对称、平移和旋转整理与复习

合集下载

旋转、平移、对称综合复习

旋转、平移、对称综合复习

2011年中考数学复习轴对称、平移与旋转1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.2.垂直且平分线段的直线叫做这条线段的垂直平分线(简称中垂线).3.角平分线上的点到这个角两边的距离相 等.4.线段垂直平分线上的点到这条线段两端的相等.5.轴对称图形中对应点的连线被对称轴垂直平分.6.轴对称图形中对应线段相 等;对应角相 等.7.在平面内,将一个图形沿一个方向移动一定距离,这样的图形运动称为平移.平移不改变图形的形状和大小. 8.在平面内,将一个图形绕一个定点沿某一个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角度称为旋转角度,旋转不改变图形的形状和大小.9.经过平移,对应点的连线平行或共线且相等,对应线段相等且平行,对应角相等.10.经过旋转,图形上的每一个点都绕都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都相等. 任意一对对应点到旋转中心的距离相等.一.选择题 1. (2005年·成都)用两个全等的直角三角形一定能拼出的图( ).A.等腰梯形B.直角梯形C.菱形D.矩形2. (2006年·眉山)数学课上,老师让同学们观察如图17-13所示的图形,问:它绕着圆心O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°。

以上四位同学的回答中,错误的是( )。

A.甲B.乙C.丙D.丁3. (2007年·宜宾)下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中既是轴称图形又是中心对称图形的是( ).4. (2007年·泸州)在同一平面内,用两个边长为a 的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )A .矩形 B.菱形 C.正方形 D.梯形5. (2007年·资阳)已知坐标平面上的机器人接受指令“[a ,A ]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a . 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( ) A. (-1,B. (-1-1)D.(-1)(A ) (B ) (C ) (D )6.(2007年·重庆)在下列各电视台的台标图案中,是轴对称图形的是( )(A ) (B )(C ) (D )二.填空题7. (2006年·泸州)在图17-14的直角坐标系中画出△ABC 关于y 轴对称的△A'B'C' (不写画法),并将点A'的坐标填写在下面的横线上。

【2024版】中考一轮复习《第24讲:图形的平移、对称和旋转》课件

【2024版】中考一轮复习《第24讲:图形的平移、对称和旋转》课件
解析 当点A的对应点为点C时,连接AC,BD,分别作线段AC,BD的
垂直平分线交于点E,如图1所示.∵A点的坐标为(-1,5),B点的坐标为(3,3),∴E点的坐标为(1,1);当点A的对应点为点D时,连接AD,BC,分别作线段AD,BC的垂直
平分线交于点M,如图2所示,∵A点的坐标为(-1,5),B点的坐标为(3,3),∴M点的坐标为(4,4).综上所述:这个旋转中心的坐标为(1,1)或(4,4).
线,其交点即为旋转中心.
2.旋转的性质(1)旋转前、后的图形的形状和大小都没有 发生改变 ;(2)对应点到旋转中心的距离 相等 ,对应线段 相等 ,对应角 相等 ;(3)对应点与旋转中心所连线段的夹角等于 旋转角 .
知识点四 中心对称与中心对称图形
线段③ 相等 ,对应角④ 相等 ,各对应点所连的线段平行(或在同一条直线上)且相等.温馨提示 (1)平移的要素:平移的方向和平移的距离.(2)平移只改变图形的位置,不改变图形的形状和大小
知识点二 轴对称与轴对称图形
轴对称
轴对称图形
定义
把一个图形沿着某一条直线折叠,如果它能够
中心对称
中心对称图形
定义
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这
一点成中心对称,这个点叫做对称中心
把一个图形绕着某一点旋转180°,如果它能与原图形重合,那么这个图形是中心对称图形,
这个点叫做对称中心,这个图形的对应点叫做关于对称中心的对称点
中心对称
中心对称图形
第24讲 图形的对称、平移和旋转
总纲目录
知识点一 平移1.平移的定义:在平面内,把一个图形沿着① 一定的方向 移动一定的距离,这种变换叫做平移. 2.平移的性质(1)通过平移得到的图形与原来的图形是② 全等形 ;(2)在平面内,一个图形经过平移后得到的图形与原来图形的对应

2025年江苏省九年级中考数学一轮复习课件:第7章圆形的变化第3节圆形的对称、平移与旋转

2025年江苏省九年级中考数学一轮复习课件:第7章圆形的变化第3节圆形的对称、平移与旋转
∴四边形 ABEC 为菱形,∴ CE ∥ AB ,
∵ BC = BD = CE ,
∴四边形 CBDE 为菱形,
∴ BD = DE = BE = AB =2,
∴△ EBD 即为所求.
1
2
3
4
5
6
7
8
第4节
考点精研
返回目录
(3)如图3,在平面直角坐标系 xOy 中,点 D , E , G 的坐标分别是(-
点,且 OP =5,点 P 关于直线 AB 、 CD 的对称点分别是 P1和 P2,则 P1 P2的
长度是 5 .

第4题图
第4节
考点梳理
返回目录
图形的平移与旋转
平移
旋转
在平面内,把一个图形绕某一
在平面内,将一个图形沿某
概念
个 方向
移动一定的 距离 ,
这样的图形运动称为平移
图形
个 定点

按某个方向旋转一
C. 80°
D. 85°
1
2
3
4
5
6
7
8
第4节
考点精研
返回目录
5. (2024南通)在△ ABC 中,∠ B =∠ C =α(0°<α<45°),
AH ⊥ BC ,垂足为 H , D 是线段 HC 上的动点(不与点 H , C 重合),将线
段 DH 绕点 D 顺时针旋转2α得到线段 DE . 两位同学经过深入研究,小明发
(13 x -8)+ (13 x -8),
5
5
13
13
52
,则AC'=12 x =12× = .
15
15
5
综上,AC'的长为

《整理与复习——图形的运动》教案

《整理与复习——图形的运动》教案
2.在讲授过程中,我注意到学生对图形运动组合这一部分内容掌握得不够扎实。这提示我在今后的教学中,应加大对这一难点的讲解和练习力度,通过多种形式的练习和实例分析,帮助学生突破这一难关。
3.实践活动环节,学生分组讨论和实验操作的表现给了我很大的惊喜。他们能够将所学知识运用到实际问题中,并提出自己的见解。这说明同学们在探究和合作学习中,能够更好地发挥主观能动性,提高解决(用时5分钟)
同学们,今天我们将要学习的是《整理与复习——图形的运动》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过物体是如何移动的?”比如,你们玩过的滑块游戏,或者机器人跳舞时的动作。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形运动的奥秘。
4.学生小组讨论中,我发现部分学生在表达自己的观点时还不够自信。为了提高学生的自信心和表达能力,我今后应多给予鼓励和支持,创造更多展示和交流的机会。
5.教学过程中,我对学生的反馈进行了及时调整,尽量让每个同学都能跟上教学进度。但我也发现,对于部分学习基础较弱的学生,仍需要个别辅导和关注。因此,在今后的教学中,我要更加关注学生的个体差异,因材施教,提高教学质量。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了图形运动的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对图形运动的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

第十章轴对称平移与旋转复习课课件华东师大版七年级数学下册

第十章轴对称平移与旋转复习课课件华东师大版七年级数学下册

对称图形也是轴对称图形.
三、考点探究
方法总结 4:
(1)中心对称图形和轴对称图形的主要区别在于一个是绕一点旋转,另 一个是沿一条直线对折. (2)这是易错点,也是辨别它们不同的关键.
〖当堂检测〗
4. 下列说法不正确的是( B ) A. 任何一个具有对称中心的四边形都是平行四边形 B. 平行四边形既是轴对称图形,又是中心对称图形 C. 线段、平行四边形、矩形、菱形、正方形都是中心对称图形 D. 正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不止一条.
第十章 轴对称、平移与旋转 复习课
学习导航
学习目标 知识梳理 考点探究 当堂检测 课堂总结
一、学习目标
1.理解图形经过轴对称、平移、旋转后能得到一个与原图形全等 的图形; 2.会画简单图形经过轴对称、平移、旋转后的图形; 3.会用轴对称、平移、旋转、全等的性质解决简单的数学问题.
二、知识梳理
知识点一:轴对称 1. 轴对称图形:把一个图形沿某条直线对折,对折后两部分能完全重合, 这个图形就是轴对称图形,这条直线即为这个图形的对称轴;
考点四 旋转的概念及性质的应用
例 4:如图,将 △AOB 绕点 O 按逆时针方向旋转 60°后得到△COD,若
∠AOB = 15°,则∠AOD的度数是(C )
D C
A. 15 °
B. 60 °
C. 45 ° D. 75 °
分析:抓住旋转前后图形的角度不变,再找出旋转角即可; O 解:已知 △COD 是由 △AOB 旋转得来,且 ∠AOB = 15°;
角的大小不变,变换前后两个图像是全等图形
全等多边形
全等多边形对应边、角分别相等;反之,可做判定.
A. 点A
B. 点B C. 点C D. 点D

九年级数学中考知识点归纳复习 第24讲 平移、对称、旋转与位似 视图和投影

九年级数学中考知识点归纳复习 第24讲  平移、对称、旋转与位似 视图和投影
图形关于原点成位似变换
在平面直角坐标系内,如果两个图形的位似中心为原点,相似比为k,那么这两个位似图形对应点的坐标的比等于k或-k.
视图与投影
二、知识清单梳理
知识点一:三视图内容
关键点拨
1.三视图
主视图:从正面看到的图形.
俯视图:从上面看到的图形.
左视图:从左面看到的图形.
例:长方体的主视图与俯视图如图所示,则这个长方体的体积是36 .
4.图形的中心对称
(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.
(2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.
2.三视图的对应关系
(1)长对正:主视图与俯视图的长相等,且相互对正;
(2)高平齐:主视图与左视图的高相等,且相互平齐;
(3)宽相等:俯视图与左视图的宽相等,且相互平行.
3.常见几何体的三视图常见几何体的三视图
正方体:正方体的三视图都是正方形.
圆柱:圆柱的三视图有两个是矩形,另一个是圆.
圆锥:圆锥的三视图中有两个是三角形,另一个是圆.
第七单元图形与变换
第24讲平移、对称、旋转与位似视图和投影
一、知识清单梳理
知ห้องสมุดไป่ตู้点一:图形变换
关键点拨与对应举例
1.图形的轴对称
(1)定义:①轴对称:把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就称这两个图形关于这条直线对称.
②轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.

中考数学旋转平移轴对称中和复习

中考数学旋转平移轴对称中和复习

第五章图形与变换本章思维导图考点精要解析考点一:平移变换1.平移是指图形按照一定的方向从一个位置平移到另一个位置,平移后所得图形与原图形的形状、大小都没有发生变化.2.平移变换的性质(1)平移后,对应线段平行(或在同一直线上)且相等,对应角相等.(2)平移后,对应点所连的线段平行(或在同一直线上)且相等.考点二:旋转变换1.旋转是指图形绕着某一个点按一定的旋转方向旋转一定的角度,旋转后所得图形与原来的图形的形状、大小都没有发生变化.中心对称变换是旋转180°的特殊旋转变换.2.旋转变换的基本性质①旋转变换的对应点到旋转中心的距离相等.②旋转前后两图形的对应线段和对应角分别相等.③对应边所夹的角等于旋转角.考点三:轴对称变换1.轴对称是指将一个图形沿着某条直线翻折180°与另一个图形完全重合,则这两个图形关于这条直线成轴对称,这条直线是对称轴.2.轴对称、轴对称图形的性质(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(3)对应边所在直线交于对称轴.注:成轴对称的两个图形一定全等,全等的图形不一定成轴对称.高频考点过关考点一:平移变换例题1.如下左图所示,将△ABC沿着XY方向平移一定的距离就得到△MNL,则下列结论中正确的有()个.①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNLA.1B.2C.3D.4答案:B例题2.如下右图所示,线段AB=CD,AB与CD相交于点O,且∠AOC=60°,CE是由AB平移得到的,则AC+BD与AB的大小关系是 .答案:AC+BD AB提示:连接DE,可证四边形ACEB是平行四边形,△CED是等边三角形.在△EBD中,根据三边关系得证,当AC∥BD时,取“=”号.考点二:平移变换例题3.如右图所示,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC 内不同于O的另一点;△A1BO1,△A1BP1分别由△AOB,△APB旋转而得,旋转角都为60°,则下列结论:①△O1BO为等边三角形,且A1,O1,O,C在一条直线上.②A1O1+O1O=AO+BO.③A1P1+PP1=PA+PB.④PA+PB+PC>OA+OB+OC.其中正确的有(填序号).答案:①②③④提示:连接O1O,P1P,此题通过旋转60°得到△OBO1,△P1PB是等边三角形,然后利用等边三角形的性质转化线段.考点三:轴对称变换例题4.如右图所示,AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C/落在的位置上,连接BC/,则BC/的长为()A.1B.3C.2D.23答案:C例题5.如右图所示,在平面直角坐标系中,A,B两点的坐标分别为A(2,-3),B(4,-1).(1)若P(p,0)是x轴上的一个动点,则当p= 时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a= 时,四边形ABCD的周长最短;(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0),N(0,n),使四边形ABMN的周长最短?若存在,请求出m= ,n= (不必写解答过程);若不存在,请说明理由.答案:(1)72;[提示]作点B关于x轴的对称点B/,连接AB/交x轴于点P,则点P即为所求,易求直线AB/的解析式为y=2x-7,所以点P的坐标为(72,0).(2)54;[提示]将点A向右平移3个单位得到点A1,其坐标为(5,-3).作点A1关于x轴的对称点A2,其坐标为(5,3),连接A2B交x轴于点D,将点D 向左平移3个单位得到点C .易求直线A 2B 的解析式为y =4x -17,所以点D 的坐标为(174,0),则点C 的坐标为(54,0). (3)存在使四边形ABMN 周长最短的点M 、N ,m =52,n =53-. 中考真题链接真题1.(鄂州中考) 如下左图所示,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB =230.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB 的值为( )A .6B .8C .10D .12真题2.(济宁中考) 如下右图所示,在平面直角坐标系中,点A ,B 的坐标分别为(1,4)和(3,0),点C 是y 轴上一个动点,且A ,B ,C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(0,3)真题3.(苏州中考) 如下左图所示,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为( ) A .132 B .312 C .3192+ D .27 真题4.(南京中考) 如下右图所示,在菱形ABCD 中,∠A =60°,将纸片折叠,点A ,D 分别落在点A ′、D ′处,且A ′D ′经过点B ,EF 为折叠,当D ′F ⊥CD 时,CF DF 的值为( ) A . B . C .D .真题5.(葫芦岛中考)两个形状和大小完全一样的梯形纸片如图(a )摆放,将梯形纸片ABCD沿上底AD 方向向右平移得到图(b ).已知AD =4,BC =8,若阴影部分的面积是四边形A ′B ′CD 的面积的13,则图(b )中平移距离A ′A =________.xyOABC真题6.(南京中考)如下左图所示,将矩形ABCD绕点A顺时针旋转到矩形A’B’C’D’的位置,旋转角为α (0︒<α<90︒).若∠1=110︒,则α= .真题7.(烟台中考) 如下右图所示,在△ABC中,AB=AC,BAC=54°,∠BAC的平分线与AB 的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.真题8.(安徽中考) 如下图所示,已知A(-3,-3),B(-2,-1),C(-1,-2)是平面直角坐标系上三点.(1)请画出△ABC关于原点O对称的△A1B1C1.(2)请写出点B关于y轴对称点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1的内部,指出h的取值范围.真题9.(义乌中考)如图(a)所示,小明将一张矩形纸片沿对角线剪开,得到两种三角形纸片(如图(b)所示),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图(c)的形状,但点B,C,F,D在同一条直线上,且点C与点F重合(在图(c)至图(f)中统一用F表示)(a)(b)(c)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图(c)中的△ABF沿BD向右平移到图(d)的位置,使点B与点F重合,请你求出平移的距离;AB CDB’1C’D’(2)将图(c)中的△ABF绕点F顺时针方向旋转30°到图(e)的位置,A1F交DE 于点G,请你求出线段FG的长度;(3)将图(c)中的△ABF沿直线AF翻折到图(f)的位置,AB1交DE于点H,请证明:AH﹦DH.(d)(e)(f)真题10.(娄底中考)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按图按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.真题11. (潍坊中考)如图(a)所示,将一个边长为2的正方形ABCD和一个长为2,宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF,现将小长方形CEFD绕点C顺时针旋转至CE'F'D',旋转角为α.⑴当点D'恰好落在EF边上时,求旋转角α的值;⑵如图(b)所示,G为BC的中点,且0°<α<90°,求证:G D'= E'D;⑶小长方形CEFD绕点C顺时针旋转一周的过程中,△DC D'与△CB D'能否全等?若能,直接写出旋转角α的值;若不能,说明理由.真题12. (北京中考)如右图所示,已知△ABC,⑴请你在BC边上分别取两点D、E(BC的中点除外),连接AD,AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;⑵请你根据使⑴成立的相应条件,证明AB+AC>AD+AE.真题13. (日照中考改编)如图(a )所示,点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小.我们可以作出点B 关于l 的对称点B ',连接AB '与直线l 交于点C ,则点C 即为所求.⑴实践运用如图(b )所示,已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,点B为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为_________.⑵知识拓展如图(c )所示,在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 与点D ,E 、F 分别是线段AD 和AB 上的动点,求BE+EF 的最小值,并写出解答过程. ⑶如图(d )所示,点P 是四边形ABCD 内一点,分别在边AB 、BC 上作出点M 、N ,使PM+PN+MN 的值最小,保留作图痕迹,不写作法.创训练新思维创新 1. 将两块含30°角且大小相同的直角三角形如图(a )所示.⑴将图(a )中的△A 1B 1C 绕点C 顺时针旋转45°得到图(b ),点P 1是A 1 C 与AB的交点.求证:112CP AP . ⑵将图(b )中的△A 1B 1C 绕点C 顺时针旋转15°得到△A 2B 2C ,如图(c ),点P 2是A 2C 与AB 的交点,直接写出直线A 1B 1与直线A 2B 2所夹的角的度数.⑶在⑵的条件下,写出线段CP 1与P 1P 2之间的数量关系,并证明你的结论.创新2. 在Rt△ABC中,∠ACB=90°,点P在△ABC的内部.⑴如图(a)所示,若∠BAC=30°,AP=4,点D、E分别在AB、AC边上,则△PDE 周长的最小值为______________;此时∠DPE=______________.⑵如图(b)所示,若∠BAC=45°,AP=4,点D、E分别在AB、AC边上,则△PDE 周长的最小值为______________;此时∠DPE=______________.⑶如图(c)所示,若∠BAC=α,AP=4,点D、E分别在AB、AC边上,求△PDE 周长的最小值及此时∠DPE的度数.⑷如图(d)所示,若PA=a,PB=b,PC=c,∠BAC=α,且c=bcosα=asinα,直接写出∠APB的度数.。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

初中数学图形的平移,对称与旋转的知识点总复习附解析

初中数学图形的平移,对称与旋转的知识点总复习附解析

初中数学图形的平移,对称与旋转的知识点总复习附解析一、选择题1.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P (-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A .【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.4.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )A .(5,3)B .(﹣1,﹣2)C .(﹣1,﹣1)D .(0,﹣1)【答案】C【解析】【分析】根据点A 、点A 的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】∵A (1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B (2,1)的对应点的坐标为(﹣1,﹣1),故选C .【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.5.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.6.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣7b -,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( ) A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b =0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.在下列图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .【答案】A【解析】【分析】 根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、既是轴对称图形,又是中心对称图形,故本选项正确;B 、是轴对称图形,不是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项错误;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°【答案】C【解析】【分析】 根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.11.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.12.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.13.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三AOB角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形【答案】D【解析】【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D.【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=22=5,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.16.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO -∠CAO=90°.在等腰Rt △ABC 中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .17.如图,平面直角坐标系中,已知点B (3,2)-,若将△ABO 绕点O 沿顺时针方向旋转90°后得到△A 1B 1O ,则点B 的对应点B 1的坐标是( )A .(3,1)B .(3,2)C .(1,3)D .(2,3)【答案】D【解析】【分析】 根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B 1的坐标即可.【详解】解:△A 1B 1O 如图所示,点B 1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.18.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A.10B.22C.3D.25【答案】B【解析】【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC,即可证得AE∥BC,得出2142EF AF AEFB FC BC====,即可求出BE.【详解】延长BE和CA交于点F∵ABC∆绕点A逆时针旋转90︒得到△AED ∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.19.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C 选项正确;故选D.20.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.。

“图形的轴对称、平移和旋转”中考专题复习教学设计

“图形的轴对称、平移和旋转”中考专题复习教学设计

收稿日期:2021-01-16作者简介:曹自由(1979—),男,高级教师,主要从事中学数学教育研究.“图形的轴对称、平移和旋转”中考专题复习教学设计曹自由摘要:图形的变化是发展空间观念的内容抓手,也是研究图形的基本方法,是发现和构造不变量和不变关系的重要途径.学生在新授课阶段分别学习了轴对称、平移和旋转,在中考第二轮复习中需要建立它们之间的关联,进行整体复习.通过四个课时的复习教学,分别引导学生感受运动变化、理解运动变化、运用运动变化、整合运动变化,有效发展学生的空间观念、几何直观和推理能力.文章将第1课时设计整理成文,以供研讨.关键词:图形的变化;中考复习;教学设计一、内容和内容解析1.内容图形的变化(轴对称、平移、旋转).2.内容解析初中阶段学习的几何图形的变化包括轴对称、平移、旋转和相似(位似)的概念、性质和应用.本节课复习的内容是图形的全等变换——轴对称、平移和旋转.图形的全等变换可以看作是图形的刚体运动,用全等变换的思想研究图形的性质和关系是“图形与几何”领域重要的学习内容.在义务教育阶段,图形之间最重要的关系就是全等,全等可以用图形重合的方式直观获得,而“图形重合”需要通过图形的运动来实现,这种运动就是图形的轴对称、平移和旋转.图形的变化是理解图形空间结构的基本方法,也是空间观念的核心要素.抽象轴对称、平移和旋转的基本性质,用逻辑的方法理解图形的全等变换是从定性到定量研究图形的变化的桥梁.从小学直观认识图形的轴对称、平移和旋转到初中的逻辑研究、坐标表示再到后续的矩阵表示,是图形的全等变换的定性到定量发展的三个重要阶段.基于以上分析,确定本节课的教学重点是:建立三种图形的变化相关知识的逻辑体系,并用图形变化的观点认识几何图形.二、目标和目标解析1.目标(1)理解轴对称、平移、旋转之间的联系,加深对运动变化的认识,落实画图和识图的能力,渗透几何直观能力.(2)在问题探究的过程中,逐步形成用图形的变化思考、解决问题的意识,渗透图形变化思想.2.目标解析达成目标(1)的标志:能够从运动变化的角度描述两个已知图形之间的关系,能够根据图形变化(轴对称、平移、旋转)的概念和性质画出运动变化后的图形,通过梳理建立三种变化相关知识的逻辑体系.达成目标(2)的标志:能够以运动的视角观察图形,用变化的思想分析图形特征.三、教学问题诊断分析近几年北京中考试卷中的几何综合题都考查了图形的变化的相关内容,并且不是单一的,而是从一种变化到另一种变化的综合考查.但是学生学习时,知识是零散的、分割开的,先学习了平移,然后是轴对称和旋转,没有形成三种变化相关知识的逻辑体系.同时,图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.基于以上分析,可以确定本节课的教学难点是:三种图形的变化之间的转化.四、教学过程设计1.课前学习题目如图1,在平面直角坐标系xOy中,△AOB 可以看作是△OCD经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OCD得到△AOB 的过程:.图1思考问题:什么是轴对称、平移、旋转?它们各有什么性质?它们之间有什么联系?【设计意图】此题为2017年中考北京卷第15题,学生在课前复习轴对称、平移、旋转的相关知识,关注知识的形成过程及知识之间的内在联系,在应用中不断深化认识.通过解决中考试题回顾思考涉及的知识和思想方法,进一步提升能力.2.交流梳理环节1:交流课前学习成果.(1)平移:如图2,平移前后的两个图形全等(从图形形状、大小关系来看);对应线段平行且相等,两对应点连线互相平行(共线)且相等(从图形位置变化来看).图2CC′BAA′B′(2)轴对称:如图3,关于某直线对称的两个图形全等(从图形形状、大小关系来看);对应线段相等,两个图形关于某直线对称,那么对称轴是任意一对对应点所连线段的垂直平分线(从图形位置变化来看).图3B′A′ABCNMC′(3)旋转:如图4,旋转前后的两个图形全等(从图形形状、大小关系来看);每两对对应点连线所形成的角都等于旋转角(从图形位置变化来看);对应点到旋转中心的距离相等(从图形位置变化来看).BCAA′C′(1)OB′ABCC′A′(2)图4(4)轴对称、平移、旋转三者的关系:如图5,两条对称轴平行的轴对称复合⇔一次平移;两条对称轴相交的轴对称复合⇔一次旋转.2(3)2(1)2(2)图5轴对称在三种变化中起到桥梁作用,轴对称与另外两种全等变换在地位上是有区别的,它是更加基础的一种变化,所有平移、旋转都可以用轴对称变化来解释.【设计意图】学生先回答思考问题,借此梳理三种变化的性质,明确各自的画图方法及依据,明确三种变化之间的关系.环节2:问题引导深入思考.思考:只用一种变化可不可以操作?如何操作?用两种变化如何操作?哪种方法容易快速想到?为什么?【设计意图】课上让学生先交流自己的结果.而学生在交流结果时一定是无序的,这时教师可以引导学生进行有序思考.问题1:对于题目,只用两种变化有哪些方法?学生活动:交流使用两种变化的情况.(1)旋转+平移.思路1:将△COD绕点C顺时针旋转90°后,再向左平移两个单位得到△AOB.思路2:将△COD绕点O顺时针旋转90°后,再向上平移两个单位得到△AOB.思路3:将△COD向左平移两个单位后,再绕点C 顺时针旋转90°得到△AOB.思路4:将△COD向上平移两个单位后,再绕点A 顺时针旋转90°得到△AOB.(2)旋转+轴对称.思路5:将△COD先关于x轴对称,再以点C为旋转中心顺时针旋转90°,再作关于直线x=1的对称得到△AOB.追问:采用“平移+轴对称”的方式可以吗?归纳:对应顶点排列的顺序一致——旋转;与目标图形的方向一致——平移.问题2:用一种变化有哪些方法?追问:两个全等的三角形通过某种运动方式一定能重合吗?若能重合,如何运动?归纳:对应顶点排列顺序一致,经过一次旋转能重合.学生活动:对于题目,展示只通过旋转或只通过轴对称完成任务的方法,并说明自己的画图方法和画图依据.方法1:(旋转)根据旋转的性质,确定旋转中心、旋转方向和旋转角.思路6:将△COD绕点()1,1顺时针旋转90°得到△AOB.思路7:将△COD先绕点()1,-1逆时针旋转90°后,再绕点O旋转180°得到△AOB.方法2:(轴对称)两条对称轴相交的轴对称复合⇔一次旋转.思路8:先将△COD沿直线x=1对称后,再沿直线y=x对称得到△AOB.思路9:先将△COD沿直线y=1对称后,再沿直线y=-x+2对称得到△AOB.【设计意图】题目难度不大,且学生具备直接识别运动变化的能力,但是学生自己描述运动变化的经验还是比较少的,而且运动的方式是不唯一的,给出运动前后的图形,描述运动变化要素,这对学生的要求实际上是提高了很多的.因此,要关注这三种运动变化之间的联系,通过这个过程深化学生对于运动变化的认识.3.变式练习变式1:如图6,在正方形ABCD中,点E,F分别是BC,CD的中点,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(平移、轴对称、旋转)得到△BCF?图6B E CFDA图7B E CDA变式2:如图7,在等边三角形ABC中,AD=BE,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(轴对称、平移、旋转)得到△CAD?学生活动:展示所画图形的变化过程,并用语言描述这个过程.学生可能想到如下情况.(1)旋转+平移(如图8和图9).D图8图9(2)两次轴对称(如图10).图10(3)一次旋转(如图11).图11【设计意图】将任务探究的思维过程结构化,形成解决问题的方法思路.同时渗透用运动变化的眼光观察图形的思想方法.满足特定条件下的图形的变化可能有多种情况,培养思维的有序性、多样性.4.归纳与提升总结、归纳本节课的教学流程如图12所示.运动的眼光,变换的思想ìíîïï图形的平移图形的轴对称图形的旋转图12【设计意图】归纳方法、提升能力,形成用运动的眼光、变换的思想看待两个图形之间的关系的能力,渗透运动变换思想.5.布置作业(1)如图13,在平面直角坐标系xOy中,△O′A′B′可以看作是△OAB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OAB得到△O′A′B′的过程:.图13(2)如图14,在平面直角坐标系xOy中,点A,B的坐标分别为A()-4,1,B()-1,3,经过两次变化(平移、轴对称、旋转)得到对应点A″,B″的坐标分别为A″()1,0,B″()3,-3,则由线段AB得到线段A′B′的过程是:,由线段A′B′得到线段A″B″的过程是:.图14(3)如图15,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由线段AB得到线段A′B′的过程:.图16图15ABA′B′(4)如图16,在平面直角坐标系xOy中,△ABC可以看作△DEF是经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△DEF得到△ABC的过程:.五、教学反思本节课是“图形的轴对称、平移和旋转”中考第二轮专题复习课,内容属于“图形的变化”.希望通过一系列数学活动,帮助学生在已有知识基础上对图形变换思想进行相应的概括和应用.同时,在落实“四基”、培养“四能”的过程中,促进学生数学学科核心素养的形成和发展.1.感受运动变化,建立逻辑体系学生通过亲身经历课前的数学操作活动后,体验的水平停留在“感觉”阶段,还没有对活动过程进行深入的思考,没有深刻认识到三种全等变换之间内在的逻辑关系.在此基础上,学生在课堂上通过交流及反思性观察将获得的体验进行抽象,梳理三种全等变换各自的性质及它们之间的联系,形成解决该类问题的一般思维模式.图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.在关注联系的基础上,通过问题引导,使学生能够进行知识的归纳梳理,并能够主动利用经验的迁移去研究其他问题.通过本节课的教学,进一步帮助学生感受运动变化,学会以运动变化的视角分析图形,也为后续进一步主动运用图形变化视角认识几何图形,运用图形变换思想解决综合性问题奠定基础. 2.培养思维的有序性、多样性满足特定条件下的图形的变化可能有多种情况,开放性问题有助于学生体验解决问题方法的多样性.与此同时,通过增加限定条件,从两种图形变化的组合,到只用一种图形变化,将任务探究的思维过程结构化,形成解决问题的方法思路.同时,渗透用运动变化的眼光观察图形的思想方法.本节课的教学目标定位在落实画图和识图能力,渗透几何直观能力,理解轴对称、平移、旋转之间的联系,加深对运动变化的认识;在问题探究的过程中,逐步形成用图形的变化视角思考解决问题的意识,渗透图形变化思想.在实际授课过程中,知识与技能落实得比较到位,而思想性体现不够充分,还需要深入研究,在思想性上多做文章.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]教育部基础教育课程教材专家工作委员会.《义务教育数学课程标准(2011年版)》解读[M].北京:北京师范大学出版社,2012.[3]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[4]任华中,傅海伦,邵亚娜.初中数学基本活动经验的教学目标层次划分[J].中国数学教育(初中版),2018(6):30-32.。

华师大版七下数学第10章轴对称、平移与旋转小结与复习说课稿

华师大版七下数学第10章轴对称、平移与旋转小结与复习说课稿

华师大版七下数学第10章轴对称、平移与旋转小结与复习说课稿一. 教材分析华师大版七下数学第10章是关于“轴对称、平移与旋转”的内容。

这一章节主要让学生了解和掌握轴对称、平移与旋转的性质和应用。

在本章中,学生将学习到如何判断一个图形是否轴对称,如何进行轴对称变换,如何判断一个图形是否平移或旋转,以及如何进行平移和旋转变换。

这些知识不仅有助于提高学生的几何思维能力,还能为学生日后的数学学习打下坚实的基础。

二. 学情分析在进入本章学习之前,学生已经学习了平面几何的基本概念和性质,对图形的认识有一定的基础。

但是,对于轴对称、平移与旋转的理解和应用,学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的讲解和辅导。

三. 说教学目标1.知识与技能目标:使学生了解轴对称、平移与旋转的定义和性质,能够运用这些知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生直观表达能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神。

四. 说教学重难点1.教学重点:轴对称、平移与旋转的定义和性质,以及它们的实际应用。

2.教学难点:如何判断一个图形是否轴对称,如何进行轴对称变换,如何判断一个图形是否平移或旋转,以及如何进行平移和旋转变换。

五. 说教学方法与手段1.教学方法:采用问题驱动、案例分析、合作探究等教学方法,引导学生主动参与学习,提高学生的实践能力和创新能力。

2.教学手段:利用多媒体课件、几何画板等教学辅助工具,直观展示图形的轴对称、平移与旋转变换,增强学生的直观感受。

六. 说教学过程1.导入新课:通过生活中的实例,引入轴对称、平移与旋转的概念,激发学生的学习兴趣。

2.自主学习:学生自主探究轴对称、平移与旋转的性质,总结规律。

3.合作交流:学生分组讨论,分享学习心得,互相解答疑惑。

4.案例分析:教师呈现典型例题,引导学生运用轴对称、平移与旋转的知识解决问题。

中考总复习29——图形的轴对称、平移和旋转

中考总复习29——图形的轴对称、平移和旋转

中考复习29——图形的轴对称、平移和旋转考点复习1.轴对称、轴对称图形(1)轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么称这两个图形成轴对称.两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.(2)轴对称图形:如果一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线称为对称轴.对称轴一定为直线.(3)轴对称图形变换的特征:不改变图形的和,只改变图形的.新旧图形具有对称性.2.中心对称、中心对称图形(1)中心对称:把一个图形绕着某一点旋转,如果它能与另一个图形,那么这两个图形成中心对称,该点叫做对称中心.(2)中心对称图形:一个图形绕着某一点旋转后能与自身,这个图形叫做中心对称图形,该点叫做对称中心.3.图形的平移(1)定义:在平面内,将某个图形沿某个移动一定的,这样的图形运动称为平移.(2)特征:①平移后,对应线段相等且平行,对应点所连的线段且.②平移后,对应角且对应角的两边分别平行,方向相同.③平移不改变图形的和,只改变图形的位置,平移后新旧两图形全等.4.图形的旋转(1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.(2)特征:图形旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同角度;注意每对对应点与旋转中心的连线所成的角度都是旋转角,旋转角都;对应点到旋转中心的距离.图形的对称1.(2020呼和浩特)下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是( )2.(2020天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )3.(2020湘潭)下列图形中,不是中心对称图形的是( )4.(2020遂宁)下列图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.正五边形5.(2020绥化)下列图形是轴对称图形而不是中心对称图形的是( )6.(2020烟台)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( )A.12B.920C.25D.13图形的平移7.(2020泸州)在平面直角坐标系中,将点A(-2,3)向右平移4个单位长度,得到的对应点A'的坐标为( )A.(2,7)B.(-6,3)C.(2,3)D.(-2,-1)8.(2020台州)如图,把△ABC先向右平移3个单位长度,再向上平移2个单位长度得到△DEF,则顶点C(0,-1)对应点的坐标为( )A.(0,0)B.(1,2)C.(1,3)D.(3,1)9.(2020青海)如图,将周长为8的△ABC沿BC边向右平移2个单位长度,得到△DEF,则四边形ABFD的周长为_______.图形的旋转10.(2020南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限11.(2020天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是( )A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF12.(2020潮州模拟)如图,在Rt△ABC中,∠ACB=90°,∠CAB=30°,将△ABC绕点A顺时针旋转一定的角度得到△ADE,点B,C的对应点分别是D,E.当点E恰好在AB上时,则∠BDE的度数为___________ .13.(2020孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF 的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为( )A.54B.154C.4D.92广东中考14.(2018广东)下列图形中,不是轴对称图形的是( )15.(2015广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )16.(2016广东)下列所述图形中,是中心对称图形的是( )A.直角三角形B.平行四边形C.正五边形D.正三角形17.(2017广东)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆18.(2018广东)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形19.(2019广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )20.(2016广州)如图,在△ABC中,AB=AC,BC=12 cm,点D在AC上,DC=4 cm.将线段DC沿着CB 的方向平移7 cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为______cm.21.(2018广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,则四边形ACE'E的形状是________ .22.(2014广东)如图,△ABC绕点A顺时针旋转45°得到△A'B'C',若∠BAC=90°,AB=AC=√2,则图中阴影部分的面积等于.23.(2016广东)如图,在矩形ABCD中,对角线AC=2√3,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B'处,则AB=.24.(2017广州)如图,E,F分别是▱ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD 沿EF翻折,得到EFC'D',ED'交BC于点G,则△GEF的周长为( )A.6B.12C.18D.2425.(2017广东)如图①,在矩形纸片ABCD中,AB=5,BC=3,先按图②操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图③操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A,H两点间的距离为.26.(2020广东)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为( )A.1B.√2C.√3D.227.(2020广州)如图,在正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD于点E,F,若AE=4,则EF·ED的值为____________ .。

第二单元图案美-对称、平移与旋转回顾整理(教案)-五年级上册数学青岛版

第二单元图案美-对称、平移与旋转回顾整理(教案)-五年级上册数学青岛版

教案:第二单元图案美-对称、平移与旋转回顾整理一、教学目标1. 让学生理解对称、平移与旋转的概念,掌握它们的性质和特点。

2. 培养学生运用对称、平移与旋转进行图案设计和创新的能力。

3. 培养学生欣赏数学美,提高他们的审美情趣。

二、教学内容1. 对称的概念、性质和特点2. 平移的概念、性质和特点3. 旋转的概念、性质和特点4. 对称、平移与旋转在实际生活中的应用三、教学重点与难点1. 教学重点:对称、平移与旋转的概念、性质和特点。

2. 教学难点:运用对称、平移与旋转进行图案设计和创新。

四、教学过程1. 导入新课- 通过展示一些美丽的图案,引导学生发现图案中的对称、平移与旋转元素,激发他们的学习兴趣。

- 提问:你们知道这些图案中的美是如何产生的吗?它们有什么共同的特点?2. 讲解对称、平移与旋转的概念、性质和特点- 对称:讲解对称轴的概念,引导学生找出图案中的对称轴,并说明对称轴两侧的图形是完全相同的。

- 平移:讲解平移的概念,引导学生观察图案中的平移现象,并说明平移不改变图形的形状和大小。

- 旋转:讲解旋转的概念,引导学生观察图案中的旋转现象,并说明旋转不改变图形的形状和大小。

3. 练习与应用- 让学生动手操作,设计自己的图案,要求包含对称、平移与旋转元素。

- 学生互相展示作品,互相评价,教师给予点评和指导。

4. 总结与拓展- 让学生总结对称、平移与旋转的概念、性质和特点。

- 提问:你们还能想到哪些生活中的对称、平移与旋转现象?- 拓展:介绍一些对称、平移与旋转在实际生活中的应用,如建筑、艺术、科学等。

五、课后作业1. 完成课后练习题,巩固对称、平移与旋转的概念、性质和特点。

2. 观察生活中的对称、平移与旋转现象,记录下来,下节课分享。

六、教学反思通过本节课的教学,让学生掌握了对称、平移与旋转的概念、性质和特点,并能运用它们进行图案设计和创新。

在教学过程中,要注意引导学生的观察和思考,培养他们的审美情趣和创新能力。

第六单元 平移、旋转和轴对称(复习课件)三年级数学上册期末核心考点(苏教版)

第六单元 平移、旋转和轴对称(复习课件)三年级数学上册期末核心考点(苏教版)

有4条对称轴,
有无数条对称轴。
故选:D。
考点精讲练
考点02
确定轴对称图形的对称轴条数及位置
【真题强化】(2023秋•岷县期中)如图所示是轴对称图形的有( )个.
A.1
B.2
C.3
D.4
点拨:根据轴对称图形的概念:一个图形沿某条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,由此对各图形 分析判断后即可求解.
)运动后可变成图形B。
点拨:根据图形的旋转和平移知识,图形A经过绕Q点顺时针旋转90°,再向下平移2格运动后可变成图形B,据此解答即可。
解:图形A经过绕Q点顺时针旋转90°,再向下平移2格运动后可变成图形B。 故选:B。
考点精讲练
考点10 作旋转一定角度后的图形
【真题强化】(2023秋•庆云县期中)按要求画一画。 ①画出梯形绕A点顺时针旋转90°后的图形。 ②把平行四边形向右平移6格,画出平移后的图形。 ③把如图所示图形补全,使它成为一个轴对称图形。
解:如图,图形甲先向右平移3格,再向下平移3格才能将最下面一行填满。 故选:C。
考点精讲练
考点07 平移的概念
【真题强化】(2023春•吉利区期末)如图,由图A到图B是向
平移了
格,由图B到图C是向
平移了
格.
点拨:根据图中两图的相对距离及箭头指向即可确定平移的方向和距离,所以图A到图B是向 右平移了 6格,由图B到图C是向 下平移了 2格;由此解答即可.
点拨:确定平移后图形的基本要素有两个:平移方向、平移距离,结合题意分析分析解答即可。
解:图一中左侧的图形先向下平移2格,再向右平移3格就得到右侧的图形。图二中左侧的图形先向上平移3格,再向右平移 3格就得到右侧的图形。 故答案为:下,2,右,3,上,3,右,3。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称、平移和旋转整理复习
[教学内容]《义务教育教科书·数学(五年级上册)》120页。

[教学目标]
1.结合具体生活情景,进一步感知、理解对称、平移与旋转现象,并能准确判断图形的平移和旋转现象。

2.通过观察、分类、对比,进一步理解物体的对称、平移和旋转的变换特征;并熟练在方格纸上画出变化后的图形。

3.学生自己动手设计图案,培养学生的实践能力、创造能力和审美能力。

4.通过丰富的旋转、平移、对称的感性资料,激发学生学习数学的兴趣,感受到生活与数学的密切关系,在合作学习过程中体验成功的喜悦。

[教学重点]理解物体的对称、平移和旋转的变换特征。

[教学难点]能准确判断对称、平移和旋转现象,在方格纸上画出变化后的图形。

[教学准备]
教具:多媒体课件、三角板;学具:方格纸、三角板。

[教学过程]
一、创设情境,导入课题
师:同学们,这节课我们来回顾整理在第二单元学习的有关对称、平移和旋转的知识。

板书:对称、平移、旋转的整理与复习。

二、知识回顾,形成网络
(一)交流完善
师:想一想,关于平移、对称和旋转的知识你都知道哪些?在小组内交流,互相补充,共同整理对称、平移和旋转的特征。

预设1:将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫轴对称图形,这条直线就是这个图形的对称轴。

预设2:图形或物体沿水平(或竖直)方向运动,这种现象就是平移。

预设3:物体或图形绕一中心点转动,这种现象就是旋转。

旋转分为顺时针旋转和逆时针旋转两种。

(二)解决问题
课件出示图片。

(见图1)
同学们仔细观察图画,从图中你能找出哪些
对称、平移和旋转的现象?
学生认真观察图画,从中找出对称、平移和
旋转的现象。

学生班内汇报:
①升降机、电动门、酒瓶是平移现象。

②汽车轮胎、电动门轮、排气扇、吊扇是旋转现象。

③车间前墙设计是对称现象。

……
师:我们根据学过的知识能准确找出生活中的对称、平移和旋转的现象,你能说一说你是怎样判断对称、平移和旋转的现象的吗?
(三)总结提升
师:想一想,图形的对称、平移和旋转有什么不同?把你的想法说给小组同学听听。

学生组间交流。

师:平移不改变图形的形状、大小和方向;旋转不改变图形的形状和大小,对应点到旋转中心的距离相等;轴对称后的图形形状发生了改变。

【设计意图】学生在自主整理、合作交流、解决实际问题的过程中,积累了归纳整理解决实际问题的基本经验,构建了完整的知识体系。

三、巩固练习,深化网络
师:我们对对称、平移和旋转几种现象的特征有了进一步的理解后,你能利用它们的特征解决下面的问题吗?
1.基本练习。

③④⑤
师:仔细观察图形,先判断每个图形是不是轴对称图形?是轴对称图形的画出对称轴,看一看每个对称图形能画几条对称轴?
(2)火眼金睛辩对错。

①每个图形都有它的对称轴。

()
②我在镜子前伸出右手,镜中的我也伸出右手。

()
③长方形是轴对称图形。

()
(3)选择。

(把正确答案的序号填在括号里)
①下列不属于旋转现象的是()。

A 风车的转动
B 不小心将书掉在地上
C 转动方向盘
②跑动的汽车轮子是属于()现象。

A.平移
B.旋转
C.对称
③在下列图形中,()不是轴对称图形。

A.任意梯形
B.长方形
C.圆
【设计意图】让学生判断生活中的平移、旋转现象,经历观察、对比的思维过程,更深刻的认识平移和旋转的运动特点,感受平移和旋转现象在生活中无处不在,加深学生对数学来源于生活的认识。

2.综合练习。

(1)课件出示下图:
师:右图中图①是如何变换得到图②的?用彩笔画出图
②向下平移一格,再向左平移4格后的图形③。

(2)按要求画图。

师:画出轴对称图形的另一半应注意什么?旋转的方法是什么?
【设计意图】注重在练习上加深对知识点的进一步掌握。

画轴对称图形的另一半时,先让学生思考回顾方法:找线段端点,画相应的对称点,再连线;画旋转后图形时,
共同思考回顾注意旋转注意问题:先确定中心点,再确定方向、角度和基准边,然后画出旋转后的图形。

这样学生在进一步掌握方法的基础上能更好的完成练习。

3.拓展练习。

(1)在方格纸上设计一个轴对称图形,并画出它的对称轴。

师:可以独立设计图案,也可以小组合作完成。

比一比谁设计的图形美观,说一说它有几条对称轴。

【设计意图】练习既有基本练习,又有综合练习,尽量结合学生的生活实际去设计,提升学生解决问题的能力;拓展题目,主要让学生自己依据要求去独立或合作完成,培养了学生的空间想象能力和合作意识。

四、回顾总结,评价提升
师:通过今天的整理复习,你对对称、平移、旋转有了哪些新的认识?
学生自由发言,教师评价。

【设计意图】学生从知识、方法、感受三方面来谈收获,由感性认识上升到理性认识,形成知识网络,培养学生自我反思、全面概括的能力。

[板书设计]。

相关文档
最新文档