机械设计方面的外文参考文献

合集下载

机械外文翻译外文文献英文文献机械臂动力学与控制的研究

机械外文翻译外文文献英文文献机械臂动力学与控制的研究

外文出处:Ellekilde, L. -., & Christensen, H. I. (2009). Control of mobile manipulator using the dynamical systems approach. Robotics and Automation, Icra 09, IEEE International Conference on (pp.1370 - 1376). IEEE.机械臂动力学与控制的研究拉斯彼得Ellekilde摘要操作器和移动平台的组合提供了一种可用于广泛应用程序高效灵活的操作系统,特别是在服务性机器人领域。

在机械臂众多挑战中其中之一是确保机器人在潜在的动态环境中安全工作控制系统的设计。

在本文中,我们将介绍移动机械臂用动力学系统方法被控制的使用方法。

该方法是一种二级方法, 是使用竞争动力学对于统筹协调优化移动平台以及较低层次的融合避障和目标捕获行为的方法。

I介绍在过去的几十年里大多数机器人的研究主要关注在移动平台或操作系统,并且在这两个领域取得了许多可喜的成绩。

今天的新挑战之一是将这两个领域组合在一起形成具有高效移动和有能力操作环境的系统。

特别是服务性机器人将会在这一方面系统需求的增加。

大多数西方国家的人口统计数量显示需要照顾的老人在不断增加,尽管将有很少的工作实际的支持他们。

这就需要增强服务业的自动化程度,因此机器人能够在室内动态环境中安全的工作是最基本的。

图、1 一台由赛格威RMP200和轻重量型库卡机器人组成的平台这项工作平台用于如图1所示,是由一个Segway与一家机器人制造商制造的RMP200轻机器人。

其有一个相对较小的轨迹和高机动性能的平台使它适应在室内环境移动。

库卡工业机器人具有较长的长臂和高有效载荷比自身的重量,从而使其适合移动操作。

当控制移动机械臂系统时,有一个选择是是否考虑一个或两个系统的实体。

在参考文献[1]和[2]中是根据雅可比理论将机械手末端和移动平台结合在一起形成一个单一的控制系统。

机械类方向的论文参考文献

机械类方向的论文参考文献

机械类方向的论文参考文献机械类方向的论文参考文献在日常学习和工作中,大家最不陌生的就是论文了吧,通过论文写作可以培养我们的科学研究能力。

那么你知道一篇好的论文该怎么写吗?下面是小编为大家收集的机械类方向的论文参考文献,希望对大家有所帮助。

机械类论文参考文献1 [1] 王遐.随车起重机行业扫描[J].工程机械与维修,2006(3):68-71 [2] 王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002 [3] 卢章平,张艳.不同有限元分析网格的.转化[J].机械设计与研究,2009(6):10-14 [4] 朱秀娟.有限元分析网格划分的关键技巧[J].机械工程与自动化,2009(1):185-186 [5] 姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.50-54 [6] 桥斌.国内外随车起重机的对比[J].工程机械与维修,2006(7):91-92 [7] 王欣,黄琳.起重机伸缩臂截面拓扑优化[J].大连理工大学学报,2009(3):374-379 机械类论文参考文献2 1 金会庆.驾驶适性.合肥:安徽人民出版社,1995. 2 蔡辉、张颖、倪宗瓒等.Delphi法中评价专家的筛选.中国卫生事业管理,1995,1:49~55. 3 侯定丕.管理科学定量分析引论.合肥:中国科技大学出版社,1993. 4 王有森.德尔菲法. 医学科研管理学(刘海林主编.第一版),北京:人民卫生出版社,1991:279~289. 5 安徽省劳动保护教育中心编.劳动安全、卫生国家标准及其编制说明汇编第三辑,1987. 6 Kaoru Ishikawa. Guide to Quality Control. Asian Productivity Organization.Tokyo. 1982:42~49 机械类论文参考文献3 [1]郑文纬,吴克坚 .机械原理[M] .北京:高等教育出版社,1997 [2]濮良贵.纪名刚.机械设计[M] .北京:高等机械出版社.2006 [3]杨家军.机械系统创新设计[M] .武汉:华中科技大学出版社.2000 [4]高志.黄纯颖. 机械创新设计[M] . 北京:高等机械出版社.2010 [5]王晶.第四届全国大学生机械创新设计大赛决赛作品选集. 北京:高等教育出版社,2011 [6]黄华梁、彭文生.创新思维与创造性技法. 北京:高等教育出版社,2007 [7]李学志.计算机辅助设计与绘图[M] .北京:清华大学出版社.2007 [8]吴宗泽.机械设计手册[M] .北京:机械工业出版社.2008 [9]颜鸿森.姚燕安.王玉新等译.机构装置的创造性设计(creative design of mechanical devices)[M] .北京:机械工业出版社.2002 [10]邹慧君.机械运动方案设计手册[M] .上海:上海交通大学出版社.1994 [11]王世刚.张春宜.徐起贺.机械设计实践[M] .哈尔滨:哈尔滨工程大学出版社.2001 [12][美]厄儿德曼.桑多尔著.机构设计——分析与综合.第一卷(1992),第二卷(1993).庄细荣等译.北京:高等教育出版社.1994 [13]温建民. Pro/E wildfire5.0 三维设计基础与工程范例[M] .清华大学出版社.2008[14]赵瑜.闫宏伟.履带式行走机构设计分析与研究[M] .东北大学出版社.2011[15]秦大同.谢里阳.现代机械设计手册.第三卷.化学工业出版社[M] .2011 [16]闻邦椿.机械设计手册.第二卷.第三卷.第四卷.机械工业出版社.2011 [17]陈敏.缪终生一种新型滚动四杆螺母副的研究与应用[J] .江西理工大学南昌校区.江西.南昌 2009. [18]彭国勋.肖正扬.自动机械的凸轮机构设计[M] .机械工业出版社.1990 [19]孙志礼.机械设计[M] .东北大学出版.2011 [20]张也影.流体力学[M] .高等教育出版社.1998 [21]吴涛、李德杰,彭城职业大学学报,虚拟装配技术,[J] 2001,16(2):99-102. [22]叶修梓、陈超祥,ProE基础教程:零件与装配体[M] ,机械工业出版社,2007. [23]邓星钟,机电传动控制[M] ,华中科技大学出版社,2001. [24]朱龙根,简明机械零件设计手册[M] ,机械工业出版社,2005. [25]李运华,机电控制[M].北京航空航天大学出版社,2003. 机械类论文参考文献4 [1] 邹银辉.煤岩体声发射传播机理研究[D].山东:山东科技大学硕士论文,2007 [2] 贾宝新,李国臻.矿山地震监测台站的空间分布研究与应用[J].煤炭学报,2010,35(12):2045-2048 [3] 柳云龙,田有,冯晅,等.微震技术与应用研究综述[J].地球物理学进展,2013,28(4):1801-1808 [4] 徐剑平,陈清礼,刘波,等.微震监测技术在油田中的应用[J].新疆石油天然气,2011,7(1):89-82 [5] 汪向阳,陈世利.基于地震波的油气管道安全监测[J].电子测量技术, 2008, 31(7): 121-123 [6] 何平.地铁运营对环境的振动影响研究[D].北京:北京交通大学,2012 [7] 陆基孟.地震勘探原理[M].山东:中国石油大学出版社,1990 [8] 崔自治.土力学[M].北京:中国电力出版社,2010 [9] 许红杰,夏永学,蓝航 ,等.微震活动规律及其煤矿开采中的应用 [J]. 煤矿开采,2012,17(2):93-95、16 [10] 李铁,张建伟,吕毓国,等.采掘活动与矿震关系[J].煤炭学报,2011,36(12):2127-2132 [11] 陈颙.岩石物理学[M].北京:北京大学出版社,2001 [12] 秦树人,季忠,尹爱军.工程信号处理[M].北京:高等教育出版社,2008 [13] 董越. SF6 高压断路器在线监测及振动信号的分析[D].上海:上海交通大学,2008 [14] 张谦.基于地脉动观测的城市地区工程场地动参数及反演地下结构的研究[D].北京:北京交通大学,2012 [15] 刘振武,撒利明,巫芙蓉,等.中国石油集团非常规油气微地震监测技术现状及发展方向[J].石油地球物理勘探,2013,48(5):843-853 [16] 聂伟荣.多传感器探测与控制网络技术-地面运动目标震动信号探测与识别[D].南京:南京理工大学,2001(6). [17] T. Damarla and D. Ufford,Personnel detection using ground sensors[J].Proc. of SPIE, Orlando,FL, 2007, vol. 656205, 1-10.。

机械手设计英文参考文献原文翻译

机械手设计英文参考文献原文翻译

翻译人:王墨墨山东科技大学文献题目:Automated Calibration of Robot Coordinatesfor Reconfigurable Assembly Systems翻译正文如下:针对可重构装配系统的机器人协调性的自动校准T.艾利,Y.米达,H.菊地,M.雪松日本东京大学,机械研究院,精密工程部摘要为了实现流水工作线更高的可重构性,以必要设备如机器人的快速插入插出为研究目的。

当一种新的设备被装配到流水工作线时,应使其具备校准系统。

该研究使用两台电荷耦合摄像机,基于直接线性变换法,致力于研究一种相对位置/相对方位的自动化校准系统。

摄像机被随机放置,然后对每一个机械手执行一组动作。

通过摄像机检测机械手动作,就能捕捉到两台机器人的相对位置。

最佳的结果精度为均方根值0.16毫米。

关键词:装配,校准,机器人1 介绍21世纪新的制造系统需要具备新的生产能力,如可重用性,可拓展性,敏捷性以及可重构性[1]。

系统配置的低成本转变,能够使系统应对可预见的以及不可预见的市场波动。

关于组装系统,许多研究者提出了分散的方法来实现可重构性[2][3]。

他们中的大多数都是基于主体的系统,主体逐一协同以建立一种新的配置。

然而,协同只是目的的一部分。

在现实生产系统中,例如工作空间这类物理问题应当被有效解决。

为了实现更高的可重构性,一些研究人员不顾昂贵的造价,开发出了特殊的均匀单元[4][5][6]。

作者为装配单元提出了一种自律分散型机器人系统,包含多样化的传统设备[7][8]。

该系统可以从一个系统添加/删除装配设备,亦或是添加/删除装配设备到另一个系统;它通过协同作用,合理地解决了工作空间的冲突问题。

我们可以把该功能称为“插入与生产”。

在重构过程中,校准的装配机器人是非常重要的。

这是因为,需要用它们来测量相关主体的特征,以便在物理主体之间建立良好的协作关系。

这一调整必须要达到表1中所列到的多种标准要求。

机械设计论文参考文献

机械设计论文参考文献

机械设计论文参考文献机械设计论文参考文献(一)[1] 王遐.随车起重机行业扫描[J].工程机械与维修,2006(3):68-71[2] 王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002[3] 卢章平,张艳.不同有限元分析网格的转化[J].机械设计与研究,2009(6):10-14[4] 朱秀娟.有限元分析网格划分的关键技巧[J].机械工程与自动化,2009(1):185-186[5] 姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.50-54[6] 桥斌.国内外随车起重机的对比[J].工程机械与维修,2006(7):91-92[7] 王欣,黄琳.起重机伸缩臂截面拓扑优化[J].大连理工大学学报,2009(3):374-379[8] 须雷.国外起重机行业未来的发展趋势[J].中国科技博览,2012(32):241[9] 张质文,王金诺.起重机设计手册[M].北京:中国铁道出版社,2000[10] 杨育坤.国外随车起重机的生产与发展[J].工程机械,1994(11):31-34[11] 刘宇,黄琳.起重机伸缩臂最优截面形式的研究[J].中国工程机械学报,2013(1):65-69[12] 张青,张瑞军.工程起重机结构与设计[M].北京:化学工业出版社,2008[13] 邓胜达,张建军.汽车起重机吊臂旁弯现象的分析[J].建筑机械化,2010(11):39-41[14] 李志敏.伸缩吊臂滑块局部应力分析及变化规律研究[D].成都:西南交通大学.2009[15] 蒋红旗.汽车起重机吊臂有限元优化设计[J].煤矿机械,2005(2):9-11[16] 中国机械工业联合会.GB/T3811-2008 起重机设计规范[S].北京:中国标准出版社,2008[17] 张宇,张仲鹏.类椭圆截面吊臂的约束扭转特性研究[J].机械设计与制造,2012(3):237-239[18] 江兆文,成凯.基于 ANSYS 的全地面起重机吊臂有限元参数化建模与分析[J].建筑机械,2012(7):89-92机械设计论文参考文献(二)[1] 邹银辉.煤岩体声发射传播机理研究[D].山东:山东科技大学硕士论文,2007[2] 贾宝新,李国臻.矿山地震监测台站的空间分布研究与应用[J].煤炭学报,2010,35(12):2045-2048[3] 柳云龙,田有,冯晅,等.微震技术与应用研究综述[J].地球物理学进展,2013,28(4):1801-1808[4] 徐剑平,陈清礼,刘波,等.微震监测技术在油田中的应用[J].新疆石油天然气,2011,7(1):89-82[5] 汪向阳,陈世利.基于地震波的油气管道安全监测[J].电子测量技术,2008, 31(7): 121-123[6] 何平.地铁运营对环境的振动影响研究[D].北京:北京交通大学,2012[7] 陆基孟.地震勘探原理[M].山东:中国石油大学出版社,1990[8] 崔自治.土力学[M].北京:中国电力出版社,2010[9] 许红杰,夏永学,蓝航 ,等.微震活动规律及其煤矿开采中的应用 [J]. 煤矿开采,2012,17(2):93-95、16[10] 李铁,张建伟,吕毓国,等.采掘活动与矿震关系[J].煤炭学报,2011,36(12):2127-2132[11] 陈颙.岩石物理学[M].北京:北京大学出版社,2001[12] 秦树人,季忠,尹爱军.工程信号处理[M].北京:高等教育出版社,2008[13] 董越. SF6 高压断路器在线监测及振动信号的分析[D].上海:上海交通大学,2008[14] 张谦.基于地脉动观测的城市地区工程场地动参数及反演地下结构的研究[D].北京:北京交通大学,2012[15] 刘振武,撒利明,巫芙蓉,等.中国石油集团非常规油气微地震监测技术现状及发展方向[J].石油地球物理勘探,2013,48(5):843-853[16] 聂伟荣.多传感器探测与控制网络技术-地面运动目标震动信号探测与识别[D].南京:南京理工大学,2001(6).[17] T. Damarla and D. Ufford,Personnel detection using ground sensors[J].Proc. of SPIE, Orlando,FL, 2007, vol. 656205, 1-10.【扩展阅读】书写格式2007年8月20日在清华大学召开的“综合性人文社会科学学术期刊编排规范研讨会”决定,2008年起开始部分刊物开始执行新的规范“综合性期刊文献引证技术规范”。

机械自动化毕业设计参考文献(专业推荐105个)

机械自动化毕业设计参考文献(专业推荐105个)

机械设计作为一个大的设计行业,有着很多的设计方向,通过很多的验证已经很多经验观察,我们可以通过一些固有的方式,对于我们现行的一些机械自动化设计进行快速的设计应用,下面是机械自动化毕业设计参考文献的分型,希望对你有所帮助。

机械自动化毕业设计参考文献一:[1]鲁璐.节能设计理念在机械制造及自动化应用中的渗透研究[J].中国设备工程,2020(09):165-166.[2]林汪洋.机械自动化在煤矿机械制造中的应用探索[J].中国设备工程,2020(08):196-197.[3]冯秀清.农业机械自动化运用研究[J].黑龙江科学,2020,11(08):104-105.[4]孙文龙.机械设计制造及自动化的设计原则与发展趋势[J].黑龙江科学,2020,11(08):142-144.[5]李国龙,陶小会,徐凯,李喆裕.数控机床转台位置相关几何误差的快速测量与辨识[J/OL].吉林大学学报(工学版):1-10[2020-05-14].[6]袁小刚,涂传军,辛志斌.农业机械自动化在现代农业中的应用[J].农家参谋,2020(08):89.[7]李倩,卢金钟.大数据驱动无人智能食堂概念设计[J].现代商贸工业,2020,41(11):213-214.[8]刘志文.农业机械自动化应用现状及推广[J].农机使用与维修,2020(04):59.[9]王文虎,陆兴华.农业机械自动化的现状与发展分析[J].农机使用与维修,2020(04):114.[10]叶尔太·马力肯.农业机械自动化、信息化和智能化的路径选择[J].农机使用与维修,2020(04):121.[11]张新英,连金峰.木材加工智能数控机械自动化改造浅析[J].林产工业,2020,57(04):77-79+82.[12]李文超.探究机械自动化技术在生产制造中的质量控制[J].建材与装饰,2020(10):175-176.[13]尤红利.农业机械的自动化技术及其发展与应用方向[J].农家参谋,2020(07):54.[14]刘磊.农业机械的自动化技术及其发展与应用方向[J].农家参谋,2020(07):57.[15]于超.机械模具数控加工制造运用与分析[J].农家参谋,2020(07):137.[16]刘蕾.机械加工中自动化技术应用分析[J].内燃机与配件,2020(06):263-264.[17]盖国卫.农业机械自动化技术的发展与应用方向[J].南方农机,2020,51(06):21.[18]高峰.机械自动化设计与制造存在的问题及应对措施探讨[J].南方农机,2020,51(06):144.[19]王政凯,张贵强.机械自动化技术及其在机械制造中的实践分析[J].南方农机,2020,51(06):146-147.[20]赵忠梅.浅析农业机械自动化的发展现状和发展策略[J].农业开发与装备,2020(03):67+69.[21]刘旭霖.论机械自动化制造中材料力学测量技术[J].通讯世界,2020,27(03):180-181.[22]郭建军.机械加工制造中自动化技术的应用探究[J].设备管理与维修,2020(06):153-155.[23]张颜.机械工程自动化技术存在的问题及对策探析[J].科学技术创新,2020(09):191-192.[24]安仲举.智能机械设计制造自动化特点与发展趋势研究[J].中国设备工程,2020(06):25-27.[25]王军.自动化技术在机械设计制造中的新应用[J].中国科技信息,2020(06):60-61.[26]张帆.浅谈计算机技术在机械设计制造及自动化中的应用[J].内燃机与配件,2020(05):190-191.[27]伍少军.浅析机械自动化在机械制造中的应用[J].内燃机与配件,2020(05):250-251.[28]翁建宇.机械设计制造及自动化专业生产实习教学探究[J].农机使用与维修,2020(03):105.[29]王克胜.智能型机械自动化应用及发展分析[J].中国设备工程,2020(05):30-32.[30]李艳杰.农业机械自动化技术的应用与推广策略[J].农机使用与维修,2020(03):54.[31]李亚丽.农业机械自动化在现代农业中的应用[J].农机使用与维修,2020(03):111.[32]赵家莹,兰扬,张荣峰.机械自动化在机械制造中运用分析[J].内燃机与配件,2020(04):211-212.[33]王克胜.机械自动化设备的安全控制管理[J].内燃机与配件,2020(04):151-152.[34]孙晓金,刘洪波.机械自动化设备设计的安全控制[J].南方农机,2020,51(04):132.[35]葛兆花.机械制造及自动化的设计原则和发展趋势分析[J].南方农机,2020,51(04):134.机械自动化毕业设计参考文献二:[36]苏颖迪.自动化的分类及应用研究[J].南方农机,2020,51(04):160-161.[37]赖思惟.机械设计制造及自动化应用程序的多元化探析[J].南方农机,2020,51(04):172.[38]李亚栋,张明秋.机械自动化设计与制造现状及发展策略研究[J].南方农机,2020,51(04):173.[39]刘雪英.自动控制技术在农业机械中的应用[J].南方农机,2020,51(04):25.[40]吴晓璇.农业机械自动化运用及发展探究[J].农业工程技术,2020,40(06):37-38.[41]盛江涛.浅谈机械工程制造及其自动化的发展趋势[J].建材与装饰,2020(06):221-222.[42]李晟莅.工程机械自动化装配工艺发展研究[J].中国设备工程,2020(04):163-164.[43]赵爽.农业机械设计制造中自动化技术的应用探析[J].种子科技,2020,38(04):124+126.[44]孙晓春,石有才.化工机械制造中的机械设备自动化研究[J].化工管理,2020(06):154-155.[45]刘德凯.关于机械工程及其自动化的创新效果研究[J].化工管理,2020(06):140.[46]董志强.机械设计制造及其自动化特点及其优势探讨[J].湖北农机化,2020(03):68.[47]关德轩.多元化分析视角下机械设计制造及自动化应用[J].湖北农机化,2020(03):79.[48]贾哲.机械设计制造及其自动化的技术核心解构[J].湖北农机化,2020(03):95.[49]蔡志容.机械制造及自动化影响因素分析[J].建材与装饰,2020(05):207-208.[50]邓文刚,陈慧敏,高刚毅.农业机械自动化在现代农业中的应用与发展趋势[J].南方农机,2020,51(03):239+252.[51]宋幼平.机械制造业中机械自动化技术的应用[J].内燃机与配件,2020(03):200-201.[52]李娟.农业机械自动化现状及推广研究[J].农家参谋,2020(04):86.[53]刘丽华.我国农业机械应用的制约因素及发展途径分析[J].农家参谋,2020(04):89.[54]王英全.探析机械制造工程和自动化技术的发展[J].科技资讯,2020,18(05):49-50.[55]胡亚雄.矿山设备中机械自动化技术及应用分析[J].科技资讯,2020,18(05):69+71.[56]柏洪武.机械工程自动化技术发展之我见[J].河北农机,2020(02):32.[57]郭兰天,尚艳竣,蔡凤帅,韩祥晨,胡耀增.机械设计制造领域中自动化技术应用探索[J].中国设备工程,2020(03):35-36.[58]王岩.农业机械自动化技术的应用探讨[J].农机使用与维修,2020(02):40.[59]周海江.基于现代化的机械装配自动化应用及发展研究[J].农家参谋,2020(03):186.[60]董佩.机械自动化设备的安全控制管理[J].机械管理开发,2020,35(01):233-234.[61]李少虎,姜永召.农业机械自动化的现状及发展趋势[J].湖北农机化,2020(02):9.[62]许方俊.机械制造与自动化设计中的节能设计理念分析[J].湖北农机化,2020(02):32.[63]王靖憓.机械自动化设计与制造存在的问题及改进方法分析[J].湖北农机化,2020(02):36.[64]刘恒.发扬农业播种机械技术创新的工匠精神推进乡村振兴[J].湖北农机化,2020(02):45.[65]李翔宇.机械自动化设备设计的安全控制管理[J].湖北农机化,2020(02):48.[66]李凯.智能型机械自动化应用发展[J].湖北农机化,2020(02):49.[67]吴优楠.3D打印技术在机械自动化领域的应用探讨[J].湖北农机化,2020(02):75.[68]魏子豪.机械设计制造及其自动化的技术核心[J].湖北农机化,2020(02):82.[69]姜海成.机械设计制造及其自动化中计算机技术的应用[J].湖北农机化,2020(02):85.[70]李健康.机械自动化设备应用技术[J].湖北农机化,2020(02):91.机械自动化毕业设计参考文献三:[71]陈振东,贾银行.传统机械设计制造与机械自动化比较研究[J].湖北农机化,2020(02):183.[72]石洪强,李博宇,高刚毅.计算机技术在机械设计制造及其自动化中的应用[J].内燃机与配件,2020(02):246-247.[73]姜明国.我国机械自动化技术的应用与发展前景[J].内燃机与配件,2020(02):173-174.[74]张留柱.机械自动化控制中PLC技术的应用探讨[J].内燃机与配件,2020(02):211-212.[75]周玉峰.智能型机械自动化应用探析[J].内燃机与配件,2020(02):229-230.[76]李天翔.新时代下机械自动化技术应用形式与发展方向[J].内燃机与配件,2020(02):237-238.[77]朱国屿.论汽车机械控制系统中自动化技术的应用[J].时代农机,2020,47(01):9+11.[78]吴嘉民.机械自动化在机械制造中的应用研究[J].南方农机,2020,51(02):155-156.[79]于英林.谈农业机械自动化的现状及发展趋势[J].农业技术与装备,2020(01):97+99.[80]杨可可.机械自动化技术及其在机械制造中的应用探讨[J].科学技术创新,2020(03):162-163.[81]郭琳.机械设计制造及自动化研究——基于信息技术背景下[J].黑龙江科学,2020,11(02):68-69.[82]王克胜.机械自动化在机械制造中的应用研究[J].中国金属通报,2020(01):280-281.[83]吕传红.浅析机械自动化控制设备的维护技术[J].内燃机与配件,2020(01):206-207.[84]吴涛.机械设计制造及其自动化的特点与优势及发展趋势[J].内燃机与配件,2020(01):191-192.[85]苏晨,何映良,张子聪,吕阳.包装机械自动化控制系统的性能要求探析[J].湖北农机化,2020(01):177.[86]张宇.机械设计制造及其自动化应用发展探究[J].湖北农机化,2020(01):14.[87]姜海成.论提高机械设计制造及其自动化的有效途径[J].湖北农机化,2020(01):30.[88]何凤超.机械制造及其自动化中节能理念落实探究[J].湖北农机化,2020(01):31.[89]梁越.机械自动化设计与制造存在问题及应对措施[J].南方农机,2020,51(01):138-139.[90]任睿.机械自动化设备技术应用思考[J].南方农机,2020,51(01):146.[91]王晗.机械自动化技术及其在机械制造中的应用探讨[J].农家参谋,2020(02):203.[92]刘梦,李娜.浅谈机械自动化在机械制造中的实践[J].科技风,2020(01):131.[93]曹祥辉,宋瑞瑞.机械自动化与绿色理念相融合的应用分析[J].科技风,2020(01):145.[94]张丽红,郝俊珂.机械自动化设计与制造问题及改进方法探究[J].科技风,2020(01):155.[95]柏洪武.机械工程自动化技术存在的问题及解决策略[J].河北农机,2020(01):31.[96]金怡果.卓越工程师背景下机械类本科毕业设计问题探讨[J].教育教学论坛,2018(08):58-59.[97]杨海如,陈国治.转型发展中应用型本科院校实践课程体系开发——以机械制造及其自动化专业为例[J].现代商贸工业,2015,36(24):138-139.[98]张艳来,李秀平.提高机械制造及其自动化人才实践操作核心能力的培养方案探讨[J].现代农业装备,2013(06):55-58.[99]孙艳红.非师型机械设计制造及其自动化专业实践教学体系构建[J].吉林工程技术师范学院学报,2011,27(09):50-53.[100]李丽.建筑类高等院校机械专业课程设置的思考[J].长春理工大学学报(高教版),2009,4(01):94-95.[101]王利成.机械设计制造及自动化专业实践教学环节的改革和建设[J].长江大学学报(自然科学版)理工卷,2008,5(03):358-359.[102]贺兵,胡成武,吴吉平.机械设计制造及其自动化专业实践性教学环节改革研究[J].湖南工业大学学报,2007(02):114-116.[103]吴亦锋,陈德为.机制专业PLC课程教学内容、方法与学生创新能力培养[J].机电工程技术,2006(09):95-96+106.[104]王启平,王全先.机械设计制造及自动化专业毕业设计的实践及思考[J].安徽工业大学学报(社会科学版),2002(02):111-112.[105]王启平,王全先.机械设计制造及自动化专业毕业设计模式的教学改革[J].中国冶金教育,2001(06):36-39.以上就是关于机械自动化毕业设计参考文献的全部内容,看完后希望对你的写作有一些帮助。

机械设计制造及其自动化参考文献英文

机械设计制造及其自动化参考文献英文

机械设计制造及其自动化参考文献英文机械设计制造及其自动化参考文献英文:1. Chen, J., & Mei, X. (2016). A review of intelligent manufacturing in the context of Industry 4.0: From the perspective of quality management. Engineering, 2(4), 431-439.这篇文章回顾了智能制造在工业4.0背景下的发展,并从质量管理的角度进行了分析。

2. Wu, D., & Rosen, D. W. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 59, 1-14.该研究探讨了基于云计算的设计和制造,认为这是数字制造和设计创新的新范式。

3. Wang, L., Trngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517-527.这篇文章综述了制造业中物联网技术的现状和进展,强调了制造业中的网络化和物理化系统。

4. Xie, Y. M., & Shi, Y. (2008). A survey of intelligence-based manufacturing: Origins, concepts, and trends. IEEE Transactions on Industrial Informatics, 4(2), 102-120.该文章综述了智能制造的起源、概念和趋势,并对智能制造的方法和技术进行了详细描述。

机械设计制造及其自动化毕业论文参考文献

机械设计制造及其自动化毕业论文参考文献

机械设计制造及其自动化毕业论文参考文献机械设计制造及其自动化专业毕业论文选题参考一、毕业设计目的与要求 1培养学生综合运用多学科的理论知识与技能解决具有一定复杂程度的工程实际问题的能力。

树立正确的设计思想和掌握现代设计方法 2培养学生建立正确的科学研究思想树立实事求是、严肃认真的科学工作态度。

3培养学生调查研究收集资料熟悉有关技术文件运用国家标准、手册、资料等工具书进行设计计算数据处理编写技术文件等独立工作能力。

二、毕业论文课题类型 1. 工程设计类课题工程设计是工程设计人员根据给定的约束条件实现工程预定功能进行构思、规划及表达。

机械产品设计类型依据特点分为开发型、改进型、技术引进等三种类型。

机械产品设计要求具有有效性、经济性、工艺性和外观质量。

2. 工程技术研究类课题包含应用研究与开发研究其中以应用研究为主应用研究是以技术为目标探讨知识应用的可能性并运用基础研究成果探索应用的新途径它着重研究如何将自然科学的理论与知识转化为新产品、新工艺使自然科学理论与社会相衔接。

开发研究是运用研究及经验性的知识为开发新产品、新装置和新方法或对现有产品、装置、流程、方法进行重大改进而进行的一系列创造性活动。

3. 软件工程类课题软件工程类课题侧重于培养学生具备在本专业领域操作、使用计算机的能力利用计算机技术解决本专业实际问题使学生得到较全面的培养和训练。

毕业设计论文工作因时间限制通常只进行小规模软件开发。

三、选题 1自主选题根据学生本人实践实习所在单位的具体情况从生产实际出发结合所学专业知识从生产实际中取材进行自拟题目设计。

2根椐下列课题进行选题工程设计类工程设计类课题的选题内容有 1机械产品或机械电子产品的功能设计 2机械产品或机械电子产品的总体设计及结构设计 3机械产品的动力与传动设计 4机械加工工艺过程设计 5机械装配工艺过程设计 6机械工艺装备设计包括刀具、夹具、量具、模具等 7专用机床和专业设备设计 8机械电子产品的数据采集系统、测试和监控1无轨运行运输小车的设计小车总体设计及行走机构、系统、控制系统的设计。

李圣-划船机的设计-外文翻译

李圣-划船机的设计-外文翻译

本科生毕业设计 (论文)外文翻译原文标题Evaluation of the rowing machine withpressurepressure of seat and sole译文标题划船机座位与底部压力的评估作者所在系别机械工程作者所在专业机械设计制造及其自动化作者所在班级B11112作者姓名李圣作者学号20114011214指导教师姓名刘卫指导教师职称副教授完成时间2015 年 4 月北华航天工业学院教务处制1、介绍:运动的习惯对高血压和糖尿病等是非常有效的,而这些疾病都人的生活方式相关。

运动的方式多种多样,从不用设备的到使用设备的,再到施加高水平挑战的运动,因此,可以说运动无处不在。

那些年轻时喜欢运动的老年人在选择他们喜欢的运动方式上没有任何问题,但是对于那些对于运动不熟悉的人来说,选择诸如游泳、网球这类被认为具有高挑战性的运动明显是不合适的,对于新手来说,慢跑以及使用了康复设备的单车类运动才是合适的。

基于以上讨论,可以说对于老年人来说,针对于残障人群的运动设备和康复装置或者说是技术系统和技术设备很有必要,然而,目前所使用的康复类装置以及这样的运动设备仍然有待进一步提高。

因此,此项研究中,作者通过划船机强调了康复设备以及康复设备的使用,并以健康为主题进行评估。

划船机是一种使室内划船运动成为可能的运动类康复设备,使用这样的器械有氧运动效果非常好,与跑步机和运动单车类似,而且锻炼过程中还可以增强人体肌肉。

有氧运动是非常适合肌肉燃烧的运动,对改善肥胖状况非常有效,而肥胖又是人体生活方式类疾病的诱因之一。

在测试中,受试者使用划船机运动,运动过程中的心率被记录下来,而心率是有氧运动指标之一。

此前,一项研究测量了划船运动中关节和地面反作用力的轨道,该本研究采用了复杂的测量系统。

因此,作者的注意力主要集中在了使用者与划船机的接触处,并使用了压力分布检测装置测量了划船运动过程中座位面与足底的压力。

通过身体上部姿势与脚部负载全面评估划船健身运动。

毕业设计外文参考文献

毕业设计外文参考文献

[1] 王起江,洪杰.超超临界电站锅炉用新型管材的研制[J].宝钢技术,2021(5):44-53.[2] 王起江,邹凤鸣.T91高压锅炉管的研制与应用[J].发电设备,2005 (1):43-47.[3] Fujio Abe.Bainitic and martensitic creep-resistant steels[J].Solid State andMaterials Science,2004,8:305-311.[4] 马明编译.美国新的超临界机组考虑使用T/P92的原因[J].电力建立,2006,27(11):79-80.[5] 戴平.国产P91钢管道存在的问题及其解决[J].广东电力,2021,21(8):67-69.[6] 田党.关于难变形钢和合金管坯的二辊斜轧穿孔问题[J].钢铁,1998,33(1):33-36.[7] P J Ennis,A Czyrska-Filemonowicz.Recent advances in creep-resistant steelsfor power plant applications [J].Sādhanā,2003,28:709–730.[8] 刘立民,朱洪,刘志国.法国T91、P91钢管性能评定[J].电站系统工程,2002,18(1):63-64.[9] 彭孙鸿.T91钢管在我国的应用前景[J].宝钢技术,1997,6:48-50.[10] H.C. Furtado,L.H. de Almeida,I. Le May.Precipitation in 9Cr–1Mo steel aftercreep deformation[J].Materials Characterization,2007,58:72–77.[11] 蒯春光,彭志方.T/P91钢在450-1200℃区间各相元素的分配特征及相稳定性[J].金属学报,2021,44(8):897-900.[12] 孙智,董小文,张绪平,等.奥氏体化温度对9Cr-1Mo-V-Nb钢组织与性能的影响[J].金属热处理,2001,26(8):12-14.[13] 刘靖,周立新,傅晨光,等.电站锅炉用T91钢热穿孔性能的研究[J].钢管,2002,31(5):9-11.[14] 彭孙鸿,尤夙志,姜明娟,等.热穿孔温度对T91持久强度的影响[J].特殊钢,2001,22(2):10-12.[15] 崔光珠,朱伏先,高德福,等.T91钢高温变形特性研究[J].塑性工程学报,1999,6(2):13-16.[16] 余勇,周晓岚,赵志毅,等.T91变形抗力模型建立及理论轧制压力计算[J].宝钢技术,2006(3):31-34.[17] Polcik P,Sailer T,Blum W,et al.On the microstructural development of thetempered martensitic Cr-steel P91 during long-term creep[J].Materials Science and Engineering,1999,260:252-259.[18] Orlová A,Buršík J,Kucharová K,et al.Microstructural development duringhigh temperature creep of 9% Cr steel[J].Materials Science and Engineering,1998,254:39-48.[19] Sasaki,Terufumi,Kobayashi,et al.Production and properties of seamlessmodified 9Cr-1Mo steel boiler tubes[R].Kaw asaki Steel Technical Report,1991,25(4):78-87.[20] Bendick W,Vaillant JC,Vandenberghe B,et al.Properties and workability ofnew creep strength enhanced steels as known grades 23, 24, 911 and 92[J].International Journal of Pressure Vessels and Piping,2004,476:25-29.[21] 刘江南,王正品,束国刚,等.P91钢的形变强化行为[J].金属热处理,2021,34(1):28-32.[22] Tőkei Z S,Viefhaus H,Grabke H J.Initial stages of oxidation of a9CrMoV-steel: role of segregation and martensite laths[J].Applied Surface Science,2000,165:23-33.[23] Rajendran P S,Sankar P,Khatak H S.Cyclic oxidation of P91 at 1073, 1123 and1173K[J].High Temperature Materials and Processes,2004,23(3):195-204.[24] Ahmed Shibli,Fred Starr.Some aspects of plant and research experience in theuse of new high strength martensitic steel P91[J].International Journal of Pressure Vessels and Piping,2007,84:114-122.[25] J.C. Vaillant,B. Vandenberghe,B. Hahn,et al.T/P23, 24, 911 and 92: Newgrades for advanced coal-fired power plants—Properties and experience [J].International Journal of Pressure Vessels and Piping,2021,85:38-46.[26] Brett SJ.The creep strength of weak thick section modified 9Crforgings[C].Proceedings of Baltica,2001,1:39-45.[27] ,.Creep crack growth testing of P91 and P22 bends[J].International Journal ofPressure Vessels and Piping,2001,78:859-864.[28] ,áš.High temperature fatigure and cyclic creep of P91 steel[J].EuropeanStructural Integrity Society,2002,29:37-44.[29] ,,ës,et al.Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensiticsteel[J].International Journal of Pressure Vessels and Piping,2021,85:478-485.[30] 刘洪杰.电站锅炉用P91钢蠕变/疲劳交互作用的试验研究[J].动力工程,2007,27(6):990-995.[31] LIU Jiang-nan,JIE Wang-qi.Application of improved vacuum degassingtechnique to refinement of heat resistant steel P91[J].Trans. Nonferrous Met.Soc. China,2005,15:291-294.[32] 苏俊,张铮,李进.P91高压锅炉管的开发[J].钢管,2021,37(4):33-37.[33] 郭元蓉,吴红.P91无缝钢管国产化研究进展[J].钢管,2021,37(1):22-27.[34] 王起江,邹凤鸣,张瑞,等.宝钢T91高压锅炉管性能试验与研究[J].宝钢技术,2003,(4):46-50.[35] Miyata K,Sawaragi Y.Effect of Mo and W on the phase stability of precipitatesin low Cr heat resistant steels[J].ISIJ,2001,41:281-289.[36] Wachter O,Ennis PJ.Investigation of the properties of the 9% Cr steel of thetype 9Cr-0.5Mo-1.8W-V-Nb with respect to its application as a pipework and boiler steel operation at elevated temperatures[D].Germany,1995.[37] Hättestrand M,Andrén H O.Evaluation of particle size distribution in a 9% Crsteel using EFTEM[J].Micron,2001,32:789-797.[38] Sklenicka V,Kucharova K,Svoboda M,et al.Long-term creep behavior of9-12%Cr power plant steels [J].Mater. Character,2003,51:35-48.[39] Strang A,Foldyna V,Lenert J,et al.Prediction of the long-term creep ruptureproperties of 9-12Cr power plant steels [C].Proceedings of the 6th International Charles Parsons Turbine Conference,Dublin,2003,427-441.[40] Kimura K,Kushima H,Sawaka K.Long-term creep strength prediction of highCr ferritic creep resistant steels based on degradation mechanisms[C].Proceedings of the 6th International Charles Parsons Turbine Conference,Dublin,2003,444-456.[41] 高巍,刘江南,王正品,等.P92钢塑性变形行为[J].西安工业大学学报,2021,28(4):356-359.[42] 田党,张根良,卜玉钦.二辊斜轧穿孔时高合金钢的变形分布和分层缺陷形成机制[J].钢铁,1995,30(1):40-45.[43] 刘新生,赵定国,崔成业.冷轧薄板中分层现象的研究[J].钢铁,2021,43(5):40-43.[44] 崔风平,赵乾,唐愈.铸坯内部缺陷对钢板分层形成的影响[J].中国冶金,2021,18(2):14-18.[45] 唐生斌.板材分层缺陷产生原因分析[J].连铸,2003,4:32-34.[46] 洪小玲,肖荣仁,李端来.GH3030合金锻坯裂纹分析[J].钢铁研究,2002,128(5):11-12.[47] S.A.Sharadzenidze,E.A.Svetlitskii.High Quality Seamless Tubes[J]. Metallurg,1968,11:38-39.[48] 王建文.27SiMn钢管外表龟裂原因分析[J].湖南冶金,2000,5:25-26.[49] 任建国,祁晓英,马学军,等.低合金钢热轧缺陷分析[J].沈阳工业学院学报,1996,15(3):35-37.[50] 卢居桂,安自亮,刘钰.夹杂物引起的石油套管缺陷分析[J].天津冶金,2002,106(1):27-29.[51] 田党.关于锥形辊穿孔机轧辊转速对毛管分层缺陷影响的讨论[J].钢管,2006,35(4):12-16.[52] 王永吉,陈大国,王世英,等.二辊斜轧穿孔轧辊转速对高合金钢毛管质量的影响[J].钢铁,1985,20(2):25-30.[53] 严智.高温合金穿孔工艺的研究[J].特钢技术,1994,2:27-31.[54] 田党.高温合金无缝管材的研制与消费[J].钢管,2002,31(3):1-6.[55] 田党.关于毛管分层缺陷的试验研究[J].轧钢,1997,6:7-10.[56] 田党.高温合金管坯在二辊斜轧穿孔机上的穿孔理论[J].天津冶金,1996,4:25-28.[57] 田党.毛管分层缺陷形成过程的观察和分析[J].天津冶金,1996,1:24-26.[58] 田党.高温合金毛管分层缺陷形成的过程[J].钢管,1992,1:19-22.[59] 卢于逑,王先进.二辊斜轧穿孔中心金属断裂机理和穿孔变形工艺本质[J].钢铁,1980,6:7-15.[60] 卢于逑,王先进.二辊斜轧穿孔圆坯断面的变形分布[J].金属学报,1980,4:470-479.[61] 田党,张根良,卜玉钦.二辊斜轧穿孔时高温合金钢圆坯的变形分布及分层形成机制[J].钢铁,1995,30(1):40-46.[62] 田党,李群.关于锥形辊穿孔机的穿孔原理及应用问题的讨论[J].钢管,2003,32(6):1-4.[63] 赵咏秋,吴秀丽,陈菊芳.0Cr18Ni9Ti热轧荒管分层内裂原因分析[J].物理测试,1999,2:33-35.[64] 张存信,冯晓庭,项炳和,等.不锈钢无缝管加工过程中断裂原因简析[J].钢管,2021,37(3):38-42.[65] 袁桂林,苏殿荣.GCr15钢管环状层裂在二辊斜轧穿孔过程中的发生和开展[J].钢管,1983,3:15-18.[66] 张世文,刘仓理,李庆忠,等.初始应力状态对材料层裂破坏特性影响研究[J].力学学报,2021,40(4):535-542.[67] 侯凤桐.日本住友金属公司新开发的菌式穿孔机[J].钢管技术,1985,2:57-59.[68] Chihiro HAYASHI,Tomio YAMAKAWA.Influences of Feed and Cross Angleon Inside Bore and Lamination Defects in Rotary Piercing for Materials with Poor Hot Workability [J].ISIJ International,1997,37(2):153-160.[69] 嵇国金,彭颖红,阮雪榆.有关金属体积成形中的韧性断裂准那么[J].金属成形工艺,1998,16(4):36-37.[70] 郭达人编译.金属材料的断裂及其断口分析[J].国外金属热处理,1996,17(4):25-31.[71] 黄建科,董湘怀.金属成形中韧性断裂准那么的细观损伤力学研究进展[J].上海交通大学学报,2006,40(10):1748-1753.[72] Oyane M,Sota T,Okintoto K,et al.Criteria for ductile fractures and theirapplications[J].J Mech Work Tech,1980,4:65-81.[73] 郑长卿,张克实,周利.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995,28-32.[74] Venugopal Rao A,Ramakrishnan N,Krishna Kumar R.A comparativeevaluation of the theoretical failure criteria for workability in cold forging[J].Journal of Materials Processing Technology,2003,142(1):29-42.[75] Komori Kazutake.Effect of ductile fracture criteria on chevron crack formationand evolution in drawing[J].International Journal of Mechanical Sciences,2003,45(1):141-160.[76] Ozturk Fahrettin,Lee Daeyong.Analysis of forming limits using ductile fracturecriteria[J].Journal of Materials Processing Technology,2004,147(3):397-404.[77] Jeong Kim,Sung-Jong Kang,Beom-Soo Kang.A prediction of bursting failurein tube hydroforming processes based on ductile fracture criterion[J].Int J Adv Manuf Technol,2003,22:357-362.[78] 虞松,陈军,阮雪榆.韧性断裂准那么的试验与理论研究[J].中国机械工程,2006,17(19):2049-2052.[79] 胡庆安,程侠,邰卫华.金属材料断裂预测损伤破坏准那么的应用[J].长安大学学报,2007,27(4):100-102.[80] 俞树荣,严志刚,曹睿,等.有限元软件模拟裂纹扩展的方法讨论[J].甘肃科学学报,2003,15(4):15-21.[81] 陈乃超,田冠玉,郑博.12Cr1MoV短期高温冲击断裂韧性及其参数的研究[J].上海电力学院学报,2021,24(2):178-181.[82] Ken-ichiro Mori,Hidenori Yoshimura,Kozo Osakada.Simplified three-dimensional simulation of rotary piercing of seamless pipe by rigid-plastic finite-element method[J].Journal of Materials Processing Technology,1998,80-81:700-706.[83] Y van Chastel,Aliou Diop,Silvio Fanini,et al.Finite Element Modeling ofTube Piercing and Creation of a Crack[J].Int J Mater Form,2021,Suppl 1:355-358.[84] Hyoung Wook Lee,Geun An Lee,Eung Kim,et al.Prediction of plug tipposition in rotary tube piercing mill using simulation and experiment[J].International Journal of Modern Physics B,2021,22(31-32):5787-5792.[85] S Fanini,A Ghiotti,S Bruschi.Evaluation of Fracture Initiation in theMannesmann Piercing Process[C].The 10th ESAFORM Conference on Material Forming,2007,709-714.[86] Saurabh Dwivedi,Samuel H,Huang Jun Shi,et al.Yield prediction for seamlesstubing processes: a computational intelligence approach[J].Int Adv Manuf Technol,2021,37:314-322.[87] Elisabetta Ceretti,Claudio Glaudio,Aldo Attanasio.3D Simulation andValidation of Tube Piercing Process[C].NUMIFORM 07 Materials and Design: Modling, Simulation and Applications,2007,413-418.[88] Kazutake Komori.Simulation of Mannesmann piercing process by thethree-dimensional rigid-plastic finite-element method[J].International Journal of Mechanical Sciences,2005,47:1838-1853.[89] Hayashi C,Yamakawa T.Influence of feed and cross angle on rotary forgingeffects and redundant shear deformation in rotary piercing process[J].ISIJ International,1997,37:146-152.[90] 曾幼宗.斜轧穿孔工艺的有限元分析[J].钢管,2004,33(3):51-53.[91] 双远华,赖明道,张中元.斜轧穿孔过程金属流动的有限元模拟[J].机械工程学报,2004,40(3):140-144.[92] 双远华,赖明道,张中元.钢管斜轧过程应力应变与温度耦合模拟分析[J].锻压技术,2003(6):36-40.[93] 李胜衹,陈大宏,孙中建,等.二辊斜轧穿孔时圆管坯的变形与应力分布及其开展[J].钢铁研究学报,2000,12(5):26-30.[94] A Ghiotti,S Fanini,S Bruschi,et al.Modeling of the Mannesmanneffect[J].CIRP Annals-Manufacturing Technology,2021,58:255-258.[95] E.I. Panov.Shear Stresses and Their Dependence on Different ProcessParameters in The Helical Rolling of Solid Semifinished Products[J].Metallurgist,2005,49(7-8):280-292.[96] E.I. Panov.Certain Aspects of The Stress-Strain State of Semifinished Productsin Helical Rolling[J].Metallurgist,2003,47(11-12):499-505.[97] E.I. Panov.Effect of thrust and tension on the radial stresses in helical rolling[J].Metallurg,2004,4:50-57.[98] Z. Pater,J. Kazanecki,J. Bartnicki.Three dimensional thermo-mechanicalsimulation of the tube forming process in Diescher’s mill [J].Journal of Materials Processing Technology,2006,177:167-170.[99] 双远华,陈惠琴,赖明道.斜轧管材消费中内部组织有限元模拟和预测[J].中国有色金属学报,2001,11(2):238-242.[100] 双远华,张中元,赖明道.热轧穿孔内部组织控轧的工业性试验研究[J].钢铁,2002,37(6):42-47.[101] J C Prince,R Maroño,F León.Thermomechanical analysis of a piercing mandrel for the production of seamless steel tubes[J].J. Process Mechanical Engineering,2003,217:337-344.[102] W.A.Khudheyer,D.C.Barton,T.Z.Blazynski.A comparison between macroshear redundancy and loading effects in 2- and 3-roll rotary tube cone piercers[J].Journal of Materials Processing Technology,1997,65:191-202.[103] A.N.Nikulin,V.V. Streletskii.Deformation of continuous cast metal during rotary rolling[J].Metallurgist,2005,49(3-4):97-101.[104] Kazutake Komori,Kouta Mizuno.Study on plastic deformation in cone-type rotary piercing process using model piercing mill for modeling clay[J].Journal of Materials Processing Technology,2021,209:4994-5001.[105] 李连诗.钢管塑性变形原理(上册)[M],北京:冶金工业出版社,1985:178-185.[106] 卢于逑.斜轧穿孔过程中应力和变形的分布和中心金属断裂机构的某些特点分析[D].北京:北京钢铁学院,1963.[107] 卢于逑,王先进.二辊斜轧穿孔时圆坯断面的变形分布和开展[J].金属学报,1980,16(4):470-479.[108] 严泽生.现代热轧无缝钢管消费[M].北京:冶金工业出版社,2021:175-195.[109] Takuda H,Mori K,Hatta N.The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals[J].J Mater Process Technol,1999,95:116-121.[110] Takuda H,Mori K,Fujimoto H,et al.Prediction of the forming limit in bore-expanding of sheet metals using ductile fracture criteria[J].J Mater Process Technol,1999,92-93:433-438.[111] Mori K,Takuda H.Prediction of forming limit in deep drawing of finite element simulation and criterion for ductile fracture[J].Transaction of NAMRI/SME XXIV,1996,143-148.[112] Takuda H,Mori K,Takakura N,et al.Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture[J].Int J Mech Sci,2000,42:785-798.。

机械毕业设计参考文献

机械毕业设计参考文献

机械毕业设计参考文献引言作为机械工程专业的毕业生,在进行毕业设计时,需要参考相关文献来支持自己的研究和设计。

本文将为机械毕业设计提供一些参考文献,包括机械工程基础、设计原理与方法、材料科学与工程、传动与控制等方面的文献。

1. 机械工程基础•Joseph Edward Shigley, Charles R. Mischke, Richard Gordon Budynas.Mechanical Engineering Design. McGraw-Hill Education, 2010.(《机械工程设计》)•R. L. Norton. Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines. McGraw-HillScience/Engineering/Math, 2018.(《机械设计:机构与机器的综合与分析导论》)•V. B. Bhandari. Design of Machine Elements. McGraw-Hill Education, 2016.(《机械元件设计》)这些文献将为机械工程毕业设计提供基础的机械设计知识,包括机械工程的基本原理和设计方法。

2. 设计原理与方法•Alexander Slocum. Precision Machine Design. CRC Press, 1992.(《精密机械设计》)•Pahl, C. G., Beitz, W., & Feldhusen, J. & H. Engineering Design: A Systematic Approach. Springer, 2007.(《工程设计:一种系统的方法》)•Ulrich,.K.T, & Eppinger, S.D. Product Design and Development.McGraw-Hill Education, 2010.(《产品设计与开发》)这些文献涵盖了设计原理与方法的相关知识,包括精密机械设计、工程设计方法和产品设计与开发等方面的内容,为毕业设计的设计过程提供指导。

机械毕业设计参考文献(大全)

机械毕业设计参考文献(大全)

机械毕业设计参考文献(大全)Part1中文[1] 巩云鹏、田万禄等主编. 机械设计课程设计 . 沈阳:东北大学出版社 2000[2] 孙志礼,冷兴聚,魏严刚等主编. 机械设计. 沈阳:东北大学出版社 2000[3] 刘鸿文主编. 材料力学. 北京:高等教育出版社1991[4] 哈尔滨工业大学理论力学教研组编. 理论力学. 北京:高等教育出版社 1997[5] 大连理工大学工程画教研室编. 机械制图. 北京:高等教育出版社 1993[6] 孙桓,陈作模主编. 机械原理. 北京:高等教育出版社 2000[7] 高泽远,王金主编. 机械设计基础课程设计.沈阳:东北工学院出版社 1987[8] 喻子建,张磊、邵伟平、喻子建主编. 机械设计习题与解题分析.沈阳:东北大学出版社 2000[9] 张玉,刘平主编. 几何量公差与测量技术 .沈阳:东北大学出版社 1999[10] 成大先主编.机械设计手册(减(变)速器.电机与电器)化学工业出版社Part2中文[1]《煤矿总工程师工作指南》编委会编著. 《矿总工程师工作指南》(上). 北京:煤炭工业出版社,1990.7[2] 严万生等编著.《矿山固定机械手册》..北京:煤炭工业出版社,1986.5,第1版[3]孙玉蓉等编著.《矿井提升设备》. 北京:煤炭工业出版社,1995.1,第1版[4] 中国矿业学院主编. 《矿井提升设备》. 北京:煤炭工业出版社,1980.9,第1版[5] 煤炭工业部制定.《煤矿安全规程》.煤炭工业出版社,1986,第1版[6] 谢锡纯,李晓豁主编.《矿山机械与设备》.徐州:中国矿业大学出版社,2000[7] 能源部制定.《煤矿安全规程》.北京:煤炭工业出版社,1992[8] 王志勇等编.《煤矿专用设备设计计算》.北京:煤炭工业出版社,1984[9] 彭兆行编.《矿山提升机械设计》.北京:机械工业出版社,1989[10] 机械设计、机械设计基础课程设计,王昆等主编,北京:高等教育出版社,1996[11] 机械设计手册/上册,《机械设计手册》联合编写组编,化学工业出版社,1979[12] 画法几何及工程制图,中国纺织大学工程图学教研室等编,上海科学技术出版社,1984[13] 机械零件设计手册(第二版)/中册,东北工学院《机械零件设计手册》编写组编,冶金工业出版社,1982[14] 机械零件课程设计,郭奇亮等主编,贵州人民出版社,1982.1[15] 机械设计标准应用手册/第二卷,汪恺主编,北京:机械工业出版社,1997.8[16] 矿山提升机械设计,潘英编,徐州:中国矿业大学出版社,2000.12[17] 机械设计(第七版),濮良贵、纪名刚主编,北京:高等教育出版社,2001[18] 极限配合与测量技术基础,孔庆华、刘传绍主编,上海:同济大学出版社,2002.2 PART3英文1、‘‘HOW CAN A BILL OF MATERIALS BE DE?NED SO THAT ALL POSSIBLE PRODUCTS CAN BE BUILT EF?CIENTLY?’’ONE WAY T O ANSWER IT IS TO DE?NE A SET OF COMPONENTS (CALLEDMODULES), EACH OF WHICH CONTAINS A SET OF PRIMARY FUNCTIONS. AN INDIVIDUAL PRODUCT IS THEN BUILT BY COMBINING SELECTED MODULES.【1】BRUNO AGARD,BERNARD PENZ. A SIMULATED ANNEALING METHOD BASED ON A CLUSTERING APPROACH TO DETERMINE BILLS OF MATERIALS FOR A LARGE PRODUCT FAMILY. INT. J. PRODUCTION ECONOMICS 117 (2009) 389–401.2、IN THIS STUDY, WE PROPOSE A METHODOLOGY FOR BUILDING A SEMANTICALLY ANNOTATED MULTI-FACETED ONTOLOGY FOR PRODUCT FAMILY MODELLING THAT IS ABLE TO AUTOMATICALLY SUGGEST SEMANTICALLY-RELATED ANNOTATIONS BASED ON THE DESIGN AND MANUFACTURING REPOSITORY.【2】SOON CHONG JOHNSON LIM,YING LIU,WING BUN LEE.A METHODOLOGY FOR BUILDING A SEMANTICALLY ANNOTATED MULTI-FACETED ONTOLOGY FOR PRODUCT FAMILY MODELLING. ADVANCED ENGINEERING INFORMATICS 25 (2011) 147–161.3、THE AIM OF THIS WORK IS TO ESTABLISH A METHODOLOGY FOR AN EFFECTIVE WORKING OF RECON?GURABLE MANUFACTURING SYSTEMS (RMSS). THESE SYSTEMS ARE THE NEXT STEP IN MANUFACTURING, ALLOWING THE PRODUCTION OF ANY QUANTITY OF HIGHLY CUSTOMISED AND COMPLEX PRODUCTS TOGETHER WITH THE BENE?TS OF MASS PRODUCTION.【3】R.GALAN,J.RACERO,I.EGUIA,J.M.GARCIA. A SYSTEMATIC APPROACH FOR PRODUCT FAMILIES FORMATION IN RECON?GURABLE MANUFACTURING SYSTEMS.ROBOTICSAND COMPUTER-INTEGRATED MANUFACTURING 23 (2007) 489–502.4、A MIXED INTEGER LINEAR PROGRAMMING MODEL IS INVESTIGATED THAT OPTIMIZES THE OPERATING COST OF THE RESULTING SUPPLY CHAIN WHILE CHOOSING THE PRODUCT VARIANTS AND CAN DE?NE THE PRODUCT FAMILY AND ITS SUPPLY CHAIN SIMULTANEOUSLY.【4】JACQUES LAMOTHE,KHALED HADJ-HAMOU,MICHEL ALDANONDO. AN OPTIMIZATION MODEL FOR SELECTING A PRODUCT FAMILY AND DESIGNING ITS SUPPLY CHAIN. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 169 (2006) 1030–1047.5、THIS PAPER PRESENTS LCP-FAMILIES, A CONCEPT TO DEVELOP REFERENCE RANGES FOR ENVIRONMENTAL IMPACT OF A NEW PRODUCT. A NEW PRODUCT CAN BE CATALOGUED AS ENVIRONMENTALLY BETTER OR WORSE THAN A PERCENTAGE OF ITS COMPETITORS, DEPENDING ON WHAT POSITION IT OCCUPIES IN ITS LCP-FAMILY.【5】DANIEL COLLADO-RUIZ,HESAMEDIN OSTAD-AHMAD-GHORABI. COMPARING LCA RESULTS OUT OF COMPETING PRODUCTS: DEVELOPING REFERENCE RANGES FROM A PRODUCT FAMILY APPROACH.JOURNAL OF CLEANER PRODUCTION 18 (2010) 355–364.6、THIS PAPER HAS PROPOSED A COOPERATIVE COEVOLUTIONARY OPTIMIZATION METHOD FOR OPTIMAL DESIGN OF PRODUCT FAMILY WITH MULTI–LEVEL COMMONALITY .【6】L.SCHULZE,L.LI. COOPERATIVE COEVOLUTIONARY OPTIMIZATION METHOD FOR PRODUCT FAMILY DESIGN.7、THIS PAPER CHARACTERIZES A DECISION FRAMEWORKBY WHICH A ?RM CAN MANAGE GENERATIONAL PRODUCT REPLACEMENTS UNDER STOCHASTIC TECHNOLOGICAL CHANGES.【7】HENG LIU,OZALP OZER. MANAGING A PRODUCT FAMILY UNDER STOCHASTIC TECHNOLOGICAL CHANGES. INT. J. PRODUCTION ECONOMICS 122 (2009) 567–580.8、THIS PAPER PROPOSES AN INFORMATION SEARCH AND RETRIEVAL FRAMEWORK BASED ON THE SEMANTICALLY ANNOTATED MULTI-FACET PRODUCT FAMILY ONTOLOGY TO SAVE TIME FOR THE ONTOLOGY DEVELOPMENT IN DESIGN ENGINEERING.【8】SOON CHONG JOHNSON LIM,YING LIU,WING BUN LEE. MULTI-FACET PRODUCT INFORMATION SEARCH AND RETRIEVAL USING SEMANTICALLY ANNOTATED PRODUCT FAMILY ONTOLOGY. INFORMATION PROCESSING AND MANAGEMENT 46 (2010) 479–493.9、THE PURPOSE OF THE PAPER IS TO PRESENT PRODUCT VARIETY ANALYSIS (PVA) APPROACH TO COORDINATED AND SYNCHRONIZED FOWS OF INFORMATION ABOUT PRODUCTS AND PRODUCTION PROCESSES AMONG VARIOUS SUPPLY CHAIN MEMBERS.【9】PETRI HELO,QIANLI XU,KRISTIANTO,ROGER JIANXIN JIAO. PRODUCT FAMILY DESIGN AND LOGISTICS DECISION SUPPORT SYSTEM.10、THE PURPOSE OF THIS PAPER IS TO PROPOSE A PRODUCT FAMILY DESIGN ARCHITECTURE THAT SATISFIES CUSTOMER REQUIREMENTS WITH MINIMAL EFFORTS.【10】TAIOUN KIM,HAE KYUNG LEE,EUN MI YOUN. PRODUCT FAMILY DESIGN BASED ON ANALYTIC NETWORK PROCESS.11、THIS PAPER PRESENTS A CONCEPTUAL FRAMEWORK OF USING SEMANTIC ANNOTATION FOR ONTOLOGY BASED DECISION SUPPORT IN PRODUCT FAMILY DESIGN.【11】 SOON CHONG JOHNSON LIM,YING LIU,WING BUN LEE. USING SEMANTIC ANNOTATION FOR ONTOLOGY BASED DECISION SUPPORT IN PRODUCT FAMILY DESIGNPart4中文&英文[1] 陈维健,齐秀丽,肖林京,张开如. 矿山运输与提升机械. 徐州:中国矿业大学出版社,2007[2] 王启广,李炳文,黄嘉兴,采掘机械与支护设备,徐州:中国矿业大学出版社,2006[3] 陶驰东.采掘机械(修订版).北京:煤矿工业出版社,1993[4] 孙广义,郭忠平.采煤概论.徐州:中国矿业大学出版社,2007[5] 张景松.流体力学与流体机械之流体机械.徐州:中国矿业大学出版社,2001[6] 濮良贵,纪名刚.机械设计.北京:高等教育出版社,2006[7] 李树伟.矿山供电. 徐州:中国矿业大学出版社,2006[8] 于岩,李维坚.运输机械设计. 徐州:中国矿业大学出版社,1998[9] 煤矿安全规程, 原国家安监局、煤矿安监局16号令2005年[10] 机械工业部北京起重运输机械研究所,DTⅡ型固定带式输送机设计选用手册,冶金工业出版社[11]Tugomir Surina, Clyde Herrick. Semiconductor Electronics. Copyright 1964 by Holt, Rinehart and Winston, Inc., 120~250[12] Developing Trend of Coal Mining Technology. MA Tong – sheng. Safety and Production Department, Hei longjiang Coal Group, Ha erbin150090,ChinaPart5中文[1]北京农业工程大学农业机械学[M]中国农业机械出版社,1991年[2]机械设计手册(1—5卷)[3]邓文英,郭晓鹏.金属工艺学[M],高等教育出版社,2000年[4]刘品,徐晓希.机械精度设计与检测基础[M],哈尔滨工业大学出版社,2004[5]王昆,何小柏,汪信远.机械设计课程设计[M],高等教育出版社,1995[6]濮良贵,纪名刚.机械设计[M],高等教育出版社,2000年[7]朱冬梅,胥北澜.画法几何及机械制图[M],高等教育出版社,2000年[8]杨可帧,程光蕴.机械设计基础[M],搞成教育出版社,1999年[9]孙恒,陈作模.机械原理[M],高等教育出版社,1999年[10]哈尔滨工业大学理论力学教研组.理论力学[M],高等教育出版社,2002年[11]张也影,流体力学[M],高等教育出版社,1998年[12]张学政,李家枢.金属工艺学实习材料[M],高等教育出版社,1999年[13]史美堂,金属材料[M],上海科学技术出版社,1996年[14]黄常艺,严晋强.机械工程测试技术基础[M],机械工艺出版社,2005年[15]齐宝玲.几何精度设计与检测技术,机械工业出版社,1999年[16]张启先.空间机构的分析与检测技术,机械工业出版社,1999年[17]史习敏,黎永明.精密机构设计,上海科学技术出版社,1987年[18]施立亭.仪表机构零件,冶金工业出版社,1984年[19]农业机械设计手册 2000年[20]相关产品设计说明书Part6中文1、李运华.机电控制[M].北京航空航天大学出版社,2003.2、芮延年.机电一体化系统设计[M].北京机械工业出版社,2004.3、王中杰,余章雄,柴天佑.智能控制综述[J].基础自动化,2006(6).4、章浩,张西良,周士冲.机电一体化技术的发展与应用[J].农机化研究,2006(7).5、梁俊彦,李玉翔.机电一体化技术的发展及应用[J].科技资讯,2007(9).Part7中文&英文[1] Cole Thompson Associates.“Directory of Intelligent Buildings”1999.[2] Ester Dyson.Adesign for living in the Digital Age.RELEASE 2.0:1997.[3] 吴涛、李德杰,彭城职业大学学报,虚拟装配技术,2001,16(2):99-102.[4] 叶修梓、陈超祥,ProE基础教程:零件与装配体,机械工业出版社,2007.[5] 邓星钟,机电传动控制(第三版),华中科技大学出版社,2001.[6] 裴仁清,机电一体化原理,上海大学出版社,1998.[7] 李庆芬,机电工程专业英语,哈尔滨工程大学出版社,2004.[8] 朱龙根,简明机械零件设计手册(第二版),机械工业出版社,2005.[9] 秦曾煌,电工学-电子技术(第五版),高等教育出版社,2004.[10]朱龙根,机械系统设计(第二版),机械工业出版社,2002.[11]纪名刚,机械设计(第七版),高等教育出版社,2005.[12]Charles W. Beardsly, Mechanical Engineering, ASME, Regents Publishing Company,Inc,1998.[13]李俊卿,陈芳华,李兴林.滚动轴承洁净度及评定方法的商榷.轴承,2004(8):45-46.[14]梁治齐.实用清洗技术手册.北京:化学工业出版社,2000.[15]金杏林.精密洗净技术.北京:化学工业出版社,2005.[16]张剑波,孙良欣等.清洗技术基础教程.北京:中国环境科学出版社,2004.[17]杨镜明.清洗技术在机械制造行业中的应用和展望.化学清洗,1997(6):29-32.[18]李久梅,马纯.轴承清洗的发展方向.轴承,1995(8):31-36.[19]艾小洋.中国工业清洗领域的现状与发展趋势.现代制造,2004(2):58-60.[20]杨晓蔚.机床主轴轴承最新技术.主轴轴承,2010(1):45-48.[21]阎昌春.一种柔性轴承研制的关键技术.柔性轴承,2010(3):23-25.[22]李尧忠.轴承清洗机液压系统的设计.液压系统,2009(7):11-14.[23]T.Ramayah and Noraini Ismail,Process Planning ConcurrentEngineering,Concurrent Engineering,2010.。

机械设计外文参考文献

机械设计外文参考文献

Fig. 1 A fully coupled three-discipline non hierarchic system3 Formulation and Implementation3.1 Formulation. As aforementioned, the confliction of shared variables brings organizational and computational troubles. In this paper, a coordinator is introduced to the typical bi-level CO framework to handle the confliction. The formulation is shown in Fig.2.The system level problem is solved by an MOEA, in which each individual of the population is evaluated according to the valuesreturned from discipline optimizers and middle coordinator. After that, the offspring is generated by the evolutionary operators, such as selection, crossover, and mutation in genetic algorithm. The fitnessfunctionf/ in the system optimizer is composed of the disciplinary objective function /; and a penalty term PI, where I is the smallest discrepancy of the shared variables given by the middle coordinatorand P is a penalty coefficient defined by the user, P is set as 103 in this paper. The design variables in the system optimizer annotated as (-)' include shared variables Xsh and auxiliary variables (p, both of whichare targets for the discipline optimizer to match.The discipline optimizer employs SQP to find a design, whichmatches the target values from the system level to maintain the multilevel compatibility and synchronously satisfies both the dis-ciplinary constraints and interdisciplinary compatibility. The com-patibility tolerance e is set to be 10-3in this paper. The output state variable vector Yik is calculated by the disciplinary state equation <1>(-). Parameters of (-)' are transferred from the system level, which are considered constant at the subsystem level. The design variables at the subsystem level annotated as (-)d are composed of shared variables Xshi, local variables Xli, and input state variables Yp. It can be seen that the design variables of a discipline after decomposition are the same as those before decomposition, i.e., the design freedom remains the same, which gives the most104502-2 I Vol. 133, OCTOBER 2011 Fig. 2 Formulation of proposed MOCOTransactions of the ASME。

中国机械工程论文参考文献范例

中国机械工程论文参考文献范例

中国机械工程论文参考文献一、中国机械工程论文期刊参考文献[1].中国机械工程学会第十次全国代表大会暨2011年中国机械工程学会年会隆重召开.《制造技术与机床》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.2011年12期.梁玉.[2].本刊四篇论文荣获2011年度中国机械工程学会优秀论文奖.《中国机械工程》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.2011年24期.本刊编辑部.[3].(中国机械工程学报)2014年第27卷第6期目次、摘要.《机械工程学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2014年23期.[4].(中国机械工程学报)2015年第28卷第1期目次、摘要.《机械工程学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2015年2期.[5].《CHINESEJOURNALOFMECHANICALENGINEERING》(中国机械工程学报)2014年第27卷第5期目次、摘要.《机械工程学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2014年17期.[6].中国机械工程学会焊接分会成立50周年暨中国焊接专业成立60周年纪念大会在哈尔滨工业大学成功召开.《中国机械工程》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.2012年14期.[7].中国机械工程学会第十届理事会编辑出版工作委员会第一次工作会议召开.《中国机械工程》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.2012年9期.[8].《CHINESEJOURNALOFMECHANICALENGINEERING》(中国机械工程学报,原《机械工程学报》英文版)2010年第23卷第2期目次、摘要.《机械工程学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2010年8期.[9].中国机械工程学会第十次全国会员代表大会.《中国机械工程》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.2011年24期.[10].(中国机械工程学报,原《机械工程学报》英文版)2010年第23卷第1期目次、摘要.《机械工程学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2010年4期.二、中国机械工程论文参考文献学位论文类[1].面向机械工程计算机测试系统的数据挖掘技术研究.被引次数:1作者:胡瑞飞.机械制造及其自动化四川大学2006(学位年度)[2].SAP在照明生产企业设备管理中的应用研究.被引次数:2作者:司徒铭均.机械工程华南理工大学2006(学位年度)[3].多结构要素非轴对称深盒形件冲压成形工艺研究和应用.作者:杨何发.机械工程华南理工大学2006(学位年度)[4].晶片减薄设备技术研究.作者:柳滨.机械工程华中科技大学2006(学位年度)[5]基于空气动力学的车身造型设计研究.被引次数:8作者:孙自强.机械设计及理论沈阳工业大学2006(学位年度)[6].基于物理模型的数据管理系统实现.作者:李秀勇.机械电子工程山东大学2005(学位年度)[7].关于滑移装载机操作手册汉译英的翻译实践报告.作者:葛菲.英语笔译西南科技大学2014(学位年度)[8].用科学知识图谱方法研究学科的衍生和发展——以机械工程学科为例. 作者:孟祥昊.情报学中国科学技术信息研究所2014(学位年度)[9].重庆市大学本科机械专业英语教学现状调查.作者:秦可.外国语言学与应用语言学重庆大学2011(学位年度)[10].玻璃成型加工控制系统关键技术研究.被引次数:2作者:韩俊昭.机械设计及理论浙江理工大学2013(学位年度)三、中国机械工程论文专著参考文献[1]中国机械工程学会特种加工分会简介.,20122012年全国电火花成形加工技术研讨会[2]感悟历史走进历史——《中国机械工程》及其前身的20年.蔡玉麟,2002第三届中日机械技术史国际学术会议[3]强化特色力创名牌——《中国机械工程》办刊实践与思考.周佑启.卢湘帆,20062006中国科协年会[4]工业设计继往开来——见证《中国机械工程学会工业设计分会成立二十周年纪事(1986~2006年)》感言.胡志勇,20062006年工业设计国际会议暨第11届中国工业设计年会[5]辛勤耕耘继往开来——中国机械工程学会理化检验分会四十年回顾. 贺大钝.曹基文.鄢国强,2002中国机械工程学会理化检验分会40年学术年会[6]向着国际一流的学术团体迈进——纪念中国机械工程学会铸造分会创建40周年.唐玉林,2002中国机械工程学会第十届铸造年会[7]现代生产性服务业与我国工业设计产业的发展——纪念中国机械工程学会工业设计分会成立20周年.陈圻.刘曦卉,20062006年工业设计国际会议暨第11届中国工业设计年会[8]中国机械工程学会2006年工业工程在制造业、非制造业应用与推广研讨会.,2006中国机械工程学会2006年工业工程在制造业、非制造业应用与推广研讨会[9]中国机械工程学会物流工程与西部开发论坛.,2005中国机械工程学会物流工程与西部开发论坛[10]中国振动工程学会机械动力学学会第八届理事会第一次会议暨第十二届学术年会、中国机械工程学会机床专业委员会2006年理事扩大会议、全国高校制造技术及机床研究会2006年理事扩大会议.,2006中国振动工程学会机械动力学学会第八届理事会第一次会议暨第十二届学术年会、中国机械工程学会机床专业委员会2006年理事扩大会议、全国高校制造技术及机床研究会2006年理事扩大会议。

机械设计论文参考文献

机械设计论文参考文献

本文为word格式,下载后可编辑修改,也可直接使用机械设计论文参考文献机械设计论文参考文献(一)[1] 王遐.随车起重机行业扫描[J].工程机械与维修,2006(3):68-71[2] 王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002[3] 卢章平,张艳.不同有限元分析网格的转化[J].机械设计与研究,2009(6):10-14[4] 朱秀娟.有限元分析网格划分的关键技巧[J].机械工程与自动化,2009(1):185-186[5] 姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.50-54[6] 桥斌.国内外随车起重机的对比[J].工程机械与维修,2006(7):91-92[7] 王欣,黄琳.起重机伸缩臂截面拓扑优化[J].大连理工大学学报,2009(3):374-379[8] 须雷.国外起重机行业未来的发展趋势[J].中国科技博览,2012(32):241[9] 张质文,王金诺.起重机设计手册[M].北京:中国铁道出版社,2000[10] 杨育坤.国外随车起重机的生产与发展[J].工程机械,1994(11):31-34[11] 刘宇,黄琳.起重机伸缩臂最优截面形式的研究[J].中国工程机械学报,2013(1):65-69[12] 张青,张瑞军.工程起重机结构与设计[M].北京:化学工业出版社,2008[13] 邓胜达,张建军.汽车起重机吊臂旁弯现象的分析[J].建筑机械化,2010(11):39-41[14] 李志敏.伸缩吊臂滑块局部应力分析及变化规律研究[D].成都:西南交通大学.2009[15] 蒋红旗.汽车起重机吊臂有限元优化设计[J].煤矿机械,2005(2):9-11[16] 中国机械工业联合会.GB/T3811-2008 起重机设计规范[S].北京:中国标准出版社,2008[17] 张宇,张仲鹏.类椭圆截面吊臂的约束扭转特性研究[J].机械设计与制造,2012(3):237-239。

机械毕业设计参考文献

机械毕业设计参考文献

机械毕业设计参考文献【篇一:机械毕业设计参考文献(大全)】part1中文[1] 巩云鹏、田万禄等主编. 机械设计课程设计 . 沈阳:东北大学出版社 2000[2] 孙志礼,冷兴聚,魏严刚等主编. 机械设计. 沈阳:东北大学出版社 2000[3] 刘鸿文主编. 材料力学. 北京:高等教育出版社1991[4] 哈尔滨工业大学理论力学教研组编. 理论力学. 北京:高等教育出版社 1997[5] 大连理工大学工程画教研室编. 机械制图. 北京:高等教育出版社 1993[6] 孙桓,陈作模主编. 机械原理. 北京:高等教育出版社 2000[7] 高泽远,王金主编. 机械设计基础课程设计.沈阳:东北工学院出版社 1987[8] 喻子建,张磊、邵伟平、喻子建主编. 机械设计习题与解题分析.沈阳:东北大学出版社 2000[9] 张玉,刘平主编. 几何量公差与测量技术 .沈阳:东北大学出版社 1999[10] 成大先主编.机械设计手册(减(变)速器.电机与电器)化学工业出版社part2中文[1]《煤矿总工程师工作指南》编委会编著. 《矿总工程师工作指南》(上). 北京:煤炭工业出版社,1990.7[2] 严万生等编著.《矿山固定机械手册》..北京:煤炭工业出版社,1986.5,第1版[3]孙玉蓉等编著.《矿井提升设备》. 北京:煤炭工业出版社,1995.1,第1版[4] 中国矿业学院主编. 《矿井提升设备》. 北京:煤炭工业出版社,1980.9,第1版[5] 煤炭工业部制定.《煤矿安全规程》.煤炭工业出版社,1986,第1版[6] 谢锡纯,李晓豁主编.《矿山机械与设备》.徐州:中国矿业大学出版社,2000[7] 能源部制定.《煤矿安全规程》.北京:煤炭工业出版社,1992[8] 王志勇等编.《煤矿专用设备设计计算》.北京:煤炭工业出版社,1984[9] 彭兆行编.《矿山提升机械设计》.北京:机械工业出版社,1989[10] 机械设计、机械设计基础课程设计,王昆等主编,北京:高等教育出版社,1996[11] 机械设计手册/上册,《机械设计手册》联合编写组编,化学工业出版社,1979[12] 画法几何及工程制图,中国纺织大学工程图学教研室等编,上海科学技术出版社,1984[13] 机械零件设计手册(第二版)/中册,东北工学院《机械零件设计手册》编写组编,冶金工业出版社,1982[14] 机械零件课程设计,郭奇亮等主编,贵州人民出版社,1982.1[15] 机械设计标准应用手册/第二卷,汪恺主编,北京:机械工业出版社, 1997.8[16] 矿山提升机械设计,潘英编,徐州:中国矿业大学出版社,2000.12[17] 机械设计(第七版),濮良贵、纪名刚主编,北京:高等教育出版社, 2001[18] 极限配合与测量技术基础,孔庆华、刘传绍主编,上海:同济大学出版社,2002.2part3英文1、‘‘how can a bill of materials be de?ned so that all possible products can be built ef?ciently?’’ one way to answer it is to de?ne a set of components (calledmodules), each of which contains a set of primary functions.an individual product is then built by combining selected modules.【1】 bruno agard,bernard penz. a simulated annealing method based on a clustering approach to determine bills of materials for a large product family. int. j. productioneconomics 117 (2009) 389–401.2、in this study, we propose a methodology for building a semantically annotated multi-faceted ontology for product family modelling that is able to automatically suggestsemantically-related annotations based on the design and manufacturing repository.【2】 soon chong johnson lim,ying liu,wing bun lee.a methodology for building a semantically annotated multi-faceted ontology for product family modelling. advanced engineering informatics 25 (2011) 147–161.3、the aim of this work is to establish a methodology for an effective working of recon?gurable manufacturing systems (rmss). these systems are the next step in manufacturing, allowing the production of any quantity of highly customised and complex products together with the bene?ts of mass production.【3】 r.galan,j.racero,i.eguia,j.m.garcia. a systematic approach for product families formation in recon?gurable manufacturing systems.robotics and computer-integrated manufacturing 23 (2007) 489–502.4、a mixed integer linear programming model is investigated that optimizes the operating cost of the resulting supply chain while choosing the product variants and can de?ne the product family and its supply chain simultaneously.【4】 jacques lamothe,khaled hadj-hamou,michel aldanondo. an optimization model for selecting a product family and designing its supply chain. european journal of operational research 169 (2006) 1030–1047.5、this paper presents lcp-families, a concept to develop reference ranges for environmental impact of a new product. a new product can be catalogued asenvironmentally better or worse than a percentage of its competitors, depending on what position it occupies in its lcp-family.【5】 daniel collado-ruiz,hesamedin ostad-ahmad-ghorabi. comparing lca results out of competing products: developing reference ranges from a product family approach.journal of cleaner production 18 (2010) 355–364.6、this paper has proposed a cooperative coevolutionary optimization method for optimal design of product family with multi–level commonality .【6】 l.schulze,l.li. cooperative coevolutionary optimization method for product family design.7、this paper characterizes a decision framework by whicha ?rm can manage generational product replacements under stochastic technological changes.【7】 heng liu,ozalp ozer. managing a product family under stochastic technological changes. int. j. production economics 122 (2009) 567–580.8、this paper proposes an information search and retrieval framework based on the semantically annotated multi-facet product family ontology to save time for the ontology development in design engineering.【8】 soon chong johnson lim,ying liu,wing bun lee. multi-facet product information search and retrieval using semantically annotated product family ontology. information processing and management 46 (2010) 479–493.9、the purpose of the paper is to present product variety analysis (pva) approach to coordinated and synchronized fows of information about products and production processes among various supply chain members.【9】 petri helo,qianli xu,kristianto,roger jianxin jiao. product family design and logistics decision support system.10、the purpose of this paper is to propose a product family design architecture that satisfies customer requirements with minimal efforts.【10】 taioun kim,hae kyung lee,eun mi youn. product family design based on analytic network process.11、this paper presents a conceptual framework of using semantic annotation for ontology based decision support in product family design.【11】 soon chong johnson lim,ying liu,wing bun lee. using semantic annotation for ontology based decision support in product family designpart4中文英文[1] 陈维健,齐秀丽,肖林京,张开如. 矿山运输与提升机械. 徐州:中国矿业大学出版社,2007[2] 王启广,李炳文,黄嘉兴,采掘机械与支护设备,徐州:中国矿业大学出版社,2006[3] 陶驰东.采掘机械(修订版).北京:煤矿工业出版社,1993[4] 孙广义,郭忠平.采煤概论.徐州:中国矿业大学出版社,2007[5] 张景松.流体力学与流体机械之流体机械.徐州:中国矿业大学出版社,2001[6] 濮良贵,纪名刚.机械设计.北京:高等教育出版社,2006[7] 李树伟.矿山供电. 徐州:中国矿业大学出版社,2006[8] 于岩,李维坚.运输机械设计. 徐州:中国矿业大学出版社,1998[9] 煤矿安全规程, 原国家安监局、煤矿安监局16号令2005年[10] 机械工业部北京起重运输机械研究所,dtⅡ型固定带式输送机设计选用手册,冶金工业出版社[11]tugomir surina, clyde herrick. semiconductor electronics. copyright 1964 by holt, rinehart and winston, inc., 120~250[12] developing trend of coal mining technology. ma tong –sheng. safety and production department, hei longjiang coal group, ha erbin150090,chinapart5中文[1]北京农业工程大学农业机械学[m]中国农业机械出版社,1991年[2]机械设计手册(1—5卷)[3]邓文英,郭晓鹏.金属工艺学[m],高等教育出版社,2000年[4]刘品,徐晓希.机械精度设计与检测基础[m],哈尔滨工业大学出版社,2004[5]王昆,何小柏,汪信远.机械设计课程设计[m],高等教育出版社,1995[6]濮良贵,纪名刚.机械设计[m],高等教育出版社,2000年[7]朱冬梅,胥北澜.画法几何及机械制图[m],高等教育出版社,2000年[8]杨可帧,程光蕴.机械设计基础[m],搞成教育出版社,1999年[9]孙恒,陈作模.机械原理[m],高等教育出版社,1999年[10]哈尔滨工业大学理论力学教研组.理论力学[m],高等教育出版社,2002年[11]张也影,流体力学[m],高等教育出版社,1998年[12]张学政,李家枢.金属工艺学实习材料[m],高等教育出版社,1999年[13]史美堂,金属材料[m],上海科学技术出版社,1996年[14]黄常艺,严晋强.机械工程测试技术基础[m],机械工艺出版社,2005年[15]齐宝玲.几何精度设计与检测技术,机械工业出版社,1999年[16]张启先.空间机构的分析与检测技术,机械工业出版社,1999年[17]史习敏,黎永明.精密机构设计,上海科学技术出版社,1987年[18]施立亭.仪表机构零件,冶金工业出版社,1984年[19]农业机械设计手册 2000年[20]相关产品设计说明书part6中文1、李运华.机电控制[m].北京航空航天大学出版社,2003.2、芮延年.机电一体化系统设计[m].北京机械工业出版社,2004.3、王中杰,余章雄,柴天佑.智能控制综述[j].基础自动化,2006(6).4、章浩,张西良,周士冲.机电一体化技术的发展与应用[j].农机化研究,2006(7).5、梁俊彦,李玉翔.机电一体化技术的发展及应用[j].科技资讯,2007(9).part7中文英文[1] cole thompson associates.“directory of intelligent buildings”1999.[2] ester dyson.adesign for living in the digital age.release 2.0:1997.[3] 吴涛、李德杰,彭城职业大学学报,虚拟装配技术,2001,16(2):99-102.[4] 叶修梓、陈超祥,proe基础教程:零件与装配体,机械工业出版社,2007.[5] 邓星钟,机电传动控制(第三版),华中科技大学出版社,2001.[6] 裴仁清,机电一体化原理,上海大学出版社,1998.[7] 李庆芬,机电工程专业英语,哈尔滨工程大学出版社,2004.[8] 朱龙根,简明机械零件设计手册(第二版),机械工业出版社,2005.[9] 秦曾煌,电工学-电子技术(第五版),高等教育出版社,2004.[10]朱龙根,机械系统设计(第二版),机械工业出版社,2002.[11]纪名刚,机械设计(第七版),高等教育出版社,2005.【篇二:机械专业毕业设计参考文献】参考文献[1]郑文纬,吴克坚 .机械原理[m] .北京:高等教育出版社,1997[2]濮良贵.纪名刚.机械设计[m] .北京:高等机械出版社.2006[3]杨家军.机械系统创新设计[m] .武汉:华中科技大学出版社.2000[4]高志.黄纯颖. 机械创新设计[m] . 北京:高等机械出版社.2010[5]王晶.第四届全国大学生机械创新设计大赛决赛作品选集. 北京:高等教育出版社,2011[6]黄华梁、彭文生.创新思维与创造性技法. 北京:高等教育出版社,2007[7]李学志.计算机辅助设计与绘图[m] .北京:清华大学出版社.2007[8]吴宗泽.机械设计手册[m] .北京:机械工业出版社.2008[9]颜鸿森.姚燕安.王玉新等译.机构装置的创造性设计(creative design of mechanical devices)[m] .北京:机械工业出版社.2002[10]邹慧君.机械运动方案设计手册[m] .上海:上海交通大学出版社.1994[11]王世刚.张春宜.徐起贺.机械设计实践[m] .哈尔滨:哈尔滨工程大学出版社.2001[12][美]厄儿德曼.桑多尔著.机构设计——分析与综合.第一卷(1992),第二卷(1993).庄细荣等译.北京:高等教育出版社.1994[13]温建民. pro/e wildfire5.0 三维设计基础与工程范例[m] .清华大学出版社.2008[14]赵瑜.闫宏伟.履带式行走机构设计分析与研究[m] .东北大学出版社.2011[15]秦大同.谢里阳.现代机械设计手册.第三卷.化学工业出版社[m] .2011[16]闻邦椿.机械设计手册.第二卷.第三卷.第四卷.机械工业出版社.2011[17]陈敏.缪终生一种新型滚动四杆螺母副的研究与应用[j] .江西理工大学南昌校区.江西.南昌 2009.[18]彭国勋.肖正扬.自动机械的凸轮机构设计[m] .机械工业出版社.1990[19]孙志礼.机械设计[m] .东北大学出版.2011[20]张也影.流体力学[m] .高等教育出版社.1998[21]吴涛、李德杰,彭城职业大学学报,虚拟装配技术,[j] 2001,16(2):99-102.[22]叶修梓、陈超祥,proe基础教程:零件与装配体[m] ,机械工业出版社,2007.[23]邓星钟,机电传动控制[m] ,华中科技大学出版社,2001.[24]朱龙根,简明机械零件设计手册[m] ,机械工业出版社,2005.[25]李运华,机电控制[m].北京航空航天大学出版社,2003.【篇三:机械毕业设计正文、结论、参考文献标准格式】 1 引言数控铣床今后将向中高挡发展,中档采用普及型数控刀架配套,高档采用动力型刀架,兼有液压刀架、伺服刀架、立式刀架等品种,预计近年来对数控刀架需求量将大大增加。

机械毕业设计参考文献

机械毕业设计参考文献

机械毕业设计参考文献1. 机械设计参考文献:-Budynas, R.G., and Nisbett, J.K. (2016). Shigley's Mechanical Engineering Design. 10th Edition. McGraw-Hill Education. 这本经典教材是机械设计领域的权威之作,涵盖了机械设计的基本原理和方法,包括材料选择、零件和装配设计、机构设计等。

-Norton, R.L. (2015). Machine Design: An Integrated Approach. 5th Edition. Pearson Education. 这本书通过提供一系列实例和案例研究,帮助读者理解和应用机械设计原理和技术。

-Juvinall, R.C., and Marshek, K.M. (2011). Fundamentals of Machine Component Design. 5th Edition. Wiley. 这本书详细介绍了机械元件的设计原理和方法,包括轴、齿轮、联轴器等常见元件的设计与计算。

- Mott, R.L. (2012). Machine Elements in Mechanical Design. 5th Edition. Pearson Education. 这本书涵盖了机械设计的各个方面,包括轴、齿轮、带传动、联轴器、轴承等元件的设计和选择。

2. 机械制造工艺参考文献:- Kalpakjian, S., and Schmid, S.R. (2013). Manufacturing Engineering and Technology. 7th Edition. Pearson Education. 这本书涵盖了现代制造工程和工艺的各个方面,包括材料加工、成型、焊接、表面处理、数控加工等。

-Groover, M.P. (2010). Fundamentals of Modern Manufacturing: Materials, Processes, and Systems. 4th Edition. Wiley. 这本书介绍了现代制造工艺的基本原理和方法,包括材料选择和处理、加工工艺、自动化和数控技术等。

机械设计外文参考文献

机械设计外文参考文献

Multi-Objective Collaborative Optimization Based on Evolutionary AlgorithmsSu Ruiyi"Beijing System Design Institute ofElectromechanical Engineering,No. 31 Yongding Road, Haidian District,Beijing 100854, Chinae-mail: sry@Gui Liangjine-mail: gui@Fan Zijiee-mail: zjfan@State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering,Tsinghua University,Beijing 100084, ChinaThis paper proposes a novel multi-objective collaborative optimi-zation (MOCO) approach based on multi-objective evolutionary algorithms for complex systems with multiple disciplines and objectives, especially for those systems in which most of the disci-plinary variables are shared. The shared variables will conflict when the disciplinary optimizers are implemented concurrently. In order to avoid the confliction, the shared variables are treated as fixed parameters at the discipline level in most of the MOCa approaches. But in this paper, a coordinator is introduced to handle the confliction, which allocates more design freedom and independence to the disciplinary optimizers. A numerical example is solved, and the results are discussed. [DOl: 10.1115/1.4004970]Keywords: multidisciplinary design optimization, multi-objective optimization, collaborative optimization1 IntroductionMultidisciplinary design optimization (MDO) was developed for large scale and complex engineering problems and has attracted much attention in recent years [1-3]. The two challenges of MDO are computational and organizational complexities [2]. The MDO problem involves large size of design variables, multiple objectives, interdisciplinary coupling, etc., which increase the computational expense. Moreover, the interdisciplinary coupling requests data transfer and decision interaction among different disciplinary codes and groups, which bring challenges to the organization of software modules and staffs. Several MDO approaches have been developed to deal with these challenges, such as concurrent subspace optimization [4], collaborative optimization (CO) [5], bi-level integrated system synthesis [6], and analytical target cascading [7].Collaborative optimization [5] is one of the most popular MDO approaches, which decomposes the complex engineering problem into multiple disciplines, components, or subsystems. Each subsystem can be optimized concurrently by a different subject expert group employing appropriate codes. The interaction among disciplinary analysis codes is described by an interdisciplinary compat- 'Corresponding author.Contributed by the Design Automation Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received January 13, 2011; final manuscript received August 25, 2011; published online October 18, 2011. Assoc. Editor: Shapour Azarm.Journal of Mechanical Design ibility function. Meanwhile, a system level optirruzer is introduced to minimize the design objectives and ensure the interdisciplinary compatibility.One of the computational challenges in complex systems is raiseddue to multiple objectives. The typical CO approach can be readily used to solve multi-objective problems by applying an aggregate function to convert multiple objectives to a single objective. Forexample, Tappeta and Renaud [8] used the weighted sum method in the system level optimizer to handle multiple objectives. However, thedisadvantages of using the aggregate function in CO are that it cannotfind the Pareto optimal set in a single run and is unable to capture any Pareto solutions on the non convex part of the Pareto frontier [9].These difficulties can be overcome by introducing thepopulation-based multi-objective evolutionary algorithms (MOEAs) to the CO framework. This multi-objective collaborative optimization(MOCO) approach has been studied by Depince et al. [10], Aute andAzarm [11], and Li and Azarm [12]. In their approaches, the system objectives are optimized at the system level and each is alsodecomposed to be considered at the subsystem level, both system andsubsystem problems are solved by an MOEA. Their work shows that the combination of MOEAs and CO can obtain the Pareto optimalsolutions of multi-objective and multidisciplinary problemseffectively.However, for complex systems where most of the variables areshared and significant to more than one discipline, the previous approaches [1Q-12] have organizational and computational troubles,because the shared design variables are considered as fixedparameters at the subsystem level. For example, the window pillars of a bus body are sensitive to the rollover crash safety and significant tothe Noise, Vibration, and Harshness (NVH) performances. Both thecrash and NVH groups expect to design the pillars independently. However, this cannot be achieved as the pillar variables are treated asfixed parameters in the disciplines. As such, it brings troubles toorganization. Moreover, as the shared variables are fixed during the optimization, the design freedom of disciplinary groups is reduced: Ifmost of the disciplinary variables are shared, there would be littlefreedom at the subsystem level, which makes it difficult to find the feasible solutions. In this case, the disciplinary optimization ismeaningless and the MDO of the complex system will fail. This is thecomputational trouble.Both organizational and computational troubles, aforementioned,will be solved in this paper by proposing a novel MOCO framework, where the shared variables can be varied at the subsystem level. Thus,the disciplinary groups have the most design freedom to obtain thePareto optimal solutions effectively. In order to handle the difference of the shared variables from different disciplines, a coordinator (calledmiddle coordinator) is introduced. Consequently, the typical bi-levelCO framework is transformed to a tri-level framework, where the system level problem is solved by an MOEA, while both thesubsystem and middle level problems are solved by the sequentialquadratic programming (SQP) method.The remainder of this paper is organized as follows: Sec. 2describes the terminology of MDO problems; Sec. 3 gives the detailsof the proposed approach; Sec. 4 solves a numerical example and discusses the results; and Sec. 5 concludes the paper.2 TerminologyFigure 1 shows a fully coupled three-discipline nonhierarchic system, which was commonly used in the literature [6] and [8]. Eachbox annotated with Di is a discipline or subsystem, which calculatesthe outputs according to the inputs. For discipline i, the inputs include the design variable vector Xi and state variable vector Yji (j =I- i); theoutputs are composed by the objective vector fi, constraint vector gi and state variable vector Yij (i =I- j). The state variable vector Yu is calculated in discipline i and used in discipline j. The design variablesof discipline i comprise local variables Xli and shared variables Xshi' It isseen that both state variables and shared variables are interdisciplinary coupling factors in an MDO problem.Copyright © 2011 by ASME OCTOBER2011, Vol.133 / 104502-1。

机械毕业设计论文参考文献

机械毕业设计论文参考文献

机械毕业设计论文参考文献机械毕业设计论文参考文献专业的论文涉及到机械设计、机械控制、机械制造、机械自动化等相关知识,所以本文将从这些角度出发。

下面是小编为您整理了“机械毕业设计论文参考文献”,希望能帮助到您。

[1]肖嘉池. 基于单片机的工业机器人控制器设计[J]. 电脑知识与技术,2019,22:263-264.[2]曹恩国,刘坤,吉硕,孙震源,徐洪伟,骆星吉. 减重站起康复训练系统机械结构设计与优化[J]. 吉林大学学报(工学版),2019,05:1558-1566.[3]谷雨,郑宏,许晓航,郑朝晖. 基于CICP的机械臂多目标定位与抓取[J]. 计算机工程与应用,2019,18:189-194.[4]江荣浩. 探究制药机械功能控制技术及其应用[J]. 中国设备工程,2019,14:208-209.[5]吴军,由龙涛. 机械完工管理在国际火电建设项目中的应用[J]. 管理观察,2019,25:26-28.[6]张志飞,孙毅,向锦武,李道春. 直升机驾驶机器人机械腿的动力学分析[J]. 计算机仿真,2019,09:85-90.[7]. 索尔维碳纤维增强聚醚醚酮产品强化植入机械[J]. 橡塑技术与装备,2018,02:60-61.[8]魏雪丽. 落实班级岗位责任制也需人文关怀[J]. 教学与管理,2018,02:8-9.[9]. 富阳思达机械有限公司[J]. 农产品加工,2018,01:89.[10]周锋,林楠,陈小平. 基于六维线性插值的六自由度机械臂逆运动学方程求解方法[J]. 计算机应用,2018,02:563-567.[11]宦婧,周伟祝,赵媛. 基于智能感应的多自由度机械臂系统的设计实现[J]. 计算机与数字工程,2018,02:397-401.[12]李泰国,李文新,王伟文,高家祺. 基于OpenGL空间机械臂三维重构可视化研究[J]. 计算机技术与发展,2018,01:178-181+187.[13]苏文成,卢章平. 数字人文研究方法争议浅析——以宋词流派特征远距离阅读项目为例[J]. 图书馆论坛,2018,02:22-28+43.[14]邓晓燕,林灿光,施翔宇,吴泽荣,陈浩彬. 五自由度机械臂三维建模与仿真实验平台的构建[J]. 实验技术与管理,2018,03:118-122.[15]徐俏娬. 旋转机械电动振动台的PLC自动控制器设计[J]. 计算机测量与控制,2018,01:128-131+144.[16]王翠竹. 用心探索、持之以恒,铸就专业与品质——访杭州中亚机械股份有限公司副总经理徐韧[J]. 食品安全导刊,2018,Z1:52-53.[17]陈珂,沈建新,田威,傅宇文. 核磁环境下的腹腔穿刺手术机械臂设计[J]. 医疗卫生装备,2018,02:18-23+64.[18]孙建,方绿茵,李明,吴凯峰. 可穿戴式助残机械腿的结构设计与分析[J]. 机电信息,2018,06:73-74.[19]陈继红,陈文王,邹文哲. 一种电子机械故障听诊器的简易检测方法[J]. 上海计量测试,2018,01:38-39.[20]孙学军,贺德方,彭洁,张英杰,齐俊景. 基于专利数据的化纤机械技术发展现状与趋势分析[J]. 现代情报,2018,07:148-159.[21]聂时君,谢常清. 以工程教育专业认证和审核评估为契机机械类课程建设和考核改革[J]. 电脑知识与技术,2018,17:158-160.[22]黄洋,姜文刚. 示教机械臂姿态解算改进方法仿真研究[J]. 计算机工程与应用,2018,15:126-130+138.[23]吴浩. 你看到的并不是你知道的——浅谈虚拟系统跟踪与定位[J]. 现代电视技术,2018,06:120-124.[24]张蕾. 基于复杂机械产品装配过程质量门控制方法研究[J]. 微型电脑应用,2018,07:61-63.[25]唐日成,宋伟,李泽萱,滕旭阳,郑艺彬. 基于ARDUNO单片机的魔方机器人解决方案——机械变换控制[J]. 电脑知识与技术,2018,17:267-268.[26]荚启波,王振荣,郭帅. 画线机器人机械臂力矩最优轨迹优化方法[J]. 工业控制计算机,2018,07:120-122.[27]冯乐. 知识管理在制造业的应用研究[J]. 福建电脑,2018,07:158-159.[28]王翠竹. 秉承不变的信念,创造适用的产品——访渡边食品机械(河北)有限公司上海分公司总经理王平[J]. 食品安全导刊,2018,19:30-31.[29]穆海芳,李明. 变频调速控制机械合金化Cu_(50)Ni_(30)C_(20)性能分析[J]. 九江学院学报(自然科学版),2018,02:37-39.[30]任晓龙. 一种多器官机械灌注系统方案设计[J]. 机电工程技术,2018,04:86-88.[31]曲旭东,陈济. 机械性窒息死亡他杀案件各要素与被害人间熟悉度的关联性分析[J]. 广东公安科技,2018,01:74-76.[32]李姝杨. 抑制帕金森病患者手部抖动便携式治疗仪的设计[J]. 中国科技产业,2018,04:74-77.[33]陶俊,王晓峰,韩仲熙,冯博,南海,谢中元,黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报,2018,06:894-898.[34]汪荣华. 探究制药机械功能控制技术及其应用[J]. 设备管理与维修,2018,06:42-43.[35]王增丽,申迎峰,王宗明,王振波. 流体机械性能测试及模拟系统设计[J]. 实验技术与管理,2018,04:106-109+139.[36]赵荣珍,孙业北,邓林峰. 自适应NWFE-KFCM算法在旋转机械故障辨识中的应用[J]. 计算机集成制造系统,2018,04:820-828.[37]唐继红. 基层检察院内设机构改革问题研究——以检察业务部门为视角[J]. 黑龙江省政法管理干部学院学报,2018,01:131-134.[38]刘辉. 面向机械类专业单片机原理课程教学实践案例探究[J]. 福建电脑,2018,04:170+42.[39]侯严庭. 基于Three.js的机械产品自动装配演示[J]. 软件工程,2018,03:23-26.[40]林嘉鑫,哀薇,刘少君. 基于面结构光的机械工件三维扫描系统设计[J]. 计算机测量与控制,2018,03:187-190.[41]康逸儒,沈汉林,罗欣. 伺服系统机械谐振自适应抑制关键参数辨识[J]. 工业控制计算机,2018,04:155-156+159.[42]倪宁宁. 江苏卫视2018广州跨年演唱会的制作——灯光设计方案[J]. 现代电视技术,2018,03:74-77+81.[43]张媛媛,原思聪,郭田奇. 基于Lasso与RFE特征消除的RVM 旋转机械故障预测[J]. 计算机工程与应用,2018,08:149-153.[44]牟虹,何思静,窦雪,祖庆芝. “中国制造”时代机械产品档案管理存在问题及对策研究[J]. 档案管理,2018,02:48-50.[45]侯大鹏. 排除机械电子设备中电气干扰的主要措施[J]. 电脑知识与技术,2018,05:239-240.[46]高菲,李亚松. 浅谈加强市政施工机械设备安全管理[J]. 城市管理与科技,2018,02:54-55.[47]刘增辉,魏金波,霍鲁锋,陈希志,贾广腾,王志坤. 新型智能撒肥机研究与设计[J]. 农产品加工,2018,08:65-66+69.[48]杨亮,郭志军,李文生,王博轩. 基于视觉伺服的桌面型机械臂创新实验平台研制[J]. 实验技术与管理,2018,05:92-94+101.[49]马睿,张志明,许春权. 基于语音控制的机械臂3D虚拟操作实验平台设计[J]. 实验技术与管理,2018,05:126-130.[50]汪步云,刘三民,赵森严. 机械专业教学中计算思维能力培养探索[J]. 现代计算机(专业版),2018,10:49-52.[51]杨儒骁,李雨婷. 基于MATLAB和Arduino的小型机械臂控制系统设计[J]. 工业控制计算机,2018,05:80-82.[52]王翠竹. 专注、调研、开发,只为做好食品包装及配套方案[J]. 食品安全导刊,2018,13:54-55.[53]周韦溪. 基于损伤类型及程度的机械性损伤法医鉴定研究[J]. 法制博览,2018,14:248.[54]朱飞龙. 试论制药机械设计要点分析[J]. 数码世界,2018,05:498-499.[55]辛礼兵. 基于物联网的智能机械模糊理论设计思路分析[J]. 山东农业工程学院学报,2018,04:30-31.[56]赵海滨,刘冲,陆志国,颜世玉,于清文. 基于Matlab/Simulink的欠驱动机械臂仿真实验[J]. 实验技术与管理,2018,06:135-138+143.[57]吕伟平,盘新才. 服用安眠药后被活埋致死的法医学鉴定[J]. 广东公安科技,2018,02:63+69.[58]杨小林. 法医学中机械性损伤的分析与解释[J]. 法制与社会,2018,16:66-67.[59]刘云飞,胡盛斌,李洋,李宝磊,徐恩松,钱雨辰. 基于模糊干扰观测器的机械臂滑模控制[J]. 计算机时代,2019,01:1-4.[60]王孟刚. 制药机械设备设计研发中的问题分析[J]. 黑龙江科学,2019,02:110-111.[61]. 东北大学国家电子实验教学示范中心[J]. 实验技术与管理,2019,01:292.[62]刘清华,徐扬. 一种改进的OL归结——SOL归结[J]. 计算机工程与科学,2019,01:98-103.[63]何红艳,李贵平,王文丹,张晓芳,黄家雄,罗心平,魏团仁,程金焕. 酶促脱胶对咖啡品质影响研究[J]. 农产品加工,2019,02:37-40.[64]罗强,郑岩,崔小劲. 下肢康复训练的轮椅结构设计[J]. 青春岁月,2019,03:40.[65]岑云鹏. 制药机械中磨损轴套修复技术[J]. 黑龙江科学,2019,04:46-47.[66]王义斌,陈姣,董兴建,夏开拓,李文,顾大维. 可穿戴式的下肢助力机械外骨骼的结构设计[J]. 机械制造与自动化,2019,01:200-203.[67]张玲玲,黄培,杜朝辉. “海归”青年教师中发展党员的困境及对策研究——以上海交通大学机械与动力工程学院为例[J]. 山东青年政治学院学报,2019,01:49-53.[68]张金龙,邹裕龙,杨斌,姚灿杰,郑耀宗. 基于二阶段双向搜索的解魔方机器人系统[J]. 计算机与现代化,2019,02:82-87.[69]夏兴国,汪发亮. 基于Internet的便携式旋转机械在线监测系统[J]. 江汉大学学报(自然科学版),2019,01:46-51.[70]王丽静,王利萍,王路. 基于.NET框架机械产品报价系统设计与实现[J]. 电脑知识与技术,2019,03:89-90+105.[71]李良敏,何超,宋成利,袁帅,张志阳,陈力. 微创手术机器人机械臂结构设计与工作空间分析[J]. 医用生物力学,2019,01:40-46.[72]梁东岚,张钺烔,吴嘉汶,姚翠兰. 突破性机械义肢[J]. 中国科技教育,2019,02:22-23.[73]郭磊. 现代化医疗机械通气装置的应用[J]. 计算机产品与流通,2019,03:63.[74]. 国际先进制药设备汇聚申城,P-MEC China 6月重磅来袭[J]. 化工与医药工程,2019,01:40.[75]曹元,赵连玉. 轮椅床机构及人机一体化模型研究[J]. 制造业自动化,2019,03:129-134.[76]李广创,程良伦. 基于深度强化学习的机械臂避障路径规划研究[J]. 软件工程,2019,03:12-15.[77]钱美容,蒋近. CD播放器机械臂轨迹跟踪的鲁棒自适应迭代学习控制[J]. 计算机集成制造系统,2019,03:682-691.[78]王应明,陈惠贤,李会鑫,张锐. 机械臂式治疗床的水平避障研究[J]. 机械设计与制造工程,2019,03:119-122.[79]魏凌轩,葛斌,张磊,张少伟,伍进平,方旭晨. 一种新型机械灌注泵的性能模拟[J]. 生物医学工程研究,2019,01:120-123.[80]赵正旭,左宗成,申跃杰,钟谦. 机械臂遥操作任务的显控界面的实现[J]. 计算机时代,2019,04:40-43+47.[81]龙嫣然,徐昱琳,费心怡. 基于PCL的Jaco机械臂的目标抓取[J]. 工业控制计算机,2019,04:65-67.[82]王治河,蔚蓝,樊美筠. 从机械语言学到有机语言学[J]. 天津外国语大学学报,2019,03:16-28+158.[83]邓莎,钟凯,周密. 机械力-化学法制备高性能纤维素膜综合实验设计[J]. 实验技术与管理,2019,04:63-66+70.[84]刘炜,夏兆旺,包国治,王军. 虚拟现实技术引入机械类课程的技术与难点分析[J]. 计算机时代,2019,05:80-83.[85]陈素群,赵希,李嘉昌. 手机个性化3D美容机[J]. 电脑知识与技术,2019,12:228-231.[86]徐俊武,沈林勇,章亚男,钱晋武. 利用健肢sEMG信号对康复机械腿进行映射控制[J]. 工业控制计算机,2019,05:8-10.[87]杨开欣,任女尔,蔡建军. 基于智能网络的计算机辅助汽车机械检测系统[J]. 饮食科学,2019,08:94.[88]刘坤,吉硕,孙震源,徐洪伟,刘勇,赵静霞. 多功能坐站辅助型如厕轮椅机械结构设计与优化[J]. 吉林大学学报(工学版),2019,03:872-880.[89]乔宇,姚运萍,马利强,杨小龙,陈继鹏,陈惠贤. 重离子放疗辅助医用机械臂避撞路径规划研究[J]. 中国医疗设备,2019,06:61-65.[90]龙腾. 一种六自由度机械臂的控制系统设计[J]. 信息技术与网络安全,2019,06:65-68.[91]韦邦国,宋韬,郭帅. 基于最小二乘法的移动机械臂激光导航标定[J]. 工业控制计算机,2019,06:47-49.[92]徐雅微,韩畅,赵子航,姚圣. 基于VIVE的虚拟现实交互式机械臂仿真运动平台搭建[J]. 现代计算机,2019,14:68-72.[93]马波,赵祎,齐良才. 变分自编码器在机械故障预警中的应用[J]. 计算机工程与应用,2019,12:245-249+264.[94]杨斌,张根保,庾辉,冉琰. 基于数字孪生的`机械产品运动性能调控方法[J]. 计算机集成制造系统,2019,06:1591-1599.[95]刘金锋,赵鹏,周宏根,刘晓军,冯丰. 数字孪生驱动的机械加工工艺评价方法[J]. 计算机集成制造系统,2019,06:1600-1610.[96]刘仕兵,马志方,仇智圣. 接触网隔离开关机械状态监测的SVM实现[J]. 计算机仿真,2019,05:445-449.[97]王志刚. 机械臂末端接触力控制系统设计[J]. 电脑知识与技术,2019,15:279-280.[98]杨茜. 中科院西安光机所参股“硬科技”企业调研报告[J]. 企业改革与管理,2019,09:213-215.[99]刘垚,薛腾,王玺翔,樊明瑞,曹娜. 高盐饮食对非致死性创伤后心脏损伤的影响[J]. 山西医药杂志,2019,14:1654-1657.[100]陈雪辉,俞传阳,景甜甜,刘伟,雷经发. 新工科背景下机械类专业实践教学改革研究[J]. 山东农业工程学院学报,2019,07:189-192.[101]沈澍,顾康,刘小雨. 面向肢体残疾的辅助智能穿戴系统的设计[J]. 计算机技术与发展,2019,07:124-129.[102]刘晶,普杰信,牛新月. 基于神经网络滑模的机械臂轨迹跟踪控制方法[J]. 计算机工程与设计,2019,07:1934-1938.[103]岳承涛,郭帅,宋韬,荚启波. 基于建筑移动机械臂的地面误差建模与补偿方法研究[J]. 工业控制计算机,2019,07:84-87.[104]张建民,许志辉,龙佳乐,陈富健,罗顺祺,罗鑫春,林根源,李鸿彬. 三维立体视觉机械臂智能抓取分类系统的开发[J]. 计算机工程与应用,2019,15:235-240.[105]朱经纬,方虎生,邵发明,蒋成明. 自适应粒子群算法求冗余机械臂逆运动学解[J]. 计算机工程与应用,2019,14:215-220.[106]刘钊铭,刘乃龙,魏青,崔龙. 基于运动描述语言的机械臂轨迹生成及仿真[J]. 计算机仿真,2019,06:310-315.[107]陈继朋,陈惠贤,杨小龙,刘晓娟,乔宇,马利强. 基于放疗的六自由度医用机械臂动力学仿真分析[J]. 中国医疗设备,2019,08:76-80+88.[108]窦东阳,王艳飞,何敏,王启立,李小川. 面向工程教育认证的旋转机械状态监控与故障诊断实验系统研发[J]. 实验技术与管理,2019,07:29-32+39.[109]程林云,张雷,宋晓娜. 基于RBF神经网络的机械臂自适应控制方法[J]. 计算机测量与控制,2019,07:79-84.[110]由弘扬,贺帅,刘宏伟,徐振邦. 基于bi_RRT算法的九自由度机械臂路径规划[J]. 计算机仿真,2019,07:308-313.[111]张建华,蔡灿,刘璇,张明路. 基于二阶前馈外力观测器的机械臂碰撞策略[J]. 计算机集成制造系统,2019,07:1775-1783.[112]杨涛,邹河彬,刘小勇,迟立国. 仿人机械臂同步控制仿真研究[J]. 计算机仿真,2019,07:302-307.[113]罗庆生,陈胤霏,刘星栋,朱琛. 仿人机器人的机械结构设计与控制系统构建[J]. 计算机测量与控制,2019,08:89-93.[114]高苗苗,陈强,徐栋,南余荣. 基于神经网络的多机械臂固定时间同步控制[J]. 计算机测量与控制,2019,08:104-108+138.[115]李奇,张菁华,杨冰如,陈良,沈长青. 基于生成对抗学习的旋转机械故障诊断研究[J]. 工业控制计算机,2019,08:88-89.[116]罗红旗. 重型机械安全状况与标准制定的关联度分析[J]. 标准科学,2019,08:85-87.[117]张晓亮. 小型全自动化学发光免疫分析仪关键技术研究[D].中国科学技术大学,2019.[118]王明. 大型石油储罐机械清洗技术应用研究及效益分析[A]. 宁夏回族自治区科学技术协会.第十五届宁夏青年科学家论坛石化专题论坛论文集[C].宁夏回族自治区科学技术协会:,2019:3.。

课程设计外文文献

课程设计外文文献

毕业设计(论文)外文参考文献译文及原文系部机械电气学部专业机械设计制造及其自动化年级 200x级班级名称机械设计1班学号 x x学生姓名 xxx 指导教师 xxxxx年x 月目录1 Representative Strcture of Injection Mol译文 (3)外文 (4)2 Number of Mold Cavities译文 (5)外文 (7)注射模的典型结构用于热塑性塑料注射成型的模具通常是溢料式模具,因为与传递模塑成型一样,在注射成型中,不需要额外的载料空间。

但是,模具设计的基本类型有多种变化。

所有材料最常使用的设计是两板模设计。

型腔装在第一个模板上,凸模装载第二个模板上。

主流道衬套并入定模的模板中。

按照这种安排,就有可能使用直接中心浇口,使塑料进入单腔模或者是多腔模的分流道系统中。

在大多数情况下,凸模、顶出装置以及分流道系统在动模中。

虽然为了符合特定要求会有许多变化,但是这是注射模的基本设计。

三板模设计的特点是具有包含型腔的第三个可移动的模板,因此对于多型腔操作,允许中心或偏置浇口进入每一个型腔。

模具打开时有两次分模,一个塑件的脱模,另一个是去除分流道和主流道凝料。

通过压力机常规功能不能成型的的带镶嵌件、螺纹和取芯的模塑件,要求在模具中安装分离的或零散的部件或者型芯。

这些零撒的部件随着塑件被顶出。

每一个生产周期后,这些部件必须与塑件分离,并重新安装在模具中。

因此使用复制的部件以高效生产。

液压缸或气缸被安装在模具中以抽出侧型芯部件。

在模具设置料导柱,就能完成有角度侧抽芯,而不需要高成本的零散部件。

有几种方法可用于旋松塑件上的内螺纹或外螺纹:为了提高生产率,常常使用价格相对较低的长行程的液压油缸驱动齿轮齿条机构进行自动脱螺纹。

其他脱螺纹的方法包括使用通过双动油缸驱动的齿轮齿条或摩擦型弧刷。

塑件的内部凸凹可以通过带料度的型芯(成型杆)成型,型芯的移动由将金属型芯与塑件分离的顶出杆驱动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Set of NN weights w!p) li=1, ... ,NW;p=l, ... ,L
Stage III Computation of membership functions for NN weights
FuzyNN with weights membership functions Pi = p(w~p»
inequalities (l-2KIL)::;; IX < (l-2(K-I)/L , where: K = kLa . Ita - numbers of
weight values on the left or right hand sides of w, respectively. In case of a E
There are three possibilities to formulating fuzzy networks. The first one corresponds to the neural network with crisp parameters (called for short NN weights) and performing computations on interval variables [8]. Much advanced are NNs with crisp inputs and outputs but their processing is performed on fuzzyfied variables with fuzzy reasoning rules, cf. fuzzy inference systems [4]. The third class is associated with full fuzzification of transmitted signals, NN weights and neurons of a fuzzy NN [2]. A more numerically efficient approach depends on joining simple membership functions of signals and NN parameters with interval arithmetics [7].
Fig. 1. Schematic algors assume that the network was designed using a corresponding crossvalidation procedure and a subset selected from (1). The formulated network is then trained on set (1) at Stage I of the algorithm shown in Fig. 1. A set ofNN weights (both synaJ?tic weights and biases) is collected as a set of initial value
774
w, respectively. The interval values of a-cut [wL , wR]a are depicted in Fig. 2a
as WL",WR".
a)
p(w)
1.0
b)
Jt(W)
1.0
(t) a = 0.,5
Wmin W{;s ill w{fs
W W max
w, mited). The distances 3 aL and 3aR are measured from the mean value
where: aL, aR- standard deviations of patterns p that are smaller or greater than
weights Wo= {wed i= 1, ... ,NW}, where: NW-numberofNN weights. The weights WOi are assumed as initial weights to learn weights correspond-
ing to each pattern of the training set (l). At Stage II the network is trained L times for a sequence of single patterns p = 1,... ,L. After this training a set of
Ii weights is completed, i.e. W= {Wi }= [Wi (P) = 1, ... ,NW; p = 1,... , L] .
The membership functions for the NN weights J1 i = J1 (W;) are computed at Stage III. In [6] the triangular membership functions were assumed. In Fig.2a a triangular shape of MB function (t) is shown for the weight w (index i is om-
Fig. 2. Shapes of membership functions for NN weights: a) triangular MF (t), b) nonlinear MF (n)
The other method of formulation of a nonlinear MF (function (n) in Fig. 2b)
773
gorithm is shown. It corresponds to a standard multi-layered, forward neural network and the training set of patterns:
I £ = {(x,t)(p) p= 1,...,L}
(1)
1. Introduction
Results of tests on material models can be noisy, incomplete and inconsistent. Another aspect is a limited number of tests because of various difficulties and costs of arrangement of experiments on laboratory specimens or full scale structures. That is why fuzzy variables and a possibility approach seem to match better the nature of experimental results than using crisp variables [5] . This concerns also fuzzy neural networks.
Set of training patterns
.c = {(x, t)(p) I p = 1, ... ,L}
Stage I Initial training ofNN
Initial values ofNN weights
{w? Ii == 1, ... ,NW}
Stage II Detail training of NN
Crisp type neurons are used for the transformation of interval values for fixed a
- cuts, transmitted through NN. The above mentioned approach is developed in the paper. The correspond-
In the paper a simplified approach, proposed in [6] is discussed. The main idea lies in the formulation of NN weights on the basis of weight values, computed for single patterns taken each after the other from the training pattern set.
( K- 1 , K) the values wLa , wRa are computed by linear interpolation in the range (~-1, wK ).
After the membership functions are formulated for each NN weight the
A Fuzzy Neural Network for the Analysis of Experimental Structural Mechanics Problems
Ewa Pabisek, Magdalena Jakubek and Zenon Waszczyszyn
Institute of Computer Methods in Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Krak6w, Poland, e-mail: zenwa@.pl
The idea of a fuzzy NN, proposed in [6], is shown Fig. I where a schematic al-
L. Rutkowski et al. (eds.), Neural Networks and Soft Computing © Springer-Verlag Berlin Heidelberg 2003
相关文档
最新文档