高二数学(理)答题卡
四川省成都市蓉城名校联盟2020-2021学年高二下学期期中联考数学(理)Word版含答案
蓉城名校联盟2020~2021学年度下期高中2019级期中联考理科数学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。
2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。
3.考试结束后由监考老师将答题卡收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数f(x)=x 3+1,当自变量x 由1变为2时,函数f(x)的平均变化率为 A.3 B.5 C.7 D.92.已知空间两点A(2,1,1),B(3,2,1),下列选项中的a 与AB 共线的是 A.a =(1,0,1) B.a =(2,1,1) C.a =(2,-2,0) D.a =(2,2,0)3.已知向量a =(1,2,0),b =(0,2,1),a ,b 的夹角为θ,则sinθ= A.35 B.45 C.-35 D.-454.已知函数f(x)的导数是f'(x),且f'(3)=1,则()()h 0f 3f 3h lim h→-+=A.1B.-1C.3D.-3 5.下列关于空间向量的四个命题中正确的是 A.若空间向量a ,b 满足|a|=|b|,则a =bB.若{a ,b ,c}为空间中一组基底,则{a +b ,a -b ,c}可构成空间另一组基底C.若11OC OA OB 24=+,则A 、B 、C 三点一定共线 D.已知A ,B ,C 三点不共线,若111OD OA OB OC 234=++,则A ,B ,C ,D 四点一定共面6.已知函数f(x)的导数是f'(x),且满足f(x)=f'(2π)cosx +2x ,则f(0)=A.0B.1C.2D.4 7.定积分()1x1e1dx -+⎰的值为A.e -1e +1 B.e +1e +1 C.e -1e +2 D.e -1e8.已知R 上可导函数f(x)的图象如图所示,则不等式(x -3)f'(x)>0的解集为A.(-2,2)∪(3,+∞)B.(-∞,-3)∪(3,+∞)C.(-∞,-2)∪(3,+∞)D.(-∞,-2)∪(2,+∞)9.如图,在三棱锥S -ABC 中,点E ,F 分别是SA ,BC 的中点,点G 在棱EF 上,且满足EG 1GF 2=,若SA a SB b SC c ===,,,则SG =A.13a -12b +16c B.13a +16b +16c C.16a -13b +12c D.13a -16b +12c 10.如图,在四棱锥S -ABCD 中,侧面SCD 是等边三角形,底面ABCD 是直角梯形,∠BCD =2π,AD =CD =4,BC =8,侧面SCD ⊥底面ABCD ,点M 是SD 的中点,则直线SC 与AM 所成角的余弦值是A.-5B.5C.-9510D.951011.已知函数f(x)是定义域R上的可导函数,其导函数为f'(x),且满足f(x)>f'(x)恒成立,则下列不等式一定正确的是A.5f(ln2)>2f(ln5)B.6f(ln3)<3f(ln6)C.5f(ln5)<2f(ln2)D.3f(ln3)>6f(n6)12.已知函数f(x)=e x-1+ax2+1的图象在x=1处的切线与直线x+3y-1=0垂直,若对任意的x∈R,不等式f(x)-kx≥0恒成立,则实数k的最大值为A.1B.2C.3D.4二、填空题:本题共4小题,每小题5分,共20分。
甘肃省白银市2014-2015学年高二上学期期末考试数学(理)试题 Word版无答案
高二上学期期末考试数学(理)试题一.选择题(12560''⨯=)1. ABC △中,已知2()()a c a c b bc +-=+,则A =( ) A.030 B.060 C.0120 D.01502. 设n S 是等差数列{}n a 的前n 项和,已知355,9a a ==,则7S 等于( ) A .13 B .35 C .49 D .633. 若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1b B .a 2>b 2 C.a c 2+1>bc 2+1 D .a |c |>b |c | 4. “02=-x x ”是“1=x ”的( )A .充分而不必要条件 B.必要而不充分条件 C .充要条件 D.既不充分也不必要条件 5. 下列说法错误..的是( ). A .如果命题“p ⌝”与命题“p 或q ”都是真命题,那么命题q 一定是真命题. B. 命题“若0a =,则0ab =”的否命题是:“若0a ≠,则0ab ≠”C .命题p :042,0200<+-∈∃x x R x ,则042,:2≥+-∈∀⌝x x R x pD .特称命题 “R x ∈∃,使2240x x -+-=”是真命题.6.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .14 B .12C . 2D .47. 空间直角坐标系中A (1,2,3),B (-1,0,5),C (3,0,4),D (4,1,3),则直线AB 与CD的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定8. 双曲线的一个焦点(4,0)F 到渐近线的距离为2,则双曲线的离心率是( )A.B.C. D. 439. 若抛物线22(0)y px p =>上一点M 到焦点F 的距离为2p ,则M 点的横坐标为( )A. pB. 2pC.32p D. 52p 10. 如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AB 、B 1C 的中点,设1,,AB a AD b AA c ===若MN xa yb zc =++ ,则( )A.111,,234x y z === B. 11,,122x y z === C. 111,,222x y z === D. 11,,32x y z =-==11. 椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则ON 等于( ) A .2B .4C .6D .3212. 如图所示,直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点, Q 是B C 的中点,P 是A 1B 1的中点,则直线PQ 与AM 所成的角为( ) A.π6 B.π4 C.π3 D.π2二.填空题(4520''⨯=)13. 如果直线y x =与抛物线24y x =交于A ,B 两点,那么线段AB 的中点坐标是_________14. 若实数x ,y 满足约束条件 02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则y x z -=的最小值是________15. 已知lg lg 1x y +=, 则yx 25+的最小值是 . 16. 若P 点是椭圆22195x y +=上任意一点,F 为椭圆的一个焦点,则|PF|的最大值是 .会宁一中2014-2015学年度第一学期期末考试高二数学(理)答题卡一、选择题:本大题共12小题,每小题5分,共60分。
甘肃省武威第五中学2014-2015学年高二11月月考数学(理)试题
甘肃省武威第五中学2014-2015学年高二11月月考数学(理)试题一、选择题(每小题5分,共60分)1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中 ( )A 、真命题与假命题的个数相同B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数可能是奇数,也可能是偶数2、下列命题中是真命题的是 ( ) ①“若x2+y2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题 ③“若m>0,则x 2+x -m=0有实根”的逆否命题④“若x -3是有理数,则x 是 无理数”的逆否命题A 、①②③④B 、①③④C 、②③④D 、①④3、设集合M={x| x>2},P={x|x<3},那么“x ∈M,或x ∈P ”是“x ∈M ∩P ”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条4、“0x >0>”成立的( ) A 、充分不必要条件. B 、必要不充分条件. C 、充要条件. D 、既不充分也不必要条件.5、“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )A 、充分不必要条件.B 、必要不充分条件.C 、充分条件.D 、既不充分也不必要条件.6、不等式2230x x --<成立的一个必要不充分条件是( )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<17.若命题“p q ∧”为假,且“p ⌝”为假,则( ) A .p 或q 为假 B .q 假 C .q 真 D .不能判断q的真假 8.在△ABC 中,“︒>30A ”是“21sin >A ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为( )A .①②B .②③C .①③D .③④10.设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件11.下列命题中,真命题是 ( ).A .∃m ∈R ,使函数f(x)=x2+mx(x ∈R)是偶函数B .∃m ∈R ,使函数f(x)=x2+mx(x ∈R)是奇函数C .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是偶函数D .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是奇函数12、不等式2230x x --<成立的一个必要不充分条件是( )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<1 二、填空题(每道题5分,共20分)13设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是14、命题“若a =-1,则2a =1”的逆否命题是15.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点; 命题βα//:q , 则q p 是的 条件。
甘肃省武威市第六中学2013-2014学年高二下学期期中考试数学(理)试题(选修2-2)
甘肃省武威市第六中学2013-2014学年高二下学期期中考试数学(理)试题(选修2-2)1.i 是虚数单位,复数ii--131的虚部是 ( ) A .1-B .i -C .2-D .i 2-2.设p 12)(23+++=mx x x x f 在),(+∞-∞内单调递增,q 34≥m ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条 C .充分必要条件 D .既不充分也不必要条件3.若7++=a a P ,43+++=a a Q )0(≥a ,则P ,Q 的大小关系为( ) A .Q P > B .Q P = C .Q P <D .由a 的取值确定4.从2、4、6、8、10五个数字中任取2个作为一个分数的分子与分母,则可组成分数值不同的分数个数为( )A .20B .18C .10D .9 5.函数x x x y sin cos -=在下列哪个区间内是增函数( ) A .)23,2(ππ B .)2,(ππ C .)25,23(ππ D .)3,2(ππ 6.已知函数a x x x f +-=12)(3,其中16≥a ,则下列说法正确的是 ( )A .)(x f 有且仅有一个零点B .)(x f 至少有两个零点C .)(x f 最多有两个零点D .)(x f 一定有三个零点 7.函数在142+=x xy 定义域内 ( )A .有最大值2,无最小值B .无最大值,有最小值-2C .有最大值2,最小值-2D .无最值8.若0>a ,0>b ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于( )A.2B.3C.6D.9 9.若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123,,S S S 的大小关系为 ( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S << 10.已知x x x f sin 2sin 21)(+=,那么)('x f 是( ) A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数11.设函数)(x f 在R 上可导,其导函数为)('x f ,且函数)()1('x f x y -=的图象如图所示,则下列结论中一定成立的是 ( ) A .函数)(x f 有极大值)2(f 和极小值)1(f B .函数)(x f 有极大值)2(-f 和极小值)1(f C .函数)(x f 有极大值)2(f 和极小值)2(-f D .函数)(x f 有极大值)2(-f 和极小值)2(f 12.已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式0)()('<+x xf x f 成立,若)3(33.03.0f a =,)3(log )3(log ππf b =,)91(log )91(log 33f c =,则c b a ,,的大小关系是 ( )A .c b a >>B .a b c >>C .c a b >>D .b c a >>二、填空题(本题共20分,每小题5分)武威六中2013~2014学年度第二学期高二数学(理)《选修2-2》模块学习终结性检测试卷答题卡一、选择题(本大题共12小题。
县级中学2009-2010学年度高二数学竞赛(理科)
2009-2010学年度高二数学竞赛(理科)一、选择题(本题共6小题,每小题6分,共计36分) 1.已知集合{}{}221,,20R A y y x x B x x x =+=+-∈=>,则下列结论正确的是( ) A .{}1,A B y y => B.{}2A B y y => C. {}21A B y y =-<< D. {}21A B y y y =<>- 或2.已知函数20()20x x f x x x +⎧=⎨-+>⎩,≤,,,则不等式2()f x x ≥的解集为( )A .[]11-,B .[]22-,C .[]21-,D .[]12-, 3. 已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4π=x 处取得最小值,则函数)43(x f y -=π是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,23(π对称 C .奇函数且它的图象关于点)0,23(π对称D .奇函数且它的图象关于点)0,(π对称4. 已知︱OA ︱=1,︱OB ︱=3,OB OA ∙=0,点C 在∠AOB 内,且∠AOC =30°,设=m +n (m 、n ∈R ),则nm等于( ) A.31 B.3 C.33 D.3 5.已知函数()()1||xf x x R x =∈+ 时,则下列结论不.正确的是( ) A .x R ∀∈,等式()()0f x f x -+=恒成立B .(0,1)m ∃∈,使得方程|()|f x m =有两个不等实数根C .12,x x R ∀∈,若12x x ≠,则一定有12()()f x f x ≠D .(1,)k ∃∈+∞,使得函数()()g x f x kx =-在R 上有三个零点6.定义在R 上的函数()f x 的图象关于点3(,0)4-成中心对称,对任意的实数x 都有3()()2f x f x =-+且(1)1,f -=(0)2f =-,则(1)(2)(3)...(2010)f f f f ++++=( )A .2-B .1-C .0D .1二、填空题(本题共7小题,每小题9分,共计63分)7 .已知1cos 3α=,1cos()3αβ+=-,且,(0,)2παβ∈,则cos()αβ-= .8.设点P 是曲线32333x y x x =---上的一个动点,则以点P 为切点的切线中,斜率取得最小值时的切线方程是9.已知数列{a n },a 1=1,a n =a n-1+a n-2+…+a 1( 2≥n ),则该数列的前8项和为 .10.若椭圆+22a x )0(122>>=b a by 的左、右焦点分别为1F 、2F ,线段12F F 被抛物线bx y 22=的焦点分成5:3两段,则此椭圆的离心率为_____________11. 向量(1,0),(1,1)OA OB == ,O 为坐标原点,动点(,)P x y 满足0102OP OA OP OB ⎧≤⋅≤⎪⎨≤⋅≤⎪⎩, 则点(,)Q x y y +构成图形的面积为 .12.在数列{}n a 中,12a =,11(*)n n a a n N +=-∈ ,设n S 为数列{}n a 的前n 项和,则2008200920102S S S -+= .13.设()f x 是定义在R 上的函数,若(2007)2007f =,且对任意x ∈R ,满足:(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则(2009)f 的个位数字是 .三、解答题:(本题共3小题,共计51分)14、(15分)设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.15. (18分)已知函数()ln()x f x e a =+,(a 为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数.(1) 求a 的值;(2) 若2()1g x t t λ≤++在[1,1]x ∈-恒成立,求t 的取值范围; (3) 讨论关于x 的方程2ln 2()xx ex m f x =-+的根的个数.2009-2010学年度高二数学竞赛(理科)答案一、选择题 每题6分,总分36分AADBDC 6、解析:本题考查了函数的对称、奇偶性、周期性,综合性较强,函数()f x 关于点3(,0)4-对称,则有3()()2f x f x =---,又3()()2f x f x =-+,33()()22f x f x ∴+=--()y f x ∴=的图像关于y 轴对称;又 3()()2f x f x =-+,有3()()[(3)](3)2f x f x f x f x =-+=--+=+,∴ ()f x 是周期为3的偶函数.(1)(1)1,(2)(23)(1)1,(3)(0)2f f f f f f f ∴=-==-=-===-,(1)(2)(3)0f f f ∴++=,(1)(2)(3)(2009)(2010)0f f f f f ∴+++⋅⋅⋅++=,选C.二、填空题,每题9分,总分63分。
四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案
高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。
2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。
3.考试结束后由监考老师将答题卡收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。
[推荐学习]高二数学下学期期中试题理
四川省绵阳市南山中学2017-2018学年高二数学下学期期中试题理本试卷分试题卷和答题卡两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,共4页;答题卡共4页.满分100分,考试时间100分钟.第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上。
1. 已知命题p :“x R ∀∈, 20x > ”,则p ⌝ 是( )A. x R ∀∈, 20x ≤B. 0x R ∃∈, 200x >C. 0x R ∃∈, 200x <D. 0x R ∃∈, 200x ≤2.对于空间任意一点O 和不共线得三点A 、B 、C ,有如下关系:213161++= ,则( )A. 四点O 、A 、B 、C 必共面B. 四点P 、A 、B 、C 必共面C. 四点O 、P 、B 、C 必共面D. 五点O 、P 、A 、B 、C 必共面3.已知p :5≠+y x ,q :3≠x 或2≠y ,则p 是q 的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.在某次学科知识竞赛中(总分100分),若参赛学生成绩ξ服从N (80, σ2)(σ>0),若ξ在(70,90)内的概率为0.8,则落在[90,100]内的概率为( )A. 0.05B. 0.1C. 0.15D. 0.25.设函数()⎩⎨⎧≤<≤≤=21,110,2x x x x f , 则定积分()dx x f ⎰20等于( )A. 83B. 2C. 43D. 136.设函数()f x 在R 上可导,其导函数f ′(x ),且函数()f x 在x =﹣2处取得极小值,则函数y =xf ′(x )的图象可能是( )A. B. C. D.7.袋中有大小完全相同的2个白球和3个黄球,逐个不放回地摸出两球,设“第一次摸得白球”为事件A ,“摸得的两球同色”为事件B ,则()P B A 为( )A.110B. 15C. 14D. 258.有3位男生, 3位女生和1位老师站在一起照相,要求老师必须站中间,与老师相邻的不能同时为男生或女生,则这样的排法种数是( )A. 144B. 216C. 288D. 432 9.记()()()()77221071112x a x a x a a x ++⋅⋅⋅+++++=+,则0126a a a a ++++的值为( )A. 2187B. 2188C. 127D. 12810.四棱柱1111A B C D A B C D -中, 1160A AB A AD DAB ∠=∠=∠=︒,1A A AB AD ==,则1CC 与1DB 所成角为( )A. 30︒B. 45︒C. 60︒D. 90︒11.已知()f x 为定义在()0,+∞上的可导函数,且()()'f x xf x >恒成立,则不等式()210x f f x x ⎛⎫-> ⎪⎝⎭的解集为( )A. ()1,+∞B. (),1-∞C. ()2,+∞D. (),2-∞ 12.当0>x 时,函数()a x k y -=()1>k 的图象总在曲线xe xy 2=的上方,则实数a 的最大整数值为( )A. -1B. -2C. -3D. 0第Ⅱ卷(非选择题,共52分)二、填空题:本大题共4小题,每小题3分,共12分。
高二上学期期末考试数学(理)试题及答案
N MD 1C 1B 1A 1DCA学年第一学期高二年级期末质量抽测 数 学 试 卷(理科)(满分150分,考试时间 120分钟)考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D)330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD ===a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =± (7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+ ( B)2( C)4+ ( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C 上且满足1223MF MF += 则12MF F ∆的面积为(A)3(B) 2(C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅=,则1BC 与BM 的夹角的最大值为 (A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BAD 1C 1B 1A 1D第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11B C A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,ACBD O =,11AB AA ==.(I)求证:111//OC AB D 平面;N MDCBAP(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,且经过点(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P ABCD -中,PA ABCD ⊥底面,底面ABCD 为直角梯形,//,90,AD BC BAD ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.高二年级期末质量抽测数学试卷参考答案及评分标准 (理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2.…2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为所以点C 到直线l 的距离为11d ==. ……10分 即11d ==. …………12分所以34a =-. …………14分O 1ABCDA 1B 1C 1D 1O(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O =,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分 因为1111AA AC A =,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =, 所以1b =. ……1分由c e a ===,解得2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBCADNM MN ⊂=平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PAAB A =,所以DA PAB ⊥平面. 所以PB DA ⊥. ……7分 因为AMDA A =,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分 设平面PDN 的法向量为(,,)x y z =n 因为(2,1,2)PC =-,(0,2,2)PD =-, 所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩.令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,622BP BP BP⋅〈〉===n n n .所以二面角P DN A --的余弦值为6. ……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC =………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分 所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分 所以2231k -<.所以213k >.即21113k >.所以2103k <<.…12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分。
高二数(理)
湖北荆门外语学校学年度上学期质量检测高二数学(理)注意事项:1.全卷满分150分,考试时间120分钟.2. 答卷前,考生务必将自己的学校、姓名、考号等填写在答题卡上指定位置,交卷时只交答题卡.答在试题卷上无效.一、选择题(本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项符合题目要求)1.已知命题p :R x ∀∈,sin 1x ≤,则 A .p ⌝:x R ∃∈,sin 1x ≥ B .p ⌝:R x ∀∈,sin 1x ≥ C .p ⌝:R x ∃∈,sin 1x >D .p ⌝:R x ∀∈,sin 1x >2.把3289化成五进制数的末位数字为 A .1B .2C .3D .43.下列问题的算法适宜用条件结构表示的是A .解不等式0>+b ax (0≠a )B .计算10个数的平均数C .求半径为3的圆的面积D .求方程2210x x -+=的根 4. 执行如图的程序,如果输出的x =256,那么可以在判断框内填入 A .4i ≥? B .i ≥3? C .3i ≤?D .4i ≤?5.上图是某次民族运动会上,七位评委为某民族舞蹈节目打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为 A .84, 4.84B .84,1.6C .85,1.6D .85, 46.身高互不相同的7个学生排成一排,从中间往两边越来越矮,不同的排法有A .5040种B .720种C .240种D .20种第5题图7.已知椭圆2221(5)25x ya a+=>的两个焦点为1F 、2F ,且128F F =,弦AB 过点1F ,则△2ABF 的周长为A .10B .20C .D . 8.如果nxx )13(32-的展开式中各项系数之和为128,则展开式中31x的系数是A .7B .-7C .21D .-219.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (,,(0,1)a b c ∈),已知他投篮一次得分的期望为2,则213a b+的最小值为A .314B .316C .283D .32310.椭圆22221()x y a b ab+=>>0的右焦点F ,直线2ax c=与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是A .⎛⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .)1,1D .1,12⎡⎫⎪⎢⎣⎭二.填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上) 11.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法 ▲ 种.12.已知随机变量X 服从正态分布2(0)N σ,且(20)P X -≤≤0.4=,则(2)P X >=▲ .13.二项式6x-(的展开式中的常数项为 ▲ .14.将三颗骰子各掷一次,设事件A =“三个点数都不相同”,B =“至少出现一个6点”,则概率()P A B 等于 ▲ .15.过椭圆C :)0(12222>>=+b a bya x 的左顶点A 的斜率为k 的直线交椭圆于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若1435k <<,则椭圆离心率的取值范围是▲ .三.解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本题满分12分)已知命题2:13680p x x --<, 22:210q x x a -+-≤ , 若p ⌝是q ⌝的必要而不充分条件,求正实数a 的取值范围.17.(本题满分12分)某单位组织50名志愿者利用周末和节假日参加社会公益活动,活动内容是: 1.到各社区宣传慰问,创导文明新风;2.到指定的社区、车站、码头做义工,帮助那些需要帮助的人. 各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:(1)用分层抽样方法在做义工的志愿者中随机抽取6名,大于40岁的应该抽取几名? (2)在上述抽取的6名志愿者中任取2名,求恰有1名志愿者年龄大于40岁的概率. (3)如果“宣传慰问”与“做义工”是两个分类变量,并且计算出随机变量22.981k =,那么你有多大的把握认为选择做宣传慰问与做义工是与年龄有关系的?18. (本题满分12分)奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望.19.(本题满分12分)如图所示,在直角梯形ABCD中,||3,||4,||AD AB BC ===,曲线段DE 上任一点到A 、B 两点的距离之和都相等. (1)建立适当的直角坐标系,求曲线段DE 的方程; (2)过C 能否作-条直线与曲线段DE 相交,且所得弦以C为中点,如果能,求该弦所在的直线的方程;若不能,说明理由.20.(本题满分13分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13, 14);第二组[14, 15),…,第五组[17, 18]. 下图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数; (2)设m 、n 表示该班某两位同学的百米测试成绩,且已知m , n ∈[13, 14)∪[17, 18]. 求事件“|m -n |>1”的概率.21.(本小题满分14分)已知12(1,0),(1,0)F F -,点21||||2P PF PF+=满足记点P 的轨迹为E ;(1)求轨迹E 的方程;(2)过点(1,0)F 作直线l 与轨迹E 交于不同的两点A 、B ,设,(2,0)F A F B T λ=,若[2,1],||TA TB λ∈--+求的取值范围.第20题图第19题图。
高二上学期期末考试数学(理)试题及答案 (11)
学年度高二第一学期期末学分认定考试数学试题(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(填空题和解答题)两部分。
满分150分; 考试时间120分钟.考试结束后,监考教师将答题纸和答题卡一并收回。
第Ⅰ卷(共50分)注意事项:本试卷分第I卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题:本大题共10个小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列双曲线中,渐近线方程为2y x =±的是( )A .2214y x -= B .2214x y -=C .2212y x -= D .2212x y -= 2.设,a b ∈R ,则“0a b >>”是“11a b<”的( )条件 A .充分而不必要 B .必要而不充分 C .充分必要 D .既不充分也不必要 3.在ABC ∆中,如果=cos cos a bB A,则该三角形是 A .等腰三角形B .直角三角形C .等腰或直角三角形D .以上答案均不正确4.已知数列{}n a 的前n 项和21nn S =-,那么4a 的值为A .1B .2C .4D .85.在平面直角坐标系中,不等式组0400x y x y y -≥⎧⎪+-≤⎨⎪≥⎩表示的平面区域的面积是( )A . 2B . 4C . 8D . 16 6.若不等式08322≥-+kx kx的解集为空集,则实数k 的取值范围是( ) A . )0,3(- B .)3,(--∞ C . (]0,3- D .),0[]3,(+∞--∞ 7.下列命题中,说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B.“102x <<”是“(12)0x x ->”的必要不充分条件 C .命题“0x ∃∈R ,使得20010x x ++<”的否定是:“x ∀∈R ,均有210x x ++>”D .命题“在ABC ∆中,若A B >,则sin sin A B >”的逆否命题为真命题 8.等差数列{}n a 和{}n b 的前n 项和分别为S n 和T n ,且231n n S nT n =+,则55b a A .32 B . 149 C . 3120 D . 979.在ABC ∆中,,,4530,2===C A a 则ABC S ∆=( ) A .2 B .22 C .13+ D .()1321+10.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A . 3(0,]4B .3(0,]2 C .3[,1)2 D .3[,1)4第Ⅱ卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分,把答案填写在答题纸中横线上。
安徽省示范高中培优联盟2020-2021学年高二上学期冬季联赛 数学(理科)试题+答题卡+答案
三( . 19)(12 分)
(Ⅰ)
第(19)题图
(Ⅱ)
考点
姓名
班级
学校
请在各题目的答题区域内作答,超出答题区域的答案无效
请在各题目的答题区域内作答,超出答题区域的答案无效
准考证号
安徽省示范高中培优联盟 2020 年冬季联赛(高二)
数学答题卡(理科)
请在各题目的答题区域内作答,超出答题区域的答案无效 (Ⅱ)
装 订
贴条形码区
考号
姓名
[0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6] [7] [7] [7] [7] [7] [7] [7] [7] [7] [7] [7] [8] [8] [8] [8] [8] [8] [8] [8] [8] [8] [8] [9] [9] [9] [9] [9] [9] [9] [9] [9] [9] [9]
陕西省西安市西咸新区及2022-2023学年高二下学期5月月考数学(理)试题及参考答案
陕西省西安市西咸新区2022-2023学年高二下学期5月月考理科数学试题(时间:100分钟满分:100分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(共12小题,每题3分,共36分)1.设X 是一个离散型随机变量,其分布列为则q 等于()A .1B .12C.12-D.12.已知363434C C xx -=,则x =()A .3或10B .3C .17D .3或173.如图,一条电路从A 处到B 处接通时,可构成线路的条数为()A .8条B .6条C .5条D .3条4.某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A .12B .36C .24D .725.200件产品中有3件次品,任意抽取5件,其中至少有2件次品的抽法有()A .C 32197·C 23B .C 33C 2197+C 23C 3197C .C 5200-C 5197D .C 5200-C 13C 4197X1-01P1212q-2q6.6211(1)x x ⎛⎫-+ ⎪⎝⎭展开式中3x 的系数为()A .25B .20C .14D .287.在622x x ⎛⎫- ⎪⎝⎭的展开式中,第四项为()A .160B .160-C .3160x D .3160x -8.把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法()A .10种B .24种C .36种D .60种9.将10本完全相同的科普知识书,全部分给甲、乙、丙3人,每人至少得2本,则不同的分法数为()A .720种B .420种C .120种D .15种10.如图,要给①、②、③、④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方案种数为()A .96B .160C .180D .6011.已知()727012752x a a x a x a x -=++++ ,则0127a a a a ++++= ()A .128B .2187C .78125D .82354312.下列等式不正确的是()A .111m mn n m C C n ++=+B .12111m m m n n n A A n A +-+--=C .11m m n n A nA --=D .()11k k kn n nnC k C kC +=++二、填空题(共4小题,每题4分,共16分)13.二项式841⎫⎝的展开式中含x 项的系数为__________.14.从一批含有13件正品、2件次品的产品中,不放回地任取3件,设取得的次品数为X ,则(1)P X <=________.15.4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为______16.由海军、空军、陆军各3名士兵组成一个有不同编号的33⨯的小方阵,要求同一军种不在同一行,也不在同一列,有_____种排法。
湖南省新化二中2015-2016学年高二上学期期中考试数学(理)试卷Word版含答案
新化二中2015年下学期期中考试高二理科数学试卷 (试卷)命题:王斌 审核:伍清明 时量:120分钟 总分:150分一、选择题(本大题共10小题,每小题5分,共75分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( ) A .[0,1] B .(0,1] C .[0,1) D .(,1]-∞ 2.已知数列{},0n n a a ≠,若113,20n n a a a +=-=,则6a =( ) A .B .C .16D .323.已知实数,x y 满足1000x y x y x +-≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最大值为 ( )A 12-B 0C 1D 124.已知焦点在x 轴上的椭圆的离心率为 12 ,它的长轴长等于圆222150x y x +--=的半径,则椭圆的标准方程是( )A x 24+y 2=1 B x 216+y 212=1 C x 24+y 23=1 D x 216+y 24=1 5.阅读下面程序框图,为使输出的数据为11,则①处应填的数字可以为( )A .4B .5C .6D .76.设a ,b 都是不等于1的正数,则 “333ab>>”是“33log log a b <”的 ( )A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件7.在三棱柱111ABC A B C -中,底面是正三角形,侧棱1AA⊥底面ABC ,点E 是侧面11BB C C 的中心,若13AA AB =,则直线AE 与平面11BB C C 所成角的大小为( )A 30︒B 45︒C 60︒D 90︒8.下列有关命题的叙述,错误的个数为( ) ①若q p ∨为真命题,则q p ∧为真命题②“5>x ”是“0542>--x x ”的充分不必要条件③命题R x p ∈∃0:使得01020<-+x x ,则R x p ∈∀⌝:,使得012≥-+x x④命题“若0232=+-x x ,则21==x x 或”的逆否命题为“若21≠≠x x 或,则0232≠+-x x ”A.1B. 2C. 3D.49. 函数()sin()(0)f x x ωϕϕ=+>,)(0<ϕ<π-的一段图象如图所示,则=ϕ( )A .4π-B .2πC . 4π D .2π-10.已知函数2||,(),x f x -≤⎧=⎨⎩2x 2(x-2) x>2,函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( )(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭二、填空题(本大题共5小题,每小题5分,共25分。
2015-2016学年高二下学期期中考试数学(理)试题含答案
白云中学2015—2016学年第二学期期中测试高二理科数学试卷一、选择题(每题5分,共60分)1.函数),1)(1()(-+=x x x f 则=')2(f ( )A. 3B. 2C. 4D. 0 2.已知函数,2)(2+-=x x x f 则⎰=10)(dx x f ( )A.613 B. 611 C. 2 D. 33.已知a 为实数,若2321>++i a i ,则=a ( ) A .1 B .2- C . 31 D .214.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( )A .演绎推理B .类比推理C .合情推理D .归纳推理5.已知抛物线2y ax bx c =++通过点(11)P ,,且在点(21)Q -,处的切线平行于直线3y x =-,则抛物线方程为( )A.23119y x x =-+ B.23119y x x =++C.23119y x x =-+D.23119y x x =--+6.命题p :∃x ∈R ,使得3x >x ;命题q :若函数y=f (x ﹣1)为偶函数,则函数y=f (x )关于直线x=1对称,则( )A .p ∨q 真B .p ∧q 真C .¬p 真D .¬q 假7.在复平面内,复数2(13)1iz i i =+++对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限8.如图,阴影部分的面积是( )A.23B.23-C.323D.3539.函数2()sin f x x =的导数是( )A.2sin xB.22sin xC.2cos x D.sin 2x10.下列说法正确的是()A.函数y x =有极大值,但无极小值 B.函数y x =有极小值,但无极大值 C.函数y x =既有极大值又有极小值 D.函数y x =无极值11.下列函数在点0x =处没有切线的是( )A.23cos y x x =+ B.sin y x x =· C.12y x x=+D.1cos y x=12.已知抛物线C 的方程为x 2=y ,过点A (0,﹣1)和点B (t ,3)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(﹣∞,﹣1)∪(1,+∞)B .(﹣∞,﹣)∪(,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣∞,﹣)∪(,+∞)二、填空题(每小题5分 ,共20分)13.函数23)(x x x f +=单调递减区间是14.若复数22(2)(2)z a a a a i =-+--为纯虚数,则实数a 的值等于 . 15.已知函数32()39f x x x x m =-+++在区间[22]-,上的最大值是20,则实数m 的值等于 .16.通过观察下面两等式的规律,请你写出一般性的命题:23150sin 90sin 30sin 222=++23125sin 65sin 5sin 222=++________________________________________________高二理科数学试卷答题卡1 2 3 4 5 6 7 8 9 10 11 12二、填空题(每小题5分 ,共20分)13.___________, 14.____________,15.____________,16.______________________________.三、解答题(共70分)17.(本小题满分12分)已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.18.(本小题满分12分)求函数5224+-=x x y 在区间[-2,2]上的最大值与最小值19.(本小题满分10分)求曲线2xy 过点P(1,-1)的切线方程。
高二理科数学第二学期中期考试试卷
界石铺中学期中测试高二数学(理)一、选择题:本大题共12个小题,每小题5分,共60分.请把答案填写后面的选择题答题卡中,否则不评分.1、分析法证明不等式的推理过程是寻求使不等式成立的()(A)必要条件 (B)充分条件 (C)充要条件 (D)必要条件或充分条件2、由直线1,2x x==,曲线2y x=及x轴所围图形的面积为()A.3 B.7 C.73D.133、有一段“三段论”推理是这样的:对于可导函数()f x,如果()0f x'=,那么x x=是函数()f x的极值点,因为函数3()f x x=在0x=处的导数值(0)0f'=,所以,0x=是函数3()f x x=的极值点.以上推理中()A.大前提错误 B.小前提错误 C.推理形式错误 D.结论正确4、函数xxxf ln)(=,则()(A)在),0(∞上递增;(B)在),0(∞上递减;(C)在)1,0(e上递增;(D)在)1,0(e上递减5、已知函数32()(6)1f x x ax a x=++++有极大值和极小值,则实数a的取值范围是()(A)-1<a<2 (B) -3<a<6 (C)a<-3或a>6 (D) a<-1或a>26、函数2sin(2)y x x=+导数是()A.2cos(2)x x+ B.22sin(2)x x x+ C.2(41)cos(2)x x x++ D.24cos(2)x x+7、设a、b为正数,且a+ b≤4,则下列各式中正确的一个是()(A)111<+ba(B)111≥+ba(C)211<+ba(D)211≥+ba8、函数59323+--=xxxy的极值情况是()(A)在1-=x处取得极大值,但没有最小值(B)在3=x处取得极小值,但没有最大值(C)在1-=x处取得极大值,在3=x处取得极小值(D)既无极大值也无极小值9、'()f x是()f x的导函数,'()f x的图象如右图所示,则()f x的图象只可能是(A)(B)(C)(D)10、函数2()2lnf x x x=-的递增区间是( )A.1(0,)2B.11(,0)(,)22-+∞及 C.1(,)2+∞ D.11(,)(0,)22-∞-及考场:考号:班级:姓名:11、函数sin y x =的图象上一点3(,)32π处的切线的斜率为( ) A .1 B .32 C . 22 D .1212、 若000(2)()lim 1x f x x f x x∆→+∆-=∆,则0()f x '等于( )A .2B .-2C . 12D .12-一、选择题答题卡(共12个小题,每小题5分,共60分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 2015年下期道南中学高2017级第三学月考试
理科数学答题卡
姓 名
准考证号
第I 卷 一、选择题(共60分,每题5分)
1
5 9 2
6 10 3
7 11 4 8
12
第II 卷 二、填空题(共20分,每题5分)
13 14
15 16
三、解答题
(17)10分
(19)12分
填
涂
样
例 正确填涂 错误填涂 注意事项 1. 答题前,先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、座位号及科类名称。
2. 选择题部分必须使用2B 铅笔填涂;综合题部分必须使用0.5毫米的黑色签字笔书写,字体工整、笔迹清楚。
3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4. 保持答题卡面清洁,不要折叠、不要弄破。
(17续) (18)12分
考生条形码粘贴处 考生禁填:缺考考生由监考员填涂 右边的缺考标记。