高考数学专题复习直线与圆

合集下载

高考数学专题复习:直线与圆、圆与圆的位置关系

高考数学专题复习:直线与圆、圆与圆的位置关系

高考数学专题复习:直线与圆、圆与圆的位置关系一、单选题1.已知圆22:2440A x y x y +---=,圆22:2220B x y x y +++-=,则两圆的公切线的条数是( ) A .1条B .2条C .3条D .4条2.已知点(,)P x y 是直线l :40kx y -+=(0k >)上的动点,过点P 作圆C :2220x y y =++的切线PA ,A 为切点,若||PA 最小为2时,圆M :220x y my +-=与圆C 外切,且与直线l 相切,则m 的值为( )A .2-B .2C .4D 23.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是( ) A .23-B .13C .43D .24.已知直线10x my m -+-=被圆O :224x y +=所截得的弦长为m =( )A .1-B .1C .2D .5.已知直线():10l mx y m R +-=∈是圆22:4210C x y x y +-++=的对称轴,过点()2,A m -作圆C 的一条切线,切点为B ,则AB 等于( )A .4B .C .D .36.设a ,b 为正数,若圆224210x y x y ++-+=关于直线10ax by -+=对称,则2a bab+的最小值为( ) A .9B .8C .6D .107.已知圆221:4240C x y x y ++--=,2223311:222C x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,则这两圆的公共弦长为( )A .2B .C .2D .18.设0r >,圆()()22213x y r -++=与圆2216x y +=的位置关系不可能是( ) A .相切B .相交C .内切或内含D .外切或相离9.已知圆C :()()22cos sin 3x y θθ-+-=交直线1y =-于A ,B 两点,则对于θ∈R ,线段AB 长度的最小值为( )A .1B C D .210.在同一平面直角坐标系下,直线ax by ab +=和圆222()()x a y b r -+-=(0ab ≠,0r >)的图象可能是( ).A .B .C .D .11.圆1C :221x y +=与圆2C :()224310x y k x y +++-=(k ∈R ,0k ≠)的位置关系为( )A .相交B .相离C .相切D .无法确定12.若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是( ) A .相交 B .相切 C .相离 D .不确定二、填空题13.圆22230x y y ++-=被直线0x y k +-=分成两段圆弧,且较短弧长与较长弧长之比为1:3,则k =________.14.过原点且倾斜角为60︒的直线与圆2240x y y +-=相交,则直线被圆截得的弦长为_____.15.过点()2,0与圆22 A: 230x y x +--+=相切的直线方程为__________.16.若直线mx +2ny -4=0(m ,n ∈R )始终平分圆22420x y x y +--=的周长,则mn 的取值范围是________. 三、解答题17.已知以点()1,1A 为圆心的圆与直线1:220l x y ++=相切,过点()2,0B 的动直线l 与圆A 相交于M 、N 两点. (1)求圆A 的方程;(2)当4MN =时,求直线l 的方程.18.已知圆C :222430x y x y ++-+=.(1)若直线l 过点(2,0)-且被圆C 截得的弦长为2,求直线l 的方程;(2)从圆C 外一点P 向圆C 引一条切线,切点为M ,O 为坐标原点,且PM PO =,求PM 的最小值.19.直线l :y x =与圆C :()()221316x y -+-=相交于A 、B 两点.(1)求平行于l 且与圆C 相切的直线方程; (2)求ABC 面积.20.已知圆C 过点()2,0R 、()4,2S -,且圆心C 在直线280x y --=上. (1)求圆C 的方程;(2)若点P 在圆C 上,O 为原点,()(),00A t t >,求tan POA ∠的最大值.21.已知圆C 的方程为226440x y x y ++-+=.(1)若直线:10l x y -+=与圆C 相交于M 、N 两点,求||MN 的长; (2)已知点()1,5P ,点Q 为圆C 上的动点,求||PQ 的最大值和最小值.22.已知直线:20l mx y m -+-=,C 的方程为22240x y x y +--=. (1)求证:l 与C 相交;(2)若l 与C 的交点为A 、B 两点,求OAB 的面积最大值.(O 为坐标原点)参考答案1.B 【分析】分别求得两圆的圆心坐标和半径,结合两圆的位置关系的判定方法,求得两圆的位置关系,即可求解. 【详解】由圆22:2440A x y x y +---=可化为22(1)(2)9x y -+-=, 可得圆心坐标为(1,2)A ,半径为3R =,由圆22:2220B x y x y +++-=可化为22(1)(1)4x y +++=, 可得圆心坐标为(1,1)B --,半径为2r,则圆心距为d AB == 又由5,1R r R r +=-=,所以R r AB R r -<<+, 可得圆A 与圆B 相交,所以两圆公共切线的条数为2条. 故选:B. 2.B 【分析】根据题意当CP 与l 垂直时,||PA 的值最小,进而可得2k =,再根据圆M 与圆C 外切可得0m >,根据圆M 与直线l 相切,利用圆心到直线的距离等于圆的半径,即可求出. m 的值.【详解】圆C 的圆心为(0,1)C -,半径为1,当CP 与l 垂直时,||PA 的值最小,此时点C 到直线l 的距离为d =,由勾股定理得22212+=,又0k >,解得2k =, 圆M 的圆心为(0,)2mM ,半径为||2m , ∵圆M 与圆C 外切,∴||1|(1)|22m m+=--,∴0m >,∵圆M 与直线l 相切,∴|4|2m m -+=2m =, 故选:B 3.C 【分析】根据直线与圆的位置关系和点到直线的距离公式建立不等式,解之可得选项. 【详解】圆C 的标准方程为22(4)1x y -+=,半径1r =,当圆心(4,0)到直线2y kx =-的距离1d r ≤+时,满足题意,圆心在直线上的射影点即满足题意,故有2d =≤,解得403k ≤≤,即k 的最大值为43, 故选:C. 4.A 【分析】由于直线过定点(1,1)--P,而||OP =OP 垂直,从而由斜率的关系列方程可求出m 【详解】∵直线10x my m -+-=过定点(1,1)--P ,连接OP,则||OP ∴直线10x my m -+-=与OP 垂直,11m=-, ∴1m =-, 故选:A. 5.A 【分析】根据直线():10l mx y m R +-=∈是圆22:4210C x y x y +-++=的对称轴,则圆心在直线l 上,求得m ,由过点()2,A m -作圆C 的一条切线,切点为B ,利用勾股定理即可求得AB . 【详解】由方程224210x y x y +-++=得()()22214x y -++=,圆心为()2,1C -,因为直线l 是圆C 的对称轴,所以圆心在直线l 上,所以1m =,所以A 点坐标为()2,1-,则AC =4AB =.故选:A . 6.A 【分析】求出圆的圆心坐标,得到,a b 的关系,然后利用基本不等式求解不等式的最值即可. 【详解】解:圆224210x y x y ++-+=,即()()22214x y ++-=,所以圆心为(2,1)-, 所以210a b --+=,即21a b +=,因为0a >、0b >,则2222(2)(2)2252229a b a b a b a b ab a ab ab abab+++++⋅===,当且仅当13b a ==时,取等号. 故选:A . 7.C 【分析】先求出两圆的公共弦所在直线的方程,用垂径定理求弦长. 【详解】由题意知221:4240C x y x y ++--=,222:3310C x y x y ++--=,将两圆的方程相减,得30x y +-=,所以两圆的公共弦所在直线的方程为30x y +-=.又因为圆1C 的圆心为(2,1)-,半径3r =,所以圆1C 的圆心到直线30x y +-=的距离d ==所以这两圆的公共弦的弦长为222223222d .故选:C. 8.D 【分析】计算出两圆圆心距d ,并与两圆半径和作大小比较,由此可得出结论. 【详解】两圆的圆心距d 4r +,4r +,所以两圆不可能外切或相离.9.C 【分析】由题意圆C 的圆心C 在单位圆上,求出点C到直线1y =-的距离的最大值,根据圆的弦长AB =. 【详解】解:由圆C :()()22cos sin 3x y θθ-+-=,知该圆的半径r =()cos ,sin C θθ在单位圆221x y +=上,∵原点O到直线1y =-12=,则点C 到直线1y =-的距离d 的最大值为13122+=,由AB =d 取最大值32时,线段AB故选:C .10.D 【分析】根据直线的位置及圆心所在的象限判断参数a 、b 的符号,进而确定正确选项. 【详解】直线ax by ab +=在x ,y 轴上的截距分别为b 和a ,圆心横坐标为a ,纵坐标为b . A :由直线位置可得0b <,而由圆的位置可得0b >,不正确. B :由直线位置可得0a >,而由圆的位置可得0a <,不正确. C :由直线位置可得0a >,而由圆的位置可得0a <,不正确.D :由直线位置可得0a >,0b <,而由圆的位置可得0a >,0b <,正确.11.A 【分析】求出两圆的圆心和半径,再求出两圆的圆心距,与两圆的半径和差比较可得结论 【详解】解:圆1C :221x y +=的圆心1(0,0)C ,半径为11r =,由()224310x y k x y +++-=,得222325(2)()124x k y k k +++=+,所以圆2C 的圆心为23(2,)2C k k --,半径2r所以12121C C r r +=1>0k ≠)1,所以1221C C r r >-所以两圆相交. 故选:A 12.A 【分析】由直线l 与圆C 相切可构造方程求得k;分别在2k =2k =过比较圆心到直线距离与圆的半径之间大小关系可得位置关系. 【详解】由圆C 方程知其圆心()2,1C直线l 与圆C相切,=2k =由圆D 方程知其圆心()2,0D,半径r =∴圆心D 到直线l距离d =当2k =(()222233021d r+-=-=<+,即d r <,此时圆D 与直线l 相交;当2k =(()222233021d r --=-=<+,即d r <,此时圆D 与直线l 相交; 综上所述:圆D 与直线l 相交. 故选:A. 13.1或3- 【分析】由题意可知较短弧所对圆心角是90︒,此时圆心到直线0x y k +-==,再由点到直线的距离公式求解即可 【详解】由题意知,圆的标准方程为()2214x y ++=,较短弧所对圆心角是90︒,所以圆心()0,1-到直线0x y k +-==1k =或3k =-.故答案为:1或3- 14.【分析】由已知求出直线方程,将圆方程化为标准方程求出圆心和半径,然后求出圆心到直线的距离,再利用弦长、弦心距和半径的关系求出弦长 【详解】解:由题意得直线方程为tan60y x =︒0y -=, 由2240x y y +-=,得22(2)4x y +-=,则圆心为(0,2),半径为2, 所以圆心(0,2)0y -=的距离为1d ==,所以所求弦长为=故答案为:15.x =2或)2y x =-. 【分析】 分斜率不存在和斜率存在两种情况讨论:斜率不存在时,直线l :x =2与圆相切;斜率存在时,设其为k ,则直线l :()2y k x =-,利用圆心到直线的距离等于半径,列方程求出k ,即可求出直线方程.【详解】圆22 A: 230x y x +--+=化为标准方程:()(22 11x y -+=,所以当过点()2,0的直线斜率不存在时,直线l :x =2与圆相切;过点()2,0的直线斜率存在时,设其为k ,则直线l :()2y k x =-,因为l 与圆A 相切,所以圆心到直线的距离等于半径,1=,解得:k =,此时l:)2y x =-. 故答案为:x =2或)2y x =-. 16.(,1]-∞【分析】 由题意得直线过圆心,进而得到2240m n +-=,所以mn 可转化为()2n n -,结合二次函数的值域即可求解.【详解】因为直线mx +2ny -4=0(m ,n ∈R )始终平分圆22420x y x y +--=的周长,所以直线经过圆心,又因为圆心为()2,1,则2240m n +-=,即2m n +=,因此2m n =-,所以()()2222111mn n n n n n =-=-+=--+≤,所以mn 的取值范围是(,1]-∞,故答案为:(,1]-∞.17.(1)()()22115x y -+-=;(2)2x =或0y =.【分析】(1)利用圆心到直线的距离求半径,即可得圆的方程;(2)首先考查直线斜率不存在的直线,判断是否满足4MN =,当直线的斜率存在时,设直线20kx y k --=,利用弦长公式求得斜率k ,即可得直线方程.【详解】解:(1)由题意可知,点A 到直线1l 的距离d =因为圆A 与直线1l 相切,则圆A 的半径r d ==所以,圆A 的标准方程为()()22115x y -+-=(2)①当直线l 的斜率不存在时因为直线l 的方程为2x =.所以圆心A 到直线l 的距离11d =.由(1)知圆的半径为r 4MN ==. 故2x =是符合题意的一条直线.②当直线l 的斜率存在时设直线l 的斜率为k ,则直线20kx y k --=圆心A 到直线l 的距离1d =因为22212MN d r ⎛⎫+= ⎪⎝⎭所以245+=,即()2211k k +=+,解得0k = 因此,直线l 的方程为0y =综上所述,直线l 的方程为2x =或0y =.18.(1)2x =-或3460x y -+=;(2. 【分析】(1)根据题意,由圆的方程分析圆的圆心与半径,分直线的斜率存在与不存在两种情况讨论,求出直线的方程,综合即可得答案;(2)根据题意,连接MC ,PC ,分析可得PMC △为直角三角形,即222||||||PM PC MC =-,设(,)P x y ,分析可得||MC ||||PM PO =,分析可得2222(1)(2)2x y x y ++--=+,变形可得P 的轨迹方程,据此结合直线与圆的方程分析可得答案.【详解】解:(1)222430x y x y ++-+=可化为22(1)(2)2x y ++-=.当直线l 的斜率不存在时,其方程为2x =-,易求得直线l 与圆C 的交点为(2,1)A -,()23B -,,2AB =,符合题意;当直线l 的斜率存在时,设其方程为(2)y k x =+,即20kx y k -+=,则圆心C 到直线l 的距离1d ,解得34k =. 所以直线l 的方程为3460x y -+=,综上,直线l 的方程为2x =-或3460x y -+=.(2)如图,PM 为圆C 的切线,连接MC ,PC ,则CM PM ⊥.所以PMC △为直角三角形.所以222PM PC MC =-.设点P 为(,)x y ,由(1)知点C 为(1,2)-,MC =PM PO =,P 的轨迹方程为2430x y -+=. 求PM 的最小值,即求PO 的最小值,也即求原点O 到直线2430x y -+=的距离,代入点到直线的距离公式可求得PM 的最小值d =19.(1)20x y -++或20x y -+-=;(2)【分析】(1)设切线方程为y x b =+,由切线定义求得b ,进而求得结果;(2)作CD AB ⊥,由点到直线距离公式求得CD ,再由弦长公式求得AB ,进而求得面积.【详解】(1)设切线方程为y x b =+,则圆心(1,3)C 到切线的距离4d r ==,解得2b =±所以切线方程为20x y -++或20x y -+-=;(2)作CD AB ⊥,垂足为D ,CD ==,∴AB ==∴1122ABC S AB CD =⋅=⨯△20.(1)()2244x y -+=;(2 【分析】 (1)根据垂径定理的逆定理可得弦RS 的垂直平分线过原点,又圆心C 在直线280x y --=上,联立直线方程即可得解;(2)根据题意知当OP 与圆相切时,tan POA ∠值最大,计算即可得解.【详解】(1)由20142RS k --==--,线段RS 中点坐标为(3,1)-, 所以线段RS 的垂直平分线为4y x =-,即40x y --=,由28040x y x y --=⎧⎨--=⎩可得圆C 的圆心为(4,0),易得半径2r ,所以圆C 的方程为22(4)4x y -+=;(2)由圆心在x 轴正半轴上,由()(),00A t t >,所以OA 在正半轴上,由090POA <∠<,故当OP 和圆相切时,即P 为切点时POA ∠最大,此时tan POA ∠最大,tanPOA ∠=. 21.(1)2;(2)最大值为8,最小值为3.【分析】(1)先将圆的方程化为标准方程,得出圆心坐标和半径,求出圆心到直线l 的距离,由勾股定理可得答案.(2)先求出PC 的长度,由圆的性质可得PC r PQ PC r -≤≤+,从而得到答案.【详解】解:(1)圆C 的一般式方程为()()22329x y ++-=,即圆心()C 3,2-,半径3r =,所以圆心C 到直线l :10x y -+=的距离d ==所以弦长 2MN ==;(2)5PC ,又3r =,所以max 8PQ PC r =+=,min 2PQ PC r =-=,即PQ 的最大值为8,最小值为3.22.(1)证明见解析;(2)5【分析】 (1)由题知直线l 过定点1,2,且为C 的圆心,故l 与C 相交;(2)由题知2AB r ==l 与直线OC 垂直时,O 到直线l 的距离最大,最大值为OC =.【详解】解:(1)由题知直线():21l y m x -=-,C 的标准方程为()()22125x y -+-=, 所以直线l 过定点1,2,为圆的圆心,所以直线过C 的圆心,故l 与C 相交;(2)由(1)知直线:20l mx y m -+-=过圆C 的圆心,C 的半径为r =所以2AB r ==所以当O 到直线l 的距离最大时,OAB 的面积取最大值,故当直线l 与直线OC 垂直时,O 到直线l 的距离最大,最大值为OC =所以OAB 的面积最大值为11522AB OC =。

高考数学复习专题训练—直线与圆(含答案及解析)

高考数学复习专题训练—直线与圆(含答案及解析)

高考数学复习专题训练—直线与圆一、单项选择题1.(2021·全国甲,文5)点(3,0)到双曲线x 216−y29=1的一条渐近线的距离为()A.95B.85C.65D.452.(2021·湖南湘潭模拟)已知半径为r(r>0)的圆被直线y=-2x和y=-2x+5所截得的弦长均为2,则r的值为()A.54B.√2C.32D.√33.(2021·北京清华附中月考)已知点P与点(3,4)的距离不大于1,则点P到直线3x+4y+5=0的距离的最小值为()A.4B.5C.6D.74.(2021·江西鹰潭一中月考)已知点M,N分别在圆C1:(x-1)2+(y-2)2=9与圆C2:(x-2)2+(y-8)2=64上,则|MN|的最大值为()A.√7+11B.17C.√37+11D.155.(2021·湖北黄冈中学三模)已知直线l:mx+y+√3m-1=0与圆x2+y2=4交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=()A.2B.4√33C.2√3D.46.(2021·重庆八中月考)已知圆C:x2+y2-4x-2y+1=0及直线l:y=kx-k+2(k∈R),设直线l与圆C相交所得的最长弦为MN,最短弦为PQ,则四边形PMQN的面积为()A.4√2B.2√2C.8D.8√27.(2021·山西临汾适应性训练)直线x+y+4=0分别与x轴、y轴交于A,B两点,点P在圆(x-4)2+y2=2上,则△ABP面积的取值范围是()A.[8,12]B.[8√2,12√2]C.[12,20]D.[12√2,20√2]8.(2021·山东青岛三模)已知直线l:3x+my+3=0,曲线C:x2+y2+4x+2my+5=0,则下列说法正确的是()A.“m>1”是曲线C表示圆的充要条件B.当m=3√3时,直线l与曲线C表示的圆相交所得的弦长为1C.“m=-3”是直线l与曲线C表示的圆相切的充分不必要条件D.当m=-2时,曲线C与圆x2+y2=1有两个公共点9.(2021·河北邢台模拟)已知圆M:(x-2)2+(y-1)2=1,圆N:(x+2)2+(y+1)2=1,则下列不是M,N 两圆公切线的直线方程为()A.y=0B.4x-3y=0C.x-2y+√5=0D.x+2y-√5=0二、多项选择题10.(2021·广东潮州二模)已知圆C:x2-2ax+y2+a2-1=0与圆D:x2+y2=4有且仅有两条公共切线,则实数a的取值可以是()A.-3B.3C.2D.-211.(2021·海南三亚模拟)已知圆O1:x2+y2-2x-3=0和圆O2:x2+y2-2y-1=0的交点为A,B,则()A.圆O1和圆O2有两条公切线B.直线AB的方程为x-y+1=0C.圆O2上存在两点P和Q,使得|PQ|>|AB|D.圆O1上的点到直线AB的最大距离为2+√2三、填空题12.(2021·辽宁营口期末)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,-1)时,点M到直线l2的距离为.13.(2021·山东滨州检测)已知圆M:x2+y2-12x-14y+60=0,圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,则圆N的标准方程为.14.(2021·山东烟台二模)已知两条直线l1:y=2x+m,l2:y=2x+n与圆C:(x-1)2+(y-1)2=4交于A,B,C,D四点,且构成正方形ABCD,则|m-n|的值为.15.(2021·河北沧州模拟)已知圆C:x2+y2-4x+2my+1=0(m>0),直线l:y=kx+m与直线x+√3y+1=0垂直,则k=,直线l与圆C的位置关系为.答案及解析1.A 解析 由题意,双曲线的一条渐近线方程为y=34x ,即3x-4y=0,点(3,0)到该渐近线的距离为√32+(−4)2=95.故选A . 2.C 解析 直线y=-2x 和y=-2x+5截圆所得弦长相等,且两直线平行,则圆心到两条直线的距离相等且为两条平行直线间距离的一半,故圆心到直线y=-2x 的距离d=12×√4+1=√52,2√r2-d 2=2√r 2-54=2,解得r=32.3.B 解析 设点P (x ,y ),则(x-3)2+(y-4)2≤1,圆心(3,4)到3x+4y+5=0的距离为d=√32+42=6,则点P 到直线3x+4y+5=0的距离的最小值为6-1=5. 4.C 解析 依题意,圆C 1:(x-1)2+(y-2)2=9,圆心C 1(1,2),半径r 1=3.圆C 2:(x-2)2+(y-8)2=64,圆心C 2(2,8),半径r 2=8, 故|MN|max =|C 1C 2|+r 1+r 2=√37+11.5.B 解析 直线过定点(-√3,1),该点在圆上.圆半径为r=2,且|AB|=2,所以△OAB 是等边三角形,圆心O 到直线AB 的距离为√3,所以√3m-1|√1+m 2=√3,m=-√33,直线斜率为k=-m=√33,倾斜角为θ=π6, 所以|CD|=|AB|cosθ=2cosπ6=4√33. 6.A 解析 将圆C 的方程整理为(x-2)2+(y-1)2=4,则圆心C (2,1),半径r=2.将直线l 的方程整理为y=k (x-1)+2,则直线l 恒过定点(1,2),且(1,2)在圆C 内. 最长弦MN 为过(1,2)的圆的直径,则|MN|=4,最短弦PQ 为过(1,2),且与最长弦MN 垂直的弦,∵k MN =2−11−2=-1,∴k PQ =1.直线PQ 方程为y-2=x-1,即x-y+1=0. 圆心C 到直线PQ 的距离为d=√2=√2,|PQ|=2√r 2-d 2=2√4−2=2√2.四边形PMQN 的面积S=12|MN|·|PQ|=12×4×2√2=4√2.7.C 解析 直线x+y+4=0分别与x 轴、y 轴交于A ,B 两点,A (-4,0),B (0,-4),故|AB|=4√2.设圆心(4,0)到直线x+y+4=0的距离为d ,则d=√1+1=4√2.设点P 到直线x+y+4=0的距离为h ,故h max =d+r=4√2+√2=5√2,h min =d-r=4√2−√2=3√2,故h 的取值范围为[3√2,5√2],即△ABP 的高的取值范围是[3√2,5√2],又△ABP 的面积为12·|AB|·h ,所以△ABP 面积的取值范围为[12,20].8.C 解析 对于A,曲线C :x 2+y 2+4x+2my+5=0整理为(x+2)2+(y+m )2=m 2-1,曲线C 要表示圆,则m 2-1>0,解得m<-1或m>1,所以“m>1”是曲线C 表示圆的充分不必要条件,故A 错误;对于B,m=3√3时,直线l :x+√3y+1=0,曲线C :(x+2)2+(y+3√3)2=26, 圆心到直线l 的距离d=√3×(−3√3)+1|√1+3=5,所以弦长=2√r 2-d 2=2√26−25=2,故B错误;对于C,若直线l 与圆相切,圆心到直线l 的距离d=2√9+m 2=√m 2-1,解得m=±3,所以“m=-3”是直线l 与曲线C 表示的圆相切的充分不必要条件,C 正确;对于D,当m=-2时,曲线C :(x+2)2+(y-2)2=3,其圆心坐标为(-2,2),r=√3,曲线C 与圆x 2+y 2=1两圆圆心距离为√(-2-0)2+(2−0)2=2√2>√3+1,故两圆相离,不会有两个公共点,D 错误.9.D 解析 由题意,圆M :(x-2)2+(y-1)2=1的圆心坐标为M (2,1),半径为r 1=1,圆N :(x+2)2+(y+1)2=1的圆心坐标为N (-2,-1),半径为r 2=1.如图所示,两圆相离,有四条公切线.两圆心坐标关于原点O 对称,则有两条切线过原点O , 设切线l :y=kx ,则圆心M 到直线l 的距离为√1+k 2=1,解得k=0或k=43.故此时切线方程为y=0或4x-3y=0.另两条切线与直线MN 平行且相距为1,又由l MN :y=12x , 设切线l':y=12x+b ,则√1+14=1,解得b=±√52, 此时切线方程为x-2y+√5=0或x-2y-√5=0. 结合选项,可得D 不正确.10.CD 解析 圆C 方程可化为(x-a )2+y 2=1,则圆心C (a ,0),半径r 1=1;由圆D 方程知圆心D (0,0),半径r 2=2.因为圆C 与圆D 有且仅有两条公切线,所以两圆相交.又两圆圆心距d=|a|,有2-1<|a|<2+1,即1<|a|<3,解得-3<a<-1或1<a<3.观察4个选项,可知C,D两项中的a的取值满足题意.11.ABD解析对于A,因为两个圆相交,所以有两条公切线,故A正确;对于B,将两圆方程作差可得-2x+2y-2=0,即得公共弦AB的方程为x-y+1=0,故B正确;对于C,直线AB经过圆O2的圆心(0,1),所以线段AB是圆O2的直径,故圆O2中不存在比AB长的弦,故C错误;对于D,圆O1的圆心坐标为(1,0),半径为2,圆心到直线AB:x-y+1=0的距离为√2=√2,所以圆O1上的点到直线AB的最大距离为2+√2,D正确.12.√5解析因为直线l1:y=kx+4恒过定点P(0,4),所以P(0,4)关于点M(1,2)对称,所以P(0,4)关于点M(1,2)的对称点为(2,0),此时(2,0)和N(0,-1)都在直线l2上,可得直线l2的方程y-0-1-0=x-20−2,即x-2y-2=0,所以点M到直线l2的距离为d=√1+4=√5.13.(x-6)2+(y-1)2=1解析圆的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.14.2√10解析由题设知:l1∥l2,要使A,B,C,D四点构成正方形ABCD,正方形的边长等于.直线l1,l2之间的距离d,则d=√5若圆的半径为r,由正方形的性质知d=√2r=2√2,故=2√2,即有|m-n|=2√10.√515.√3相离解析x2+y2-4x+2my+1=0,即(x-2)2+(y+m)2=m2+3,圆心C(2,-m),半径r=√m2+3,)=-1,解得k=√3.因为直线l:y=kx+m与直线x+√3y+1=0垂直,所以k·√3=√3+m.直线l:y=√3x+m.因为m>0,所以圆心到直线l的距离d=√3+m+m|√3+1因为d2=m2+2√3m+3>m2+3=r2,所以d>r.所以直线l与圆C的位置关系是相离.。

高考数学第二轮专题复习直线与圆的方程教案

高考数学第二轮专题复习直线与圆的方程教案

高考数学第二轮专题复习直线与圆的方程教案一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。

直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。

二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。

三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。

但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。

四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。

既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。

高考数学专题《直线与圆的位置关系》习题含答案解析

高考数学专题《直线与圆的位置关系》习题含答案解析

专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。

2024新高考数学基础知识梳理与课本优秀题目巩固-模块14-直线与圆

2024新高考数学基础知识梳理与课本优秀题目巩固-模块14-直线与圆

(一) 直线与直线的方程 1、直线的倾斜角与斜率锐角直角钝角零角▪直线的倾斜角图形○ 温馨提示1. 直线都存在唯一的倾斜角, 但不一定存在斜率, 倾斜角为90∘的直线没有斜率.2. 直线的斜率和倾斜角都是刻画直线倾斜程度的量, 斜率侧重于代数角度, 倾斜角侧重于几何角度.3. 由直线的斜率k的范围求倾斜角α的范围时,要注意α的取值范围,即0∘≤α< 90∘或90∘<α<180∘ ,此时k=tanα的图象是不连续的.模块十四:直线与圆的方程1 直线的倾斜角 强调“两个方向”: x 轴的正向,直线向上的 1. 直线的倾斜角的定义 方向; 直线相对于 x 轴正向的倾斜程度.当直线 l 与 x 轴相交时,我们以 x 轴为基准, x 轴正向与直线 l 向上的方向之间所成的角 α 叫做直线 l 的倾斜角. 当直线 l 和 x 轴平行或重合时,规定它的倾斜角为 0∘ . 直线的倾斜角 α 的取值 范围为 0∘≤α<180∘ . 2. 直线的倾斜角的意义1) 直线的倾斜角体现了直线相对于 x 轴正向的倾斜程度.2) 在平面直角坐标系中, 每一条直线都有一 个确定的倾斜角. 3) 如图所示, 倾斜角相同, 未必表示同一条直线. 2 直线的斜率 一条直线有唯一的倾斜角, 但一个倾斜 1.直线的斜率 角可以对应无数条直线.倾斜角不是 90∘ 的直线,它的倾斜角 α 的正切值叫做这条直 线的斜率. 斜率通常用 k 表示,即 k =tanα,0∘≤α<180∘ ,且 α 900. 当倾斜角 α=90∘ 时,直线的斜率不存在2. 直线的斜率公式 P 1(x 1,y 1),P 2(x 2,y 2)k =(y 2−y 1x 2−x 1) 或 k =(y 1−y 2x 1−x 2) (x 1≠x 2) 的直线的斜率公式: 3 斜率与倾斜角的关系注: “/”表示“逐渐增大”. ○ 直线的方向向量图示P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ 与 OP ⃗⃗⃗⃗⃗ 都是直线的方 向向量.若直线 l 1,l 2 重合,仍然有 k 1 =‰,这是利用斜率证明三 点共线的方法当 l 1,l 2 的斜率都不存在时, 两直线也平行。

高考数学复习直线与圆专题过关训练100题(WORD版含答案)

高考数学复习直线与圆专题过关训练100题(WORD版含答案)

高考数学复习直线与圆专题过关训练100题(WORD 版含答案)一、选择题1.点M ,N 是圆22240x y kx y +++-=上的不同两点,且点M ,N 关于直线10x y -+=对称,则该圆的半径等于A ..3 2.我们把顶角为36°的等腰三角形称为黄金三角形.....。

其作法如下:①作一个正方形ABCD ;②以AD 的中点E 为圆心,以EC 长为半径作圆,交AD 延长线于F ;③以D 为圆心,以DF 长为半径作⊙D ;④以A 为圆心,以AD 长为半径作⊙A 交⊙D 于G ,则△ADG 为黄金三角形。

根据上述作法,可以求出cos36°= A .415-B .415+ C .435+ D .435-3.已知实数a ,b 满足224a b +=,则ab 的取值范围是 A .[0,2]B .[-2,0]C .(-∞,-2]∪[2,+∞)D .[-2,2]4.双曲线C :22221(0,0)x y a b a b -=>>的离心率为2,其渐近线与圆()2234x a y -+=相切,则该双曲线的方程为( )A .2213y x -= B .22139x y -=C .22125x y -= D .221412x y -= 5.若直线与圆有公共点,则实数a 取值范围是( )A. [-3,-1]B. [-1,3]C. [-3,1]D. (-∞,-3]∪[1,+∞)6.直线20x y -与y 轴的交点为P ,点P 把圆()22136x y ++=的直径分为两段,则较长一段比上较短一段的值等于( ) A .2 B .3 C .4 D .57.已知圆...22:(3)(4)1C x y -+-=和两点...()()(,0),00A m Bm m ->,.若圆...C .上存在点....P .,使得...90APB ∠=︒,则..m .的最大值为.....(. ).A ...7B ....6C ....5D ....4.8.已知圆...22:(3)(4)1C x y -+-=和两点...()()(,0),,00A m B m m ->.. 若圆..C .上存在点....P .,使得... 90APB ∠=︒,则..m .的最大值为.....(. ). A ...7 B ....6 C ....5 D ....4.9.若函数1)(2+=x x f 的图象与曲线C :()01)(>+=a ae x g x存在公共切线,则实数a 的取值范围为 A .⎪⎭⎫⎢⎣⎡∞+,26e B .⎥⎦⎤ ⎝⎛28,0e C .⎪⎭⎫⎢⎣⎡∞+,22e D .⎥⎦⎤ ⎝⎛24,0e 10.已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且||||-=+,其中O 为坐标原点,则实数a 的值为 A .2 B .±2 C .-2D .2±11.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P 、Q 分别为抛物线与圆22(6)1x y -+=上的动点,则|PQ |的最小值为( )A 1B . 2C ..1函数()e cos xf x x =的图象在(0,f (0))处的切线倾斜角为( ) A. 0 B . 4π C. 1 D .2π 13.在平面直角坐标系xOy 中,已知两圆C 1:1222=+y x 和C 2:1422=+y x ,又A 点坐标为(3,-1),M ,N 是C 1上的动点,Q 为C 2上的动点,则四边形AMQN 能构成矩形的个数为( )A .0个B .2个C .4个D .无数个 14. 曲线11x y x +=-在点(2,3)处的切线与直线10ax y ++=平行,则a =( ) A .12B .12-C .-2D .215.已知过点A (a ,0)作曲线:xC y x e =⋅的切线有且仅有两条,则实数a 的取值范围是A .(-∞,-4)∪(0,+∞)B .(0,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1) 16.若点P (1,1)为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --= 17.直线2x -y 与y 轴的交点为P ,点P 把圆22(1)36x y ++=的直径分为两段,则较长一段比上较短一段的值等于 A. 2B. 3C. 4D. 518.若函数1()(0,0)bxf x e a b a=->>的图象在0x =处的切线与圆221x y +=相切,则a b +的最大值是( )C.2D.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2B .220.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2B .221.若直线y x b =+与曲线096422=+--+y x y x 有公共点,则b 的取值范围是( )A. 1,1⎡-+⎣B. 1⎡-+⎣C. 1⎡⎤-⎣⎦D. 1⎡⎤-⎣⎦22.已知直线4x -3y +a =0与⊙C : x 2+y 2+4x =0相交于A 、B 两点,且∠AOB =120°,则实数a 的值为( )A .3B .10 C. 11或 21 D .3或13 23.过点(2,1)且与直线3x -2y =0垂直的直线方程为A .2x -3y -1=0B .2x +3y -7=0C .3x -2y -4=0D .3x +2y -8=0 24.若直线y =x +b 与曲线y =3b 的取值范围是A .[1,1-+B .[1-+C .[1-D .[1 25.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x=-1相切,则此动圆必过定点( )A. (2,0)B. (1,0)C. (0,1)D.(0,-1) 26.已知曲线421y x ax =++在点(-1,f (-1))处切线的斜率为8,则f (-1)= A .7B .-4C .-7D .427.已知点(1,2)P 和圆222:20C x y kx y k ++++=,过点P 作圆C 的切线有两条,则k 的取值范围是( )A .RB .(,)3-∞C .(33-D .(3- 28.已知倾斜角为θ的直线l 与直线230x y +-=垂直,则cos2θ的值为 ( ) A .35 B .35- C .15 D .15- 29.我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误..命题的个数是( ) P 1:对于任意一个圆其对应的太极函数不唯一;P 2:如果一个函数是两个圆的太极函数,那么这两个圆为同心圆; P 3:圆22(1)(1)4x y -+-=的一个太极函数为32()33f x x x x =-+; P 4:圆的太极函数均是中心对称图形; P 5:奇函数都是太极函数; P 6:偶函数不可能是太极函数. A. 2B. 3C.4D.530.在平面直角坐标系xOy 中,动点P 的坐标满足方程4)3()1(22=-+-y x ,则点P 的轨迹经过()A. 第一、二象限B.第二、三象限C. 第三、四象限D.第一、四象限 31.直线1-=x y 的倾斜角是()A.6π B.4π C. 2π D.43π32.已知圆221:1C x y +=,圆222:(3)(4)9C x y -+-=,则圆C 1与圆C 2的位置关系是()A.内含B.外离C.相交D.相切 33.在平面直角坐标系xOy 中,已知直线l 的方程为2y x =+,则原点O 到直线l 的距离是A.12D.234.过点()1,1P -作圆()()()22:21C x t y t t R -+-+=∈的切线,切点分别为A,B ,则PA PB ⋅的最小值为A. 103B. 403C. 214D.3 35.已知函数()ln ,f x x x =若直线l 过点(0,-1),且与曲线()y f x =相切,则直线l 的方程为 A.10x y +-= B.10x y ++= C.10x y --= D.10x y -+= 36.圆C :222x y +=,点P 为直线136x y+=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则直线AB 过定点( ) A .11(,)23B .21(,)33C .11(,)32D .12(,)3337.过双曲线221916x y -=的右支上一点P ,分别向圆C 1:22(5)4x y ++=和圆C 2:222(5)x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =( )A .1B .2 38.已知l 1,l 2分别是函数()|ln |f x x =图像上不同的两点P 1,P 2处的切线,l 1,l 2分别与y 轴交于点A ,B ,且l 1与l 2垂直相交于点P ,则△ABP 的面积的取值范围是( ) A .(0,1) B .(0,2) C. (0,+∞) D .(1,+∞) 39.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则△ABP 面积的取值范围是A .[2,6]B .[4,8]C .D .40.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1(B )2(C )3 (D )441.若圆1C :2222()(2)410x m y n m n -+-=++(0mn >)始终平分圆2C :22(1)(1)2x y +++=的周长,则12m n+的最小值为( ) A .3 B .92C.6 D .9 42.函数()2ln (0,)f x x x bx a b a =+-+>∈R 的图像在点()(),b f b 处的切线斜率的最小值是( )A .BC .1D .243.己知直线1:sin 10l x y α+-=,直线212:3cos 10,sin 2=l x y l l αα-+=⊥若,则 A .23B .35±C .35-D .3544.若直线b x y +=与曲线243x x y --=有公共点,则b 的取值范围是( ) A .]221,221[+- B .]3,221[- C .]221,1[+- D .]3,221[- 45.已知点)3,1(A ,)33,1(-=B ,则直线AB 的倾斜角是( ) A .60° B .30° C .120° D .150°二、填空题46.若直线20l x y +=:与圆()()22:10C x a y b -+-=相切,且圆心C 在直线l 的上方,则ab 的最大值为___________. 47.在四边形ABCD 中,︒=∠90ABC ,2==BC AB ,△ACD 为等边三角形,则△ABC 的外接圆与△ACD 的内切圆的公共弦长=___________. 48.设圆O 1,圆O 2半径都为1,且相外切,其切点为P .点A ,B 分别在圆O 1,圆O 2上,则PA PB ⋅的最大值为 ▲ .49.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A ,B 两点,且△ABC 为等腰直角三角形,则实数a 的值为 ※※ . 50.已知a ,b 为正数,若直线022=-+by ax 被圆422=+y x 截得的弦长为32,则221b a +的最大值是 .51.已知抛物线()20y ax a =>的准线为l ,若l 与圆()22:31C x y -+=a = . 52.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 . 53.已知双曲线22221(0,0)x y a b a b-=>>的渐近线被圆22650x y x +-+=截得的弦长为2,则该双曲线的离心率为 . 54.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点.设顶点(),P x y 的轨迹方程是()y f x =,则对函数()y f x =有下列判断:①函数()y f x =是偶函数;②对任意的x ∈R ,都有()()22f x f x +=-;③函数()y f x =在区间[2,3]上单调递减;④函数()y f x =的值域是[]0,1;⑤()2π1d 2f x x +=⎰.其中判断正确的序号是__________.55.在平面直角坐标系xOy 中,已知圆1:22=+y x O ,直线a x y l +=:,过直线l 上点P 作圆O 的切线P A ,PB ,切点分别为A ,B ,若存在点P 使得23=+,则实数a 的取值范围是 . 56.已知函数a x y +=ln 的图象与直线1+=x y 相切,则实数a 的值为 . 57.函数()ln 1f x x =+在点(1,1)处的切线方程为 . 58.已知直线:1l mx y -=。

2024年高考数学一轮复习课件(新高考版) 第8章 §8.4 直线与圆、圆与圆的位置关系

2024年高考数学一轮复习课件(新高考版)  第8章 §8.4 直线与圆、圆与圆的位置关系

2024年高考数学一轮复习课件(新高考版)第八章 直线和圆、圆锥曲线§8.4 直线与圆、圆与 圆的位置关系考试要求1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分相离相切相交图形量化方程观点Δ___0Δ____0Δ____0几何观点d____r d____r d____r1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)<=>>=<图形量的关系外离 _________外切 __________2.圆与圆的位置关系(⊙O 1,⊙O 2的半径分别为r 1,r 2,d =|O 1O 2|)d >r 1+r 2d =r 1+r 2知识梳理相交 _______________内切 ____________内含 _________|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|3.直线被圆截得的弦长(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=__________.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x的一元二次方程,则|M N|=________________________.常用结论1.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.2.圆与圆的位置关系的常用结论(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.常用结论(2)两个圆系方程①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两圆没有公共点,则两圆一定外离.( )(2)若两圆的圆心距小于两圆的半径之和,则两圆相交.( )(3)若直线的方程与圆的方程组成的方程组有且只有一组实数解,则直线与圆相切.( )(4)在圆中最长的弦是直径.( )√××√1.直线3x+4y=5与圆x2+y2=16的位置关系是√A.相交B.相切C.相离D.相切或相交2.直线m:x+y-1=0被圆M:x2+y2-2x-4y=0截得的弦长为√∵x2+y2-2x-4y=0,∴(x-1)2+(y-2)2=5,3.若圆C1:x2+y2=16与圆C2:(x-a)2+y2=1相切,则a的值为A.±3B.±5√C.3或5D.±3或±5第二部分命题点1 位置关系的判断例1 (1)(多选)(2021·新高考全国Ⅱ)已知直线l :ax +by -r 2=0与圆C :x 2+y 2=r 2,点A (a ,b ),则下列说法正确的是A.若点A 在圆C 上,则直线l 与圆C 相切B.若点A 在圆C 内,则直线l 与圆C 相离C.若点A 在圆C 外,则直线l 与圆C 相离D.若点A 在直线l 上,则直线l 与圆C 相切√√√若点A(a,b)在圆C上,则a2+b2=r2,若点A(a,b)在圆C内,则a2+b2<r2,则直线l与圆C相离,故B正确;若点A(a,b)在圆C外,则a2+b2>r2,若点A(a,b)在直线l上,则a2+b2-r2=0,即a2+b2=r2,(2)直线kx-y+2-k=0与圆x2+y2-2x-8=0的位置关系为A.相交、相切或相离B.相交或相切√C.相交D.相切方法一 直线kx-y+2-k=0的方程可化为k(x-1)-(y-2)=0,该直线恒过定点(1,2).因为12+22-2×1-8<0,所以点(1,2)在圆x2+y2-2x-8=0的内部,所以直线kx-y+2-k=0与圆x2+y2-2x-8=0相交.思维升华判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系判断.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.命题点2 弦长问题例2 (1)(2022·北京模拟)已知圆x2+y2=4截直线y=k(x-2)所得弦的长度为2,那么实数k的值为√圆x2+y2=4的圆心为(0,0),半径r=2,(2)(2023·滁州模拟)已知过点P(0,1)的直线l与圆x2+y2+2x-6y+6=0相交x=0或3x+4y-4=0于A,B两点,则当|AB|=时,直线l的方程为_____________________.因为圆x2+y2+2x-6y+6=0可以化为(x+1)2+(y-3)2=4,所以圆心为(-1,3),半径为r=2,当直线l斜率不存在时,直线l的方程为x=0,此时圆心(-1,3)到直线x=0的距离为1,满足条件;当直线l斜率存在时,设斜率为k,直线l的方程为y=kx+1,此时直线l的方程为3x+4y-4=0,综上,所求直线的方程为3x+4y-4=0或x=0.思维升华弦长的两种求法(1)代数法:将直线和圆的方程联立方程组,根据弦长公式求弦长.命题点3 切线问题(1)求过点P的圆C的切线方程;由题意得圆心C(1,2),半径r=2.∴点P在圆C上.(2)求过点M的圆C的切线方程,并求出切线长.∵(3-1)2+(1-2)2=5>4,∴点M在圆C外.当过点M的直线的斜率不存在时,直线方程为x=3,即x-3=0.又点C(1,2)到直线x-3=0的距离d=3-1=2=r,∴直线x=3是圆的切线;当切线的斜率存在时,设切线方程为y-1=k(x-3),即kx-y+1-3k=0,即3x-4y-5=0.综上,过点M的圆C的切线方程为x-3=0或3x-4y-5=0.思维升华当切线方程斜率存在时,圆的切线方程的求法(1)几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.(2)代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.注意验证斜率不存在的情况.命题点4 直线与圆位置关系中的最值(范围)问题例4 (2023·龙岩模拟)已知点P(x0,y0)是直线l:x+y=4上的一点,过点P作圆O:x2+y2=2的两条切线,切点分别为A,B,则四边形P AOB的面积的最小值为______.∵点P(x0,y0)是直线l:x+y=4上的一点,∴P(x0,4-x0),思维升华涉及与圆的切线有关的线段长度范围(最值)问题,解题关键是能够把所求线段长度表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求得结果.A.相切B.相交C.相离D.相交或相切√所以直线与圆相交或相切.√例5 (1)(2023·扬州联考)已知圆C:(x-1)2+(y+ )2=16和两点A(0,-m),B(0,m),若圆C上存在点P,使得AP⊥BP,则m的最大值为A.5B.6√C.7D.8因为两点A(0,-m),B(0,m),点P满足AP⊥BP,故点P的轨迹C1是以A,B为直径的圆(不包含A,B),故其轨迹方程为x2+y2=m2(x≠0),则|4-|m||≤3≤4+|m|,解得|m|∈[1,7],则m的最大值为7.(2)圆C1:x2+y2-2x+10y-24=0与圆C2:x2+y2+2x+2y-8=0的公共x-2y+4=0弦所在直线的方程为_____________,公共弦长为______.两式相减并化简,得x-2y+4=0,即为两圆公共弦所在直线的方程.由x2+y2-2x+10y-24=0,得(x-1)2+(y+5)2=50,设公共弦长为2l,由勾股定理得r2=d2+l2,思维升华(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.跟踪训练2 (1)(2023·齐齐哈尔模拟)已知圆M:x2+y2-4y=0与圆N:x2+y2-2x-3=0,则圆M与圆N的位置关系为√A.内含B.相交C.外切D.外离圆M:x2+y2-4y=0,即x2+(y-2)2=4,圆心M(0,2),半径R=2.圆N:x2+y2-2x-3=0,即(x-1)2+y2=4,圆心N(1,0),半径r=2,故两圆是相交关系.(2)(2022·新高考全国Ⅰ)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程__________________________________________________________________________________.x =-1或7x -24y -25=0或3x +4y -5=0(答案不唯一,只需写出上述三个方程中的一个即可)如图,因为圆x2+y2=1的圆心为O(0,0),半径r1=1,圆(x-3)2+(y-4)2=16的圆心为A(3,4),半径r2=4,所以|OA|=5,r1+r2=5,所以|OA|=r1+r2,所以两圆外切,公切线有三种情况:①易知公切线l1的方程为x=-1.②另一条公切线l2与公切线l1关于过两圆圆心的直线l对称.。

备战2024年高考数学考试易错题专题10 直线和圆的方程(4大易错点分析)(原卷版)

备战2024年高考数学考试易错题专题10 直线和圆的方程(4大易错点分析)(原卷版)

专题10直线和圆的方程易错点一:使用两平行线间距离公式忽略系数相等致错(平行线求距离问题)距离问题技巧总结①两点间的距离:已知111222(,),(,)P x y P x y 则12P P ②点到直线的距离:0022Ax By C d A B③两平行线间的距离:两条平行直线11:0l Ax By C 与22:0l A x B y C 的距离公式d.易错提醒:在求两条平行线间距离时,先将两条直线y x ,前的系数统一,然后代入公式求算.1易错点二:求有关截距相等问题时易忽略截距为零的情况(直线截距式的考点)直线方程的五种形式的比较如下表:名称方程的形式常数的几何意义适用范围点斜式()11y y k x x -=-11(,)x y 是直线上一定点,k 是斜率不垂直于x 轴斜截式y kx b =+k 是斜率,b 是直线在y 轴上的截距不垂直于x 轴两点式112121y y x x y y x x --=--11(,)x y ,22(,)x y 是直线上两定点不垂直于x 轴和y 轴截距式1x y a b+=a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不垂直于x 轴和y 轴,且不过原点一般式2200Ax By C A B ++=+¹()A 、B 、C 为系数任何位置的直线给定一般式求截距相等时,具体方案如下:形如:第一种情况B A B C A C A C x y B C y x C By Ax000令令第二种情况:000时,横纵截距皆为 C C By Ax 截距之和为0时,横纵截距都为0也是此类模型易错提醒:求截距相等时,往往会忽略横纵截距为0的情况从而漏解例.已知直线l 过点(2,1)且在x ,y 轴上的截距相等(1)求直线l 的一般方程;(2)若直线l 在x ,y 轴上的截距不为0,点 ,P a b 在直线l 上,求33a b 的最小值.变式1.已知直线l 过点 1,2且在x y ,轴上的截距相等(1)求直线l 的一般方程;(2)若直线l 在x y ,轴上的截距不为0,点(,)P a b 在直线l 上,求33a b 的最小值.变式2.已知直线1l :240ax y ,直线2l :210bx y ,其中a ,b 均不为0.(1)若12l l ,且1l 过点 1,1,求a ,b ;(2)若12//l l ,且1l 在两坐标轴上的截距相等,求1l 与2l 之间的距离.变式3.已知直线1:2240l ax y a ,直线222:4480l a x y a (1)若直线1l 在两坐标轴上的截距相等,求实数a 的值;(2)若1l 2l ,求直线2l 的方程.1易错点三:求有关圆的切线问题易混淆“在”“过”(求有关圆的切线问题)技巧总结第一类:求过圆上一点 00,y x 的圆的切线方程的方法正规方法:第一步:求切点与圆心的连线所在直线的斜率k 第二步:利用垂直关系求出切线的斜率为k1第三步:利用点斜式 00x x k y y 求出切线方程注意:若0 k 则切线方程为0x x ,若k 不存在时,切线方程为0y y 秒杀方法:①经过圆222r y x 上一点 00,y x P 的切线方程为200r y y x x ②经过圆 222r b y a x 上一点 00,y x P 的切线方程为 200r b y b y a x a x ③经过圆022F Ey Dx y x 上一点 00,y x P 的切线方程为0220000F y y E x x D y y x x 第二类:求过圆外一点 00,y x 的圆的切线方程的方法方法一:几何法第一步:设切线方程为 00x x k y y ,即000 y kx y kx ,第二步:由圆心到直线的距离等于半径长,可求得k ,切线方程即可求出方法二:代数法第一步:设切线方程为 00x x k y y ,即00y kx kx y ,第二步:代入圆的方程,得到一个关于x 的一元二次方程,由0 可求得k ,切线方程即可求出注意:过圆外一点的切线必有两条,当上面两种方法求得的k 只有一个时,则另一条切线的斜率一定不存在,可得数形结合求出.第三类:求斜率为k 且与圆相切的切线方程的方法方法一:几何法第一步:设切线方程为m kx y ,即0m y kx第二步:由圆心到直线的距离等于半径长,可求得m ,切线方程即可求出.方法二:代数法第一步:设切线方程为m kx y ,第二步:代入圆的方程,得到一个关于x 的一元二次方程,由0 可求得m ,切线方程即可求出方法三:秒杀方法已知圆222r y x 的切线的斜率为k ,则圆的切线方程为12k r kx y 已知圆 222r b y a x 的切线的斜率为k ,则圆的切线方程为kab k r kx y 12工具:点与圆的位置关系判断圆的标准方程为)0()()(222 r r b y a x 一般方程为)04(02222 F E D F Ey Dx y x .①点在圆上:22020)()(r b y a x 0002020 F Ey Dx y x ②点在圆外:22020)()(r b y a x 0002020 F Ey Dx y x ③点在圆内:22020)()(r b y a x 0002020 F Ey Dx y x 易错提醒:求切线问题时首要任务确定点与圆的位置关系并采用对应方案进行处理例、圆的方程为122y x ,过点2321,的切线方程变形1、圆的方程为042422y x y x ,过点12323,的切线方程变形2、圆的方程为042422y x y x ,过点 11,的切线方程变形3、圆的方程为 11222 y x ,切线斜率为1方程为1易错点四:忽略斜率是否存在(与圆的代数结构有关的最值问题)处理此类问题宗旨:截距式与斜率式都可转化为动直线与圆相切时取得最值①截距式:求形如ny mx 的最值转化为动直线斜率的最值问题②斜率式:求形如nx m y 的最值转化为动直线截距的最值问题③距离式:求形如222)()(r b y a x 的最值转化为动点到定点的距离的平方的最值问题形如:若 y x P ,是定圆 222:r b y a x C 上的一动点,则求ny mx 和xy 这两种形式的最值思路1:几何法①ny mx 的最值,设t ny mx ,圆心 b a C ,到直线t ny mx 的距离为,22n m tnb ma d由r d 即可解得两个t 值,一个为最大值,一个为最小值②x y 的最值:xy 即点P 与原点连线的斜率,数形结合可求得斜率的最大值和最小值思路2:代数法①ny mx 的最值,设t ny mx ,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.②x y 的最值:设xy t ,则tx y ,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.易错提醒:截距式与斜率式在学习直线与圆的位置关系后,都可转化为动直线与圆相切时取得最值.同时,需要注意若是斜率式,则需考虑斜率是否存在例、已知()M m n ,为圆C :22414450x y x y 上任意一点.(1)求2m n 的最大值;(2)求32n m 的最大值和最小值;(3)求22m n 的最大值和最小值.变形1、如果实数x ,y 满足 22336x y ,求:(1)y x的最大值与最小值;(2)x y 的最大值与最小值;(3)22x y 的最大值和最小值.变形2、已知实数x ,y 满足方程22(2)3x y .(1)求y x的最大值和最小值;(2)求y x 的最大值和最小值;(3)求22x y 的最大值和最小值.变形3、已知实数x y 、满足222410x y x y .(1)求4y x 的最大值和最小值;。

2023年新高考数学一轮复习9-2 直线与圆的位置关系(真题测试)含详解

2023年新高考数学一轮复习9-2 直线与圆的位置关系(真题测试)含详解

专题9.2 直线与圆的位置关系(真题测试)一、单选题1.(2022·北京·高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ( ) A .12B .12-C .1D .1-2.(2021·北京·高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A .±1B .C .D .2±3.(2020·北京·高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A .4B .5C .6D .74.(2020·全国·高考真题(文))已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .45.(2023·全国·高三专题练习)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是( ) A .()()22515x y -++= B .()()225113x y -+-= C .()()224413x y -++=D .()()221652x y -++=6.(2018·全国·高考真题(理))直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是( )A .[]26,B .[]48,C .D .⎡⎣7.(2020·全国·高考真题(理))若直线l 与曲线y x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +128.(2023·全国·高三专题练习)已知圆C :224210x y x y +--+=,点P 是直线4y =上的动点,过P 作圆的两条切线,切点分别为A ,B ,则AB 的最小值为( )A B C D 二、多选题9.(2022·山东青岛·二模)已知22:60C x y x +-=,则下述正确的是( )A .圆C 的半径3r =B .点(在圆C 的内部C .直线:30l x +=与圆C 相切D .圆()22:14C x y '++=与圆C 相交10.(2021·全国·高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( ) A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =11.(2022·湖南·邵阳市第二中学模拟预测)已知O 为坐标原点,圆M :()()22cos sin 1x y θθ-+-=,则下列结论正确的是( ) A .圆M 与圆224x y +=内切B .直线cos sin 0x y αα+=与圆M 相离C .圆M 上到直线x y +=的距离等于1的点最多两个D .过直线x y +=P 作圆M 的切线,切点为A ,B ,则四边形PAMB 12.(2022·全国·模拟预测)已知点P 在圆224O x y +=:上,点()30A ,,()04B ,,则( ) A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有3个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是三、填空题13.(2019·浙江·高考真题)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.14.(2021·天津·y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =____________.15.(2022·全国·高考真题(文))设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.16.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 四、解答题17.(2023·全国·高三专题练习)已知三点(2,0),(1,3),(2,2)A B C 在圆C 上,直线:360l x y +-=, (1)求圆C 的方程;(2)判断直线l 与圆C 的位置关系;若相交,求直线l 被圆C 截得的弦长.18.(2022·青海·海东市第一中学模拟预测(文))已知动圆E 过定点()2,0P ,且y 轴被圆E 所截得的弦长恒为4.(1)求圆心E 的轨迹方程.(2)过点P 的直线l 与E 的轨迹交于A ,B 两点,()2,0M -,证明:点P 到直线AM ,BM 的距离相等. 19.(2022·辽宁·高三期中)已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -. (1)求线段AB 的垂直平分线方程; (2)求圆C 的标准方程;(3)若过点(0,2)P 的直线l 与圆C 相交于M N 、两点,且MN =l 的方程.20.(2023·全国·高三专题练习)已知在平面直角坐标系xOy 中,点()0,3A ,直线:24=-l y x .设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2=MA MO ,求圆心C 的横坐标a 的取值范围.21.(2021·河北·沧县中学高三阶段练习)已知圆M 的方程为22315222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.(1)求过点39,22⎛⎫⎪⎝⎭N 与圆M 相切的直线l 的方程;(2)过点(1,1)P 作两条相异直线分别与圆M 相交于A ,B 两点,若直线,PA PB 的斜率分别为12,k k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由.22.(2016·江苏·高考真题)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC=OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.专题9.2 直线与圆的位置关系(真题测试)一、单选题1.(2022·北京·高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ( ) A .12 B .12-C .1D .1-【答案】A 【解析】 【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解. 【详解】由题可知圆心为(),0a ,因为直线是圆的对称轴,所以圆心在直线上,即2010a +-=,解得12a =. 故选:A .2.(2021·北京·高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A.±1 B .C .D .2±【答案】C 【解析】 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN 取得最小值为2,解得m = 故选:C.3.(2020·北京·高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【解析】 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案. 【详解】设圆心(),C x y 1,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥22345=+=,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号, 故选:A.4.(2020·全国·高考真题(文))已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP =根据弦长公式得最小值为2=. 故选:B.5.(2023·全国·高三专题练习)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是( ) A .()()22515x y -++= B .()()225113x y -+-= C .()()224413x y -++= D .()()221652x y -++=【答案】B 【解析】 【分析】数形结合得到过点()7,2A -作直线2360x y -+=的垂线,垂足为B ,则以AB 为直径的圆为直线2360x y -+=相切的半径最小的圆,利用点到直线距离求出直径,设(),B a b ,列出方程组,求出圆心坐标,得到圆的方程. 【详解】过点()7,2A -作直线2360x y -+=的垂线,垂足为B , 则以AB 为直径的圆为直线2360x y -+=相切的半径最小的圆,其中AB ==(),B a b ,则221732360b a a b +⎧⨯=-⎪-⎨⎪-+=⎩,解得:34a b =⎧⎨=⎩,故AB 的中点,即圆心为7342,22+-⎛⎫⎪⎝⎭,即()5,1, 故该圆为()()225113x y -+-= 故选:B6.(2018·全国·高考真题(理))直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是( ) A .[]26, B .[]48,C.D.⎡⎣【答案】A【解析】 【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB =点P 在圆22x 22y -+=()上 ∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d的范围为则[]2212,62ABPSAB d ==∈ 故答案选A.7.(2020·全国·高考真题(理))若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x -,即00x x -+=, 由于直线l 与圆2215x y +=相切,两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.8.(2023·全国·高三专题练习)已知圆C :224210x y x y +--+=,点P 是直线4y =上的动点,过P 作圆的两条切线,切点分别为A ,B ,则AB 的最小值为( )A B C D 【答案】B 【解析】 【分析】利用面积相等求出4||||||AP AB CP =.设||CP x =,得到||AB =利用几何法分析出min ||3CP =,即可求出AB 的最小值.【详解】圆C :224210x y x y +--+=化为标准方程:()()22214-+-=x y ,其圆心()2,1C ,半径2r =.过点P 引圆C 的两条切线,切点分别为点A 、B ,如图:在△P AC 中,有11||||||||222PACAB SCA AP CP =⨯⨯=⨯⨯,即||||||4AB AP CP =⨯,变形可得:4||||||AP AB CP =.设||CP x =,则||AB ==所以当||CP 的值即x 最小时,24x 的值最大,此时||AB 最小. 而||CP 的最小值为点C 到直线4y =的距离,即min ||3CP =,所以min ||AB ==. 故选:B 二、多选题9.(2022·山东青岛·二模)已知22:60C x y x +-=,则下述正确的是( )A .圆C 的半径3r =B .点(在圆C 的内部C .直线:30l x +=与圆C 相切D .圆()22:14C x y '++=与圆C 相交【答案】ACD 【解析】 【分析】先将圆方程化为标准方程,求出圆心和半径,然后逐个分析判断即可 【详解】由2260x y x +-=,得22(3)9x y -+=,则圆心(3,0)C ,半径13r =, 所以A 正确,对于B,因为点(3=>,所以点(在圆C 的外部,所以B 错误,对于C ,因为圆心(3,0)C到直线:30l x +=的距离为13d r ===,所以直线:30l x +=与圆C 相切,所以C 正确,对于D ,圆()22:14C x y '++=的圆心为(1,0)C '-,半径22r =,因为4CC '==,12124r r r r -<<+,所以圆()22:14C x y '++=与圆C 相交,所以D 正确, 故选:ACD10.(2021·全国·高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA∠最大时,PB =【答案】ACD 【解析】 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误. 【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB4=>,所以,点P 到直线AB 42-<410<,A 选项正确,B 选项错误; 如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM =4MP =,由勾股定理可得BP ==CD 选项正确.故选:ACD.11.(2022·湖南·邵阳市第二中学模拟预测)已知O 为坐标原点,圆M :()()22cos sin 1x y θθ-+-=,则下列结论正确的是( ) A .圆M 与圆224x y +=内切B .直线cos sin 0x y αα+=与圆M 相离C .圆M 上到直线x y +=的距离等于1的点最多两个D .过直线x y +=P 作圆M 的切线,切点为A ,B ,则四边形PAMB 案】ACD 【解析】 【分析】A.计算圆心距离与半径差的大小关系;B.求圆心到直线的距离来判断;C.圆心()cos ,sin M θθ到直线x y +=[]sin 10,24d πθ⎛⎫=+-∈ ⎪⎝⎭来判断;D.过直线x y +=P 作圆M 的切线,切点为A ,B ,四边形PAMB 面积为:2PAMS SMA PA PA ==⋅==MP垂直直线x y +=MP 有最小值,求出MP 的最小值,即可求出四边形PAMB 面积的最小值,即可判断. 【详解】圆M 的圆心()cos ,sin M θθ,半径11r =,而圆224x y +=的圆心()20,0,2O r =, 所以211OM r r ==-,所以圆M 与圆224x y +=内切,A 正确;()cos 1θα=-≤,故圆和直线相切或相交,B 错误;因为圆心()cos ,sin M θθ到直线x y +=sin 14d πθ⎛⎫==+- ⎪⎝⎭, 因为[][][]sin 1,1,sin 12,0,sin 10,2444πππθθθ⎛⎫⎛⎫⎛⎫+∈-+-∈-+-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为圆M 的半径为1,所以上到直线x y +=1的点最多两个,故C 正确;过直线x y +=P 作圆M 的切线,切点为A ,B ,四边形PAMB 面积为:2PAMS SMA PA PA ==⋅==MP垂直直线x y +=MP有最小值,且sin 34MP πθ⎛⎫=+- ⎪⎝⎭, 因为[][][]sin 1,1,sin 34,2,sin 12,4444πππθθθ⎛⎫⎛⎫⎛⎫+∈-+-∈--+-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以min 2MP =,则四边形PAMB面积的最小值为min S ==D 正确.故选:ACD.12.(2022·全国·模拟预测)已知点P 在圆224O x y +=:上,点()30A ,,()04B ,,则( ) A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有3个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是【答案】ACD 【解析】 【分析】对A ,求出直线AB 的方程,算出圆心到该直线的距离,进而通过圆的性质判断答案;对B ,设点()P x y ,,根据AP BP ⊥得到点P 的轨迹方程,进而判断该轨迹与圆的交点个数即可;对C ,设()()1122,,,M x y N x y ,进而得到切线方程MB ,NB ,再根据点B 在两条切线上求得答案;对D ,设()P x y ,,设存在定点()0C t ,,使得点P 在圆O 上任意移动时均有12PC PB =,进而求出点P 的轨迹方程,然后结合点P 在圆O 上求得答案. 【详解】对A ,14312034AB x yl x y +=⇒+-=:,则圆心到直线的距离125d ==,所以点P 到该直线距离的最大值为1222255+=.A 正确; 对B ,设点()P x y ,,则224x y +=,且()()34AP x y BP x y =-=-,,,,由题意()()()222232534340224AP BP x y x y x y x y x y ⎛⎫⋅=-⋅-=+--=⇒-+-=⎪⎝⎭,,,52=,半径和与半径差分别为5951222222+=-=,,于是951222>>,即两圆相交,满足这样条件的点P 有2个.B 错误;对C ,设()()1122,,,M x y N x y ,则直线MB ,NB 分别为112244x x y y x x y y +=+=,,因为点B 在两条直线上,所以1122044044x y x y ⋅+⋅=⋅+⋅=,,于是M N ,都满足直线方程044x y ⋅+⋅=,即直线MN 的方程为1y =.C 正确;对D ,即求122PA PB ⎛⎫+ ⎪⎝⎭的最小值,设存在定点()0C t ,,使得点P 在圆O 上任意移动时均有12PC PB =,设()P x y ,()2223381164x y t y t ++-=-,∵224x y +=, 则有()2211t y t -=-,即()()1210t y t ---=,∴1t =,则()01C ,,所以()222PA PB PA PC AC +=+≥=D 正确. 故选:ACD . 三、填空题13.(2019·浙江·高考真题)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】 2m =- r =【解析】 【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解. 【详解】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ==14.(2021·天津·y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =____________.【解析】 【分析】设直线AB 的方程为y b =+,则点()0,A b ,利用直线AB 与圆()2211x y +-=相切求出b 的值,求出AC ,利用勾股定理可求得AB . 【详解】设直线AB 的方程为y b =+,则点()0,A b ,由于直线AB 与圆()2211x y +-=相切,且圆心为()0,1C ,半径为1, 则112b -=,解得1b =-或3b =,所以2AC =,因为1BC =,故AB =15.(2022·全国·高考真题(文))设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【答案】22(1)(1)5x y -++= 【解析】 【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程. 【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上, ∴点M 到两点的距离相等且为半径R ,R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=16.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 四、解答题17.(2023·全国·高三专题练习)已知三点(2,0),(1,3),(2,2)A B C 在圆C 上,直线:360l x y +-=, (1)求圆C 的方程;(2)判断直线l 与圆C 的位置关系;若相交,求直线l 被圆C 截得的弦长.【答案】(1)22240x y y +--= (2)直线l 与圆C【解析】 【分析】(1)圆C 的方程为:220x y Dx Ey F ++++=,再代入(2,0),(1,3),(2,2)A B C 求解即可; (2)先求解圆心到直线的距离可判断直线l 与圆C 相交,再用垂径定理求解弦长即可(1)设圆C 的方程为:220x y Dx Ey F ++++=,由题意得:24031002280D F D E F D E F ++=⎧⎪+++=⎨⎪+++=⎩, 消去F 得:362D E D E -=⎧⎨-+=-⎩,解得: 02D E =⎧⎨=-⎩, ∴ F =-4, ∴圆C 的方程为:22240x y y +--=.(2)由(1)知: 圆C 的标准方程为:22(1)5x y +-=,圆心(0,1)C,半径r =点(0,1)C 到直线l的距离d r <,故直线l 与圆C 相交,故直线l 被圆C截得的弦长为18.(2022·青海·海东市第一中学模拟预测(文))已知动圆E 过定点()2,0P ,且y 轴被圆E 所截得的弦长恒为4.(1)求圆心E 的轨迹方程.(2)过点P 的直线l 与E 的轨迹交于A ,B 两点,()2,0M -,证明:点P 到直线AM ,BM 的距离相等. 【答案】(1)24y x = (2)证明见解析 【解析】【分析】(1)设(),E x y ,由圆的弦长公式列式可得;(2)设()11,A x y ,()22,B x y ,设():2l y k x =-,直线方程代入抛物线方程,应用韦达定理得12x x +,12x x ,计算0AM BM k k +=,得直线PM 平分AMB ∠,从而得结论,再说明直线l 斜率不存在时也满足. (1)设(),E x y ,圆E 的半径r =E 到y 轴的距离d x =,由题意得224r d =+,化简得24y x =,经检验,符合题意. (2)当直线斜率存在时,设():2l y k x =-,与E 的方程联立,消去y 得,()22224440k x k x k -++=.设()11,A x y ,()22,B x y ,则1221244,4x x k x x ⎧+=+⎪⎨⎪=⎩, ()()()()()()()()12122112121212222222222222AM BM k x k x k x x k x x y yk k x x x x x x ---++-++=+=+=++++++∵()()()()()1221122222240k x x k x x k x x -++-+=-=,∴0AM BM k k +=,则直线PM 平分AMB ∠, 当直线l 与x 轴垂直时,显然直线PM 平分AMB ∠. 综上,点P 到直线AM , BM 的距离相等.19.(2022·辽宁·高三期中)已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -. (1)求线段AB 的垂直平分线方程; (2)求圆C 的标准方程;(3)若过点(0,2)P 的直线l 与圆C 相交于M N 、两点,且MN =l 的方程. 【答案】(1)1y x =-+ (2)22(1)4x y -+= (3)0x =或3480x y +-= 【解析】【分析】(1)根据已知得到线段AB 中点D 的坐标及AB 的斜率,根据垂直关系得出垂直平分线的斜率,利用点斜式即可求解;(2)设圆C 的标准方程为222()x a y r -+=,由圆心的位置分析可得a 的值,进而计算可得r 的值,据此分析可得答案;(3)设F 为MN 的中点,结合直线与圆的位置关系,分直线l 的斜率是否存在两种情况讨论,综合即可得答案. (1)设AB 的中点为D ,则(0,1)D .由圆的性质,得CD AB ⊥,所以1CD AB k k ⨯=-,得1CD k =-.所以线段AB 的垂直平分线的方程是1y x =-+. (2)设圆C 的标准方程为222()x a y r -+=,其中(,0)C a ,半径为()0r r >, 由(1)得直线CD 的方程为1y x =-+,由圆的性质,圆心(,0)C a 在直线CD 上,化简得1a =, 所以圆心()1,0C ,||2r CA ==, 所以圆C 的标准方程为22(1)4x y -+=. (3)由(1)设F 为MN 中点,则CF l ⊥,得||||FM FN ==圆心C 到直线l 的距离||1d CF ===,当直线l 的斜率不存在时,l 的方程0x =,此时||1CF =,符合题意; 当直线l 的斜率存在时,设l 的方程2y kx =+,即20kx y -+=, 由题意得d =34k =-;故直线l 的方程为324y x =-+,即3480x y +-=;综上直线l 的方程为0x =或3480x y +-=.20.(2023·全国·高三专题练习)已知在平面直角坐标系xOy 中,点()0,3A ,直线:24=-l y x .设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2=MA MO ,求圆心C 的横坐标a 的取值范围. 【答案】(1)3y =或34120x y +-= (2)120,5⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)求出圆心的坐标,设出切线的方程,利用圆心到切线的距离等于半径可求出相应的参数值,即可得出所求切线的方程;(2)设点(),M x y ,由已知可得()2214x y ++=,分析可知圆C 与圆()2214x y ++=有公共点,可得出关于a 的不等式组,由此可解得实数a 的取值范围. (1)解:联立241y x y x =-⎧⎨=-⎩,解得32x y =⎧⎨=⎩,即圆心()3,2C ,所以,圆C 的方程为()()22321x y -+-=.若切线的斜率不存在,则切线的方程为0x =,此时直线0x =与圆C 相离,不合乎题意; 所以,切线的斜率存在,设所求切线的方程为3y kx =+,即30kx y -+=,1=,整理可得2430k k +=,解得0k =或34-.故所求切线方程为3y =或334y x =-+,即3y =或34120x y +-=. (2)解:设圆心C 的坐标为(),24a a -,则圆C 的方程为()()22241x a y a -+--=⎡⎤⎣⎦,设点(),M x y ,由2=MA MO整理可得()2214x y ++=,由题意可知,圆C 与圆()2214x y ++=有公共点,所以,13≤,即22512805120a a a a ⎧-+≥⎨-≤⎩,解得1205a ≤≤.所以,圆心C 的横坐标a 的取值范围是120,5⎡⎤⎢⎥⎣⎦.21.(2021·河北·沧县中学高三阶段练习)已知圆M 的方程为22315222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.(1)求过点39,22⎛⎫⎪⎝⎭N 与圆M 相切的直线l 的方程;(2)过点(1,1)P 作两条相异直线分别与圆M 相交于A ,B 两点,若直线,PA PB 的斜率分别为12,k k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由. 【答案】(1)3y x =或39y x =-+(2)定值为13-,理由见解析.【解析】 【分析】(1)设出直线l 的方程,利用圆心到直线的距离等于半径可得答案;(2)由题可设1:(1)1PA y k x =-+,与圆的方程联立,可得点A 坐标,同理可得点B 坐标,将两点坐标代入斜率公式可得答案. (1)显然当l 的斜率不存在时,不符合题意;设39:22⎛⎫=-+ ⎪⎝⎭l y k x ,直线与圆相切,由圆心31,22M ⎛⎫- ⎪⎝⎭到直线l距离===d 3k =或3k =-. 当3k =时,直线l 的方程为3y x =,当3k =-时,直线l 的方程为39y x =-+, 所以直线l 的方程为3y x =或39y x =-+. (2)由题意可设1:(1)1PA y k x =-+由()1221130y k x x y x y ⎧=-+⎨+-+=⎩可得()()222211111233320k x k k x k k +--++-+=, 设()11,A x y ,则2111213211k k x k -+⨯=+,所以211121321k k x k -+=+,()2111112121111k k y k x k -++=-+=+,同理22222222223221,11k k k k B k k ⎛⎫-+-++ ⎪++⎝⎭, 因为120k k +=,所以22111122113221,11k k k k B k k ⎛⎫++--+ ⎪++⎝⎭,所以22111122111221111122112121112132326311AB k k k k k k k k k k k k k k k -++--+-++===--+++--++为定值. 22.(2016·江苏·高考真题)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC=OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.【答案】(1)22(6)(1)1x y -+-=;(2)2x −y +5=0或2x −y −15=0.(3)[2221,2221]-+.【解析】 【详解】试题分析:(1)根据直线与x 轴相切确定圆心位置,再根据两圆外切建立等量关系求半径;(2)根据垂径定理确定等量关系,求直线方程;(3)利用向量加法几何意义建立等量关系,根据圆中弦长范围建立不等式,求解即得参数取值范围.试题解析:解:圆M 的标准方程为()()226725x y -+-=,所以圆心M (6,7),半径为5,.(1)由圆心N 在直线x=6上,可设()06,N y .因为N 与x 轴相切,与圆M 外切,所以007y <<,于是圆N 的半径为0y ,从而0075y y -=+,解得01y =.因此,圆N 的标准方程为()()22611x y -+-=.(2)因为直线l ∥OA ,所以直线l 的斜率为40220-=-. 设直线l 的方程为y=2x+m ,即2x -y+m=0,则圆心M 到直线l 的距离d ==因为BC OA ==而222,2BC MC d =+() 所以()252555m +=+,解得m=5或m=-15.故直线l 的方程为2x -y+5=0或2x -y -15=0.(3)设()()1122,,,.P x y Q x y因为()()2,4,,0,A T t TA TP TQ +=,所以……① 因为点Q 在圆M 上,所以()()22226725.x y -+-=…….②将①代入②,得()()22114325x t y --+-=.于是点()11,P x y 既在圆M 上,又在圆()()224325x t y -++-=⎡⎤⎣⎦上, 从而圆()()226725x y -+-=与圆()()224325x t y -++-=⎡⎤⎣⎦有公共点,所以5555,-≤+解得22t -≤+因此,实数t 的取值范围是22⎡-+⎣.。

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。

高考数学总复习历年考点知识与题型专题讲解18---直线与圆、圆与圆的位置关系(解析版)

高考数学总复习历年考点知识与题型专题讲解18---直线与圆、圆与圆的位置关系(解析版)

高考数学总复习历年考点知识与题型专题讲解直线与圆、圆与圆的位置关系考点一 直线与圆的位置的关系【例1】(2020·林芝市第二高级中学高二期末(文))若直线y b =+与圆221x y +=相切,则b =( )A .3± B .C .2± D .【答案】C【解析】由题得圆的圆心坐标为(0,0)1,2b =∴=±.故选C 【举一反三】1.(2018·福建高一期末)若直线 :1(0)l y kx k =+<与圆22:4230C x x y y ++-+=相切,则直线l 与圆22:(2)3D x y -+=的位置关系是( )A .相交B .相切C .相离D .不确定【答案】A【解析】圆C 的方程可化为()()22212x y ++-=,故圆心为()2,1C -,半径C r =.由于直线l :10kx y -+=和圆C=k 0<解得1k =-,所以直线l 的方程为10x y --+=,即10x y +-=.圆D 的圆心为()2,0D,半径为D r =D 到直线l2=<l 与圆D 相交.故选:A 2.(2020·包头市田家炳中学高二期中)直线y =x ﹣1与圆x 2+y 2=1的位置关系为( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心【答案】D【解析】圆x 2+y 2=1的圆心坐标为(0,0)O ,半径为1,因为圆心(0,0)O 到直线y =x ﹣11=<, 所以直线y =x ﹣1与圆x 2+y 2=1相交,因为001≠-,所以直线y =x ﹣1与圆x 2+y 2=1的位置关系为相交但直线不过圆心. 故选:D3.(2020·辉县市第二高级中学高二期中(文))“点(),a b 在圆221x y +=内”是“直线10ax by ++=与圆221x y +=相离”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】若点(),a b 在圆221x y +=内,则221a b +<则圆心O 到直线10ax by ++=的距离1d =>则直线10ax by ++=与圆221x y +=相离反之直线10ax by ++=与圆221x y +=相离,则圆心O 到直线10ax by ++=的距离1d =>,即221a b +<,则点(),a b 在圆221x y +=内所以“点(),a b 在圆221x y +=内”是“直线10ax by ++=与圆221x y +=相离”的充分必要条件故选:C考点二 弦长【例2】(2020·全国高三其他(文))直线21y x =+被圆221x y +=截得的弦长为( )A .1BC .5D 【答案】C【解析】圆心()0,0到直线21y x =+,所求弦长为=故选:C .【举一反三】1.(2020·河南濮阳。

高考数学复习-直线与圆练习试题、参考答案

高考数学复习-直线与圆练习试题、参考答案

高考数学复习-直线与圆练习试题第Ⅰ卷 (选择题 共40分)一、选择题(10×4′=40′)1.直线l 与直线y =1、x-y -7=0分别交于P 、Q 两点,线段PQ 的中点为(1,-1),则直线l 的斜率为( )A.23 B.32 C.-32D.-232.点P 在直线2x +y +10=0上,P A 、PB 与圆422=+y x 分别相切于A 、B 两点,则四边形P AOB 面积的最小值为 ( )A.24B.16C.8D.43.已知直线1l :y =x ,2l :ax -y =0,其中a 为实数,当这两直线的夹角θ∈(0,12π)时,a 的取值范围为 ( )A.(0,1)B.(33,3) C.(33,1)∪(1,3) D.(1,3) 4.设a 、b 、k 、p 分别表示同一直线的横截距、纵截距、斜率和原点到直线的距离,则有( ) A.)1(2222k p k a += B.k =abC.b a 11+=pD.a =-kb5.已知直线x +3y -7=0,kx-y -2=0和x 轴、y 轴围成四边形有外接圆,则实数k 等于 ( ) A.-3 B.3 C.-6 D.66.若圆222r y x =+(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( ) A.[4,6] B.[4,6) C.(4,6] D.(4,6)7.直线1l :0=++c by ax ,2l :0=++p ny mx ,则bnam=-1是1l ⊥2l 的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件8.过圆422=+y x 外一点P(4,-1)引圆的两条切线,则经过两切点的直线方程为 ( ) A.4x -y -4=0 B.4x +y -4=0 C.4x +y +4=0 D.4x -y +4=09.倾斜角为60°,且过原点的直线被圆222)()(r b y a x =-+-(r >0)截得弦长恰好等于圆的半径,则a 、b 、r 满足的条件是 ( )A.)3(|3|3a b b a r ≠-=B.)3(|3|23a b b a r ≠-=C.)3(|3|3a b b a r ≠+=D.)3(|3|23a b b a r ≠-=10.直线y =kx +1与圆0922=--++y kx y x 的两个交点关于y 轴对称,则k 为 ( )A.-1B.0C.1D.任何实数第Ⅱ卷 (非选择题 共60分)二、填空题(4×3′=12′)11.若点P (a ,b )与点Q (b +1,a -1)关于直线l 对称,则直线l 的方程是 .12.已知圆16)1()2(22=-+-y x 的一条直径通过直线x -2y -3=0被圆截弦的中点,则该直径所在直线的方程为 .13.关于x 的方程kx +1=21x -有且只有一个实根,则实数k 的取值范围是 . 14.经过点P (-2,4),且以两圆0622=-+x y x 和422=+y x 的公共弦为一条弦的圆的方程是 .三、解答题(6×8′=48′)15.若直线1l :x+y+a =0,2l :x+ay +1=0,3l :ax+y +1=0能围成三角形,求a 的取值范围.16.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转α(0<α<2π)所得直线1l 的方程为3x -y -4=0,若继续绕点P 逆时针方向旋转α-π2,则得2l 的方程为x +2y +1=0,试求直线l 的方程.17.设P 是圆M :1)5()5(22=-+-y x 上的动点,它关于A (9,0)的对称点为Q ,把P 绕原点依逆时针方向旋转90°到点S ,求|SQ |的最值.18.已知点A (3,0),点P 在圆122=+y x 的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程.19.如图,已知⊙A :425)2(22=++y x ,⊙B :41)2(22=+-y x ,动圆P 与⊙A 、⊙B 都外切. (1)求动圆圆心P 的轨迹方程,并说明轨迹是什么曲线;(2)若直线y=kx +1与(1)中的曲线有两个不同的交点1P 、2P ,求k 的取值范围; (3)若直线l 垂直平分(2)中的弦21P P ,求l 在y 轴上的截距b 的取值范围.20.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使得l 被圆C 截得弦AB 为直径的圆过原点?若存在,求出l 的方程;若不存在,说明理由.参考答案1.C 方法1 设直线l 为y=kx+b ,分别与y =1,x-y -7=0联立解得P (-b k ,1),Q (k b -+17,kb k -+17).由PQ 中点为(1,-1),∴217=-++-k b b k ,且1+kb k -+17=-2,∴k =-32,故选C. 方法2 设P (a ,1),Q (b +7,b ),因PQ 的中点为(1,-1),∴⎪⎪⎩⎪⎪⎨⎧-=+=++121127b b a ,解得⎩⎨⎧-=-=32b a ,故P 为(-2,1),Q 为(4,-3),∴3224131-=+--==PQ k k ,故选C. 2.C 如图,PAOB S =22||||2||2||||21232AO PO PA OA PA PAO -==⋅⋅=⋅∆=24||2-PO . 要求PAOB S 的最小值,只需求|PO |的最小值即可.5212|10002|||22min =+++⨯=PO ,∴8)(min =PAOB S ,故选C.3.C 如图,设直线y=ax 的倾斜角为α, 则α≠4π,∴|α-4π|<12π, ∴6π<α<3π,且α≠4π.a =tan α∈(33,1)∪(1,3).4.A 应用点到直线的距离公式,选A.5.B 如图,设围成四边形为OABC ,因OABC 有外接圆,且∠AOC =90°,故∠ABC =90°. ∴两条直线x +3y -7=0,kx -y -2=0互相垂直,(-31)·k =-1,即k =3,故选B.说明 运用圆的几何性质是解决圆的问题的有效途径.6.D 如图,设l :4x -3y +25=0,与l 平行且距离等于1的直线为4x -3y +b =0. ∴2015|25|=⇒=-b b 或b =30.第2题图解第3题图解第5题图解1l :4x -3y +20=0,2l :4x -3y +30=0.圆心(0,0)到1l 和2l 的距离分别为5201=d =4,5302=d =6. 故满足条件的r 取值范围(4,6).实际上,圆222r y x =+没有点到直线4x -3y +25=0的距离等于1, 则0<r <4,若圆上只有一点到直线4x -3y +25=0的距离等于1,则r =4,类似可求出圆上有三点、四点到直线的距离等于1 的r 的取值范围.7.A 由1-=bnam,可得1l ⊥2l ,∴选A. 8.A 方法1 设切点为A 、B ,则AB ⊥OP , ∵410401-=---=OP k ,∴4=AB k .故排除B 、C. 又由图可知,AB 在y 轴的截距为负,故排除D,所以选A.方法2 设A (1x ,1y ),B (2x ,2y ), 由AP ⊥OA 可得AP k ·OA k =-1, 即1411111-=⋅-+x y x y .∴04112121=+-+y x y x ,又42121=+y x , ∴04411=++-y x .同理可得04422=++-y x ,∴AB 直线为-4x +y +4=0,即4x -y -4=0.方法3 设A (1x ,1y ),B (2x ,2y ),则切线P A 为411=+y y x x ,422=+y y x x . ∴4411=-y x ,4422=-y x ,∴A 、B 在直线4x -y -4=0上.另:此题可推广到一般结论,若P (0x ,0y )为圆222r y x =+ (r >0)外一点,过P 引圆的两条切线,则经过两切点的直线方程为200r y y x x =+.9.A 直线方程为x y 3=,则圆心(a ,b )到直线3x -y =0的距离为d =2|3|b a -,又因截得弦长恰好等于圆的半径,故d =23r ,∴|3a -b |=3r ,故选A. 10.B 方法1 将y =kx +1代入922=-++y kx y x 中有092)1(22=-++kx x k . 设交点为 A (1x ,1y ),B (2x ,2y ),∵A 、B 关于y 轴对称,∴021=+x x , ∴k =0.故选B.方法2 因直线与圆的两个交点A (1x ,1y ),B (2x ,2y )关于y 轴对称 ∴021=+x x ,21y y =,故圆心在y 轴上,∴k =0,故选B.11.x-y -1=0 P 、Q 关于直线l 对称,故1k k PQ ⋅=-1且PQ 中点在l 上, ∴11111=---+-=-=aa bb k k PQ,又PQ 中点为(21++b a ,21-+a b ),第6题图解第8题图解∴l 的方程为y -21-+a b =x -21++b a ,即x-y -1=0.此题也可将a ,b 赋特殊值去求直线l .12.2x +y -3=0 由圆的几何意义知该直径与直线x -2y -3=0垂直.故该直径方程为y +1=-2(x -2),即2x +y -3=0.13.{k |k >1或k =0或k <-1} 画出函数y =kx +1、y =21x -的图象,两曲线相切及只有一个交点时如图所示.14.08622=-++x y x 设圆的方程为0)4(62222=-+λ+-+y x x y x 经过P (-2,4), ∴0]44)2[()2(64)2(2222=-+-λ+--+-, ∴λ=-2,∴所求的圆的方程为08622=-++x y x .15.解 由1l 、2l 相交,需1·a -1·1≠0,得a ≠1,此时解方程组⎩⎨⎧=++=++010ay x a y x ,可解得⎩⎨⎧=-=11y x 即1l 、2l 的交点为(-1-a ,1),由1l 、3l 相交,需1·1-1·a ≠0,∴a ≠1,由2l ,3l 相交,需1·1-a ·a ≠0,∴a ≠±1,又(-1-a ,1)∉3l , ∴a ·(-1-a )+1+1≠0,得a ≠1且a ≠-2,综上所述,a ∈R 且a ≠±1且a ≠-2,能保证三交点(-1-a ,1),(1,-1-a )、(-1-a ,-1+a +2a )互不重合,所以所求a 的范围为a ∈(-∞,-2)∪(-2,-1)∪(-1,1)∪(1,+∞).16.解 由已知条件知P 为直线3x -y -4=0和直线x +2y +1=0的交点,联立两直线方程得⎩⎨⎧=++=--012043y x y x ,∴⎩⎨⎧-==11y x .∴P 点为(1,-1). 又l 与2l 垂直,故l 的方程为y +1=2(x -1),即l 的方程为2x -y -3=0. 17.解 设P (x ,y ),则Q (18-x ,-y ),记P 点对应的复数为x +y i, 则S 点对应的复数为:(x +y i )·i=-y +x i,即S (-y ,x ),∴|SQ |=xy y x xy y x y x x y y x 22363618)()18(2222222+++-+-++=--++- =2222)9()9(2818118182++-⋅=+++-+⋅y x y x y x其中22)9()9(++-y x 可以看作是点P 到定点B (9,-9)的距离,其最大值为|MB |+r =253+1,最小值为|MB |-r =253-1,则|SQ |的最大值为2106+2,|SQ |的最小值为2106-2.第13题图解18.解 方法1 如图,设P (0x ,0y )(0y >0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴31||||==OA OP QA PQ , ∴Q 分P A 的比为31.∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=000043311031)1(43311313y y y x x x 即⎪⎪⎩⎪⎪⎨⎧=-=y y x x 3413400.又因12020=+y x ,且0y >0,∴1916)43(91622=+-y x . ∴Q 的轨迹方程为169)43(22=+-y x (y >0). 方法2 设∠AOP =α,α∈(0,π),则P (cos α,sin α),∠AOQ =2α, 则OQ 直线方程为y =x ·tan2α=kx ① 3cos sin -αα=PA k ,∴直线P A 方程为y =3cos sin -αα(x -3) ②由Q 满足①②且k =tan2α. 由②得y =12)3()3(311122222+--=-⋅-+-+k x k x k k k k.消去k 有y =12)3(22+--x y x x y,∴02322=-+x y x ,由图知y >0. 故所求Q 点轨迹方程为02322=-+x y x (y >0). 说明 上述两种方程为求轨迹的基本方法、相关点及参数法. 19.解 (1)如图,设⊙P 的圆心P (x ,y ),半径为R , 由题设,有|P A |=R +25,|PB |=R +21,∴|P A |-|PB |=2. ∴⊙P 的圆心轨迹是实轴长为2,焦点在x 轴上,且焦距长 为4的双曲线的右支,其方程为1322=-y x (x >0).第18题图解第19题图解(2)由方程组⎪⎩⎪⎨⎧>=-+=)0(13122x y x kx y ,有042)3(22=---kx x k (x >0). ①因为直线与双曲线有两个不同交点,∴⎪⎪⎩⎪⎪⎨⎧≠->⋅>+>∆030022121k x x x x .从而,有⎪⎪⎩⎪⎪⎨⎧><-<3034222k k kk ⇒⎪⎩⎪⎨⎧>-<<<-<<<-3330322k k k k k 或或. ∴-2<k <-3. (3)设21P P 的中点为M (M x 、M y ),则M x =22132k kx x -=+. 又M 在y=kx +1上,∴M y =k M x +1=233k-.∴M (23k k-,233k -).∴21P P 的垂直平分线l 的方程为:y-M y =-k 1(x -M x ),即y -233k -=-k 1(x -23kk -). 令x =0,得截距b =234k-,k ∈(-2,-3),又-2<k <-3,∴-1<3-2k <0.∴b <-4.20.解 假设存在这样的直线,设直线l 方程为y=x+b .方法1 将y=x+b 代入圆的方程有0222)1(22=+-+++b b x b x .由题设知OA ⊥OB ,设A (1x ,1y ),B (2x ,2y ),∴1x 2x +1y 2y =0.又1y 2y =(1x +b )(2x +b )=1x 2x +b (1x +2x )+2b ,∴21x 2x +b (1x +2x )+2b =0. 又∵1x +2x =-(b +1),1x 2x =2b -2+22b ,∴2(22b +2b -2)-b (b +1)+ 2b =0.∴b =1或b =-4.此时Δ=0)22(4)1(2>--+b b , ∴存在这样的直线l :y=x +1或y=x -4满足题设.方法2 设过圆C 与l 的交点的圆系D 为.0)(44222=+-λ+-+-+b y x y x y x 即04)4()2(22=-λ+λ-+-λ++b y x y x . 圆心为(-22-λ,-24λ-),在直线y=x+b 上,∴-24λ-=-22-λ+b ,即λ=3+b . ①又圆D 过原点,∴b λ-4=0. ② 由①②得,0432=-+b b ,即b =1或b =-4.此时圆D 的方程存在.故存在直线y=x +1或y=x -4.。

九种直线和圆的方程的解题方法高考数学一轮复习(新高考专用原卷版)

九种直线和圆的方程的解题方法高考数学一轮复习(新高考专用原卷版)

九种直线和圆的方程的解题方法题型一:直接法求直线方程 一、单选题 1.(2022·全国·高三专题练习)直线l 经过两条直线10x y -+=和2320x y ++=的交点,且平行于直线240x y -+=,则直线l 的方程为( ) A .210x y --= B .210x y -+= C .220x y -+=D .220x y +-=2.(2022·全国·高三专题练习(文))若经过点(1,2)P --的直线与圆225x y +=相切,则该直线在y 轴上的截距为( ) A .52B .5C .52-D .5-3.(2022·浙江·高三专题练习)如图,圆1C 、2C 在第一象限,且与x 轴,直线:l y =均相切,则圆心1C 、2C 所在直线的方程为( )A .y =B .y x =C .y =D .y x =4.(2022·重庆·高三开学考试)若直线l 交圆22:420C x y x y +-+=于A 、B 两点,且弦AB 的中点为()1,0M ,则l 方程为( ) A .10x y --= B .10x y -+=C .10x y +-=D .10x y ++=二、多选题5.(2022·全国·高三专题练习)过点()2,3A 且在两坐标轴上截距相等的直线方程为( ) A .320x y -=B .230x y -=C .5x y +=D .1x y -=-6.(2022·全国·高三专题练习)已知(1,2)A ,(3,4)B -,(2,0)C -,则( ) A .直线0x y -=与线段AB 有公共点 B .直线AB 的倾斜角大于135︒C .ABC 的边BC 上的中线所在直线的方程为2y =D .ABC 的边BC 上的高所在直线的方程为470x y -+=7.(2022·全国·高三专题练习)已知直线l 过点P (-1,1),且与直线1:230l x y -+=以及x 轴围成一个底边在x 轴上的等腰三角形,则下列结论正确的是( ) A .直线l 与直线l 1的斜率互为相反数B .所围成的等腰三角形面积为1C .直线l 关于原点的对称直线方程为210x y +-=D .原点到直线l 8.(2021·全国·模拟预测)已知平面上的线段l 及点P ,任取l 上一点Q ,称线段PQ 长度的最小值为点P 到线段l 的距离,记作(,)d P l .已知线段1:(122)l x y =--≤≤,21:()20l x y =-≤≤,点P 为平面上一点,且满足12(,)(,)d P l d P l =,若点P 的轨迹为曲线C ,A ,B 是第一象限内曲线C 上两点,点(10)F ,且54AF =,BF = ) A .曲线C 关于x 轴对称 B .点A 的坐标为1,14⎛⎫ ⎪⎝⎭C .点B 的坐标为35,22⎛⎫⎪⎝⎭D .FAB 的面积为1916题型二:待定系数法求直线方程一、单选题 1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知抛物线C :22y px =的焦点F 的坐标为()20,,准线与x 轴交于点A ,点M 在第一象限且在抛物线C 上,则当MAMF取得最大值时,直线M A 的方程为( ) A .24y x =+ B .24y x =-- C .y =x +2D .2y x =--2.(2022·全国·高三专题练习)若直线1:2330l x y --=与2l 互相平行,且2l 过点(2,1),则直线2l 的方程为( ) A .3270x y +-= B .3240x y -+= C .2330x y -+=D .2310x y --=3.(2022·全国·高三专题练习)已知直线:20l ax y a +-+=在x 轴与y 轴上的截距相等,则实数a 的值是( ) A .1B .﹣1C .﹣2或1D .2或14.(2022·全国·高三专题练习)过点()1,2作直线l ,满足在两坐标轴上截距的绝对值相等的直线l 有( )条. A .1 B .2C .3D .4二、多选题5.(2021·重庆梁平·高三阶段练习)已知直线l 10y -+=,则下列结论正确的是( )A .直线l 的倾斜角是3πB .若直线m :10x +=,则l m ⊥ C.点到直线l 的距离是2D .过2)与直线l 40y --= 6.(2022·全国·高三专题练习)下列命题正确的是( )A .已知点3(2,)A -,(3,2)B --,若直线(1)1y k x =-+与线段AB 有交点,则34k ≥或4k ≤-B .1m =是直线1l :10mx y +-=与直线2l :()220m x my -+-=垂直的充分不必要条件C .经过点()1,1且在x 轴和y 轴上的截距都相等的直线的方程为20x y +-=D .已知直线1l :10ax y -+=,2l :10x ay ++=,R a ∈,和两点(0,1)A ,(1,0)B -,如果1l 与2l 交于点M ,则MA MB ⋅的最大值是1.7.(2022·全国·高三专题练习)下列说法错误..的是( ) A .若直线210a x y -+=与直线20x ay --=互相垂直,则1a =- B .直线sin 20x y α++=的倾斜角的取值范围是30,,)44[πππ⎡⎤⋃⎢⎥⎣⎦C .()()()()0,1,2,1,3,4,1,2A B CD -四点不在同一个圆上D .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-=8.(2021·全国·高三专题练习)直线l 与圆22(2)2x y -+=相切,且l 在x 轴、y 轴上的截距相等,则直线l 的方程可能是A .0x y +=B .20x y +-=C .0x y -=D .40x y +-=三、填空题9.(2022·全国·高三专题练习(理))已知抛物线2:4C y x =的焦点为F ,过焦点F 的直线C 交于11(,)A x y ,22(,)B x y 两点,若21154x x -=,则直线AB 的方程为______. 10.(2020·黑龙江·哈师大附中高三期末(理))若过点()1,1A 的直线l 将圆()()22:324C x y -+-=的周长分为2:1两部分,则直线l 的斜率为___________.四、解答题11.(2022·全国·高三专题练习)已知圆C :()()22214x y -+-=,直线l :()()423360m x m y m ----=.(1)过点()4,2P -,作圆C 的切线1l ,求切线1l 的方程;(2)判断直线l 与圆C 是否相交,若相交,求出直线l 被圆截得的弦长最短时m 的值及最短弦长;若不相交,请说明理由.12.(2022·全国·高三专题练习)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且12||2F F ,点3(1,)2在椭圆C 上.(1)求椭圆C 的方程;(2)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆,求以2F 为圆心且与直线l 相切的圆的方程.题型三:已知两直线位置关系求参数值或范围一、单选题 1.(2022·四川凉山·三模(理))已知直线1:210l x y -+=,2:10l x ay +-=,且12l l ⊥,点()1,2P 到直线2l 的距离d =( )A BC D 2.(2022·辽宁·二模)己知直线:0l ax y a ++=,直线:0m x ay a ++=,则l m ∥的充要条件是( ) A .1a =- B .1a = C .1a =± D .0a =二、多选题3.(2021·重庆一中高三阶段练习)下列说法正确的有( )A .若m ∈R ,则“1m =”是“1l :330x my m -+=与2l :()20m x y m +--=平行”的充要条件B .当圆222110x y x +--=截直线l :()1y kx k =+∈R 所得的弦长最短时,1k =-C .若圆1C :222x y t +=+与圆2C :()()22349x y -++=有且仅有两条公切线,则()2,6t ∈D .直线l :tan 412022y x =-︒⋅+的倾斜角为139°4.(2021·广东·高三阶段练习)已知直线l 过点()1,2M 且与圆C :()2225x y -+=相切,直线l 与x 轴交于点N ,点P 是圆C 上的动点,则下列结论中正确的有( ) A .点N 的坐标为()3,0- B .MNP △面积的最大值为10C .当直线l 与直线10ax y -+=垂直时,2a =D .tan MNP ∠的最大值为43三、填空题5.(2022·陕西·安康市高新中学三模(理))若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线l 与直线:20g ax by a ++=平行,则直线l ,g 间的距离为______. 6.(2022·天津·二模)在平面直角坐标系xOy 中,已知圆222:(62)4560C x y m x my m m +---+-=,直线l 经过点(1,2)-,若对任意的实数m ,直线l 被圆C 截得的弦长都是定值,则直线l 的方程为___________.四、解答题7.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限.(1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.8.(2020·江苏·南京师大附中模拟预测)如图,在平面直角坐标系xOy 中,已知圆221:(4)1C x y ++=,圆222:(4)4C x y -+=,A 是第一象限内的一点,其坐标为(,)t t .(1)若1212AC AC →→⋅=-,求t 的值; (2)过A 点作斜率为k 的直线l ,①若直线l 和圆1C ,圆2C 均相切,求k 的值;①若直线l 和圆2C ,圆2C 分别相交于,A B 和,C D ,且AB CD =,求t 的最小值.题型四:求解直线的定点 一、单选题1.(2022·山东滨州·二模)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是( )A .相离B .相切C .相交D .不确定2.(2022·陕西·榆林市教育科学研究所模拟预测(理))在平面直角坐标系xOy 中,已知圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4i P i =,过动点Pi 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅=,则k 的取值范围为( ) A .4,3∞⎛⎫-- ⎪⎝⎭B .4,03⎛⎫- ⎪⎝⎭C .(,7)(4,13)--∞--D .4(7,)1)30(,---二、多选题3.(2022·湖南·长沙市明德中学二模)已知O 为坐标原点,点()P a b ,在直线()40l kx y k --=∈R :上,PA PB ,是圆222x y +=的两条切线,A B ,为切点,则( ) A .直线l 恒过定点()04,B .当PAB △为正三角形时,OP =C .当PA PB ⊥时,k 的取值范围为()7⎡-∞+∞⎣,,D.当14PO PA ⋅=时,a b +的最大值为4.(2022·江苏盐城·三模)设直线l :()220mx y m m R --+=∈,交圆C :()()22349x y -+-=于A ,B 两点,则下列说法正确的有( )A .直线l 恒过定点()1,2B .弦AB 长的最小值为4C .当1m =时,圆C 关于直线l 对称的圆的方程为:()()22439x y -+-=D .过坐标原点O 作直线l 的垂线,垂足为点M ,则线段MC 5.(2022·重庆·高三阶段练习)在平面直角坐标系xOy 中,圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4=i P i ,过动点i P 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅=,则k 的值可能为( ) A .-7 B .-5 C .-2 D .–1三、双空题6.(2022·北京房山·二模)已知圆()()22:121C x y -+-=和直线():1l y k x =+,则圆心坐标为___________;若点P 在圆C 上运动,P 到直线l 的距离记为()d k ,则()d k 的最大值为___________. 四、填空题7.(2022·河南焦作·三模(文))已知()f x 是定义在R 上的奇函数,其图象关于点(2,0)对称,当[0,2]x ∈时,()f x =()(2)0f x k x --=的所有根的和为6,则实数k 的取值范围是______. 五、解答题8.(2022·全国·高三专题练习)O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,直线l 过点P 且垂直于OQ ,求证:直线过定点.9.(2022·全国·高三专题练习)在平面直角坐标系xoy 中,如图,已知椭圆22195x y +=的左、右顶点为A 、B ,右焦点为F ,设过点(,)T t m 的直线TA 、TB 与此椭圆分别交于点1(M x ,1)y 、2(N x ,2)y ,其中0m >,10y >,20y <(1)设动点P 满足()()13PF PB PF PB +-=,求点P 的轨迹方程;(2)设12x =,213x =,求点T 的坐标;(3)若点T 在点P 的轨迹上运动,问直线MN 是否经过x 轴上的一定点,若是,求出定点的坐标;若不是,说明理由.题型五:直线相关的对称问题一、单选题 1.(2022·全国·高三专题练习(理))集合M 在平面直角坐标系中表示线段的长度之和记为M .若集合(){}22,925A x y xy =≤+≤,(){},B x y y x m ==+,(){},2C x y y kx k ==+-则下列说法中不正确的有( )A .若AB ⋂≠∅,则实数m 的取值范围为{m m -≤ B .存在k ∈R ,使A C ⋂≠∅C .无论k 取何值,都有A C ⋂≠∅D .A C 的最大值为42.(2022·全国·高三专题练习)已知平面向量12312312,,,1,,60e e e e e e e e ︒====.若对区间1,12⎡⎤⎢⎥⎣⎦内的三个任意的实数123,,λλλ,都有11223312312e e e e e e λλλ++++,则向量1e 与3e 夹角的最大值的余弦值为( )A .B .C .D .二、多选题3.(2022·全国·模拟预测)已知直线:50l x y -+=,过直线上任意一点M 作圆()22:34C x y -+=的两条切线,切点分别为A ,B ,则有( )A .四边形MACB 面积的最小值为B .AMB ∠最大度数为60°C .直线AB 过定点15,22⎛⎫ ⎪⎝⎭D .AB 4.(2022·福建三明·模拟预测)已知直线l :10kx y k --+=与圆C :()()222216x y -++=相交于A ,B 两点,O 为坐标原点,下列说法正确的是( )A .AB 的最小值为B .若圆C 关于直线l 对称,则3k =C .若2ACB CAB ∠=∠,则1k =或17k =-D .若A ,B ,C ,O 四点共圆,则13k =-三、填空题5.(2022·全国·模拟预测)已知平面内点,05n n A ⎛⎫- ⎪⎝⎭,,05n n B ⎛⎫⎪⎝⎭()*n ∈N ,点n C 满足n n n n A C B C ⊥.设n C 到直线()3410x y n n +++=的距离的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n项和n S m <恒成立,则实数m 能取的最小值是______.6.(2022·天津·南开中学模拟预测)已知圆221:(1)(2)4C x y -+-=和圆222:(2)(1)2C x y -+-=交于,A B 两点,直线l 与直线AB 平行,且与圆2C 相切,与圆1C 交于点,M N ,则MN =__________.7.(2022·广东佛山·模拟预测)已知点1,0A ,()3,0B ,若2PA PB ⋅=,则点P 到直线l :340x y -+=的距离的最小值为____________.四、解答题8.(2022·安徽·蚌埠二中模拟预测(理))在直角坐标系xOy 中,曲线C 的参数方程为22224x t ty t ⎧=-⎨=+⎩(t 为参数). (1)求C 与坐标轴交点的直角坐标;(2)以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 与坐标轴的交点是否共圆,若共圆,求出该圆的极坐标方程;若不共圆,请说明理由.9.(2022·安徽·寿县第一中学高三阶段练习(理))已知直线:sin cos 0l x y a θθ++=,圆()()221:324C x y a +--=,圆2222:340C x y a a +-+=(1)若4θ=,求直线l 的倾斜角;(2)设直线l 截两圆的弦长分别为12,d d ,当23πθ=时,求12d d ⋅的最大值并求此时a 的值.10.(2022·江西南昌·一模(理))已知面积为ABO (O 是坐标原点)的三个顶点都在抛物线()2:20E y px p =>上,过点(),2P p -作抛物线E 的两条切线分别交y 轴于M ,N 两点.(1)求p 的值;(2)求PMN 的外接圆的方程.题型六:几何法求圆的方程一、多选题 1.(2022·广东·模拟预测)三角形的外心、重心、垂心所在的直线称为欧拉线.已知圆O '的圆心在OAB 的欧拉线l 上,O 为坐标原点,点()4,1B 与点()1,4A 在圆O '上,且满足O A O B '⊥',则下列说法正确的是( )A .圆O '的方程为224430x y x y +--+=B .l 的方程为0x y -=C .圆O '上的点到l 的最大距离为3D .若点(),x y 在圆O '上,则x y -的取值范围是⎡-⎣二、填空题2.(2022·河北·模拟预测)圆心为(1,2)C -,且截直线350x y ++=所得弦长为方程为___________.3.(2022·河南·高三阶段练习(文))已知㮋圆1C :()2221024x y b b+=<<的离心率为12,1F 和2F 是1C 的左右焦点,M 是1C 上的动点,点N 在线段1F M 的延长线上,2MN MF =,线段2F N 的中点为P ,则1F P 的最大值为______.4.(2022·天津·高三专题练习)已知圆C 过点(0,1)(2,1)P Q 、两点,且圆心C 在x 轴上,经过点(1,0)M -且倾斜角为钝角的直线l 交圆C 于A ,B 两点,若0CA CB ⋅=(C 为圆心),则该直线l 的斜率为________.5.(2022·全国·高三专题练习)已知圆C :(x -2)2+y 2=2,直线l :y =k (x +2)与x 轴交于点A ,过l 上一点P 作圆C 的切线,切点为T ,若|P A ||PT |,则实数k 的取值范围是______________. 三、解答题6.(2022·内蒙古呼和浩特·二模(理))拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ⊥.已知点M 的坐标为()4,0,M 与直线l 相切.(1)求抛物线C 和M 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M 相切.判断直线12A A 与M 的位置关系,并说明理由.7.(2022·江苏·南京市第五高级中学一模)已知O 为坐标原点,抛物线E :22x py =(p >0),过点C (0,2)作直线l 交抛物线E 于点A 、B (其中点A 在第一象限),4OA OB ⋅=-且AC CB λ=(λ>0). (1)求抛物线E 的方程;(2)当λ=2时,过点A 、B 的圆与抛物线E 在点A 处有共同的切线,求该圆的方程8.(2022·全国·高三专题练习)已知平面直角坐标系上一动点(),P x y 到点()2,0A -的距离是点P 到点()10B ,的距离的2倍. (1)求点P 的轨迹方程:(2)若点P 与点Q 关于点()1,4-对称,求P 、Q 两点间距离的最大值;(3)若过点A 的直线l 与点P 的轨迹C 相交于E 、F 两点,()2,0M ,则是否存在直线l ,使BFM S △取得最大值,若存在,求出此时的方程,若不存在,请说明理由.题型七:待定系数法求圆的方程一、单选题 1.(2016·天津市红桥区教师发展中心高三学业考试)已知圆M 的半径为1,若此圆同时与 x轴和直线y = 相切,则圆M 的标准方程可能是( )A .22((1)1x y +-=B .22(1)(1x y -+-=C .22(1)(1x y -+=D .22((1)1x y ++=二、填空题2.(2022·四川眉山·三模(文))已知函数()()()2112819f x x x x =+--.过点()() 1,1A f --作曲线()y f x =两条切线,两切线与曲线()y f x =另外的公共点分别为B 、C ,则ABC 外接圆的方程为___________.3.(2022·安徽·高三阶段练习(文))已知抛物线2:8C x y =,过点(2,2)N -作抛物线C 的两条切线NA ,NB ,切点分别为点A ,B ,以AB 为直径的圆交x 轴于P ,Q 两点,则PQ =_______.4.(2022·天津·高三专题练习)已知抛物线C :24y x =的焦点为F ,抛物线C 上一点A 位于第一象限,且满足3AF =,则以点A 为圆心,AF 为半径的圆的方程为______. 三、解答题5.(2022·全国·高三专题练习)已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为点P 为圆C 上异于A ,B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N . (1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求12BA BA →→; (3)求证:|AN |·|BM |为定值.6.(2021·江西·高三阶段练习(理))已知圆C 过点(2,1)-,(6,3),(2,3)-. (1)求C 的标准方程;(2)若点(,)P x y 在C 上运动,求34x y -的取值范围.7.(2021·全国·模拟预测)已知点()1,1P 在抛物线C :()220y px p =>上,过点P 作圆E :()()22220y x r r +=->的两条切线,切点为A ,B ,延长PA ,PB 交抛物线于C ,D .(1)当直线AB 抛物线焦点时,求抛物线C 的方程与圆E 的方程; (2)证明:对于任意()0,1r ∈,直线CD 恒过定点.8.(2019·云南·二模(理))已知O 是坐标原点,抛物线C :2x y =的焦点为F ,过F 且斜率为1的直线l 交抛物线C 于A 、B 两点,Q 为抛物线C 的准线上一点,且2AQB π∠=.(1)求Q 点的坐标;(2)设与直线l 垂直的直线与抛物线C 交于M 、N 两点,过点M 、N 分别作抛物线C 的切线1l 、2l ,设直线1l 与2l 交于点P ,若OP OQ ⊥,求MON ∆外接圆的标准方程.题型八:几何法求弦长 一、单选题1.(2022·全国·模拟预测)已知直线 l 过点(A ,则直线 l 被圆O :2212x y +=截得的弦长的最小值为( )A .3B .6C .D .2.(2022·全国·模拟预测)过点()2,2A ,作倾斜角为π3的直线l ,则直线l 被圆22:16O x y +=- )A .1B .2C .3D .6-二、多选题3.(2022·广东·模拟预测)已知圆221:(1)1C x y ++=和圆222:(4)4C x y -+=,过圆2C 上任意一点P 作圆1C 的两条切线,设两切点分别为,A B ,则( )A .线段ABB .线段ABC .当直线AP 与圆2C 相切时,原点O 到直线AP 的距离为65D .当直线AP 平分圆2C 的周长时,原点O 到直线AP 的距离为45三、填空题4.(2022·河北唐山·三模)直线:0+-=l x m 与圆22:480+--=C x y x 交于A 、B 两点,且6⋅=-CA CB ,则实数m =_______. 四、解答题5.(2022·全国·高三专题练习)已知点()()1,0M m m ->,不垂直于x 轴的直线l 与椭圆22:143x y C +=相交于()11,A x y ,()22,B x y 两点.(1)若M 为线段AB 的中点,证明:212112y y x x ->-; (2)设C 的左焦点为F ,若M 在①AFB 的角平分线所在直线上,且l 被圆224x y +=截得的弦长为l 的方程.6.(2021·湖北·武汉市第六中学高三阶段练习)已知圆O :x 2+y 2=2,过点A (1,1)的直线交圆O,且与x 轴的交点为双曲线E :2222x y a b-=1的右焦点F (c ,0)(c >2),双曲线E 的离心率为32.(1)求双曲线E 的方程; (2)若直线y =kx +m (k <0,k ≠m >0)交y 轴于点P ,交x 轴于点Q ,交双曲线右支于点M ,N 两点,当满足关系111||||||PM PN PQ +=时,求实数m 的值.7.(2022·全国·高三专题练习)已知椭圆()2222:10x y E a b a b+=>>0y -=过E 的上顶点A 和左焦点1F .(1)求E 的方程;(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN 面积的最大值,并求出此时直线l 的方程.题型九:利用点到直线的距离解决圆上点与直线上点的距离问题一、单选题 1.(2022·江苏扬州·模拟预测)已知直线():130l a x y -+-=,圆22:(1)5C x y -+=.则“32a =”是“l 与C 相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2022·重庆南开中学模拟预测)已知圆2220x y x a +-+=上仅存在一个点到直线30x +=的距离为1,则实数a 的值为( )A .-2B .C .-1D .03.(2022·全国·高三专题练习(文))圆O :222x y +=上点P 到直线l :3410x y +=距离的最小值为( )A 1B .2C .2D .04.(2022·安徽·寿县第一中学高三阶段练习(理))过直线34110x y -+=上一动点P 作圆22:2210C x y x y +--+=的两条切线,切点分别为,A B ,则四边形PACB 的面积的最小值为( )AB C .3D二、多选题5.(2022·湖南·长郡中学高三阶段练习)已知点P 在圆22:4O x y +=上,点()3,0A ,()0,4B ,则( )A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有2个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是6.(2022·重庆·二模)已知点(),P x y 是圆()22:14C x y -+=上的任意一点,直线()):1130l m x y m ++-=,则下列结论正确的是( )A .直线l 与圆C 的位置关系只有相交和相切两种B .圆C 的圆心到直线l C .点P 到直线43160++=x y 距离的最小值为2D .点P 可能在圆221x y +=上 三、填空题7.(2022·四川省泸县第二中学模拟预测(理))过直线0x y m --=上动点P 作圆2:(2)(3)1M x y -+-=的一条切线,切点为A ,若使得1PA =的点P 有两个,则实数m 的取值范围为___________.8.(2022·贵州遵义·三模(理))圆22:2O x y +=上点P 到直线3410:x y l +=距离的最小值为__________. 四、解答题9.(2022·广东茂名·模拟预测)已知抛物线2:4C y x =的焦点为F ,直线2y x =-与抛物线C 交于A ,B 两点. (1)求FAB 的面积;(2)过抛物线C 上一点Р作圆()22:34M x y -+=的两条斜率都存在的切线,分别与抛物线C 交于异于点P 的两点D ,E .证明:直线DE 与圆M 相切.。

直线与圆常考6种题型总结(解析板)--2024高考数学常考题型精华版

直线与圆常考6种题型总结(解析板)--2024高考数学常考题型精华版

直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.设MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m -≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P作圆224x y+=的两条切线,切点分别为A、B,则直线AB的方程为_______.题型五:圆中最值问题【例1】已知l:4y x=+,分别交x,y轴于A,B两点,P在圆C:224x y+=上运动,则PAB△面积的最大值为()A.8-B.16-C.8+D.16+【答案】C【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离d =O 的半径2r =,()4,0A -,()0,4B ,则AB =PAB △面积的最大值为()1282⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为的交点以及点【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大PM 3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题复习直线与圆Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】2017高考数学专题复习:直线与圆直线方程:直线名称已知条件直线方程使用范围点斜式()kyxP,,k存在斜截式bk,k存在两点式()()2211,,,yxyx2121,yyxx≠≠截距式()()ba,0,0,0,0≠≠ba一般式RCBA∈,,1.倾斜角定义: 取值范围:斜率定义:=k== 21//ll⇔21ll⊥⇔2.平面两点()()2211,,,yxByxA距离:,空间两点()()222111,,,,,zyxBzyxA距离:3.点()0,yxP到直线0:=++CByAxl的距离为:4.两平行线⎩⎨⎧=++=++21CByAxCByAx之间的距离:5.直线系方程:过两直线0:,0:22221111=++=++CyBxAlCyBxAl交点的直线满足方程1.写出下列直线的方程(1)倾斜角为,450在y轴上的截距为3角度0003006001350150弧度4π2π32π斜率(2)在x 轴上的截距为,5-在y 轴上的截距为6(3)经过点(),2,1-倾斜角为0120(4)经过两点()()5,4,3,1-B A(5)经过点(),3,2-且在两坐标轴截距相等2.求过点(),4,1-且与直线0532=++y x 平行的直线方程3.求过点(),1,2且与直线0103=-+y x 垂直的直线方程4.直线l 过点(),2,1-且斜率是直线023=+-y x 斜率的四倍l ,方程为5.直线l 过点(),1,2-且倾斜角是直线023=+-y x 倾斜角的四倍l ,方程为6.直线l 过点(),1,2-且倾斜角是直线032=--y x 倾斜角的两倍l ,方程为7.点M 是直线033:=--y x l 与x 轴的交点,求把直线l 绕点M 逆时针方向旋转045得到的 直线方程8.(1)直线()()063223=-+++-t y t x t 恒过定点坐标为(2)求经过两条直线0132=++y x 和043=+-y x 的交点,并且平行于直线0743=-+y x 的直线方程9.当=a 时,两直线1:,22:21+=++=+a y ax l a ay x l 平行10.求与直线0532=++y x 平行,且在两坐标轴上的截距之和为65的直线的方程11.求点到直线距离:(1)()343:,3,2=++-yxlA (2)()023:,0,1=-+yxlB (3)()04512:,2,1=+--yxlC12.两平行线0532:,0832:21=++=-+yxlyxl的距离13.空间两点()()1,4,2,3,2,1--BA间的距离是14.(1)直线l过点()1,2P且与()()0,2,3,1-BA为端点的线段相交,求直线l的斜率的取值范围(2)直线l过点()1,2-P且与()()4,3,1,0BA为端点的线段相交,求直线l的斜率的取值范围15.设yx,满足约束条件⎪⎩⎪⎨⎧≤+≥≥1234yxxyx(1)求yxz+=2的取值范围(2)求132+-xy的取值范围(3)求22yx+的取值范围[]()()()()()()()[]()()()()()[]()()()()[]()()()()()[]()()(][)[]()()[]()[]16,03.5,32.736,0115.,51,241,21142913.1312.23.1012.5911113210.19.0194433:2.1316,131518.0227.346.35.344133.010322........1,235.13834.1323.1652.311-⎥⎦⎤⎢⎣⎡+∞-∞-⎥⎦⎤⎢⎣⎡-=-+=++⎪⎭⎫⎝⎛-=-+-=-===+-=++=-+-=--=---=+=+-+=yxyxlyxkkkyxyxyxxyxyxyyxxy2017高考数学专题复习:直线与圆一、定义:1.圆的定义:r MC(a,b)y2.圆的标准方程:3.圆的一般方程: 圆心: ,半径:4.点()00,y x P 与圆()()0:222=--+-r b y a x C 位置关系:圆内⇔ ⇔圆上⇔ ⇔圆外⇔ ⇔5.直线与圆位置关系:(圆心到直线距离为d ,半径为r )相交: 相切: 相离:直线与圆相交勾股关系: 过圆222a y x =+上一点()00,y x P 的切线方程:直线与圆相离时,圆上的点到直线距离最大为 ,距离最小为 6.圆与圆位置关系:(1)0:111221=++++F y E x D y x C 表示圆的条件 (2)两圆公共弦所在直线方程(3)圆系方程:过两圆21,C C 交点的圆满足方程:1.求以()3,1-C 为圆心,半径为4的圆的方程2.求圆03422=--+x y x 和034622=--++y x y x 的圆心及半径3.(1)直线:40l x y -+=与圆()()22:112C x y -+-=,求C 上各点到l 的距离的最小值 (2)圆2244100x y x y +---=上的点到直线140x y +-=的最大距离4.求圆心为()1,1且与直线4x y +=相切的圆的方程5.若过两点()()2,0,0,1B A -的直线l 与圆()()5122=-+-a y x 相切,则=a6.若直线30ax by +-=与圆22410x y x ++-=切于点()2,1-P ,则b a +=7.直线20x y +=被曲线2262x y x y +--150-=所截得的弦长8.(1)过点()5,1-M 作圆()()42122=-+-y x 的切线,求切线方程:(2)过圆422=+y x 上一点()3,1-P 的切线方程:(3)过点()2,1总可作两条直线与圆0152222=-++++k y kx y x 相切,实数k 的取值范围是9.过()3,1的直线l 截圆()()5055:22=-+-y x C 所得弦长为104,求直线l 方程:10.求圆心在x 轴上,且过()()3,2,4,1-B A 两点的圆的方程11.直线l 经过原点,与圆03422=+-+x y x 相切,切点在第四象限,直线l 的方程为12(2012山东)圆()4222=++y x 与圆()()91222=-+-y x 的位置关系为( )A.内切B.相交C.外切D.相离13.圆222r y x =+与圆()()()0.13222>=++-r r y x 相切=r14.由直线1y x =+上的一点向圆()1322=+-y x 引切线,求切线长的最小值15.一束光线从点()1,1-A 出发经x 轴反射到圆()()132:22=-+-y x C 上的最短路程16.已知圆034222=-+-+y x y x ,判断点()()()3,1,4,3,1,2---C B A 和圆的位置关系 点()1,2-a a 在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是17.若直线1+=kx y 与圆122=+y x 相交于Q P ,两点,且0120=∠POQ ,则=k18.(1)已知直线l 与圆1:22=+y x O 相交于B A ,两点,且3=AB ,则=⋅(2)直线0323:=-+y x l 与圆4:22=+y x O 交于B A ,两点,则=⋅OB OA19.两圆22210240x y x y +-+-=,22x y +2280x y ++-=公共弦长20(13山东理)过点()1,3作圆()1122=+-y x 两条切线,切点分别为,,B A 则直线AB 的方程为( ) A.032=-+y x B.032=--y x C.034=--y x D.034=-+y x21(10山东文理)圆C 过点(),0,1圆心在x 轴的正半轴上,直线1:-=x y l 被圆C 所截得弦长为,22则过圆心且与直线l 垂直的直线的方程为 .22(13山东文)过点()1,3作圆()()42222=-+-y x 的弦,其中最短的弦长为__________23(08山东文理)圆C 半径为,1圆心在第一象限,与直线430x y -=和x 轴相切,圆标准方程( )A.227(3)13x y ⎛⎫-+-= ⎪⎝⎭ B.()()11222=-+-y x C.()()13122=-+-y x D.223(1)12x y ⎛⎫-+-= ⎪⎝⎭24.已知三角形三个顶点坐标,求外接圆方程1.()()()0,3.3,0.3,0C B A -2.()()0,3,332,332,3,0C B A ⎪⎪⎭⎫ ⎝⎛25.已知圆C 经过坐标原点,且与直线02=+-y x 相切,切点为()4,2A (1)求圆C 的方程(2)若斜率1-=k 的直线l 与圆C 相交于不同的两点N M ,,求⋅的取值范围26.O 为坐标原点,圆016222=+-++y x y x 上两点Q P ,关于直线04=++my x 对称,且0=⋅(1)求m 的值 (2)求直线PQ 的方程27.已知O 为坐标原点,圆042:22=+--+m y x y x C 与直线042:=-+y x l 交于N M ,两点,且ON OM ⊥,求m 的值28.圆C 经过两圆,0224:221=+--+y x y x C 222:2440C x y x y +--+=交点,,B A 且圆心在直线03=-+y x 上(1)求直线AB 方程 (2)圆C 的方程29.已知点()(),0,1,0,1B A -如果直线043=+-m y x 上有且只有一个点P 使得,0=⋅PB PA 那么=m()()()[]()()()()()()()()()()()[]()()()()()()()()()()()()()()()()()()[]()()[]()()()()()()[)[]()()()()()()()()()()().529.20.0128.580516,58.0816527.1010,016282:21126100,0361216,40021622,.5017125.62563632.3124.23222203212052192,21183171,51.,,16.41571421013120311.25210.0103,039338,23,338.432.125,118547361,952114.28,234,2,327,0,21216311212121212122212122222222222222222±==⇒=+=+-=⇒=⋅+⋅⇒=++=⋅=++-=⇒=-⇒=+-+-+=+-+-+⇒+-=-=⇒⎪⎩⎪⎨⎧+-=⋅-∈⇒>∆⇒=+++-+-==++-=⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=+=-+-±⎪⎭⎫ ⎝⎛-<=>=+=++=-+=-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--=--=-=-=-+-=-==-++m C C y x m y y x x y y m y y m y y b b b x b x x x b b x b x b x y l m b b AN AM b b b x b x b x y y x y x y x B y x A B y x y x y x y x y x k x y x r r y x PQ λλ2017高考数学专题复习:直线与圆测试题一、选择题:1.已知圆22:40C x y x +-=,l 过点(),0,3P 则( )A.l 与C 相交B.l 与C 相切C.l 与C 相离 D .以上三个选项均有可能2.当直线03;=+-y x l 被()0,4)2()(:22>=-+-a y a x C 截得弦长为32时,则a = ( ) A.2 B.22- C.12- D.12+3.圆22460x y x y +-+=截x 轴所得的弦与截y 轴所得的弦的长度之比为 ( ) A.23 B.32 C.49 D.944.圆()1122=+-y x 的圆心到直线x y 33=的距离是 ( ) A.21B.23C.1D.35.过点()()1,1,1,1--且圆心在直线02=-+y x 上的圆的方程是 ( )A.4)1()3(22=++-y xB.4)1()3(22=-++y xC.4)1()1(22=-+-y xD.4)1()1(22=+++y x6.(15山东理)一直线从点()3,2--射出,经y 轴反射与圆()()12322=-++y x 相切,反射光线所在直线斜率 ( ) A.5335--或 B.2332--或 C.5445--或 D.4334--或7.圆0222=-+x y x 和圆0422=-+y y x 的位置关系是 ( )A.相离B.相交 C .外切 D.内切8.直线()0,,01>=-+b a by ax 平分圆222220x y x y +---=,则12a b+的最小值是 ( )A.3+ C.2 D.59.若直线210ax y ++=与直线20x y +-=互相垂直,那么a = ( )B.13-C.23- D.2-10.直线0y m -+=与圆22220x y x +--=相切,则实数m = ( )A.- D.-二、填空题:11.已知(),1,3A 直线l 过点()1,7-P ,求点A 到l 的距离的最大值__________ 12.直线()()034212:=-+-++λλλy x l 必过点13.方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是14.已知圆的方程为,08622=--+y x y x 设该圆中过点()5,3的最长弦和最短弦分别为AC 和BD , 则四边形ABCD 的面积是15.如果圆()()11322=-++y x 关于直线:l 410mx y +-=对称,则直线l 的斜率等于—————————三.解答题16.已知ABC ∆的顶点()()()4,1,0,1,2,3-C B A ,求:(1)AB 边上的高所在直线的方程 (2)AC 边上的中线所在直线的方程 (3)ABC ∆外接圆方程17.过()3,3--的直线l 截圆0214:C 22=-++y y x 所得弦长为54,求直线方程18.已知关于y x ,的方程042:22=+--+m y x y x C . (1)方程C 表示圆时m 的取值范围(2)若圆C 与直线042:=-+y x l 相交于N M ,两点,且54=MN ,求m 的值19.已知圆C 经过()()3,1,2,4--Q P 两点,且在y 轴上截得的线段长为34,半径小于5 (1)求直线PQ 与圆C 的方程(2)若直线PQ l //,且l 与圆C 交于点,,B A ,900=∠AOB 求直线l 的方程20.以P 点为圆心的圆过点()()4,3,0,1B A -,线段AB 的垂直平分线交圆P 于点D C ,,且104=CD(1)求直线CD 的方程 (2)求圆P 的方程(3)设点Q 在圆P 上,试探究使QAB ∆面积为8的点Q 共有几个21.圆C 经过两圆0286:,046:222221=-++=-++y y x C x y x C 交点,,B A 且圆心在直线04=-+y x 上(1)求直线AB 方程 (2)圆C 的方程()()()()().62014.32,231.2,121.511.,:011⎪⎭⎫ ⎝⎛----DBBDC ACAAC ()[]()()12.03:161.4115==-+-x y x l ().12=x().9503732322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x ().09203217⎩⎨⎧=++=+-y x y x ()()().131.0219.4,51822=+-=-+=<y x y x m m()()[]()()()()()()()()().289272127,21.2,6,3,1,04:0421.23.6,3,2,5102,3,2.03:120.04,03001222222212122=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-⇒⎪⎭⎫ ⎝⎛-⇒---=+-=+-=--⇒=-=-+=-+=++⇒=+⇒=-++-⇒+-=y x C B A y x l y x n P P PA a a P y x l y x y x y y x x c x c x c x y ABCD2017高考数学专题复习:对称问题对称问题可以分为:点关于点的对称,线关于点的对称,点关于线的对称,线关于线对称,圆关于线对称一.点关于点的对称:1.求点()1,2A 关于点()5,6B 对称的点'A 的坐标二.直线关于点对称:2.求直线:1l 016112=++y x 关于点()1,0P 对称的直线2l 的方程三.点关于直线的对称:3.求点()3,1A 关于直线032:=-+y x l 的对称点'A 的坐标四.直线关于直线的对称:4.求直线01:1=--y x l 关于直线01:=+-y x l 对称的直线2l 的方程5.求直线042:1=-+y x l 关于直线01:=+-y x l 的对称直线2l 的方程五.圆关于线对称:6.圆()()162:221=-++y x C 关于直线0543:=+-y x l 对称的圆2C 的方程练习:7.点()3,2-A 关于点()1,3-B 对称的点'A 的坐标8.已知点()b a M ,与点N 关于x 轴对称,点P 与点N 关于y 轴对称,点Q 与点P 关于直线x y =对称,则点Q 的坐标为9.求直线014:1=-+y x l 关于点()3,2M 对称直线2l 的方程10.点()5,4A 关于直线l 的对称点为()7,2-B ,则l 的方程11.求直线042:1=-+y x l 关于直线0143:=-+y x l 的轴对称直线2l 的方程12.求圆012:221=--+x y x C 关于直线032:=+-y x l 对称的圆2C 的方程13.求圆02:221=+-+y x y x C 关于直线01:=+-y x l 对称的圆2C 的方程14.已知圆C 的圆心与点()1,2-P 关于直线1y x =+对称,直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,求圆C 的方程15.一束光线通过点(),5,3-A 经直线0443:=+-y x l 反射,如果反射光线通过点()15,2B ,求反射 光线所在直线的方程16.直线042:=--y x l 上有一点P ,它与两定点()()0,6,1,4B A -的距离之和最小值为 ,此时点P 的坐标为17.直线042:=--y x l 上有一点P ,它与两定点()()4,3,1,4B A -的距离之差最大值为 ,此时 点P 的坐标为18.已知ABC ∆的顶点()AB A ,1,3-边上的中线所在直线方程为610590x y +-=,B ∠的平分线所在 直线方程为4100x y -+=,求BC 边所在直线的方程()()()()()()()()1246.052)5.(034.51,533.0381122.9,10122=++-=-+=+-⎪⎭⎫ ⎝⎛--=-+y x y x y x y x()()5,87-()()()()03310.02149,8=+-=-+--y x y x a b ()()0161122,3,5854'11=++⇒-⎪⎭⎫ ⎝⎛-⇒y x M A A()2)2()3(1222=-++y x ()()452321322=⎪⎭⎫ ⎝⎛-++y x ()()1811422=++y x ()()⇒=-+1,0,0334:15Q y x l()051183,3'=-+⇒-y x A ()()()()()6,5,2301:,1,0'71.138,1330,37,1,0'16'P d y x l A P d A B A =⇒=+-⎪⎭⎫⎝⎛=()()()()().06592:7,1'3,2.5,1021,274,10481'=-+⇒⇒⇒⇒⎪⎭⎫⎝⎛--⇒-y x l A Q A B y y M y y B BA2017高考数学专题复习:直线与圆测试题1.已知点()()3,1,0,2B A -是圆422=+y x 上的定点,经过点B 的直线与该圆交于另一点C ,当ABC ∆面积最大时,直线BC 的方程是2.已知圆422=+y x 上有且只有四个点到直线0512=+-c y x 的距离为1,则实数c 的取值范围是________3.已知两点()()m B A ,2,1,0,经过B A ,且与x 轴相切的圆有且只有一个,求m 的值及圆的方程4.已知圆032422=-+-+y x y x 和圆外一点()8,4-M(1)过M 作直线与圆交于B A ,两点,若4=AB ,求直线AB 的方程 (2)过M 作圆的切线,切点为D C ,,求切线长及CD 所在直线的方程.5.若直线1=+by ax 与圆122=+y x 相切,求b a ⋅的取值范围6.P 是直线0843=++y x 上的动点,PB PA ,是圆012222=+--+y x y x 的切线B A ,,是切点,C 是圆心,求四边形PACB 面积的最小值7.已知,x y 满足约束条件224220220x y x y x y ⎧+≤⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为8.已知点M 是直线:240l x y --=与x 轴的交点,求把直线l 绕点M 逆时针方向旋转045得到的直线 方程9.直线y x b =+与曲线x b 的取值范围是10.已知圆()51:22=-+y x C ,直线:l 10mx y m -+-=(1)求证:对m R ∈,直线l 与圆C 总有两个不同的交点(2)设l 与圆C 交于B A ,两点,若AB =l 的倾斜角(3)求直线l 中,截圆所得的弦最长及最短时的直线方程.11.若直线b x y +=与曲线243x x y --=有公共点,求b 的取值范围12.若圆222430x y x y ++-+=关于直线260ax by ++=对称,求由点()b a ,向圆所作的切线长的最小值13.两圆042222=-+++a ax y x 和0414222=+--+b by y x 恰有三条公切线,0≠⋅b a ,求2211ba + 的最小值14.圆022222=+--+a y ax y x 被y 轴所截得弦为AB ,若弦AB 所对圆心角为2π,实数=a15.求与已知圆010722=+-+x y x 相交所得公共弦平行于直线0432:=+-y x l 且过点()()4,1,3,2- 的圆的方程16.已知正方形ABCD 的相对顶点()()5,2,1,0C A -,求顶点B 和D 的坐标17.m 为何值时,直线m x y l +-=:与曲线182+-=x y 有两个公共点有一个公共点18.直线3+=kx y 与圆()()42322=-+-y x 相交于N M ,两点,若32≥MN ,则k 的取值范围是19.若直线b x y -=与曲线()1222=+-y x 有两个不同的公共点,求实数b 的取值范围20.x y 2=上,圆被直线0=-y x 截得的弦长为21.点()1,2-P 为圆25)3(22=+-y x 的弦的中点,求该弦所在直线的方程22.将一张坐标纸折叠一次,使点()0,10与()8,6-重合,则与点()2,4-重合的点是23.圆03622=+-++y x y x 与直线032=-+y x 的两个交点为Q P ,,求以PQ 为直径的圆的方程.24.直线12=+by ax 与圆122=+y x 相交于B A ,两点,且AOB ∆是直角三角形,则点()b a P ,与点 ()1,0之间距离的最小值为25.已知点()(),2,0,0,2B A -若点C 是圆2220x x y -+=上的动点,则ABC ∆面积最小值为26.已知圆0222:221=---+y x y x C ,圆2C 的圆心在直线x y 2=上,且与1C 的两个交点B A ,平分,1C 求满足条件圆2C 半径的最小值27.已知0,0a b >>,圆22420x y x y +-+=关于直线10ax by --=对称,则2a bab+的最小值为28.函数134261022+-+++=x x x x y 的值域是29.函数2290622+--++=x x x x y 的最大值是30.若圆上一点()3,2A 关于直线02=+y x 的对称点仍在圆上,且圆与直线01=+-y x 相交的弦长 为22,则圆的方程是__________________.31.如图所示,已知以点()2,1-A为圆心的圆与直线072:1=++yxl相切,过点()0,2-B的动直线l与圆A于NM,两点,Q是MN的中点,直线l与1l相交于点=⋅BPBQP,()()()()13,132.1,3,11-=-xC()()()()425252:0,0.111:132222=⎪⎭⎫⎝⎛-+-==∆=-+-=yxmyxm()01972,53.4,04428454=--==++yxxyx.()⎥⎦⎤⎢⎣⎡-21,215()()()0638.527.226=-+yx()(]{}21,19-- ()1,1.120,601000==xy()[]3,22111-()41842,3122222≥⇒++=-=+=lbbrdlba()()2214113±()0211021522=+-++yxyx()()().1,4,3,216-()[)[){}.5122,221,5,12217+-+()⎥⎦⎤⎢⎣⎡-0,4318()().22,2219+-()20()()222410x y-+-=或()()222410x y+++=()0121=-+yx()()()()()()()[]() ()()()()()() ()[)()()()()()()()5..5231.244714,523630.17229.,6528.92751056651,122226.2325.122,2.2212224.52132.2,42222222222222222222-=⋅==++-=++-+∞≥⇒+-=⇒+⎪⎩⎪⎨⎧=---+=-+---≥⇒-∈-=-+=⇒=+=-++-Ryxyxraaryxyxrbyaxdbbbadbayx2017高考数学专题训练:直线与圆一、选择题1.已知BA,两点分别在两条互相垂直的直线20x y-=和0x ay+=上,且AB线段的中点为⎪⎭⎫⎝⎛aP10,0,则线段AB的长为()A.11 B.10 C.9 D.82.已知0≠a,直线()042=+++ybax与直线()032=--+ybax互相垂直,则ab的最大值为()A .0B .2C .4D .23.已知倾斜角为α的直线l 与直线022=+-y x 平行,则=α2tan( )A .45B .43C .34D .234.若直线y kx =与圆22(2)1x y -+=的两个交点关于直线20x y b ++=对称,则,k b 分别为 ( )A.1,42k b ==- B.1,42k b =-= C.1,42k b == D.1,42k b =-=-5.平面直角坐标系xOy 中,直线0543=-+y x 与圆422=+y x 相交于B A ,两点,=AB ( )A.33B.32C.36.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点, 使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是 ( )A.43-B.54-C.35-D.53-7.直线y x m =+与圆221x y +=在第一象限内有两个不同的交点,则m 取值范围是 ( )2m <<3m <<m <<D.1m <<8.已知圆C 经过()()4,1,2,5-B A 两点,圆心在x 轴上,则圆C 的方程是( )A .22(2)13x y -+= B .22(2)17x y ++= C .22(1)40x y ++=D .22(1)20x y -+=9.直线()2110x a y +++=的倾斜角的取值范围是( )A.0,4π⎡⎤⎢⎥⎣⎦ B.⎪⎭⎫⎢⎣⎡ππ,43 C.⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡πππ,24,0 D.⎪⎭⎫⎢⎣⎡⎪⎭⎫⎢⎣⎡ππππ,432,410.已知P 是直线01143:=+-y x l 上的动点,PB PA ,是圆222210x y x y +--+=的两条切线, C 是圆心,那么四边形PACB 面积的最小值是( )B.22D.3211.直线()()0211=-+++y n x m 与圆()()11122=-+-y x 相切,则+m n 的取值范围是 ( )A.[]31,31+-B.(][)+∞+-∞-,3131,C.[]222,222+-D.(][)+∞+-∞-,222222,12.已知()y x P ,是直线()0.04>=++k y kx 上一动点,PB PA ,是圆:C 0222=-+y y x 的两条切线, B A ,是切点,若四边形PACB 的最小面积是2,=k ( )B .212C.2213.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:516C x y -+=只有一个公共 点M ,则PM 的最小值为 ( ) C.2414.已知P 是圆122=+y x 上的动点,则 P 点到直线 022:=-+y x l 的距离的最小值为 ( )B.2D.2215.若直线1x y a +=+被圆()()22224x y -+-=所截得的弦长为2a = ( ) A.1或5 B.1-或5 C.1或5- D.1-或5-16.直线20(0,0)-+=>>ax by a b 被圆224410++--=x y x y 截得弦长为6,23+a b最小值为( ) A.10 B.426+526+4617.已知圆22240x y x my +-+-=上两点N M ,关于直线20x y +=对称,则圆的半径为 ( )C.318.若与向量()1,1=平行的直线l 与圆221x y +=交于B A ,两点,则AB 最大值为 ( )B.2D.219.点P 在平面区域22021020x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩内,点Q 在曲线()1222=++y x 上,那么PQ 的最小值为( )A 35B 51C 2D .3220.函数()()1,0.13log ≠>-+=a a x y a 的图像恒过定点A ,若点A 在直线01=++ny mx 上 ()0,>n m ,则nm 21+的最小值等于 ( )D. 821.点()y x P ,的坐标满足条件⎪⎩⎪⎨⎧≥+-≥≥0321y x x y x ,点P 到直线0943=--y x 的距离的最小值为 ( )C.514 D.56 22.已知,x y 满足不等式组242y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则22222z x y x y =++-+的最小值为 ( )A.9523.直线044=--k y x 与抛物线x y =2交于B A ,两点,若4=AB ,则弦AB 的中点到直线021=+x 的距离等于 ( ) A.47 B .2 C.49D .424.已知从点()1,2-发出的一束光线,经x 轴反射后,反射光线恰好平分圆2222x y x y +--10+=的圆周,则反射光线所在的直线方程为 ( )A.0123=--y xB.0123=+-y xC.0132=+-y xD.0132=--y x25.已知,x y 满足不等式组122,012430++=≤-+≥≥⎪⎩⎪⎨⎧x y S y x x y x 的取值范围是 ( )A.[]4,1B.[]8,2C.[]10,2D.[]9,326.如果圆()()822=-+-a y a x 上总存在两个点到原点的距离为,2则实数a 的取值范围是 ( )A.()()3,11,3 --B.)3,3(-C.[]1,1-D.(][)3,11,3 --27.双曲线22221(0,0)x y a b a b-=>>渐近线和圆08622=+-+y y x 相切,双曲线的离心率等于( )B.2C.328.若直线l 过点()0,A a ,斜率为1,圆224x y +=上恰有1个点到l 的距离为1,=a ( )A.±2±D.29.直线01=+-+t y tx 与圆044222=-+-+y x y x 的位置关系为 ( ) A.相交B.相切C.相离D.以上都有可能30.如果函数()1ln 2)(+-=x b a x f 的图象在1=x 处的切线l 过点⎪⎭⎫ ⎝⎛-b 1,0,并且l 与圆1:22=+y x C 相离,则点()b a ,与圆C 的位置关系是( ) A .在圆内B .在圆外C .在圆上D .不能确定31.如图,C 是半圆弧()0,122≥=+y y x 上一点,连接AC 并延长至D , 使CB CD =, 则当C 点在 半圆弧上从B 点移动至A 点时,D 点的轨迹是 的一部分,D 点所经过的路程为32.已知圆:C 2218x y +=,直线:l 4325,x y +=则圆C 上任一点到直线l 的距离小于2的概率为____33.若圆224x y +=与圆22260x y ay ++-=()0>a 的公共弦的长为3=a _____34.已知集合{}{}22,2013A x y x x B x x m ==-+=-<,若A B A =,则m 的取值范围是 ____________35.若()()R m y m x O y x O ∈=+-=+.20:,5:222221相交于B A ,两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是____________36.已知直线:2830l mx y m ---=和圆22:612200C x y x y +-++=相交于B A ,两点,当线段AB 最短时直线l 的方程为37.函数()1,0,1≠>=-a a a y x 的图像恒过定点A ,若点A 在直线(mn ny mx 01=-+>)0上,则nm 11+ 的最小值为_______.38.设变量,x y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数y z x =的最小值为39.已知直线()0,,022>=+-b a by ax 经过圆()()42122=-++y x 的圆心,则ba 11+的最小值为40.直线l 过点()0,4且与圆()()252122=-+-y x 交于B A ,两点,如果8=AB ,l 的方程为41.由圆外一点P 向圆O 引一条切线为PA (切点为A ),连结PO 并延长交圆O 于点B ,若3=PA 3=PB ,则圆O 的周长等于______42.已知圆C 过点()1,0-,且圆心在x 轴的负半轴上,直线:1l y x =+被该圆所截得的弦长为 则过圆心且与直线l 平行的直线方程为43.过点()0,3y M作圆122=+y x的切线,切点为N ,如果00=y ,那么切线的斜率是如果6π≥∠OMN ,那么0y 的取值范围是44.一同学为研究函数)10()1(11)(22≤≤-+++=x x x x f 的性质,构造了如图所示的两个边长为1的 正方形ABCD 和,BEFC 点P 是边BC 上的一动点,设,x CP =则()AP PF f x +=.请你参考这些信息, 推知函数()()73-=x f x g 的零点的个数是()()()()()()()()()()()()()()[]().244.1,143.0342.241.4,02012540.439.2138.437.05336.4352013,2011341334132231.,:3021.,:2011.,:101-=+-==--=++----y x x y x y x ACBAD ABCCB CBCBD DDBAA ADDBC BBBAB ππ2017高考数学复习训练:直线与圆一、选择题:1.直线l 与直线1y ,直线7=x 分别交于,P Q 两点,PQ 中点为()1,1-M ,则直线l 的斜率是( )A.13 B.23 C.23- D.31- 2.过点(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +≤分两部分,使得这两部分的面积之差最大, 则该直线的方程为( )A.20x y +-=B.10y -=C.0x y -=D.340x y +-=ABCDEFP3.过点(),2,5且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是 ( )A.2120x y +-=B.2120x y +-=或250x y -=C.210x y --=D.210x y --=或250x y -=4.已知两条直线012)1(:1=++-y x a l ,03:2=++ay x l 平行,则=a( )A.1-B.2C.0或2-D.1-或25.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A.[]1,3--B.[]3,1-C.[]1,3-D.(][)+∞-∞-,13,6.直线01=-+y x 被圆()3122=++y x 截得的弦长等于( )A.2B.2C.22D.47.在圆06222=--+y x y x 内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形 ABCD 的面积为 ( )A .25B .210C .215D .2208.若实数y x ,满足22240x y x y +-+=,则2x y -的最大值是 ( )A.5+9.一束光线从点()1,1-A 出发经x 轴反射到圆:C ()()22231x y -+-=的最短路程是 ( )C.123-D.10.圆0744:221=+-++y x y x C 和圆013104:222=+--+y x y x C 的公切线有 ( ) A. 2条 条 条 条 二、填空题:1.直线y x b =+与曲线x =b 的取值范围是2.圆014222=+-++y x y x 关于直线()0,0,022>>=+-b a by ax 对称,则ba 14+的最小值3.过直线0x y +-=上点P 作圆221x y +=的两条切线,若两条切线的夹角是060,则点P 的坐标是4.圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值三.解答题1.经过点()3,2-P 作圆22224x x y ++=的弦,AB 使得点P 平分弦AB ,则弦AB 所在直线的方程2.圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程3.已知一束光线通过点()3,2A ,经直线04:=++y x l 反射.如果反射光线通过点()1,1B ,求入射光 线和反射光线所在直线的方程,并求A 到B 的路程4.已知实数y x ,满足034=+++x y x(Ⅰ)求12--x y 的最大值和最小值 (Ⅱ)求y x 2+的最大值和最小值(Ⅲ)求y x y x 4222+-+的最大值和最小值5.已知圆:C 4)4()3(22=-+-y x ,直线1l 过定点(1,0)A . (Ⅰ)若1l 与圆C 相切,求1l 的方程(Ⅱ)若1l 与圆C 相交于Q P ,两点,求CPQ ∆的面积的最大值,并求此时直线1l 的方程.6.已知圆C 的方程为0662=--++y x y x ,O 为坐标原点. (Ⅰ)求过点()11,5-M 的圆C 的切线方程(Ⅱ)若圆C 上有两点Q P ,关于直线04=++my x 对称,并且满足7-=⋅OQ OP ,求m 的值和直线PQ 的方程(Ⅲ)过点()3,2N 作直线与圆C 交于B A ,两点,求ABC ∆的最大面积以及此时直线AB 的斜率.()()()()().344.2,23.92.2,111:.....,:101:-=≤<--b b BACAB DABDC 二一()()()()()()()()()113,0187:,0578:5,5'.6,7'3.111.9332.051:''2222==+-=+-----=++-=-+-=--d y x l y x l B A y x y x y x BA AB 三()()()[]()[]9132,91323,25,522,433,43314++----⎥⎦⎤⎢⎣⎡+-[]()()077,01.22.0343,115=--=--=--=y x y x y x x []()()()223.12.5,029431.6±+-=-==-+x y x y x。

相关文档
最新文档