国赛论文模版
小度写范文全国青少年科技创新大赛科技论文格式模板
全国青少年科技创新大赛科技论文格式科学论文是为了培养我们具有综合运用所学知识解决实际问题的能力,而论文格式使行文简练、版面美观。
下面是小编为大家精心推荐的全国青少年科技创新大赛科技论文格式,希望能够对您有所帮助。
全国青少年科技创新大赛科技论文格式 1 题目是科技论文的中心和总纲。
要求准确恰当、简明扼要、醒目规范、便于检索。
一篇论文题目不要超出20个字。
用小2号黑体加粗,居中。
科学论文格式要求和科技论文写作技巧 2 署名署名表示论文作者声明对论文拥有著作权、愿意文责自负,同时便于读者与作者联系。
署名包括工作单位及联系方式。
工作单位应写全称并包括所在城市名称及邮政编码,有时为进行文献分析,要求作者提供性别、出生年月、职务职称、电话号码、e-mail等信息。
用小4号宋体科学论文格式要求和科技论文写作技巧 3 摘要摘要是对论文的内容不加注释和评论的简短陈述,是文章内容的高度概括。
主要内容包括:1)该项研究工作的内容、目的及其重要性。
2)所使用的实验方法。
3)总结研究成果,突出作者的新见解。
4)研究结论及其意义。
中文摘要200字左右,中文名称的内容摘要用小2号黑体加粗,居中,其内容另起一行用小4号宋体(1.5倍行距),每段起首空两格,回行顶格。
英文内容提要项目名称规定为Abstract,用小2号Times New Roman字体加粗,居中,其内容另起一行用小4号Times New Roman 字体,标点符号用英文形式。
科学论文格式要求和科技论文写作技巧科学论文格式要求和科技论文写作技巧 4 关键词关键词是为了满足文献标引或检索工作的需要而从论文中萃取出的、表示全文主题内容信息条目的单词、词组或术语,一般列出3~8个。
有英文摘要的论文,应在英文摘要的下方著录与中文关键词相对应的英文关键词(key words )。
中文名称的关键词另起一行用小4号黑体加粗,内容用小4号黑体,一般不超过8个词,词间空一格。
英文关键词另起一行,项目名称规定为Key words,用小4号Times New Roman 字体加粗,顶格,其内容接Key words后空一格,用小4号Times New Roman字体加粗,词间用分号;隔开。
2013国赛优秀数模论文
车道被占用对城市道路通行能力的影响摘要本文主要研究交通事故占用车道对城市道路通行能力的影响.针对问题一,首先求出道路的基本通行能力,结合道路基本通行能力与定义的交通事故修正系数求得出事故发生后的实际通行能力.用SPSS软件采用Mann-Whitney U检验方法对事故发生前的实际通行能力值与事故发生后的实际通行能力值进行两独立样本检验,结果表明两者存在显著性差异.再作图观察实际通行能力值变化趋势,且对其分三个阶段进行描述,得到事故发生起伏期的实际通行能力变化很大,交通事故发生后实际通行能力在调整期相对稳定;稳定期曲线趋于平缓,实际通行能力基本稳定.针对问题二,由于在同一横断面发生的两次交通事故所占车道不同时,利用SPSS 软件对两起交通事故的实际通行能力值进行两配对样本检验,采用Wilcoxon配对秩检验方法得到:随时间的推移,两次事故发生后的实际通行能力的变化有显著性差异.然后计算两次事故稳定期车流量的比值为37%:63%,而右转与左转的流量比为38%:62%,说明左、右转流量的不同是造成两次交通事故对应的实际通行能力差异的直接原因.针对问题三,首先根据实际通行能力、上游车流量定义出拥堵系数;然后通过讨论拥堵系数与事故路段车辆排队长度之间的关系,确定了事故路段车辆排队长度与实际通行能力、事故持续时间以及上游车流量之间关系的积分模型;最后考虑到从视频中统计出的是离散型数据,因此将上述积分模型进行离散化处理,求出了事故发生后该路段部分时刻的排队长度的具体值,通过与视频中实际的排队长度进行比较,从而检验了模型的准确性.针对问题四,为了求出估算车队排队长度将到达上游路口的时间,建立了两个模型对其进行对比求解.从问题1得出的实际通行能力的数据可以拟合出其与时间的关系函数,进而得出不同时间段的实际通行能力值.模型A中,将上游车流量定为1500pcu/h,通过排队长度模型的求解得到排队长度达到140米时,持续时间为18min.模型B首先检验得到第一次交通事故发生后的上游车流量符合泊松分布.通过对实际情况的MATLAB实验仿真求出满足泊松分布的上游车流量在一小时内的随机分布数组,并将其代入排队长度模型进行求解,得到结果在1240s时,修正后的排队长度达到140米,即认为在事故持续时间20.5min左右时,车辆排队长度到达上游路口.通过对比得到,模型B较模型A更为贴近实际.关键词:两独立样本检验;Mann-Whitney U检验;Wilcoxon配对秩检验;拥堵系数;MATLAB仿真一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象.由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据.视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道.请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离.请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口.二、问题的分析按照题目要求,本文主要研究因交通事故车道被占用对城市道路通行能力的影响.交通事故发生后,由于发生事故的车辆对自己所行驶车道造成堵塞,使得该横断面实际通行能力有很大变化;而对于不同交通事故发生后堵塞不同车道的情况,同一横断面交通事故所占车道不同,该横断面实际通行能力也会有差异;不同状况的交通事故所造成的道路堵塞,对路段车辆排队长度也有很大的影响.2.1问题一的分析问题一要求描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.通过对附件视频1的观察,交通事故发生后,两辆相撞的车在第一时间对自己所行驶车道(第二、三车道)造成堵塞(附件3中所标注右转车道为车道一,直行车道为车道二,左转车道为车道三),仅剩唯一的第一车道可以通行.这导致事故所处横断面的实际通行能力有很大的变化.根据题目提供的视频附件,提取相关数据.通过对视频中所提供数据进行分析,统计以10秒为组距驶入驶出固定路段的车辆数.根据统计得到的数据,求出事故发生前道路的实际通行能力,并以此作为基准.再拟定事故发生后所处横断面的实际通行能力指标,求出从交通事故发生至事故撤离整个期间内的实际通行能力值.分析比较事故发生前的实际通行能力与事故发生后的实际通行能力的差异,说明发生事故后对道路通行能力的影响.再对事故发生后的各个实际通行能力值作散点图,观察其变化趋势,分阶段描述发生交通事故的整个期间,事故所处横断面实际通行能力的变化.2.2问题二的分析对于问题二中所要求的,分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.根据两段附件视频可知,第一次交通事故的发生造成第二、三车道被堵塞,只有第一车道可以通行;第二次交通事故的发生造成第一、二车道被堵塞,只有第三车道可以通行.根据题目的附件三可知,第一车道为右转车道,通行流量比例为21%,第三车道为左转车道,通行流量比例为35%,即两条车道的通行流量是有差异的,就有可能造成两起交通事故实际通行能力的差异.为比较所占车道不同对实际通行流量的影响,首先按第一问求实际通行能力的思路进行求解,得到各时间段车流量的实际通行能力.然后进一步分析自发生事故起,两起交通事故的实际通行能力随时间推移有无显著性差异.对于产生差异的原因,从各车道流量不同的角度出发,说明车流量对实际通行能力的影响.2.3问题三的分析问题三中要求构建数学模型分析交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.根据实际情况可知,当道路实际通行能力降低,而车流量较大时,道路车辆的排队现象越容易出现.车辆的排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量这三个变量均有很大关系.为研究该问题,建立用实际通行能力、上游车流量、事故持续时间表示排队长度的数学模型.事故发生后,道路横断面可供通车辆通行的车道减少,在很大程度上减弱了道路实际通行能力,使得车辆从路段上游驶入已知路段时的速度大于车辆驶出事故横断面的平均速度.当事故路段上游的车驶入该路段时发现路段内原有的车还没有驶离事故横断面,未驶出的车辆积少成多,就会导致该路段的拥堵.为此,定义一个拥堵系数来描述t时刻车辆进入拥堵队列的可能性大小.又由于本题道路的横断面有三条车道,且下游转道车流量的比例分别为21%,44%,35%,因此道路拥堵时,按照车流量比例最大的车道上的队列长度作为车辆排队长度计算,用微分确定单位时间内的车辆排队长度,最后建立积分模型得到排队长度的表达式,进行离散化处理,求出不同时间段的排队长度的具体值.2.4 问题四的分析问题四假设交通事故所处横断面距离上游路口变为140米,已知上游车流量和初始排队长度,要求估算车队排队长度将到达上游路口的时间.从问题1得出的实际通行能力的数据可以拟合出其与时间的关系函数,进而得出不同时间段的实际通行能力值.再分别建模模型A 、B 对此问题进行求解.模型A 中根据题意将上游车流量恒定为1500pcu/h ,再通过得到的实际通行能力值及排队长度进行求解.模型B 考虑到实际中路口上游车流量不可能在一小时内为一定值,分析在上游车流量为1500pcu/h 的情况下,车流量在一小时内连续的时间段内的车流量分布情况,所以先要得出在视频1中在交通事故发生后的上游车流量分布规律,进而求出1500pcu/h 的车流量在一小时的随机分布数组,并对实际情况的实验仿真.最后将各时间段实际通行能力值,上游车流量代入第三问模型的函数表达式中,得到各时间段的排队长度,计算第一次排队长度达到140米的时间.三、模型的假设1.假设题目中的发生的两个交通事故处于同一路段的同一横断面,且发生事故后完全占用两条车道;2.假设只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数;3.假设公交车及大巴车的的车长为标准小汽车车身长度的二倍;4.假设本文所研究的道路平坦,不考虑因发生交通事故的车辆造成道路堵塞以外的其它道路障碍.四、符号的说明1T :缺失数据的第一时间段;n T :缺失数据的第n 时间段 (42或 n );1N :驶入等待通行区域的车辆数;2N :驶出等待通行区域的车辆数;3N :标志性车辆前至事故发生地点的车辆数;4N :标志性车辆至等待通行区域的上游边界的车辆数;N : 缺失数据的补全值;11N :事故发生前驶入等待通行区域的车辆数;12N :事故发生前驶出等待通行区域的车辆数;13N :事故发生前等待通行区域内车辆数;11'N :事故发生前上一时间段驶入等待通行区域的车辆数;12'N :事故发生前上一时间段驶出等待通行区域的车辆数;13'N :事故发生前上一时间段等待通行区域内车辆数;21N :事故发生后驶入等待通行区域的车辆数;22N :事故发生后驶出等待通行区域的车辆数;N:事故发生后等待通行区域内车辆数;23'N:事故发生后上一时间段驶入等待通行区域的车辆数;21'N:事故发生后上一时间段驶出等待通行区域的车辆数;22'N:事故发生后上一时间段等待通行区域内车辆数;23U:正常通行时间内所处横断面的实际通行能力;1U:在交通事故影响下所处横断面的实际通行能力;2T:单位时间;hQ:基本通行能力;U:事故后实际通行能力;l:等待通行区域车辆排队长度;W:路段上游车流量;N:单位时间最大车流量;t:事故持续时间;:拥堵系数;v:汽车通过事故横断面的平均速度.五、模型的建立与求解5.1问题一:事故发生至撤离期间断面通行能力的变化问题一要求描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.针对此问题,具体求解分为以下三个步骤:Step1:根据统计得到的数据,求出事故发生前道路的实际通行能力;Step2:拟定事故发生后所处横断面实际通行能力指标,求出从交通事故发生至发生事故车辆撤离整个期间内的实际通行能力;Step3:分析比较以上两种情况的实际通行能力,并对其进行差异性检验;Step4:对事故发生后的实际通行能力值作图,通过适当的分析,分阶段描述在各不同阶段事故所处横断面实际通行能力的变化过程.5.1.1模型的准备1.通过视频统计数据为进行严谨详细的问题求解,首先从题目所给出的视频附件中统计详细数据.附件1中的视频记录了2013年2月28日16:38:39~17:03:50期间某路段的道路通行情况,视频共26分58秒,包括发生交通事故前的第一段正常通行时间,发生交通事故至撤离现场期间在事故影响下的实际通行时间,以及撤离后的第二段正常通行时间.第一段正常通行时间从16:38:39开始,大约持续了四分钟;发生交通事故至撤离现场时间为16:42:32~17:01:21,大约持续了19分钟.通过观察视频1中道路上车辆行驶的情况,将事故发生地点至其上游120米处划为等待通行区域的规定路段,由于统计每秒进出等待通行区域车辆数的过程时间太短,不利于统计数据,因此划定以10秒为统计时间间距,选定进出等待通行区域的参考系,根据城市道路工程设计规范内的车辆换算表,可知小汽车为1辆标准车辆,大客车换算为2辆标准车]1[.以此分别统计出每10秒驶入规定路段的车辆数及同时间段内驶出该规定路段的车辆数.2.缺失数据处理(1)由于视频1中事故发生后16:49:40~16:50:10与16:54:00~16:54:10两个时间段的影像被剪去,造成数据缺失.本文通过以标志性车辆为参考系,统计缺失数据的时间段中两个时间点1T 与n T 画面中出现的车辆数3N 与4N ,3N 为标志性车辆前至事故发生地点的车辆数,4N 为标志性车辆至等待通行区域的上游边界的车辆数. 其中1T 至n T 共经过了n 个时间间距.为补全数据,本文通过对统计的两时间点内的车辆数进行做差求平均值,得出缺失的数据均为均值N :n N N 34N -=. 补全数据结果如下:表1 补全数据表5.1.2模型的建立与求解道路通行能力是指道路上某一点某一车道或某一横断面处,单位时间内可能通过的最大交通实体(车辆或行人)数,用辆/h 或用辆/昼夜或辆/秒表示,车辆多指小汽车,当有其它车辆混入时,均采用等效通行能力的标准车辆(小汽车)为单位(pcu ). 影响道路通行能力的主要因素是道路条件、交通条件和交通外环境等.基本通行能力是指在理想的道路、交通、控制和环境条件下,理论上所能通行的最大小时交通量.实际通行能力是指在设计或评价某一具体路段时,根据该设施具体的公路几何构造、交通条件以及交通管理水平,按实际公路条件、交通条件等进行相应对基本通行能力进行修正后的小时交通量]1[.实际通行能力的计算是假定没有偶然事件发生的情况下进行的.实际交通系统中,路段可以服务的最大交通量除了受车道宽度、侧向净空等确定性因素以外,还受许多随机性因素影响,如交通事故,自然灾害、恶劣天气、道路维护等]2[.由于本文研究的对象是同一条道路,并且车道的宽度均为3.25m ,以及其他确定性因素均相同.由于研究的时间相差不大(26分钟),所以自然灾害、恶劣天气、道路维护等随机性因素均相同.因此,此路段的实际通行能力只受交通事故的影响.模型的具体建立求解过程如下:1.实际通行能力的确定实际通行能力是由道路的基本通行能力乘上若干个对其造成影响的修正系数而得到的,由于此路段的实际通行能力只受交通事故的影响,故设定交通事故修正系数来对发生交通事故后道路基本通行能力进行修正,修正后的基本通行能力即为发生交通事故后道路的实际通行能力.(1)确定交通事故修正系数f通过对视频1中事故发生至撤离的数据采集,得到了每10秒驶入等待通行区域的车辆数1N 以及驶出的车辆数2N 的数据,进而分别统计出进入等待通行区域的车流量与驶出等待通行区域的车流量.由统计结果可发现,当道路拥堵严重时,从上游路口进入该路段的车辆数会在很大程度上减少(初步分析出现这种状况的原因是由于红绿灯以及车主主观对道路的判断放弃从该路段上通行),而进出路段的车流量之比却很大,与实际通行能力相悖,因此无法直接用进出路段的车流量之比来表示事故发生后道路的实际通行能力.为此,结合道路实际情况以及上述统计结果,本文以每10秒内驶出等待通行区域的车辆数比上相同时间段等待通行区域内的车辆数来反映事故发生后的实际通行能力.处于等待通行区域的车辆越多,则实际通行能力越小,联系视频中出现的情形,当道路拥堵严重时,进入该路段的车辆数会减少,反映事故发生后的实际通行能力并不受进入车辆数的影响,而取决与等待的车辆数,因此此指标克服了上述矛盾的情况.交通事故前的第一段正常通行时间内的交通事故修正系数用1f 表示,驶入等待通行区域的车辆数为11N ,驶出此区域的车辆数为12N ,在区域内停留的车辆数为13N ,上一时间段的相应指标量分别表示为11'N ,12'N ,13'N ,定义1f 为:1312111213111'''N N N N N N f -+==; 设发生交通事故至撤离现场期间在事故影响下所处横断面的实际通行能力用2f 表示,驶入等待通行区域的车辆数为21N ,驶出的车辆数为22N ,在区域内停留的车辆数为23N ,上一时间段的相应指标量分别表示为21'N ,22'N ,23'N ,定义2f 为:2322212123212'''N N N N N N f -+==; 由于事故发生后某一时间段仍可能出现等待通行区域内的车辆数为0,即023=N .又因为22N 可能为0时,其交通事故修正系数求得为0,但事实上此处有两种可能:一是因为堵塞严重无车通过,交通事故修正系数为0;二是因为等待通行区域内无车通过,交通事故修正系数为1(表示正常通过),故产生歧义,所以采用加“1”的方法进行处理.采用加“1”法对实际通行能力影响较小,即23N 、22N 均加1后,再求两者之间的比仍可作为交通事故修正系数.因此本文采取加“1”法进行修正其交通事故系数,既消除歧义,又反映了实际通行能力.经过加“1”法修正后:事故发生前修正系数:1'''111'1312111213111+-++=++=N N N N N N f ; 事故发生后修正系数: 1'''111'2322212123212+-++=++=N N N N N N f . (2)确定基本通行能力Q由附件3图中可知,道路同一方向横断面上的三条车道,每条车道的宽度为固定的3.25m,根据查阅相关资料,宽度为3.25m 的车道最大通行速度为60km/h,当道路通行速度为60km/h 时,查表可知该段道路的一般基本通行能力为1800pcu/h ]3[.由于基本通行能力是指在理想状态下,理论上所能通行的最大小时交通量,为进一步确定已知道路基本通行能力,根据基本通行能力定义,道路基本通行能力为道路理想状态下单位时间h T 内,可能通过的最大车辆数N ,得到计算已知道路基本通行能力的公式:)/(h pcu T N Q h=; 设事故发生前没有任何堵塞的情况下道路为理想状态,且在此时间段内(不考虑堵车),通过该路段的车辆中,根据发生交通事故前道路上行驶的车流量统计数据,每10秒通过规定的120m 路程的车辆最大值为5辆,代入公式计算得:)(180********h / pcu ss pcu T N Q h===; (3)求解发生事故后实际通行能力U 根据相关资料]2[由基本通行能力与修正系数计算实际通行能力的关系公式为:f Q U ⨯=.2.事故发生前后实际通行能力的差异分析比较以上两组统计值,即未发生交通事故时的实际通行能力值和发生交通事故期间的道路实际通行能力值.由于视频所给出的两个时期时间长短不一致,故统计出的数值个数不同,并且我们对其总体分布不甚了解,两独立样本的非参数检验是在对总体的分布不了解的情况下,通过对独立样本的Mann-Whitney U 检验分析来推断样本来自的两个总体的分布等是否存在显著性差异的方法]4[.因此本文通过SPSS 采用两独立样本检验法来对这两组数据样本进行差异性检验(具体操作步骤及详细结果见附录1):表2 发生交通事故前后实际通行能力独立样本检验结果表检验统计量a实际通行能力Mann-Whitney U 344.500Wilcoxon W 7484.500Z -5.170渐近显著性(双侧) .000a. 分组变量: 是否发生车祸由上表知,采用Mann-Whitney U 检验,渐近显著性(双侧)值为0.000,小于0.01,因此拒绝原假设,认为发生车祸的前后的实际通行能力指标存在极显著差异.得出结论:由于突发的交通事故,对原来正常的道路通行能力有显著性影响,对比道路正常通行能力和事故期间的实际通行能力,可知交通事故的发生使得道路通行能力明显下降.3. 结果分析对事故发生后的实际通行能力值作图,并分阶段描述在各不同阶段事故所处横断面实际通行能力的变化过程.根据统计出的交通事故发生至事故撤离整个期间内的实际通行能力值,做出散点图如下:图1 第一起交通事故发生后实际通行能力变化图由图像观察可得,事故发生初期0~200秒的实际通行能力变化很大,定为交通事故发生后实际通行能力的起伏期;200~400秒相对稳定可设为交通事故发生后实际通行能力的调整期;400秒以后曲线趋于平缓,事故发生后的实际通行能力趋于稳定.对于事故发生初期实际通行能力起伏较大的原因,根据视频的显示,初步分析其原因为红绿灯的变化及上下班高峰期的影响,而对于后期实际通行能力趋于稳定的原因,是由于出现了交通堵塞,开始进行排队通过,且随着排队的车辆数目量增多,红绿灯对平稳期的通行影响逐渐较小.4.红绿灯的影响通过上诉的结果分析,可知红绿灯对实际通行能力有一定的影响,本文将以红绿灯的相位时间为统计时间间距对视频1中进出等待通行区域的车辆数进行统计.选定进出等待通行区域的参考系,以此分别统计出每30秒进入规定路段的车辆数及同时间段内驶出该规定路段的车辆数.将进入规定的等待通行区域对应的时间化为1,2,3, (26)做出实际通行能力与对应时间的关系图,如下:图2 实际通行能力与红绿灯对应时间的关系图通过对实际通行能力与对应时间的关系图的观察,可知在1~16的时间内,实际通行能力呈起伏状,红绿灯的相位周期为1分钟,整个阶段内红灯为峰值,绿灯为谷值.而在17~26的时间内,开始进行排队,实际通行能力趋于稳定,因此红绿灯对事故发生后前期有较显著变化,而对事故发生后末期并不影响.5.2问题二:交通事故所占车道不同对通行能力的影响问题二要求分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.针对此问题,具体求解为以下三个步骤:Step1:拟定发生事故后事故所处横断面实际通行能力,求出从交通事故发生至事故撤离整个期间内的实际通行能力;Step2:对两次交通事故发生后,随时间的推移,对相同时段的道路实际通行能力值用SPSS软件两配对样本检验进行显著性差异分析;Step3:画图比较分析,说明两次交通事故发生所占车道不同对该横断面实际通行能力影响的差异.5.2.1模型的准备为对问题进行严谨详细的求解,首先从题目所给出的视频附件中统计详细数据.针对问题中所提出的对比两起事故在发生之后对道路实际通行能力的影响,我们仅对发生交通事故至撤离现场这一阶段进行数据统计.发生交通事故至撤离现场阶段的时间为。
全国大学生数学建模竞赛论文超级模板
第三部分 模型的假设…………………………………………………………()
第四部分 定义与符号说明……………………………… …………………()
第五部分 模型的建立与求解………………………………… ……………()
1.问题1的模型………………………………………………………………()
第三部分:问题2的。。。个模型(4号宋体)
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
第四部分:问题3的。。。个模型(4号宋体)
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
六、模型评价与推广
对本文中的模型给出比较客观的评价,必须实事求是,有根据,以便评卷人参考。
(数学建模论文书写基本框架,仅供参考)
题目(黑体不加粗三号居中)
摘要(黑体不加粗四号居中)
(摘要正文小4号,写法如下)
(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点我们对问题1用。。。。。。。。的方法解决;对问题2用。。。。。。。。的方法解决;对问题3用。。。。。。。。的方法解决。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
三、模型假设(4号黑体)
(以下小4号)
1.假设题目所给的数据真实可靠;
2.
3.
4.
5.
6.
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
注意:假设对整篇文章具有指导性,有时决定问题的难易。一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。注意罗列要工整。
全国电子设计大赛论文设计报告论文模板
音频信号分析仪(A题)摘要:本音频信号分析仪由32位MCU为主控制器,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT快速傅氏变换运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。
该系统能够精确测量的音频信号频率围为20Hz-10KHz,其幅度围为5mVpp-5Vpp,分辨力分为20Hz和100Hz两档。
测量功率精确度高达1%,并且能够准确的测量周期信号的周期,是理想的音频信号分析仪的解决方案。
关键词:FFTMCU 频谱功率目录1 系统方案论证与比较1.1 引言1.2 采样方法比较与选择方案一、用DDS芯片配合FIFO对信号进行采集,通过DDS集成芯片产生一个频率稳定度和精度相当高的信号作为FIFO的时钟,然后由FIFO对A/D转换的结果进行采集和存储,最后送MCU处理。
方案二、直接由32位MCU的定时中断进行信号的采集,然后对信号分析。
由于32位MCU -LPC2148是60M的单指令周期处理器,所以其定时精确度为16.7ns,已经远远可以实现我们的40.96KHz的采样率,而且控制方便成本便宜,所以我们选择由MCU直接采样。
1.3 处理器的比较与选择由于快速傅立叶变换FFT算法设计大量的浮点运算,由于一个浮点占用四个字节,所以要占用大量的存,同时浮点运算时间很慢,所以采用普通的8位MCU 一般难以在一定的时间完成运算,所以综合存的大小以及运算速度,我们采用Philips 的32位的单片机LPC2148,它拥有32K的RAM,并且时钟频率高达60M,所以对于浮点运算不论是在速度上还是在存上都能够很快的处理。
1.4 周期性判别与测量方法比较与选择对于普通的音频信号,频率分量一般较多,它不具有周期性。
测量周期可以在时域测量也可以在频域测量,但是由于频域测量周期性要求某些频率点具有由规律的零点或接近零点出现,所以对于较为复杂的,频率分量较多且功率分布较均匀且低信号就无确的分析其周期性。
2022年研究生数模国赛B题论文模板
2022年研究生数模国赛B题论文模板2022年研究生数模国赛B题论文模板方形件组批优化问题数学模型摘要方形件组批优化问题本是本文要解决的数学问题,为了明确方形件组批优化问题,本文针对方形件组批优化问题进行了分析建模,对方形件组批优化问题进行了参考文献研究,建立了方形件组批优化问题的相应模型,推导出方形件组批优化问题的计算公式,编写了方形件组批优化问题的计算程序,经过程序运行,得到方形件组批优化问题程序计算结果。
具体有:对于问题一,这是方形件组批优化问题最重要的问题,根据题目,对问题一进行了分析,参考已有的资料,建立了方形件组批优化问题一的数学模型,推导出问题一的计算公式,编写出方形件组批优化问题一的计算程序。
求出了方形件组批优化问题一的计算结果。
对于问题二,方形件组批优化问题二比问题一复杂的,是方形件组批优化问题的核心,分析的内容多,计算机的东西也多。
在方形件组批优化问题一的基础上,根据方形件组批优化问题,对问题二进行了分析,参考已有的资料,建立了方形件组批优化问题二的数学模型,推导出问题二的计算公式,编写出方形件组批优化问题二的计算程序。
求出了问题二的计算结果,并以图表形式表达结果。
对于问题三,方形件组批优化问题三是问题一和问题二的深入。
在问题一和问题二的基础上,根据方形件组批优化问题,对问题三进行了分析,参考已有的资料,建立了问题三的数学模型,推导出方形件组批优化问题三的计算公式,编写出方形件组批优化问题三的计算程序。
求出了方形件组批优化问题三的计算结果,并以图表形式表达结果,并且进行了分析讨论。
对于问题4,方形件组批优化问题4是问题一、问题二和问题三的扩展。
在问题一、问题二和问题三的基础上,根据方形件组批优化问题,对方形件组批优化问题4进行了分析,参考已有的资料,建立了方形件组批优化问题数学模型,推导出方形件组批优化问题4的计算公式,编写出问题4的计算程序。
求出了问题4的计算结果,并以图表形式表达结果,并且进行了分析讨论。
国赛论文模版
2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号(从A/B/C/D中选择一项填写):我们的报名参赛队号(12位数字全国统一编号): 19023008 参赛学校(完整的学校全称,不含院系名):广东金融学院参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期: 2015 年 9 月 14 日(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。
以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。
)2015高教社杯全国大学生数学建模竞赛编号专用页全国评阅随机编号(由全国组委会填写):题目摘要关键词:一、问题重述1.1 问题背景1.2 基本信息1.3 问题提出二、问题分析三、模型假设四、符号说明各符号及其含义见表1表 1 符号说明表符号含义五、模型建立与求解5.1 问题一的分析与求解5.1.1模型准备5.1.2模型的建立5.1.3模型的求解5.1.4结果分析5.2 问题二的分析与求解5.2.1模型准备5.2.2模型的建立5.2.3模型的求解5.2.4 结果分析5.3 问题三的分析与求解5.3.1模型准备5.3.2模型的建立5.3.3模型的求解5.3.4结果分析5.4 问题四的分析与求解5.4.1模型准备5.4.2模型的建立5.4.3模型的求解5.4.4结果分析六、模型评价及推广6.1 模型评价6.1.1优点6.1.2缺点6.2 模型改进与推广七、参考文献[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2004:85.期刊[5]陈东晓.浅议建构主义对东亚安全前景的再认识[J].中国学报,2000,11(4):34.学位论文[]整理.论文名[D].长沙:湖南大学,2009.网上资源[]新华网,《和平解决的进程已经开始》,bbb://aaasinaaaabbb,2003-08-29。
国赛一等奖优秀论文
葡萄酒质量的综合评价分析模型中国海洋大学罗聃徐兴成谭萍指导教师高翔【摘要】近年来,我国掀起了一场葡萄酒热,对葡萄酒的需求与日俱增,特别是随着食品科学技术的发展,人们不再满足传统感官评价葡萄酒的水平,如何运用数据资料定量研究葡萄酒的品质,加快建立葡萄酒市场指标规则成为人们关注的焦点。
本文主要研究了葡萄酒的品质与葡萄酒自身以及酿酒葡萄的理化指标的关系,给出了基于葡萄酒自身的理化指标以及酿酒葡萄的理化指标与芳香物质的定量综合评价模型。
首先基于两组评酒员对同一批葡萄酒的评价分数数据,采用假设检验中的t检验法建立评估两组数据差异的模型,得到了两组评酒员的评分存在显著差异的结论,并通过对两组数据进行方差分析,以判别结果具有的稳定性作为标准,得到第二组比较可靠。
接下来我们结合酿酒葡萄的理化指标和可信组评酒员的打分所刻画的葡萄酒的质量对酿酒葡萄进行分级,用聚类分析的方法将红,白葡萄酒和酿酒葡萄各分成了5类,然后对分好的葡萄类所酿造的葡萄酒进行统计,得到各类葡萄所对应的级别。
更进一步,我们分析了酿酒葡萄和葡萄酒的理化指标之间的联系,运用主成分分析的方法,从酿酒葡萄的30个指标中提取出了12个主要成分,进而通过逐步回归的方法建立起酿酒葡萄和葡萄酒的理化指标联系的模型。
最后我们将提取葡萄及葡萄酒的理化指标与芳香物质中的主成分,利用逐步回归的方法考察理化指标与芳香物质对葡萄酒质量的影响程度,通过对芳香物质对葡萄酒质量影响比重得到芳香物质对葡萄酒的质量有30%以上的影响比重(白葡萄的芳香物质对白葡萄酒的质量影响相对更大),故而不能完全用酿酒葡萄和葡萄酒的理化指标评价葡萄酒的质量。
关键词:假设检验聚类分析主成分分析逐步回归一、问题重述1.1问题背景葡萄酒是由新鲜葡萄或葡萄汁经过酒精发酵而得到的一种含酒精饮料。
葡萄酒质量是其外观、香气、口感、整体的综合表现。
一方面,酒中的糖、酸、矿物质和酚类化合物,都具有各自独特的风味,它们组成了葡萄酒的酒体;另一方面,酒中大量的挥发性物质,包括醇、脂、醛、碳氢化合物等,都具有不同浓度、不同愉悦程度的香气,葡萄酒最终的质量则是葡萄酒中各种成分协调平衡的结果。
国赛数学建模竞赛优秀论文
I 、问题重述 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:请尝试建立数学模型讨论下列问题: 1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?中两组评酒员的评价结果有无显著性差异,哪一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?酒的理化指标来评价葡萄酒的质量?II 、问题分析问题思路问题一: 本问题中,两组各10名评酒员分别对27种红葡萄酒和28种白葡萄酒进行评分。
其中,评分标准一样,评酒员都能理性的按照标准给酒一个合理的评分。
由于,每个人的口感、视觉效果和嗅觉不一样,品酒员给每种酒打的分数不一样而产生误差。
品酒员给每种酒打的分数不一样而产生误差。
根据表格,根据表格,分别计算出两组10名评酒员的评价总分、标准方差、平均值。
运用SAS 对两组进行配对样本T 检验,并用Excle 进行图标分析。
对比两种结果并得出统一结论。
给及两组评酒员的评价结果的差异性和可信度进行评估。
组评酒员的评价结果的差异性和可信度进行评估。
问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级,这里的分级问题需要考虑两方面的问题处理:1、对葡萄理化指标和影响葡萄酒质量评定的标准进行整合分析,2、现实中还没有统一的酿酒葡萄分级标准,现实中还没有统一的酿酒葡萄分级标准,对本题中葡萄进行分级需要有一对本题中葡萄进行分级需要有一套标准。
全国大学生数学建模竞赛论文范例
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。
文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。
一、问题重述在当今社会,具体问题背景。
本次数学建模竞赛的问题是:详细描述问题。
需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。
二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。
从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。
进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。
基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。
三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。
四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。
详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。
详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。
数学建模国赛一等奖论文
电力市场输电阻塞管理模型摘要本文通过设计合理的阻塞费用计算规则,建立了电力市场的输电阻塞管理模型。
通过对各机组出力方案实验数据的分析,用最小二乘法进行拟合,得到了各线路上有功潮流关于各发电机组出力的近似表达式。
按照电力市场规则,确定各机组的出力分配预案。
如果执行该预案会发生输电阻塞,则调整方案,并对引起的部分序容量和序外容量的收益损失,设计了阻塞费用计算规则。
通过引入危险因子来反映输电线路的安全性,根据安全且经济的原则,把输电阻塞管理问题归结为:以求解阻塞费用和危险因子最小值为目标的双目标规划问题。
采用“两步走”的策略,把双目标规划转化为两次单目标规划:首先以危险因子为目标函数,得到其最小值;然后以其最小值为约束,找出使阻塞管理费用最小的机组出力分配方案。
当预报负荷为982.4MW时,分配预案的清算价为303元/MWh,购电成本为74416.8元,此时发生输电阻塞,经过调整后可以消除,阻塞费用为3264元。
当预报负荷为1052.8MW时,分配预案的清算价为356元/MWh,购电成本为93699.2元,此时发生输电阻塞,经过调整后可以使用线路的安全裕度输电,阻塞费用为1437.5元。
最后,本文分析了各线路的潮流限值调整对最大负荷的影响,据此给电网公司提出了建议;并提出了模型的改进方案。
一、问题的重述我国电力系统的市场化改革正在积极、稳步地进行,随着用电紧的缓解,电力市场化将进入新一轮的发展,这给有关产业和研究部门带来了可预期的机遇和挑战。
电网公司在组织电力的交易、调度和配送时,必须遵循电网“安全第一”的原则,同时按照购电费用最小的经济目标,制订如下电力市场交易规则:1、以15分钟为一个时段组织交易,每台机组在当前时段开始时刻前给出下一个时段的报价。
各机组将可用出力由低到高分成至多10段报价,每个段的长度称为段容量,每个段容量报一个段价,段价按段序数单调不减。
2、在当前时段,市场交易-调度中心根据下一个时段的负荷预报、每台机组的报价、当前出力和出力改变速率,按段价从低到高选取各机组的段容量或其部分,直到它们之和等于预报的负荷,这时每个机组被选入的段容量或其部分之和形成该时段该机组的出力分配预案。
全国数学建模竞赛论文写作模板
批注 [z6]: 稳定性及误差分析
校苑数模网
Байду номын сангаас
目 录
摘 要 ............................................................................................................................. 1 一、问题重述 ............................................................................................................... 4 二、问题分析 ............................................................................................................... 4 2.1 概 论 .............................................................................................................. 4 2.2 问题一............................................................................................................. 4 2.3 问题二............................................................................................................. 4 三、模型假设 ............................................................................................................... 4 四、符号说明 ............................................................................................................... 5 五、模型的建立与求解 ............................................................................................... 6 5.1 问题一............................................................................................................. 6 5.1.1 问题一的分析...................................................................................... 6 5.1.2 ××模型的建立.................................................................................. 6 5.1.3 模型求解.............................................................................................. 6 5.2 问题二 .......................................................................................................... 6 5.2.1 问题二的分析...................................................................................... 6 5.2.2 ××模型的建立.................................................................................. 6 5.2.3 模型求解.............................................................................................. 6 六、模型评价 ............................................................................................................... 7 6.1 模型优点......................................................................................................... 7 6.2 模型缺点......................................................................................................... 7 6.3 模型改进......................................................................................................... 7 七、参考文献 ............................................................................................................... 7 附录 ............................................................................................................................... 8
国赛建模论文模板
2013高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人阅编号(由赛区组委会评阅前进行编号):
我们参赛选择的题号是(从A/B/C/D中选择一项填写):
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名):
参赛队员(打印并签名):1.
2.
3.
指导教师或指导教师组负责人(打印并签名):
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
国赛数模冲刺必看公交调度一等奖论文
第三篇 公交车调度方案的优化模型2001年 B 题 公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。
下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。
该条公交线路上行方向共14 站,下行方向共13 站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。
公交公司配给该线路同一型 号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20 公里/小时。
运营 调度要求,乘客候车时间一般不要超过10 分钟,早高峰时一般不要超过5 分钟,车辆满载率不应 超过120%,一般也不要低于50%。
试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包 括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司 双方的利益;等等。
如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题 的要求,如果要设计更好的调度方案,应如何采集运营数据。
表3-1某路公交汽车各时组每站上下车人数统计表上行方向:A13开往A0站名 A13A12 A11 A10 A9 0.73 76 A8 2.04 90 A7 1.26 48 A62.29 83 A5 A4 A3 A2 A1 A0 站间距(公里)5:00-6:001.6 0.5 1 1 1.2 0.4 1 1.03 0.53 上 下 上 下 上 下 上 下 上 下371 060 8 52 9 43 13 85 32 26 18 45 24 45 25 11 85 0 57 0 20 48 45 81 6:00-7:00 7:00-8:00 8:00-9:009:00-10:001990376 333 256 99 105 164 3626634 528 447 205 227 272 2064 322 305 235 106 123 169 1186 205 166 147 81 75 120 151 120 108 52 55 81 181 157 133 54 58 84 141 140 108 46 49 71 141 103 84 39 41 70 104 108 82 589 239 948 461 477 300 281 181 215 136 254 131 215 111 186 103 162 78 594 588 868 315 542 523 622 800 958 510 176 308 307 68 407 208 300 288 921 904 259 465 454 99 0615 00 1058 1097 1793 801 469 560 636 1871 1459 549 634 304 407 214 299 264 321 204 263 185 221 180 189 180271 621 172 411 119 280 135 291 129 256 103 197 90 486 971 324 551 212 442 253 420 232 389 211 297 185 339 185439 157 275 234 60 0 0 440 245 339 408 1132 759 267 78 143 162 36 250 136 187 233 774 201 75 123 112 26 178 105 153 167 532 260 74 138 117 30 196 119 159 153 534 221 65 103 112 26 164 111 134 148 488 0 483 0 010:00-11:00 上 923下 0 385 0 11:00-12:00上 957 下 0340 0 12:00-13:00 上 873下 0 333 0 13:00-14:00上 779 173 66 108 97 23 下 0137 85 113 116 384 263 0 14:00-15:00 上 625170 49 139 80 150 49 75 97 120 383 85 85 20 85 20 下 0 36 39 47 82176 80239 015:00-16:00上 63512498 152下36 16:00-17:00 上 1493299 240 199 80 85 135 17:00-18:00 上 2011379 311 230 39 57 88 396 194 497 257 167 108 91 209 404 450 479 694 165 237 85 196 210 441 296 573 108 231 50 339 428 731 586 957 201 390 88 129 80 107 110 353 390 120 208 197 49 335 157 255 251 800 508 140 250 259 61 229 0 下 0557 0 下 0110 118 171 124 107 89 390 253 293 378 1228 793 18:00-19:00 上 691194 53 93 82 22 0 336 0 下 045642250163714348 55 23 43 17 32 14 3 80 46 34 36 24 26 21 2 150 89 131 125 428 19:00-20:00 上 350 89 83 60 59 52 62 5 27 48 22 34 16 30 1 48 64 38 46 28 40 3 47 66 204 37 47 160 27 41 128 11 下 0 63 116 75 108 40 196 77 139 0 20:00-21:00 上 304 72 9 下 0 38 80 84 143 47 117 0 21:00-22:00 上 209 53 55 29 6 下 0 19 0 33 78 63 125 5 92 0 22:00-23:00 上 5 5 3 2 9 1 下 33 58 18 17 27 12 7 9 32 21 表3-1(续) 某路公交汽车各时组每站上下车人数统计表 下行方向:A0 开往A13站名 A0A2 1.56 3 A31 A4 0.442 A5 1.2 A6 A7 A8 1.3 A9 2 A10 A11 A12 A13 站间距(公里) 5:00-6:00 0.97 2.29 0.73 1 1 1 0.5 1.62 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下22 0 4 4 4 3 3 3 0 3 0 9 0 2 1 1 6 7 7 5 3 4 2 6:00-7:00 7:00-8:00 795 0 143 70 167 40 84 151 184 420 710 404 756 235 410 155 246 127 199 105 174 102 166 130 219 169 253 305 459 468 737 328 635 138 266 112 186 105 190188 205 455 780 532 827 308 511 206 346 150 238 144 215 133 210 165 238 194 307 404 617 649 109 195 272 849 333 856 162 498 120 320 108 256 92 137 147 343 545 345 529 203 336 150 191 104 175 95 130 93 45 53 75 138 16 40 109 126 444 120 428 76 108 271 2328 380 294 2706 374 266 1556 204 427 156 492 158 274 100 183 59 224 157 224 149 125 80 331 374 354 367 198 199 143 147 107 122 88 45 0 0 265 373 958 153 46 237 376 1167 99 27 136 219 556 8:00-9:00 0 0 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:000 0 902 0 157 147 103 130 94 276 50 82 59 96 48 68 40 65 43 60 49 78 64 18 154 438 15 128 346 0 59 185 41 847 0 132 48 67 0 48 143 34 706 0 90 118 40 66 12 98 13 0 261 0 70 40 205 97 127 102 136 118 155 152 215 277 401 432 103 104 90 119 36 770 0 97 126 43 59 75 43 209 101 246 141 341 229 549 388 127 42 115 309 15 118 346 19 839 0 133 84 156 48 69 120 112 166 136 253 266 452 416 342 304 147 147 94 0 48 153 54 1110 170 110 1837 260 175 3020 474 330 1966 350 189 73 79 0 0 63 167 95 102 144 425 122 34 162 269 784 205 56 278 448 1249 132 40 246 320 1010 330 96 146 106 248 194 204 150 88 0 0 304 157 494 122 423 48 587 193 399 129 165 59 0 0 934 1016 606 471 787 187 306 153 230 144 243289 690 124 290 87 335 505 143 201 102 146 95 0 0 939 0 223 130 113 107 75 56 86 43 70 40 6717 0 59 155 36 154 398 640 0 126 43 69 13 95 12 0 319 0 43 219 82 90 127 34 636 0 110 73128 4156 98 4219213210712310129022:00-23:00 上下294433551202420468758 359241694247156017335 0108 49 136 公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。
数学建模国赛优秀论文
Vm
h' L1 tan 0
S (h ' ( L1 x ) tan )dx
(2)模型求解与验证: 由于以上体积函数形式不一,且较为复杂,若通过正常的积分求取结果会比 较繁琐。考虑问题一不要求找出具体函数关系,只需要每隔 1cm 标注一次结果, 故利用龙贝格积分 [2 ] 算法求解积分的数值解,从而对罐容量进行标定。龙贝格积 分法具体算法如下: 设用复合梯形计算积分 f x dx 的近似值, 取步长 h
2.14° =4.6°
得到α和β后,对罐容量进行重新标定。检验模型时利用相对标准偏差的思 想,构造评价函数 ,得到结果 0.0055%,误差极其微小,说明了所建模型 的正确性和可靠性。 所建模型充分利用了附表中的数据,并合理地筛选了有效数据,适于推广到 运输,化工,储藏行业。
图4
油罐内油料体积
V ( h)
h L1 tan 0
S (h ( L1 x) tan )dx
② L2 tan h M L1 tan 时:如图 5 所示
图5
油罐内油料体积 V (h)
L1 L2
0
S (h ( L1 x) tan )dx
-7-
Hale Waihona Puke 贝格算法计算得到油位高度间隔为 1cm 的罐容表标定值,列表如下:
表 1 小椭圆型储油罐罐容表
油高(mm) 储油罐油量(L) 油高(mm) 储油罐油量(L) 油高(mm) 储油罐油量(L) 0 0~1.674387 400 965.660776 800 2661.422634 10 3.531122 410 1004.953782 810 2703.552425 20 6.263648 420 1044.583921 820 2745.491028 30 9.976866 430 1084.534871 830 2787.224773 40 14.758956 440 1124.790717 840 2828.739779 50 20.694101 450 1165.335924 850 2870.021937 60 27.858068 460 1206.155298 860 2911.056886 70 36.320883 470 1247.233966 870 2951.829995 80 46.147722 480 1288.557344 880 2992.326337 90 57.399578 490 1330.111117 890 3032.530662 100 70.133778 500 1371.881217 900 3072.42737 110 84.404394 510 1413.8538 910 3112.000481 120 100.262581 520 1456.01523 920 3151.233596 130 117.756843 530 1498.352059 930 3190.109866 140 136.933273 540 1540.851013 940 3228.611946 150 157.818421 550 1583.498973 950 3266.721951 160 180.259099 560 1626.282961 960 3304.421402 170 203.999405 570 1669.190128 970 3341.691168 180 228.906603 580 1712.20774 980 3378.511401 190 254.884875 590 1755.32316 990 3414.861462 200 281.857661 600 1798.523842 1000 3450.719834 210 309.760769 610 1841.797318 1010 3486.06402 220 338.538729 620 1885.131182 1020 3520.870436 230 368.142595 630 1928.513081 1030 3555.114269 240 398.5285 640 1971.930708 1040 3588.76932 250 429.656656 650 2015.371783 1050 3621.80782 260 461.49062 660 2058.824048 1060 3654.20019 270 493.996746 670 2102.275257 1070 3685.91477 280 527.143753 680 2145.713159 1080 3716.917462 290 560.902397 690 2189.125495 1090 3747.171291 300 595.245191 700 2232.499981 1100 3776.635821 310 630.146191 710 2275.824302 1110 3805.266392 320 665.580805 720 2319.086097 1120 3833.013049 330 701.525646 730 2362.272952 1130 3859.819002 340 737.958395 740 2405.372383 1140 3885.618241 350 774.857693 750 2448.371831 1150 3910.33151 360 812.203042 760 2491.258644 1160 3933.85845 370 849.974723 770 2534.020068 1170 3956.05568 380 888.153723 780 2576.643232 1180 3973.212325 390 926.721671 790 2619.115135 1190 3992.388755 1200 4009.883017 为分析模型的准确性, 将模型求得的数据与表中所给数据在同一坐标中作出 V-h 曲线图如下:
国赛A题优秀论文
葡萄酒的评价模型摘要本文主要解决葡萄酒的评价问题,运用多种数理统计方法通过MATLAB和SPSS软件对可能影响葡萄酒质量的因素进行统计分析,初步得出对葡萄酒的理化指标评价和主观评价具有差异性。
对于问题一中的显着性差异分析,针对两组评酒员对于每一种酒的评分,本文用α=),结果显示两组评酒员对红葡萄酒和白葡萄酒的评分MATLAB进行t检验(0.05都具有显着性差异。
对于可信度的问题,我们用EXCEL进行方差与置信区间的综合分析,得出对红、白葡萄酒的评价结果第二组可信度均较高。
问题二,首先用相关性分析计算出各个理化指标之间以及各理化指标与葡萄酒质量间的Pearson相关系数r,然后选取和葡萄酒质量相关程度较大(0.2r>)的理化指标进行聚类分析,依照指标的不同情况可将其分别分为3、4、5类,得出在每种分类情况下的分类方案。
最后,我们计算每种分类方案下各类酿酒葡萄质量得分的平均值,分值越高则级别越高,确定了最终的分级方案。
问题三,我们先对酿酒葡萄的理化指标进行主成分分析,利用降维技术找出能代表酿酒葡萄的主要理化指标,然后再将得出的主要理化指标与葡萄酒的理化指标进行相关性分析,根据相关系数确定二者理化指标间的关系。
结果表明,葡萄酒的理化指标除了由相对应的酿酒葡萄的理化指标决定外,还可由其它相关性大的理化指标决定。
最后,对问题四建立多元线性回归分析模型,对第一问中计算出了红、白葡萄酒和葡萄的样本相关系数进行比较,发现用葡萄的理化指标衡量葡萄酒的质量是不全面的,芳香物质可能会影响酒的香气从而影响酒的整体质量。
因此在第二小问中,先根据葡萄酒中芳香物质的化学成分将其分类(醛、烃、醇、酯、酸、酮以及其他含氧有机物),再利用多元线性回归模型计算出其样本相关系数,说明芳香物质通过酒的香气来影响酒的品质,从而说明了理化指标分析和主观评分在葡萄酒质量分析中的差异性。
关键词:t检验相关性分析聚类分析主成分分析多元线性回归问题重述葡萄酒是世界公认的对人体有益的健康酒精饮品,其生产方式方便,经济,且风味极佳.因而越来越受到广大市民的青睐,同时葡萄酒的质量以及等级划分也越来越受到人们的关注。
全国赛优秀论文
承诺书我们仔细阅读了暑期数学建模竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B中选择一项填写): A参赛队员(打印并签名) :1. 任慧慧2. 左艺鸣3. 孙德明指导教师或指导教师组负责人(打印并签名):教练组日期: 2013 年 8 月 19 日评阅编号(由组委会评阅前进行编号):编号专用页评阅编号(由组委会评阅前进行编号):统一编号:评阅编号:A题城市表层土壤重金属污染分析摘要针对问题一,通过对数据的处理,利用matlab软件绘制出8种不同重金属元素浓度的空间分布图,在这过程中我们发现,地区的综合污染指数随着海拔高度的改变而改变,随着海拔的增高,污染程度呈下降趋势,且海拔高度对综合污染指数影响较显著。
总体来说,污染程度由西南部平原向东北部山地递减。
我们利用内梅罗指数法建立土壤重金属污染物的综合评价模型求得各种金属在不同区域的影响来分析该城区内不同区域重金属的污染程度。
在考虑不同重金属对土壤的有害程度不同的情况下,将单因子污染指数中的平均数用加权平均数来求,求出各种金属的污染程度。
再用综合指数法将城市5个不同区域重金属元素危害指数划分污染程度等级,得出如下结论:2类区严重污染(工业区),4类区中度污染(交通区),1类区轻度污染状态(生活区),5类区轻度污染状态(公园绿地区),3类区较环保状态(山区)。
针对问题二,针对问题三,针对问题四,关键字:matlab软件内梅罗指数法偏微分方程一.问题重述1.1问题背景随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
国赛论文
6
将表 1 的数据代入公式(6)~(8),可以得到四个城市的空驶率、空驶里 程、空驶时间和乘客平均等待时间,如下图所示:
图 1 正常情形时四个城市的空驶率、空驶里程、空驶时间和平均乘客等待时间
在没有打车软件补贴的情况下,北京、上海、成都和大连四个城市的空驶率 都接近或超过 35%,空驶里程接近或者超过 100 千米,空驶时间超过 6 小时,部 分城市的乘客平均等待时间超过 10 分钟,尤其是成都的空驶率达到 42.98%,空 驶距离达到 200 千米,上海的空驶时间超过 8 小时,乘客平均等待时间超过 17 分钟。 5.2 问题二的模型建立和解决
7
在对乘客进行现金补贴 b1 和积分补贴贴现 b2 的情况下,使用出租车出行的居 民中对价格敏感人群所占比例将发生变化:
2
(1 1)
kE P1
(9)
式中, P1 为乘客实际支付的单次平均费用,满足:
P1 P0 b1 b2
(10)
在对司机进行现金补贴 b3 和积分补贴贴现 b4 的情况下,司机会增加接单的频 率以获得更多的收益,从而增加了全市出租车营运时间。假设一定范围内,出租 车司机的营运时间与超额收益成负相关关系,则有:
K 1 R A D w k E (P0 k E) 1
(6)
T0 v N r
P0
除了考虑出租车的空驶率,本文还要考虑乘客的等待时间。利用柯布—道格
拉斯函数形式来量化乘客等待时间与出租车空驶里程的关系,如下所示:
5
t S
(7)
式中, t 为乘客平均等待时间, 和 分别表示城市需求弹性系数和空驶里
最后,对所建立的模型和求解方法的优缺点给出了客观的评价,并指出了改进的方 法。 关键字: 打车软件服务平台 补贴方案 数学模型 Visio 图 博弈分析
2021全国大学生数学建模竞赛论文模板
数学建模论文标题摘要摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。
一般说来,摘要应包含以下五个方面的内容:①研究的主要问题;②建立的什么模型;③用的什么求解方法;④主要结果(简单、主要的);⑤自我评价和推广。
摘要中尽量不要有数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:①假设的合理性②建模的创造性③结果的正确性④文字表述的清晰性为主要标准。
所以论文中应努力反映出这些特点。
一、 问题的重述数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。
此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。
这部分的内容是将原问题进行整理,将已知和问题明确化即可。
注意:在写这部分的内容时,绝对不可照抄原题!应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。
应尽量简短,没有必要像原题一样面面俱到。
二、 模型假设作假设时需要注意的问题:1. 对问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!2. 问题重述不能代替假设!也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!3. 与题目无关的假设,就不必在此写出了。
三、 变量说明为了使读者能更充分的理解你所做的工作,对你的模型中所用到的变量,应一一加以说明,变量的输入请使用公式编辑器。
https:///video/BV1qt411G7Bv?p=11注意:1. 变量说明要尽量全,即是说,在后面模型建立模型求解过程中使用到的所有重要的变量,都应该在此加以说明。
2. 要与数学中的习惯相符,不要使用程序中变量的写法比如: 一般表示圆周率;c b a ,, 一般表示常量、已知量;z y x ,, 一般表示变量、未知量;再比如:变量21,a a 等,就不要写成:a[0],a[1]或a(1),a(2)四、模型的建立与求解这一部分是文章的重点,要特别突出你的创造性的工作。
国赛论文模板
基于××方法对××问题的研究摘要本文针对××××的问题,运用了××××、×××及××××等理论或方法,构建了××××、×××及××等模型,综合运用了MATLAB、EVIEWS及SPSS等软件编程求解,得出了××××、×××及×××等结论,最后结合实际给出合理化建议。
本文的特色是什么,体现在方法、编程、灵敏度分析或研究思路等。
针对问题一,要求解决××××××问题(具体问题)。
首先,运用了××、××××××理论或方法,构建了××××××和××××××模型,运用了MATLAB软件编程求解,得出了××××××××及××××××等结论。
针对问题二,要求解决×××××问题(具体问题)。
首先,运用了××××××、××××××理论或方法,构建了××××××和××××××模型,运用了MATLAB 软件编程求解,得出了××××××、××××××及××××××等结论。
国赛论文格式
全国大学生数学建模竞赛论文格式规范●本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。
●论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
●论文第一页为承诺书,具体内容和格式见本规范第二页。
●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
●论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
●论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
●论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
●论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。
论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
●提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
●在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赛区评阅编号(由赛区组委会填写):
2015高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号(从A/B/C/D中选择一项填写):
我们的报名参赛队号(12位数字全国统一编号):19023008
参赛学校(完整的学校全称,不含院系名):广东金融学院
参赛队员(打印并签名) :1.
2.
3.
指导教师或指导教师组负责人(打印并签名):
日期: 2015 年 9 月 14 日
(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。
以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。
)
赛区评阅编号(由赛区组委会填写):
2015高教社杯全国大学生数学建模竞赛
编号专用页
送全国评阅统一编号(由赛区组委会填写):
全国评阅随机编号(由全国组委会填写):
题目
摘要关键词:
一、问题重述
1.1 问题背景
1.2 基本信息
1.3 问题提出
二、问题分析
三、模型假设
四、符号说明
各符号及其含义见表1
表 1 符号说明表
符符符符
五、模型建立与求解
5.1 问题一的分析与求解
5.1.1模型准备
5.1.2模型的建立
5.1.3模型的求解
5.1.4结果分析
5.2 问题二的分析与求解
5.2.1模型准备
5.2.2模型的建立
5.2.3模型的求解
5.2.4 结果分析
5.3 问题三的分析与求解
5.3.1模型准备
5.3.2模型的建立
5.3.3模型的求解
5.3.4结果分析
5.4 问题四的分析与求解
5.4.1模型准备
5.4.2模型的建立
5.4.3模型的求解
5.4.4结果分析
六、模型评价及推广
6.1 模型评价
6.1.1优点
6.1.2缺点
6.2 模型改进与推广
七、参考文献
[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2004:85.
期刊[5]陈东晓.浅议建构主义对东亚安全前景的再认识[J].中国学报,2000,11(4):34. 学位论文[]作者.论文名[D].长沙:湖南大学,2009.
网上资源[]新华网,《和平解决的进程已经开始》,,2003-08-29。
[]国家数据.中华人民共和国统计局[EB/OL].
[2015-09-11]./
八、附录附录一:主要程序
附录1.1
附录1.2
附录1.3
附录1.4
附录二:主要结果
附表2.1
附表2.2
附表2.3。