圆形阴影面积练习题.docx
圆-阴影部分面积(含标准答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘M)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘M)例2.正方形面积是7平方厘M,求阴影部分的面积。
(单位:厘M)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘M,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘M例3.求图中阴影部分的面积。
(单位:厘M)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘M。
例4.求阴影部分的面积。
(单位:厘M)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘M例5.求阴影部分的面积。
(单位:厘M)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘M另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘M,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘M?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘M(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘M) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘M(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘M)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘M例9.求阴影部分的面积。
圆_阴影部分面积(含答案)
× - ×4×6=5π-12=3.7平方厘米 例31.如图是一个正方形和半圆 所组成的图形,其中P为半圆 周的中点,Q为正方形一边上 的中点,求阴影部分的面积。 例32.如图,大正方形的边长为 6厘米,小正方形的边长为4厘 米。求阴影部分的面积。 解:三角形DCE的面积为: ×4×10=20平方厘米 梯形ABCD的面积为: 解:连PD、PC转换为两个三 角形和两个弓形, 两三角形面积为:△APD 面积+△QPC面积= (5×10+5×5)=37.5 两弓形PC、PD面积为: π -5×5 所以阴影部分的面积为: 37.5+ π-25=51.75平方厘米 (4+6)×4=20平方厘米 从而知道 它们面积相等,则三角形ADF面 积等于三角形EBF面积,阴影 部分可补成 圆ABE的面积,其面积为: π ÷4=9π=28.26平方厘米
解:梯形面积减去 解: 连对角线后将"叶形"剪开移 到右上面的空白部分,凑成正方 圆面积, 形的一半. 所以阴影部分面积为: 8×8÷2=32平方厘米 (4+10)×4π =28-4π=15.44平方厘米 . 例15.已知直角三角形面积是 12平方厘米,求阴影 例16.求阴影部分的面积。(单 位:厘米) 解:
解:把中间部分分成四等分, 分别放在上面圆的四个角上, 补成一个正方形,边长为2厘 米, 所以面积为:2×2=4平方 厘米
例23.图中的4个圆的圆心是正 方形的4个顶点,,它们的公 共点是该正方形的中心,如果 每个圆的半径都是1厘米,那 么阴影部分的面积是多少?
例24.如图,有8个半径为1厘米 的小圆,用他们的圆周的一部 分连成一个花瓣图形,图中的 黑点是这些圆的圆心。如果圆 周π率取3.1416,那么花瓣图 形的的面积是多少平方厘米?
(完整word版)圆的练习题(阴影部分的面积周长20题)
求阴影部分的面积和周长20题
1.
5.
101^
牡
6匝米
2.
12厘来
8.
C知正方形罔崔为20
厘米.求岡的面积?
已知正方形面积为8
平方厘米*求圈的临
枳?
厂\
kJ
虻I乩宜甫三曲形ABC
中.AB足圈的且怪・H
AB=4,阴鬱甲的面积比
阴幣乙的面积大Q.8平
方崖来’求BC的悅?
A
知正方形面积为25平
方匣米.求同的周艮?
止方形边民是8dg阴
彭部仿而积是名少?
16
疋方形边长是10dm,阴
影部分而积是芯少?
求阴影部分的面积?
12 13
14
止方晤面积址餡T 方慳来 求閨比浏甘的面和!?
15
求開哥部分的出1联?同检
Scfn
19. 20.
求阴影部分的面积?
如團:宜角三角形ABC 中*阴影 部分1比阴劭2的面积小28平方厘 壮AB 长40匣米.求BC 的长?
直角三角形的面积是50平 方审米,求二角形所在的阴
的向F 启笋少疔方匣米0
17.
8厘来
18. B。
圆_阴影部分面积(含答案)
求阴影部分面积之五兆芳芳创作例1.求阴影部分的面积.(单位:厘米)解:这是最根本的办法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积.(单位:厘米)解:这也是一种最根本的办法用正方形的面积减去圆的面积.设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-例 3.求图中阴影部分的面积.(单位:厘米)解:最根本的办法之一.用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米.例 4.求阴影部分的面积.(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π例 5.求阴影部分的面积.(单位:厘米)解:这是一个用最经常使用的办法解最罕有的题,为便利起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π(另外:此题还可以看成是1题中阴影部分的8倍.例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积.(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积.(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π(例9.求阴影部分的面积.(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分分解一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积.(单位:厘米)解:同上,平移左右两部分至中间部分,则分解一个长方形,所以阴影部分面积为2×1=2平方厘米(注: 8、9、10三题是复杂割、补或平移)例11.求阴影部分的面积.(单位:厘米)解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求.(π -π)×=例12.求阴影部分的面积.(单位:厘米)解:三个部分拼成一个半圆面积.π(例13.求阴影部分的面积.(单位:厘米)解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以阴影部分面积为:8×8÷2=32平方厘米例14.求阴影部分的面积.(单位:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米.例15.已知直角三角形面积是12平方厘米,求阴影部分的面积.阐发: 此题比上面的题有一定难度,这是"叶形"的一个半.解: 设三角形的直角边长为r,则=12,=6圆面积为:π÷2=3π.圆内三角形的面积为12÷2=6,阴影部分面积为:(3π-6)×例16.求阴影部分的面积.(单位:厘米)解:[π+π-π]=例17.图中圆的半径为5厘米,求阴影部分的面积.(单位:厘米)解:上面的阴影部分以AB为轴翻转后,整个阴影部分红为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和.例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长.解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,例19.正方形边长为2厘米,求阴影部分的面积.解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形.所以面积为:1×2=2平方厘米例20.如图,正方形ABCD 的面积是36平方厘米,求阴影部分的面积.解:设小圆半径为r,4=36, r=3,大圆半径为R,=2=18,将阴影部分通过转动移在一起组成半个圆环,所以面积为:π(-例21.图中四个圆的半径都是1厘米,求阴影部分的面积.解:把中间部分分红四等分,辨别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米例22.如图,正方形边长为8厘米,求阴影部分的面积.解法一: 将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.阴影部分为一个三角形和一个半圆面积之和. π(解法二: 补上两个空白为一个完整的圆.所以阴影部分面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16所以阴影部分的面积为:π(例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1所以阴影部分的面积为:4π-8(π-1)=8平方厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的斑点是这些圆的圆心.如果圆周π率取 3.1416,那么花瓣图形的的面积是多少平方厘米?阐发:连接角上四个小圆的圆心组成一个正方形,各个小圆被切去个圆,这四个部分正好分解3个整圆,而正方形中的空白部分分解两个小圆.解:阴影部分为大正方形面积与一个小圆面积之和.例25.如图,四个扇形的半径相等,求阴影部分的面积.(单位:厘米)阐发:四个空白部分可以拼成一个以2为半径的圆.所以阴影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积.解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分红为三角形ACB面积减去个小圆面积,为: 5×5÷2-π例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积.解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+[π÷4-2]=π-1+(π-1)例28.求阴影部分的面积.(单位:厘米)解法一:设AC中点为B,阴影面积为三角形ABD 面积加弓形BD的面积,弓形面积为:[π解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:5×5-π=25-π阴影面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-π)=例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少?解: 甲、乙两个部分同补上空白部分的三角形后分解一个扇形BCD,一个成为三角形ABC,此两部分差即为:π×-例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米.求BC的长度.解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28 所以40X-400π=56 则X=32.8厘米例31.如图是一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积.解:连PD、PC转换为两个三角形和两个弓形,两三角形面积为:△APD面积+△QPC面积=两弓形PC、PD面积为:π-5×5所以阴影部分的面积为:37.5+π-25=51.75平方厘米例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米.求阴影部分的面积.解:三角形DCE的面积为:×4×10=20平方厘米梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF面积等于三角形EBF面积,阴影部分可补成圆ABE 的面积,其面积为:π例33.求阴影部分的面积.(单位:厘米)解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为(π+π)-6=×13π-6例34.求阴影部分的面积.(单位:厘米)解:两个弓形面积为:π-3×4÷2=π-6阴影部分为两个半圆面积减去两个弓形面积,结果为π+π-(π-6)=π(4+-)+6=6平方厘米例35.如图,三角形OAB是等腰三角形,OBC是扇形,OB=5厘米,求阴影部分的面积.解:将两个同样的图形拼在一起成为圆减等腰直角三角形[π÷4-×5×5]÷2=(π-。
圆阴影部分面积含标准答案(终审稿)
圆阴影部分面积含标准答案TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为 r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米) 解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米) 解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
圆_阴影部分面积(含答案)
求阴影部分面积之袁州冬雪创作例1.求阴影部分的面积.(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积.(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积.设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积.(单位:厘米) 解:最基本的方法之一.用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米. 例4.求阴影部分的面积.(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积.(单位:厘米)解:这是一个用最常常使用的方法解最罕见的题,为方便起见,我们把阴影部分的每个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米别的:此题还可以当作是1题中阴影部分的8倍. 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空缺部分甲比乙的面积多多少厘米?解:两个空缺部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积.(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接例8.求阴影部分的面积.(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空缺部分面积,割补以后为圆,所以阴影部分用图形的差来求,无需割、补、增、减变形)面积为:π(例9.求阴影部分的面积.(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积.(单位:厘米)解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米(注: 8、9、10三题是简单割、补或平移)例11.求阴影部分的面积.(单位:厘米)解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求.(π-π)×=×3.14=3.66平方厘米例12.求阴影部分的面积.(单位:厘米)解:三个部分拼成一个半圆面积.π()÷2=14.13平方厘米例13.求阴影部分的面积.(单位:厘米)解: 连对角线后将"叶形"剪开移到右上面的空缺部分,凑成正方形的一半.所以阴影部分面积为:8×8÷2=32平方厘米例14.求阴影部分的面积.(单位:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米.例15.已知直角三角形面积是12平方厘米,求阴影部分的面积.分析: 此题比上面的题有一定难度,这是"叶形"的一个半.解: 设三角形的直角边长为r ,则=12,=6 例16.求阴影部分的面积.(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6平方厘米圆面积为:π÷2=3π.圆内三角形的面积为12÷2=6,阴影部分面积为:(3π-6)×=5.13平方厘米例17.图中圆的半径为5厘米,求阴影部分的面积.(单位:厘米)解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和.所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长.解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米例19.正方形边长为2厘米,求阴影部分的面积.解:右半部分上脸部分逆时针,下脸部分顺时针旋转到左半部分,组成一个矩形.所以面积为:1×2=2平方厘米例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积.解:设小圆半径为r,4=36, r=3,大圆半径为R ,=2=18,将阴影部分通过转动移在一起构成半个圆环,所以面积为:π(-)÷2=4.5π=14.13平方厘米例21.图中四个圆的半径都是1厘米,求阴影部分的面积.解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米例22. 如图,正方形边长为8厘米,求阴影部分的面积.解法一: 将左边上面一块移至右边上面,补上空缺,则左边为一三角形,右边一个半圆.阴影部分为一个三角形和一个半圆面积之和.π()÷2+4×4=8π+16=41.12平方厘米解法二: 补上两个空缺为一个完整的圆.所以阴影部分面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16所以阴影部分的面积为:π()-8π+16=41.12平方厘米例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那末阴影部分的面积是多少?解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1所以阴影部分的面积为:4π-8(π-1)=8平方厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周π率取3.1416,那末花瓣图形的的面积是多少平方厘米?分析:毗连角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部分正好合成3个整圆,而正方形中的空缺部分合成两个小圆.解:阴影部分为大正方形面积与一个小圆面积之和.为:4×4+π=19.1416平方厘米例25.如图,四个扇形的半径相等,求阴影部分的面积.(单位:厘米)分析:四个空缺部分可以拼成一个以2为半径的圆.所以阴影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积.解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三角形ACB 面积减去个小圆面积,为: 5×5÷2-π÷4=12.25-3.14=9.36平方厘米例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积.解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米例28.求阴影部分的面积.(单位:厘米)解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:[π÷2-5×5]÷2=7.125所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空缺部分为小正方形面积减去小圆面积,其值为:5×5-π=25-π阴影面积为三角形ADC减去空缺部分面积,为:10×5÷2-(25-π)=π=19.625平方厘米例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD 所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少?解: 甲、乙两个部分同补上空缺部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部分差即为:π×-×4×6=5π-12=3.7平方厘米例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米.求BC的长度.解:两部分同补上空缺部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米例31.如图是一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积. 例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米.求阴影部分的面积.解:连PD、PC转换为两个三角形和两个弓形,两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5 两弓形PC、PD 面积为:π-5×5所以阴影部分的面积为:37.5+π-25=51.75平方厘米解:三角形DCE的面积为:×4×10=20平方厘米梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF 面积等于三角形EBF 面积,阴影部分可补成圆ABE的面积,其面积为:π÷4=9π=28.26平方厘米例33.求阴影部分的面积.(单位:厘米)解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为(π+π)-6=×13π-6=4.205平方厘米例34.求阴影部分的面积.(单位:厘米)解:两个弓形面积为:π-3×4÷2=π-6阴影部分为两个半圆面积减去两个弓形面积,成果为π+π-(π-6)=π(4+-)+6=6平方厘米例35.如图,三角形OAB是等腰三角形,OBC 是扇形,OB=5厘米,求阴影部分的面积.解:将两个同样的图形拼在一起成为圆减等腰直角三角形[π÷4-×5×5]÷2 =(π-。
圆_阴影部分面积(含答案)
求阴影部分面积之樊仲川亿创作时间:二O二一年七月二十九日例1.求阴影部分的面积.(单位:厘米)解:这是最基本的办法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积.(单位:厘米)解:这也是一种最基本的办法用正方形的面积减去圆的面积.设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积.(单位:厘米) 解:最基本的办法之一.用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米. 例4.求阴影部分的面积.(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积.(单位:厘米)解:这是一个用最经常使用的办法解最罕见的题,为便利起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍. 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积.(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π例8.求阴影部分的面积.(单位:厘米) 解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积.(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积.(单位:厘米)解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米(注: 8、9、10三题是简单割、补或平移)例11.求阴影部分的面积.(单位:厘米)解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求.(π-π)×=×3.14=3.66平方厘米例12.求阴影部分的面积.(单位:厘米)解:三个部分拼成一个半圆面积.π()÷2=14.13平方厘米例13.求阴影部分的面积.(单位:厘米)解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以阴影部分面积为:8×8÷2=32平方厘米例14.求阴影部分的面积.(单位:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米.例15.已知直角三角形面积是12平方厘米,求阴影部分的面积.阐发: 此题比上面的题有一定难度,这是"叶形"的一个半.解: 设三角形的直角边长为r,则=12,例16.求阴影部分的面积.(单位:厘米)=6圆面积为:π÷2=3π.圆内三角形的面积为12÷2=6,阴影部分面积为:(3π-6)×=5.13平方厘米解:[π+π-π]=π(116-36)=40π=125.6平方厘米例17.图中圆的半径为5厘米,求阴影部分的面积.(单位:厘米)解:上面的阴影部分以AB为轴翻转后,整个阴影部分红为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和.所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长.解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米例19.正方形边长为2厘米,求阴影部分的面积.解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形.所以面积为:1×2=2平方厘米例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积.解:设小圆半径为r,4=36,r=3,大圆半径为R,=2=18,将阴影部分通过转动移在一起组成半个圆环,所以面积为:π(-)÷2=4.5π=14.13平方厘米例21.图中四个圆的半径都是1厘米,求阴影部分的面积.解:把中间部分分红四等分,辨别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米例22. 如图,正方形边长为8厘米,求阴影部分的面积.解法一: 将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.阴影部分为一个三角形和一个半圆面积之和.π()÷2+4×4=8π+16=41.12平方厘米解法二: 补上两个空白为一个完整的圆.所以阴影部分面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16所以阴影部分的面积为:π()-8π+16=41.12平方厘米例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1所以阴影部分的面积为:4π-8(π-1)=8平方厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?阐发:连接角上四个小圆的圆心组成一个正方形,各个小圆被切去个圆,这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆.解:阴影部分为大正方形面积与一个小圆面积之和.为:4×4+π=19.1416平方厘米例25.如图,四个扇形的半径相等,求阴影部分的面积.(单位:厘米)阐发:四个空白部分可以拼成一个以2为半径的圆.所以阴影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积.解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分红为三角形ACB 面积减去个小圆面积,为: 5×5÷2-π÷4=12.25-3.14=9.36平方厘米例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积.解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米例28.求阴影部分的面积.(单位:厘米)解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:[π÷2-5×5]÷2=7.125所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:5×5-π=25-π阴影面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-π)=π=19.625平方厘米例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少?解: 甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部分差即为:π×-×4×6=5π-12=3.7平方厘米例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米.求BC的长度.解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米例31.如图是一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积.解:连PD、PC转换为两个三角形和两个弓形,两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5两弓形PC、PD 面积为:π-5×5所以阴影部分的面积为:37.5+π-25=51.75平方厘米例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米.求阴影部分的面积.解:三角形DCE的面积为:×4×10=20平方厘米梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF面积等于三角形EBF面积,阴影部分可补成圆ABE的面积,其面积为:π÷4=9π=28.26平方厘米例33.求阴影部分的面积.(单位:厘米)解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为(π+π)-6=×13π-6=4.205平方厘米例34.求阴影部分的面积.(单位:厘米)解:两个弓形面积为:π-3×4÷2=π-6阴影部分为两个半圆面积减去两个弓形面积,结果为π+π-(π-6)=π(4+-)+6=6平方厘米例35.如图,三角形OAB是等腰三角形,OBC 是扇形,OB=5厘米,求阴影部分的面积.解:将两个同样的图形拼在一起成为圆减等腰直角三角形[π÷4-×5×5]÷2=(π-)÷2=3.5625平方厘米时间:二O二一年七月二十九日。
圆-阴影部分面积(含标准答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为 r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=平方厘米例3.求图中阴影部分的面积。
(单位:厘米) 解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=所以阴影面积为:π÷=平方厘米(注:以上几个题都可以直接例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=平方用图形的差来求,无需割、补、增、减变形) 厘米例9.求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。
圆阴影部分面积(含答案)
求阴影部分面积求阴影部分面积例1.求阴影部分的面积。
(单位:厘米) 解:解:这是最基本的方法:这是最基本的方法: 圆面积减去等腰直角三角形的面积,×-2×-2×1=1.141=1.14(平方厘米)米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米) 解:这也是一种最基本的方法用正方形的面积减去形的面积减去 圆的面积。
圆的面积。
设圆的半径为设圆的半径为 r ,因为正方形的面积为7平方厘米,所以平方厘米,所以 =7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米平方厘米例3.求图中阴影部分的面积。
(单位:厘米) 解:最基本的方法之一。
用四个 圆组成一个圆,用正方形的面积减去圆的面积,去圆的面积,所以阴影部分的面积:2×2×2-2-2-ππ=0.86平方厘米。
平方厘米。
例4.求阴影部分的面积。
(单位:厘米) 解:同上,正方形面积减去圆面积,面积, 16-16-π(π()=16-)=16-4π4π=3.44平方厘米平方厘米例5.求阴影部分的面积。
(单位:厘米) 解:这是一个用最常用的方法解最常见的题,为方便起见,最常见的题,为方便起见, 我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,去一个正方形,π()×)×2-2-2-16=8π16=8π16=8π-16=9.12-16=9.12平方厘米方厘米另外:此题还可以看成是1题中阴影部分的8倍。
倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)部分)π-π()=100.48平方厘米厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5×5÷5÷5÷2=12.5 2=12.5 所以阴影面积为:π÷4-12.5=7.125平方厘米平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
圆_阴影部分面积(含答案)
供阳影部分里积之阳早格格创做例1.供阳影部分的里积.(单位:厘米)解:那是最基原的要领:圆里积减去等腰曲角三角形的里积,×-2×1=1.14(仄圆厘米)例2.正圆形里积是7仄圆厘米,供阳影部分的里积.(单位:厘米)解:那也是一种最基原的要领用正圆形的里积减去圆的里积.设圆的半径为r,果为正圆形的里积为7仄圆厘米,所以=7,所以阳影部分的里积为:7-=7-×7=1.505仄圆厘米例3.供图中阳影部分的里积.(单位:厘米) 解:最基原的要领之一.用四个圆组成一个圆,用正圆形的里积减去圆的里积,所以阳影部分的里积:2×2-π=0.86仄圆厘米. 例4.供阳影部分的里积.(单位:厘米)解:共上,正圆形里积减去圆里积,16-π()=16-4π=3.44仄圆厘米例5.供阳影部分的里积.(单位:厘米)解:那是一个用最时常使用的要领解最罕睹的题,为便当起睹,咱们把阳影部分的每一个小部分称为“叶形”,是用二个圆减去一个正圆形,π()×2-16=8π-16=9.12仄圆厘米其余:此题还不妨瞅成是1题中阳影部分的8倍. 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空黑部分甲比乙的里积多几厘米?解:二个空黑部分里积之好便是二圆里积之好(齐加上阳影部分)π-π()=100.48仄圆厘米(注:那战二个圆是可相接、接的情况怎么样无闭)例7.供阳影部分的里积.(单位:厘米) 解:正圆形里积可用(对于角线少×对于角线少÷2,供)正圆形里积为:5×5÷2=12.5所以阳影里积为:π÷4-12.5=7.125仄圆厘米(注:以上几个题皆不妨间接例8.供阳影部分的里积.(单位:厘米)解:左里正圆形上部阳影部分的里积,等于左里正圆形下部空黑部分里积,割补以去为圆,所以阳影部分用图形的好去供,无需割、补、删、减变形)里积为:π(例9.供阳影部分的里积.(单位:厘米)解:把左里的正圆形仄移至左边的正圆形部分,则阳影部分合成一个少圆形,所以阳影部分里积为:2×3=6仄圆厘米例10.供阳影部分的里积.(单位:厘米)解:共上,仄移安排二部分至中间部分,则合成一个少圆形,所以阳影部分里积为2×1=2仄圆厘米(注: 8、9、10三题是简朴割、补或者仄移)例11.供阳影部分的里积.(单位:厘米)解:那种图形称为环形,不妨用二个共心圆的里积好或者好的一部分去供.(π-π)×=×3.14=3.66仄圆厘米例12.供阳影部分的里积.(单位:厘米)解:三个部分拼成一个半圆里积.π()÷2=14.13仄圆厘米例13.供阳影部分的里积.(单位:厘米)解: 连对于角线后将"叶形"剪启移到左上头的空黑部分,凑成正圆形的一半.所以阳影部分里积为:8×8÷2=32仄圆厘米例14.供阳影部分的里积.(单位:厘米)解:梯形里积减去圆里积,(4+10)×4-π=28-4π=15.44仄圆厘米.例15.已知曲角三角形里积是12仄圆厘米,供阳影部分的里积.分解: 此题比上头的题有一定易度,那是"叶形"的一个半.解: 设三角形的曲角边少为r ,则=12,=6 例16.供阳影部分的里积.(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6仄圆厘米圆里积为:π÷2=3π.圆内三角形的里积为12÷2=6,阳影部分里积为:(3π-6)×=5.13仄圆厘米例17.图中圆的半径为5厘米,供阳影部分的里积.(单位:厘米)解:上头的阳影部分以AB为轴翻转后,所有阳影部分成为梯形减去曲角三角形,或者二个小曲角三角形AED、BCD里积战.所以阳影部分里积为:5×5÷2+5×10÷2=37.5仄圆厘米例18.如图,正在边少为6厘米的等边三角形中掘去三个共样的扇形,供阳影部分的周少.解:阳影部分的周少为三个扇形弧,拼正在所有为一个半圆弧,所以圆弧周少为:2×3.14×3÷2=9.42厘米例19.正圆形边少为2厘米,供阳影部分的里积.解:左半部分上头部分顺时针,底下部分顺时针转化到左半部分,组成一个矩形.所以里积为:1×2=2仄圆厘米例20.如图,正圆形ABCD的里积是36仄圆厘米,供阳影部分的里积.解:设小圆半径为r,4=36, r=3,大圆半径为R ,=2=18,将阳影部分通过转化移正在所有形成半个圆环,所以里积为:π(-)÷2=4.5π=14.13仄圆厘米例21.图中四个圆的半径皆是1厘米,供阳影部分的里积.解:把中间部分分成四仄分,分别搁正在上头圆的四个角上,补成一个正圆形,边少为2厘米,所以里积为:2×2=4仄圆厘米例22. 如图,正圆形边少为8厘米,供阳影部分的里积.解法一: 将左边上头一齐移至左边上头,补上空黑,则左边为一三角形,左边一个半圆.阳影部分为一个三角形战一个半圆里积之战.π()÷2+4×4=8π+16=41.12仄圆厘米解法二: 补上二个空黑为一个完备的圆.所以阳影部分里积为一个圆减去一个叶形,叶形里积为:π()÷2-4×4=8π-16所以阳影部分的里积为:π()-8π+16=41.12仄圆厘米例23.图中的4个圆的圆心是正圆形的4个顶面,,它们的大众面是该正圆形的核心,如果每个圆的半径皆是1厘米,那么阳影部分的里积是几?解:里积为4个圆减去8个叶形,叶形里积为:π-1×1=π-1所以阳影部分的里积为:4π-8(π-1)=8仄圆厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的乌面是那些圆的圆心.如果圆周π率与3.1416,那么花瓣图形的的里积是几仄圆厘米?分解:对接角上四个小圆的圆心形成一个正圆形,各个小圆被切去个圆,那四个部分正佳合成3个整圆,而正圆形中的空黑部分合成二个小圆.解:阳影部分为大正圆形里积与一个小圆里积之战.为:4×4+π=19.1416仄圆厘米例25.如图,四个扇形的半径相等,供阳影部分的里积.(单位:厘米)分解:四个空黑部分不妨拼成一个以2为半径的圆.所以阳影部分的里积为梯形里积减去圆的里积,4×(4+7)÷2-π=22-4π=9.44仄圆厘米例26.如图,等腰曲角三角形ABC战四分之一圆DEB,AB=5厘米,BE=2厘米,供图中阳影部分的里积.解: 将三角形CEB以B为圆心,顺时针转化90度,到三角形ABD位子,阳影部分成为三角形ACB 里积减去个小圆里积,为: 5×5÷2-π÷4=12.25-3.14=9.36仄圆厘米例27.如图,正圆形ABCD的对于角线AC=2厘米,扇形ACB是以AC为曲径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,供阳影部分的里积.解: 果为2==4,所以=2以AC为曲径的圆里积减去三角形ABC里积加上弓形AC里积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14仄圆厘米例28.供阳影部分的里积.(单位:厘米)解法一:设AC中面为B,阳影里积为三角形ABD里积加弓形BD的里积,三角形ABD的里积为:5×5÷2=12.5弓形里积为:[π÷2-5×5]÷2=7.125所以阳影里积为:12.5+7.125=19.625仄圆厘米解法二:左上头空黑部分为小正圆形里积减去小圆里积,其值为:5×5-π=25-π阳影里积为三角形ADC减去空黑部分里积,为:10×5÷2-(25-π)=π=19.625仄圆厘米例29.图中曲角三角形ABC的曲角三角形的曲角边AB=4厘米,BC=6厘米,扇形BCD 地圆圆是以B为圆心,半径为BC的圆,∠CBD=,问:阳影部分甲比乙里积小几?解: 甲、乙二个部分共补上空黑部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此二部分好即为:π×-×4×6=5π-12=3.7仄圆厘米例30.如图,三角形ABC是曲角三角形,阳影部分甲比阳影部分乙里积大28仄圆厘米,AB=40厘米.供BC的少度.解:二部分共补上空黑部分后为曲角三角形ABC,一个为半圆,设BC少为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米例31.如图是一个正圆形战半圆所组成的图形,其中P为半圆周的中面,Q为正圆形一边上的中面,供阳影部分的里积.解:连PD、PC变换为二个三角形战二个弓形,二三角形里积为:△APD里积+△QPC里积=(5×10+5×5)=37.5二弓形PC、PD 里积为:π-5×5所以阳影部分的里积为:37.5+π-25=51.75仄圆厘米例32.如图,大正圆形的边少为6厘米,小正圆形的边少为4厘米.供阳影部分的里积.解:三角形DCE的里积为:×4×10=20仄圆厘米梯形ABCD的里积为:(4+6)×4=20仄圆厘米进而知讲它们里积相等,则三角形ADF 里积等于三角形EBF 里积,阳影部分可补成圆ABE的里积,其里积为:π÷4=9π=28.26仄圆厘米例33.供阳影部分的里积.(单位:厘米)解:用大圆的里积减去少圆形里积再加上一个以2为半径的圆ABE里积,为(π+π)-6=×13π-6=4.205仄圆厘米例34.供阳影部分的里积.(单位:厘米)解:二个弓形里积为:π-3×4÷2=π-6阳影部分为二个半圆里积减去二个弓形里积,截止为π+π-(π-6)=π(4+-)+6=6仄圆厘米例35.如图,三角形OAB是等腰三角形,OBC 是扇形,OB=5厘米,供阳影部分的里积.解:将二个共样的图形拼正在所有成为圆减等腰曲角三角形[π÷4-×5×5]÷2=(π-。
圆_阴影部分面积(含答案)
求阴影部份面积之答禄夫天创作时间:二O二一年七月二十九日例1.求阴影部份的面积.(单元:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部份的面积.(单元:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积.设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部份的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部份的面积.(单元:厘米) 解:最基本的方法之一.用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部份的面积:2×2-π=0.86平方厘米. 例4.求阴影部份的面积.(单元:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部份的面积.(单元:厘米)解:这是一个用最经常使用的方法解最罕见的题,为方便起见,我们把阴影部份的每一个小部份称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部份的8倍. 例6.如图:已知小圆半径为2厘米,年夜圆半径是小圆的3倍,问:空白部份甲比乙的面积多几多厘米?解:两个空白部份面积之差就是两圆面积之差(全加上阴影部份)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部份的面积.(单元:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π例8.求阴影部份的面积.(单元:厘米) 解:右面正方形上部阴影部份的面积,即是左面正方形下部空白部份面积,割补÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)以后为圆,所以阴影部份面积为:π()=3.14平方厘米例9.求阴影部份的面积.(单元:厘米)解:把右面的正方形平移至左边的正方形部份,则阴影部份合成一个长方形,所以阴影部份面积为:2×3=6平方厘米例10.求阴影部份的面积.(单元:厘米)解:同上,平移左右两部份至中间部份,则合成一个长方形,所以阴影部份面积为2×1=2平方厘米(注: 8、9、10三题是简单割、补或平移)例11.求阴影部份的面积.(单元:厘米)解:这种图形称为环形,可以用两个同心圆的面积差或差的一部份来求.(π-π)×=×3.14=3.66平方厘米例12.求阴影部份的面积.(单元:厘米)解:三个部份拼成一个半圆面积.π()÷2=14.13平方厘米例13.求阴影部份的面积.(单元:厘米)解: 连对角线后将"叶形"剪开移到右上面的空白部份,凑成正方形的一半.所以阴影部份面积为:8×8÷2=32平方厘米例14.求阴影部份的面积.(单元:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米.例15.已知直角三角形面积是12平方厘米,求阴影部份的面积.分析: 此题比上面的题有一定难度,这是"叶形"的一个半.解: 设三角形的直角边长为r,则=12,例16.求阴影部份的面积.(单元:厘米)=6圆面积为:π÷2=3π.圆内三角形的面积为12÷2=6,阴影部份面积为:(3π-6)×=5.13平方厘米解:[π+π-π]=π(116-36)=40π=125.6平方厘米例17.图中圆的半径为5厘米,求阴影部份的面积.(单元:厘米)解:上面的阴影部份以AB为轴翻转后,整个阴影部份成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和.所以阴影部份面积为:5×5÷2+5×10÷2=37.5平方厘米例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部份的周长.解:阴影部份的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米例19.正方形边长为2厘米,求阴影部份的面积.解:右半部份上面部份逆时针,下面部份顺时针旋转到左半部份,组成一个矩形.所以面积为:1×2=2平方厘米例20.如图,正方形ABCD的面积是36平方厘米,求阴影部份的面积.解:设小圆半径为r,4=36,r=3,年夜圆半径为R,=2=18,将阴影部份通过转动移在一起构成半个圆环,所以面积为:π(-)÷2=4.5π=14.13平方厘米例21.图中四个圆的半径都是1厘米,求阴影部份的面积.解:把中间部份分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米例22. 如图,正方形边长为8厘米,求阴影部份的面积.解法一: 将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.阴影部份为一个三角形和一个半圆面积之和.π()÷2+4×4=8π+16=41.12平方厘米解法二: 补上两个空白为一个完整的圆.所以阴影部份面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16所以阴影部份的面积为:π()-8π+16=41.12平方厘米例23.图中的4个圆的圆心是正方形的4个极点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部份的面积是几多?解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1所以阴影部份的面积为:4π-8(π-1)=8平方厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部份连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周π率取3.1416,那么花瓣图形的的面积是几多平方厘米?分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部份正好合成3个整圆,而正方形中的空白部份合成两个小圆.解:阴影部份为年夜正方形面积与一个小圆面积之和.为:4×4+π=19.1416平方厘米例25.如图,四个扇形的半径相等,求阴影部份的面积.(单元:厘米)分析:四个空白部份可以拼成一个以2为半径的圆.所以阴影部份的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部份的面积.解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部份成为三角形ACB 面积减去个小圆面积,为: 5×5÷2-π÷4=12.25-3.14=9.36平方厘米例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部份,求阴影部份的面积.解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米例28.求阴影部份的面积.(单元:厘米)解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:[π÷2-5×5]÷2=7.125所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部份为小正方形面积减去小圆面积,其值为:5×5-π=25-π阴影面积为三角形ADC减去空白部份面积,为:10×5÷2-(25-π)=π=19.625平方厘米例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部份甲比乙面积小几多?解: 甲、乙两个部份同补上空白部份的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部份差即为:π×-×4×6=5π-12=3.7平方厘米例30.如图,三角形ABC是直角三角形,阴影部份甲比阴影部份乙面积年夜28平方厘米,AB=40厘米.求BC的长度.解:两部份同补上空白部份后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米例31.如图是一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部份的面积.解:连PD、PC转换为两个三角形和两个弓形,两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5两弓形PC、PD 面积为:π-5×5所以阴影部份的面积为:37.5+π-25=51.75平方厘米例32.如图,年夜正方形的边长为6厘米,小正方形的边长为4厘米.求阴影部份的面积.解:三角形DCE的面积为:×4×10=20平方厘米梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF面积即是三角形EBF面积,阴影部份可补成圆ABE的面积,其面积为:π÷4=9π=28.26平方厘米例33.求阴影部份的面积.(单元:厘米)解:用年夜圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为(π+π)-6=×13π-6=4.205平方厘米例34.求阴影部份的面积.(单元:厘米)解:两个弓形面积为:π-3×4÷2=π-6阴影部份为两个半圆面积减去两个弓形面积,结果为π+π-(π-6)=π(4+-)+6=6平方厘米例35.如图,三角形OAB是等腰三角形,OBC 是扇形,OB=5厘米,求阴影部份的面积.解:将两个同样的图形拼在一起成为圆减等腰直角三角形[π÷4-×5×5]÷2=(π-)÷2=3.5625平方厘米时间:二O二一年七月二十九日。
圆_阴影部分面积(含答案)
求阴影部分面积之马矢奏春创作例 1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-例 3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例 4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π例 5.求阴影部分的面积。
(单位:厘米)解:这是一个用最经常使用的方法解最罕见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π(另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π(例9.求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1、求阴影部分的周长。
(单位:厘米)
练习五
3. 用49.12厘米长的铁丝将三根粗细一样的圆木捆在
求每个圆木横截面的半径是多少厘米?
4. 求下图阴影部分的周长。
(单位:厘米)
1. 已知:AC=CD=DB=2 ,求下图阴影部分的周长 (单位:厘米) 起(不含接头处的长度), O l。
2 A B
2.
求下图阴影部分的周长。
(单位:厘米)
5.求下图阴影部分的面积。
(单位:厘米)
6.下图是半圆ACB旋转45°所组成的图形,求阴影部分的面积(单位:厘米)
7.已知图中阴影I与阴影H的面积相等,求阴影I中圆心角的度数。
& 左图中三个半径相等的圆两两相交,三个圆的圆心距离正好等于半径,而且圆心都在交点上,若圆半径是8厘米,求阴影部分的面积的和。
9.已知图中圆的面积是18.84平方厘米,求阴影部分的面积
10.已知图中正方形的面积是24平方厘米,求阴影部分的面积
11•如果已知上题图中圆的面积是94.2平方厘米,怎样求阴影部分面积12.已知图中大圆直径为20厘米,求小圆的面积。
13.已知上题中小圆的面积是25.12平方厘米,求环形面积。
14.已知图中阴影部分的面积是80平方厘米,求环形面积。
例3、如图,两个2分硬币一个固定不动,另一个绕着固定硬币滚动,当转动的硬币滚动一周回到出发地点时,滚动的硬币围绕自己的圆心转了几周?
20.三角形ABC为等腰直角三角形,BC=20厘米,求阴影部分面积
A
BDC
21.图中ABCD为长方形,且BF=FE=EC=2厘米,求阴影部分面积
22.三角形ABC为等腰直角三角形,D是A、B的中点,AB=20厘米,分别以
A、B为圆心,以底边长一半为半径,画两个圆心角为90°的扇形,求阴影
部分的面积
H
B
练习六
1.下面中正方形的边长为10厘米,求阴影部分的面积
2.已知:左图中的三角形ABC是等腰直角三角形,求图中阴影部分的面积
A
B C
3.左图中的三角形是直角三角形,AB=4厘米,BC=8厘米,求阴影部分的面积。
4.求左图中阴影部分的面积,图中AB=BC=20 厘米
A B
C
5.图中正方形的面积为200平方厘米,求图中阴影部分的面积
6.左图中三角形ABC的等腰直角三角形,并且AC=IO厘米,求图中阴影部分
的面积
A B
7.已知:AB=6厘米,AF=FC=4厘米,三角形ABF的面积为6平方厘米,求
阴影部分的面积
A E D
B F C
& 图中阴影I与阴影H的面积相等,并且AE=6厘米,求图中阴影部分面积
BE C
9.图中AB=4厘米,AC=3厘米,求阴影部分的面积
(单位:厘米)
13•图中正方形边长为10厘米,求图中阴影部分的面积 10•图中是两个边长分别为6厘米、4厘米的正方形。
求阴影面积。
BC=3厘米。
求图中阴影部分的面积
11.AC 的长度为3.14厘米, C
12•求图中阴影部分的面积
14•求图中阴影部分的面积。
(单位:分米)
10
15•求图中阴影部分的面积
16. ABCD为等腰梯形,底角为45 °。
AE与DF垂直于BC, AD=AE=10厘米,
求阴影部分面积。
17•已知ABCD是长方形,AD=6厘米,AB=4厘米,求图中阴影部分的面积
18•以三角形ABC的三个顶点为圆心,作半径为1分米的三个圆,那么阴影部分面积之和是多少平方分米?
A
B C
19.将直角三角形ABC的C点固定,然后旋转,使AC边与BC边成一条直线(如
图),已知AC=20厘米,BC=10厘米。
求阴影部分的面积
1.求阴影部分的面积
练习十八
(单位:厘米)
B C A
4
6 6
4
2.求阴影部分的面积。
(单位:厘米)
8
5 4
3.求阴影部分的面积。
(单位:厘米)
10
5
2
4
4.图中两圆半径都是1厘米,且圆中两个阴影部分面积相等,求长方形ABO i O
的面积是多少平方厘米?
A B
5.图中三角形ABC是直角三角形,阴影①的面积比阴影②的面积小23平方厘
米,BC的长度是多少厘米?
5 4
6. 图中长方形的长为6厘米,宽为4厘米,甲三角形的面积比乙三角形的面积
大6平方厘米。
求阴影部分的面积
7. 以正方形ABCD 的顶点A 为圆心,以边长为半径,画一个圆。
已知正方形的 面积为
16平方米。
求阴影部分的面积。
&如图扇形中正方形面积是30平方厘米,求阴影部分的面积
9.如图平行四边形的面积是100平方厘米,求阴影部分的面积
,两条边的长分别为6厘米和8厘米
,
B C
高为5.2厘米,求图中阴影部分的面积
11•图中∠仁15° ,圆周长为62.8厘米,平行四边形的面积为100平方厘米,求阴影部分的面积。
12•求图中阴影部分的面积(单位:厘米)
13•图中直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积
14•图中AB=BC=8厘米。
求阴影部分面积
15•图中三角形ABC的面积是56平方厘米,AC=14厘米,D是BC的中点,求
4
B
阴影部分的面积
A C
D
16.ABCD是边长为12厘米的正方形,已知CE与DE的长度比是2: 1 ,阴影部
仃•求阴影部分面积。
(单位:厘
米)
18•如图所示,已知半圆的面积为62.8平方厘米。
求阴影部分的面积
A
D CO B
19.如图,三角形ABC面积是31.2平方厘米,圆的直径AC=6厘米,BD : DC=3:
1,求阴影部分的面积
20•图中0是小圆的圆心,CO垂直于AB ,三角形ABC的面积是45平方厘米。
求阴影部分的面积
4
B。