大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十二章 习题12 答案.doc

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题12

12.1 选择题

(1)对于位移电流,下列说法正确的是():

(A )与电荷的定向运动有关; (B )变化的电场; (C )产生焦耳热; (D )与传导电流一样。

[答案:B]

(2)对于平面电磁波,下列说法不正确的是():

(A )平面电磁波为横波; (B )电磁波是偏振波; (C )同一点E 和H 的量值关系为

H E με=; (D )电磁波的波速等于光速。

[答案:D]

(3) 图示为一充电后的平行板电容器,A 板带正电,B 板带负电,开关K 合上时,A 、B 位移电流方向为(按图上所标X 轴正方向回答)():

(A ) x 轴正向

(B ) x 轴负向 (C ) x 轴正向或负向 (D ) 不确定 (E ) [答案:B]

12.2填空题

(1)一个变化的电场必定有一个磁场伴随它,方程为 ;

[答案:⎰⎰⋅∂∂+=+=⋅l s D s d t

D j dt d I l d H 1

)(0

φ]

(2)一个变化的磁场必定有一个电场伴随它,方程为 ;

[答案:⎰⎰⋅∂∂-=-=⋅l

m s d t

B dt d l d E

φ]

(3)磁力线必定是无头无尾的闭合曲线,方程为 ;

[答案:⎰=⋅s

s d B 0

]

(4)静电平衡的导体内部不可能有电荷的分布,方程为 。

[答案:⎰∑⎰==⋅s

V

dV q s d D 00ρ

]

12.3 圆柱形电容器内、外导体截面半径分别为1R 和2R (1R <2R ),中间充满介电常数为ε

R x

的电介质.当两极板间的电压随时间的变化

k t

U

=d d 时(k 为常数),求介质内距圆柱轴线为r 处的位移电流密度.

解:圆柱形电容器电容 1

2ln 2R R l

C πε=

1

2ln 2R R lU

CU q πε=

= 1

212ln ln 22R R r U R R r lU S q D εππε===

∴ 1

2

ln R R r k

t

D j ε=∂∂=

12.4 试证:平行板电容器的位移电流可写成t

U

C

I d d d =.式中C 为电容器的电容,U 是电容器两极板的电势差.如果不是平板电容器,以上关系还适用吗? 解:∵ CU q =

S

CU

D =

=0σ ∴ CU DS D ==Φ

不是平板电容器时 0σ=D 仍成立 ∴ t

U

C

I D d d =还适用. 题12.5图

12.5 如题12.5图所示,电荷+q 以速度v

向O 点运动,+q 到O 点的距离为x ,在O 点处作

t

U

C t I

D D d d d d ==

Φ

半径为a 的圆平面,圆平面与v

垂直.求:通过此圆的位移电流. 解:如题12.5图所示,当q 离平面x 时,通过圆平面的电位移通量

)1(2

2

2

a

x x q D +-=

Φ

∴ 2

3222)

(2d d a x v qa t

I D

D +=

题12.5图

12.6 如题12.6图所示,设平行板电容器内各点的交变电场强度E =720sin t π5

10V ·m -1

,正

方向规定如图.试求:

(1)电容器中的位移电流密度;

(2)电容器内距中心联线r =10-2

m 的一点P ,当t =0和t =5102

1

-⨯s 时磁场强度的大小及方向(不考虑传导电流产生的磁场). 解:(1) t

D

j D ∂∂=,E D 0ε= ∴ t t t

t E j D ππεπεε505500

10cos 10720)10sin 720(⨯=∂∂

=∂∂= 2m A -⋅ (2)∵ ⎰∑⎰⋅+=⋅)

(0d d S D l

S j I l H

取与极板平行且以中心连线为圆心,半径r 的圆周r l π2=,则

D j r r H 22ππ=

D j r H 2

=

0=t 时0505106.3107202

πεπε⨯=⨯⨯=r

H P 1m A -⋅ 5102

1

-⨯=

t s 时,0=P H

12.7 半径为R =0.10m 的两块圆板构成平行板电容器,放在真空中.今对电容器匀速充电,

使两极板间电场的变化率为

t

E d d =1.0×1013 V ·m -1·s -1

.求两极板间的位移电流,并计算电容器内离两圆板中心联线r (r <R )处的磁感应强度Br 以及r =R 处的磁感应强度BR .

解: (1) t

E

t D j D ∂∂=∂∂=0ε 8.22≈==R j S j I D D D πA

(2)∵ S j I l H S

D l

d d 0⋅+=⋅⎰∑⎰

取平行于极板,以两板中心联线为圆心的圆周r l π2=,则

2

2d d 2r t

E r j r H D πεππ== ∴ t

E

r H d d 20

ε=

t

E

r H B r d d 20

00εμμ== 当R r =时,600106.5d d 2

-⨯==t

E

R B R εμ T

*12.8 有一圆柱形导体,截面半径为a ,电阻率为ρ,载有电流0I . (1)求在导体内距轴线为r 处某点的E

的大小和方向;

(2)该点H

的大小和方向;

(3)该点坡印廷矢量S

的大小和方向;

(4)将(3)的结果与长度为l 、半径为r 的导体内消耗的能量作比较. 解:(1)电流密度S

I j 0

0=

由欧姆定律微分形式E j σ=0得

2

00

a I j j E πρ

ρσ

===

,方向与电流方向一致 (2)取以导线轴为圆心,垂直于导线的平面圆周r l π2=,则

由 ⎰⎰=⋅S

l

S j l H

d d 0可得

22

02a

r I r H =π

∴2

02a r

I H π=

,方向与电流成右螺旋 (3)∵ H E S

⨯=

∴ S

垂直于导线侧面而进入导线,大小为

4

2202a r

I EH S πρ==

相关文档
最新文档