),(R b a bi a z ∈+=,则据题意得⎪⎩⎪⎨⎧=+-+-=-++6)(2i bi a bi a bi a bi a …………………1分解得 ⎪⎪⎩⎪⎪⎨⎧-=-=2622b a …………………2分 ∴i z 2622--= …………………1分 (2)由⎪⎩⎪⎨⎧=⋅-=+cz z bz z , …………………2分得 ⎩⎨⎧==22c b . …………………2分18. (10分)解:(1)由题意,恰好取得2只红球,则另1只球为黑球,∴2132353(A)5C C P C ==, ……………4分 即恰好取得2只红球的概率为35; ……………1分⑵ 得4分,即取1只红球,2只黑球,∴1232353(B)10C C P C ==, ……4分 即得4分的概率为310. ……………1分19. (12分) 解:(1) (解法1)由正弦定理,得sinBcosC +12sinC =sinA . ……1分而sinA =sin(B +C)=sinBcosC +cosBsinC , ………………1分 故cosBsinC =12sinC , ……………1分在△ABC 中,sinC ≠0, ………………1分 故cosB =12, ………………1分∵ 0<B <π, ………………1分 ∴ B =π3. ………………1分(解法2)由余弦定理,得2222a b c b ab+-+12c =a , ………………1分化简得a 2+b 2-c 2+ac =2a 2,即222a cb ac +-=, ………………2分而cos B =2222a c b ac+-=12, ………………2分∵ 0<B <π, ………………1分 ∴ B =π3. ……………1分(2) 由题意,b 2=ac , ……………1分 由余弦定理,得b 2=a 2+c 2-2ac ×12, ………………1分可得a 2+c 2-2ac =0,即a =c , ………………2分 所以a =b =c ,所以△ABC 是等边三角形. ………………1分20.(14分)解:(1)对称轴为2=12x a a-=-, …………1分 ()f x 在[)2+∞,上是单调函数 , ∴ 2≤a , …………2分21>a , ∴221≤<a . …………2分 (2)①当132a <≤时, 当2x =-时,()f x 取得最大值(-2)f =446b a+-=, ………………1分 当a x =时,()f x 取得最小值()f a =23a a b --=-, ………………1分 解得1,2a b ==. ………………2分 ②当3a >时,当2x =-时,()f x 取得最大值(-2)f =446b a +-=, ………………1分当3x =时,()f x 取得最大值(3)f =963b a--=-, ………………1分解得65,5a b ==-. ………………2分综上,满足条件的有1,2a b ==或65,5a b ==-. ………………1分21. (14分)解:(1) 由题意得4S n =(a n +1)2,从而4S n +1=(a n +1+1)2,所以4(S n +1-S n )=(a n +1+1)2-(a n +1)2,即4a n +1=a 2n +1-a 2n +2a n +1-2a n ,所以2(a n +1+a n )=(a n +1+a n )(a n +1-a n ).因为a n >0,所以a n +1+a n >0,所以a n +1-a n =2. ………………4分 又由4a 1=(a 1+1)2,得a 1=1, ……………2分 所以{a n }是以1为首项,2为公差的等差数列,故a n =2n -1. ………………1分(2) ①由(1)知21n b n a b =-,又1n n b b a +=,所以121n n b b +=-.所以112(1)n n b b +-=-. ………………2分又13b =,112b -=,所以{}1n b -是以2为首项,2为公比的等比数列. ………………2分②12n n b -=,即21n n b =+. ………………1分 所以12(12)2212n n n T n n +-=+=+--. ………………2分 22. (10分)解: 设工厂一周内生产甲产品x 吨、乙产品y 吨,每周所获利润为z 万元. 目标函数为max z =5x +2y . ………………1分依据题意,得约束条件为321651500x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩. ………………3分 画出约束条件的可行域,如下图阴影部分所示.………………3分将直线5x +2y =0向上平移,可以发现,经过可行域的点B 时,函数z =5x +2y 的值最大 . 由3216515+=⎧⎨+=⎩x y x y , 得B (2,5), 所以最大值为5×2+2×5=20(万元). ………2分 所以每周生产甲产品2吨,乙产品5吨时,工厂可获得的周利润最大,为20万元.………………1分23. (14分)解:(1) 直线l :02=+-y x 与圆222b y x =+相切, ∴b =22,2=b , ………2分 33=e ,∴33=a c ,31222=-a b a ,2223b a = , 从而 3)2(2323222=⨯==b a , …………2分 ∴椭圆1C 的方程为12322=+y x . ………………1分 (2)由⎪⎩⎪⎨⎧=++=123222y x x y , 得061252=++x x , ………………2分 设),(11y x A ,),(22y x B , 则51221-=+x x ,56221-=+x x , ………………1分 又 AB 的中点在直线2+=x y 上, ∴542562222121=+-=++=+x x y y , ……………1分 故线段AB 的中点坐标为)54,56(-. ………………1分 (3)由(1)可知,1c ==,∴12(1,0),(1,0)F F -,直线1l 的方程为1-=x . ………………1分 2MF MP =,∴动点M 到定直线1l :1-=x 的距离等于它到定点2F )0,1(的距离,从而动点M 的轨迹2C 是以1l 为准线,2F 为焦点的抛物线,故点M 的轨迹2C 的方程为x y 42=. ………………3分。
2016江苏高职单招数学试卷
2016江苏高职单招数学试卷2016江苏高职单招数学试卷篇一:2016年江苏高职单招数学模拟题2016年江苏高职单招数学模拟题(28)您的考试成绩单:总题数:25题总分:100分答对数:11题得分:44分第1题:已知:集合M={(x,y)?x+y=2},N={(x,y)?x?y=4},那么集合M?N等于( )A. {(x=3,y=?1)}B.(3,?1)C.{ (3,?1)}D. { 3,?1} [查看答案] 举报答案有误【你的答案】:C【正确答案】:C【本题分数】:4.0分【考生得分】:4.0分[答案解析]讲解:集合概念的考查,M,N描述的是点集合,具体是一条直线,所以交集就是两条直线的交点,解得交点坐标为(3,-1) ,由于是点的集合,所以描述方法就是点,只有C描述的是点,选C 第2题:与ab等价的不等式是( )[查看答案]举报答案有误【你的答案】:D【正确答案】:D【本题分数】:4.0分【考生得分】:4.0分[答案解析]讲解:不等式性质的考查,由于绝对值,平方以及分式对正负都有要求,所以A,B,C不一定正确,函数y=x3在R上是增函数,所以当ab时a3b3,选D 第3题:0?x2用区间表示为( )A. [0,2)B.(0,2)C.[0,2]D.(0,2] [查看答案] 举报答案有误【你的答案】:A【正确答案】:A【本题分数】:4.0分【考生得分】:4.0分[答案解析]讲解:区间概念的考查,方括号包含端点,圆括号不包含端点,答案选A 第4题:不等式x2?x?60的解集是( )A. (-?,2)?(3,+?)B.(?2,3)C. (-?,?2)?(3,+?)D. [?2,3][查看答案]举报答案有误【你的答案】:A【正确答案】:C【本题分数】:4.0分【考生得分】:0.0分[答案解析]讲解:一元二次不等式的考查,不等式大于0,解集为两根之外,方程x2?x?6=0根为x=3和x=-1,所以答案是(-?,?2)?(3,+?)选C第5题:设f(x)=2x+5,则f(2)=()A.7B.8C.9D.10[查看答案]举报答案有误【你的答案】:C【正确答案】:C【本题分数】:4.0分【考生得分】:4.0分[答案解析]讲解:函数求值问题,将x=2带入求得,f(2)=2×2+5=9,选C第6题:在?ABC中,“cosA=cosB”是“A=B”的( )A.充分条件B. 必要条件C.充要条件D.既不是充分也不是必要条件 [查看答案] 举报答案有误【你的答案】:C【正确答案】:C【本题分数】:4.0分【考生得分】:4.0分[答案解析]讲解:由于三角形内角范围是(0,π)余弦值和角度一一对应,所以cosA=cosB 与A=B是可以互相推导的,是充要条件,选C第7题:已知二次函数f(x)=x2+4x+2的顶点坐标是()A.(2,?2)B.(?2,?2)C.(0,2)D.(2,0)[查看答案]举报答案有误【你的答案】:B【正确答案】:B【本题分数】:4.0分【考生得分】:4.0分[答案解析]讲解:二次函数的考查,将二次函数写为顶点式f(x)=(x+2)2-2则顶点为(-2,-2)第8题:函数y=5x与函数y=log5x的图像关于( )A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称[查看答案]举报答案有误【你的答案】:D 【正确答案】:D【本题分数】:4.0分【考生得分】:4.0分[答案解析]讲解:反函数的考查,指数函数y=5x和对数函数y=log5x正好是一对反函数,所以其图像必然关于直线y=x对称,选D第9题:函数y=sin(4x+φ)的最小正周期是( )[查看答案]举报答案有误【你的答案】:A【正确答案】:A【本题分数】:4.0分【考生得分】:4.0分[答案解析]讲解:第10题:在等差数列40,37,34,…中第一个负数项是() A.第13项 B. 第14项 C. 第15项 D.第16项[查看答案]举报答案有误【你的答案】:B【正确答案】:C【本题分数】:4.0分【考生得分】:0.0分[答案解析]讲解:第11题:在等比数列{an}中,若a1?a4=20,则a2?a3( )A.5B.10C.15D.20[查看答案]举报答案有误【你的答案】:C【正确答案】:D【本题分数】:4.0分【考生得分】:0.0分[答案解析]讲解: 第12题:[查看答案]举报答案有误【你的答案】:C【正确答案】:D【本题分数】:4.0分【考生得分】:0.0分[答案解析]讲解:第13题:A. (?5,?3)B. (?5, 3)C. (5, ?3)D. (5,3)2016江苏高职单招数学试卷篇二:2016江苏信息职业技术学院单招数学模拟试题及答案考单招——上高职单招网2016江苏信息职业技术学院单招数学模拟试题及答案一(选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(,(复数所对应的点在,(第一象限 ,(第二象限 ,(第三象限 ,(第四象限,(函数的定义域为,( ,(,((1,+?) ,(,(已知,且的最大值是3,则的值为,(1 ,(-1 ,(0,(2,(已知,,则向量与向量的夹角是,(,(,(,(考单招——上高职单招网,(某学校有高一学生720人,现从高一、高二、高三这三个年级学生中采用分层抽样的方法,抽取180人进行英语水平测试(已知抽取的高一学生数是抽取的高二学生数、高三学生数的等差中项,且高二年级抽取40人,则该校高三学生人数是,(480,(640 ,(800 ,(960,(若题: 是两个不重合的平面,是两条不重合的直线,现给出下列四个命?若则; ?若,则;?若,则;?若,则(其中正确的命题是,(?? ,(?? ,(?? ,(???,(数列的前100项的和等于,( ,(,( ,(考单招——上高职单招网,(命题甲:函数图象的一条对称轴方程是;命题乙:直线的倾斜角为,则,(甲是乙的充分条件 ,(甲是乙的必要条件,(甲是乙的充要条件 ,(甲是乙的不充分也不必要条件,(如图过抛物线焦点的直线依次交抛物线与圆于A,B,C,D,则=,(4 ,(2 ,(1,(10(函数上一定在区间(,1)上有最小值,则函数在区间(1,,(有最小值 ,(有最大值 ,(是减函数 ,(是增函数考单招——上高职单招网二(填空题:本大题共5小题,每小题4分,共20分,把答案填在题中横线上( 11(设全集为实数集R,若集合集合等于 (,则12(展开式的常数项为(13(如图,已知PA?平面ABCD,四边形ABCD是正方形,且PA=AD,则PB与AC所成的角的大小为(14(将1,2,3,……,9这九个数字填在如图所示考单招——上高职单招网的9个空格中,要求每一行从左到右依次增大,每一列从上到下也依次增大,数字4固定在中心位置时,则所有填空格的方法有种.15(在一张纸上画一个圆,圆心为O,并在圆O外设置一个定点F,折叠纸片使圆周上某一点与F点重合,设这一点为M,抹平纸片得一折痕AB,连MO并延长交AB于P(当点在圆上运动时,则(i)P的轨迹是 ;(ii)直线AB与该轨迹的公共点的个数是(三(解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤(16((本小题满分12分)乒乓球世锦赛决赛,由马琳对王励勤,实行“五局三胜”制进行决赛,在之前比赛中马琳每一局获胜的概率为,决赛第一局王励勤获得了胜利,求: (,)马琳在此情况下获胜的概率;(,)设比赛局数为,求的分布及E(2016江苏高职单招数学试卷篇三:2016年江苏单招数学模拟试题:概率的应用2000份高职单招试题,全部免费提供~2016年江苏单招数学模拟试题:概率的应用【试题内容来自于相关网站和学校提供】育龙单招网,单招也能上大学1:气象台预测本市明天降水概率是95%,对预测的正确理解是( ) A、本市明天将有95%的地区降雨B、本市明天将有95%的时间降雨C、明天出行不带雨具肯定会淋D、明天出行不带雨具很可能会淋雨 2:在区间[0,10]中任意取一个数,则它与4之和大于10的概率是( )A、B、C、D、3:有4条线段,长度分别为1,3,5,7,从这四条线段中任取三条,则所取三条线段能构成一个三角形的概率是( )A、B、C、D、4:一只蚂蚁三边长分别为3,4,5的三角形内爬行,某时刻此蚂蚁距离三角形三个顶点距离均超过1的概率为( )A、B、C、D、5:同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy =4的概率为( ) A、B、C、D、6:图(1)中实线围成的部分是长方体(图2)的平面展开图,其中四边形ABCD是边长为1的正方形。
2016年至2018年江苏省普通高校单独招生文化统考数学试题及答案
2016年至2018年江苏省普通高校单独招生文化统考数学试题及答案江苏省2018年普通高校对口单招文化统考数 学 试卷一、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.设集合M={1,3},N={a+2,5},若M ∩N={3},则a 的值为 A.-1 B.1 C.3 D.52.若实系数一元二次方程02=++n mx x 的一个根为i -1,则另一个根的三角形式为 A.4sin4cosππi + B.)43sin 43(cos2ππi + C.)4sin4(cos2ππi + D.)]4sin()4[cos(2ππ-+-i3.在等差数列{a n }中,若a 3,a 2016是方程0201822=--x x 的两根,则20181a 33∙a的值为A.31B.1C.3D.9 4.已知命题p:(1101)2=(13)10和命题q:A ·1=1(A 为逻辑变量),则下列命题中为真命题的是A.¬pB.p∧qC.p ∨qD.¬p∧q5.用1,2,3,4,5这五个数字,可以组成没有重复数字的三位偶数的个数是 A.18 B.24 C.36 D.486.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AA 1=62,则对角线BD 1与底面ABCD 所成的角是 A.6π B.4π C.3π D.2π 7.题7图是某项工程的网络图。
若最短总工期是13天,则图中x 的最大值为A.1B.2C.3D.48.若过点P (-1,3)和点Q (1,7)的直线1l 与直线2l :05)73(=+-+y m mx 平行,则m的值为A.2B.4C.6D.8 9.设向量a =(θ2cos ,52),b =(4,6),若53)sin(=-θπ,则b a -25的值为 A.53B.3C.4D.5 10.若函数c bx x x f +-=2)(满足)1()1(x f x f -=+,且5)0(=f ,则)(x b f 与)(x c f 的大小关系是A.)(x b f ≤)(x c fB.)(x b f ≥)(x c fC.)(x b f <)(x c fD.)(x b f >)(x c f 二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a =(-1,2,4),b =(3,m,-2),若a ·b =1,则实数m= 。