【必考题】初三数学上期末模拟试题(带答案)
【好题】初三数学上期末模拟试题附答案

【好题】初三数学上期末模拟试题附答案一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( )A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠3 2.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和c y x=的图象为( )A .B .C .D .3.下列图形中既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .正六边形4.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 6.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>7.关于下列二次函数图象之间的变换,叙述错误的是( )A.将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象B.将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象C.将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象D.将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2﹣1的图象8.下列判断中正确的是()A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦9.以3942cx±+=为根的一元二次方程可能是()A.230x x c--=B.230x x c+-=C.230-+=x x c D.230++=x x c 10.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()A.36°B.54°C.72°D.108°11.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.74-B.3或3-C.2或3-D.2或3-或74-12.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.矩形C.正八边形D.正六边形二、填空题13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.14.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是______________.15.直线y=kx+6k交x轴于点A,交y轴于点B,以原点O为圆心,3为半径的⊙O与l相交,则k的取值范围为_____________.16.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是_________.(写出所有正确结论的序号)①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.17.在平面直角坐标系中,已知点P0的坐标为(2,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.,点O从B点出发,以每秒1个单位长度沿射线BA向右运18.如图,已知射线BP BA动;同时射线BP绕点B顺时针旋转一周,当射线BP停止运动时,点O随之停止运动.以e恰好有且只有一个O为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP与O公共点,则射线BP旋转的速度为每秒______度.19.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.20.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.三、解答题21.已知x=n是关于x的一元二次方程mx2﹣4x﹣5=0的一个根,若mn2﹣4n+m=6,求m的值.22.请你依据下面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图(或表格)表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.23.如图,平面直角坐标系中,每个小正方形边长是1.(1)画出△ABC关于原点中心对称的得到△A1B1C1;(2)画出△ABC关于C点顺时针旋转90°的△A2B2C2;(3)在(2)的条件下,求出B点旋转后所形成的弧线长.24.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.25.如图,二次函数2y ax bx =+的图象经过点()2,4A 与()6,0B .()1求a ,b 的值;()2点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为(26)x x <<,写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩ 解得:m>1且m ≠3.故答案为D.【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.C解析:C【解析】【分析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b经过一、二、四象限,双曲线cyx=在二、四象限.【详解】根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线cyx=在二、四象限,∴C是正确的.故选C.【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.3.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形,轴对称图形,解题的关键是熟练的掌握中心对称图形,轴对称图形.4.C解析:C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、图形既不是轴对称图形是中心对称图形,B、图形是轴对称图形,C、图形是轴对称图形,也是中心对称轴图形,D、图形是轴对称图形.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm ,根据题意得x (x-20)=300,故选A .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.6.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.7.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A 选项,将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象,故A 选项不符合题意;B 选项,将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x +2)2的图象,故B 选项不符合题意;C 选项,将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象,故C 选项不符合题意;D 选项,将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x +1)2+1的图象,故D 选项符合题意.故选D .【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.8.C解析:C【解析】【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.9.A解析:A【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】设x 1,x 2是一元二次方程的两个根,∵32x ±= ∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A.【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.10.C解析:C【解析】 正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.11.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=74-,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣故选C.12.C解析:C【解析】因为正八边形的每个内角为135︒,不能整除360度,故选C.二、填空题13.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在解析:【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC222264213BE BC+=+=.故答案是:13【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.【解析】∵阴影部分的面积=4个小正方形的面积大正方形的面积=9个小正方形的面积∴阴影部分的面积占总面积的∴飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是故答案为解析:4 9【解析】∵阴影部分的面积=4个小正方形的面积,大正方形的面积=9个小正方形的面积,∴阴影部分的面积占总面积的49,∴飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是4 9 .故答案为4 9 .15.且k≠0【解析】【分析】根据直线与圆相交确定k的取值利用面积法求出相切时k的取值再利用相切与相交之间的关系得到k的取值范围【详解】∵交x轴于点A交y轴于点B当故B的坐标为(06k);当故A的坐标为(解析:33-k k ≠0. 【解析】【分析】 根据直线与圆相交确定k 的取值,利用面积法求出相切时k 的取值,再利用相切与相交之间的关系得到k 的取值范围.【详解】∵6y kx k =+交x 轴于点A ,交y 轴于点B ,当0,6x y k ==,故B 的坐标为(0,6k );当0,6y x ==-,故A 的坐标为(-6,0);当直线y=kx +6k 与⊙O 相交时, 设圆心到直线的距离为h,根据面积关系可得:116|6|=22k h ⨯⨯ 解得h = ;∵直线与圆相交,即,3h r r =< ,3 解得33-k 且直线中0k ≠,则k 的取值范围为:33-k ,且k ≠0.故答案为:33-k ,且k ≠0. 【点睛】本题考查了直线与圆的位置关系,解题的关键在于根据相交确定圆的半径与圆心到直线距离的大小关系. 16.③④【解析】【分析】①首先根据抛物线开口向上可得a >0;然后根据对称轴为x=﹣>0可得b <0据此判断即可②根据抛物线y=ax2+bx+c 的图象可得x=﹣1时y >0即a ﹣b+c >0据此判断即可③首先判解析:③④【解析】【分析】①首先根据抛物线开口向上,可得a >0;然后根据对称轴为x=﹣2b a>0,可得b <0,据此判断即可.②根据抛物线y=ax 2+bx+c 的图象,可得x=﹣1时,y >0,即a ﹣b+c >0,据此判断即可. ③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可. ④根据函数的最小值是2424ac b a-=-,判断出c=﹣1时,a 、b 的关系即可. 【详解】解:∵抛物线开口向上,∴a >0,又∵对称轴为x=﹣2b a>0,∴b <0,∴结论①不正确; ∵x=﹣1时,y >0,∴a ﹣b+c >0,∴结论②不正确; ∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax 2+bx+c 的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确; ∵2424ac b a-=-,c=﹣1,∴b 2=4a ,∴结论④正确. 故答案为:③④.【点睛】本题考查二次函数图象与几何变换;二次函数图象与系数的关系.17.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x 轴于H 利用含30度的直角三角形求出OHP3H 从而得到P3点坐标【详解】解:如图∵点解析:(﹣2,23).【解析】【分析】利用旋转的性质得到OP 2=2OP 1=OP 3=4,∠xOP 2=∠P 2OP 3=60°,作P 3H ⊥x 轴于H ,利用含30度的直角三角形求出OH 、P 3H ,从而得到P 3点坐标.【详解】解:如图,∵点P 0的坐标为(2,0),∴OP 0=OP 1=2,∵将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,∴OP 2=2OP 1=OP 3=4,∠xOP 2=∠P 2OP 3=60°,作P 3H ⊥x 轴于H ,OH=12OP 3=2,P 333 ∴P 3(-2,3故答案为(-2,3【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.18.30或60【解析】【分析】射线与恰好有且只有一个公共点就是射线与相切分两种情况画出图形利用圆的切线的性质和30°角的直角三角形的性质求出旋转角然后根据旋转速度=旋转的度数÷时间即得答案【详解】解:如解析:30或60【解析】【分析】射线BP 与O e 恰好有且只有一个公共点就是射线BP 与O e 相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线BP 与O e 在射线BA 上方相切时,符合题意,设切点为C ,连接OC ,则OC ⊥BP ,于是,在直角△BOC 中,∵BO =2,OC =1,∴∠OBC =30°,∴∠1=60°,此时射线BP 旋转的速度为每秒60°÷2=30°;如图2,当射线BP 与O e 在射线BA 下方相切时,也符合题意,设切点为D ,连接OD ,则OD ⊥BP ,于是,在直角△BOD 中,∵BO =2,OD =1,∴∠OBD =30°,∴∠MBP =120°,此时射线BP 旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P (摸到白球)== 解析:38【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38. 20.4【解析】【分析】由a+b2=2得出b2=2-a 代入a2+5b2得出a2+5b2=a2+5(2-a )=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b2解析:4【解析】【分析】由a+b 2=2得出b 2=2-a ,代入a 2+5b 2得出a 2+5b 2=a 2+5(2-a )=a 2-5a+10,再利用配方法化成a 2+5b 2=(a-2515)24+,即可求出其最小值. 【详解】∵a+b 2=2,∴b 2=2-a ,a≤2,∴a 2+5b 2=a 2+5(2-a )=a 2-5a+10=(a-2515)24+, 当a=2时,a 2+b 2可取得最小值为4.故答案是:4.【点睛】考查了二次函数的最值,解题关键是根据题意得出a 2+5b 2=(a-2515)24+. 三、解答题21.1【解析】【分析】把x=n 代入方程求出mn 2-4n 的值,代入已知等式求出m 的值即可.【详解】依题意,得2450mn n --=.∴245mn n -=.∵246mn n m -+=,∴56m +=.∴1m =.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握运算法则是解本题的关键.22.(1)答案见解析;(2)16【解析】【分析】列举出所有情况,让寻宝游戏中胜出的情况数除以总情况数即为所求的概率. 【详解】(1)树状图如下:(2)由(1)中的树状图可知:P (胜出)【点睛】 本题考查的是用画树状图法求概率,解答本题的关键是熟练掌握概率=所求情况数与总情况数之比.同时熟记用树状图或表格表达事件出现的可能性是求解概率的常用方法23.(1)图见详解;(2)图见详解;(3)32π. 【解析】【分析】(1)利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式计算即可得出结果.【详解】解:(1)如图示,△A 1B 1C 1为所求;(2)如图示,△A 2B 2C 2为所求;(3)∵△ABC 关于C 点顺时针旋转90°得到的△A 2B 2C 2,每个小正方形边长是1,由题图可知,半径3BC =,根据弧长的公式得:¼2239036320BB p p ´==´. 【点睛】此题主要考查了平移变换、旋转变换,正确得出对应点位置和熟悉弧长公式是解题关键.24.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x 米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x 米,依题意,得:(18﹣2x )(10﹣x )=144,整理,得:x 2﹣19x +18=0,解得:x 1=1,x 2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.25.(1)123a b =-⎧⎪=⎨⎪⎩,(2)228(4)16S x x x =-+=--+,最大值为16. 【解析】【分析】(1)将()2,4A 与()6,0B 代入2y ax bx =+,用待定系数法可求得;(2)过A 作x 轴的垂直,垂足为()2,0D ,连接CD 、CB ,过C 作CE AD ⊥,CF x ⊥轴,垂足分别为E ,F ,则2242468OAD ACD BCD S S S S x x x x x =++=+--+=-+V V V ,S 关于x 的函数表达式为28(26)S x x x =-+<<,再求二次函数的最值即可.【详解】解:()1将()2,4A 与()6,0B 代入2y ax bx =+,得{4243660a b a b +=+=,解得:123a b =-⎧⎪=⎨⎪⎩;()2如图,过A 作x 轴的垂直,垂足为()2,0D ,连接CD 、CB ,过C 作CE AD ⊥,CF x ⊥轴,垂足分别为E ,F ,1124422OAD S OD AD =⋅=⨯⨯=V ; ()11422422ACD S AD CE x x =⋅=⨯⨯-=-V ; 22111436222BCD S BD CF x x x x ⎛⎫=⋅=⨯⨯-+=-+ ⎪⎝⎭V , 则2242468OAD ACD BCD S S S S x x x x x =++=+--+=-+V V V ,S ∴关于x 的函数表达式为28(26)S x x x =-+<<,228(4)16S x x x =-+=--+Q ,∴当4x =时,四边形OACB 的面积S 有最大值,最大值为16.【点睛】本题考核知识点:二次函数与几何. 解题关键点:数形结合列出面积表达式,求二次函数的最值.。
九年级数学上册期末考试题及答案【必考题】

九年级数学上册期末考试题及答案【必考题】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 下列计算正确的是()A. a2+a3=a5B.C. (x2)3=x5D. m5÷m3=m22.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见, 随机对全校100名学生家长进行调查, 这一问题中样本是()A. 100B. 被抽取的100名学生家长C. 被抽取的100名学生家长的意见D. 全校学生家长的意见3. 已知x1.x2是关于x的方程x2﹣ax﹣2=0的两根, 下列结论一定正确的是()A. x1≠x2B. x1+x2>0C. x1•x2>0D. x1<0, x2<04.有理数a, b在数轴上的对应点如图所示, 则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A. ①②B. ①④C. ②③D. ③④5. 下列运算正确的是()A. B. C. D.6. 下列运算正确的是()A. (﹣2a3)2=4a6B. a2•a3=a6C. 3a+a2=3a3D. (a﹣b)2=a2﹣b27.如图, 直线AB∥CD, 则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°8.用一根长为a(单位:cm)的铁丝, 首尾相接围成一个正方形, 要将它按图的方式向外等距扩1(单位:cm)得到新的正方形, 则这根铁丝需增加()A. 4cmB. 8cmC. (a+4)cmD. (a+8)cm9.如图, 已知在△ABC, AB=AC.若以点B为圆心, BC长为半径画弧, 交腰AC 于点E, 则下列结论一定正确的是()A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE10.如图, 能判定EB∥AC的条件是()A. ∠C=∠1B. ∠A=∠2C. ∠C=∠3D. ∠A=∠1二、填空题(本大题共6小题, 每小题3分, 共18分)1. 9的平方根是__________.2. 分解因式: __________.3. 若代数式在实数范围内有意义, 则x的取值范围是__________.4. 如图, 一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n, ﹣4), 则关于x的不等式组的解集为__________.5.如图, 抛物线y=﹣x2+2x+3与y轴交于点C, 点D(0, 1), 点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形, 则点P的坐标为__________.6. 如图, 在的同侧, , 点为的中点, 若, 则的最大值是__________.三、解答题(本大题共6小题, 共72分)1. (1)计算:+()-1﹣×cos30°(2)解方程: +1=2. 关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若2(x1+x2)+ x1x2+10=0. 求m的值.3. 如图, 在矩形ABCD中, AB=8cm, BC=16cm, 点P从点D出发向点A运动, 运动到点A停止, 同时, 点Q从点B出发向点C运动, 运动到点C即停止, 点P、Q的速度都是1cm/s. 连接PQ、AQ、CP. 设点P、Q运动的时间为ts.(1)当t为何值时, 四边形ABQP是矩形;(2)当t为何值时, 四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.4. 如图, AB为⊙O的直径, C为⊙O上一点, ∠ABC的平分线交⊙O于点D, DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系, 并说明理由;(2)过点D作DF⊥AB于点F, 若BE=3 , DF=3, 求图中阴影部分的面积.5. 为了解某中学学生课余生活情况, 对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计. 现从该校随机抽取名学生作为样本, 采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项). 并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图. 由图中提供的信息, 解答下列问题:(1)求n的值;(2)若该校学生共有1200人, 试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生, 现从这4名学生中任意抽取2名学生, 求恰好抽到2名男生的概率.6. 在我市某一城市美化工程招标时, 有甲、乙两个工程队投标, 经测算: 甲队单独完成这项工程需要60天, 若由甲队先做20天, 剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天, 需付工程款 3.5万元, 乙队施工一天需付工程款2万元.若该工程计划在70天内完成, 在不超过计划天数的前提下, 是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.D2.C3.A4.B5.C6.A7、D8、B9、C10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.±32.3.4.﹣2<x<25、(1+ , 2)或(1﹣, 2).6.14三、解答题(本大题共6小题, 共72分)1.(1)2;(2)x=12、(1)m≤.(2)m=-3.3.(1)8;(2)6;(3),40cm,80cm2.4、(1)DE与⊙O相切, 理由略;(2)阴影部分的面积为2π﹣.5.(1)50;(2)240;(3).6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下, 由甲、乙合作完成最省钱.。
【好题】初三数学上期末模拟试卷(附答案)

【好题】初三数学上期末模拟试卷(附答案)一、选择题1.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.已知二次函数y=ax2+bx+c(a>0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x1,x2(0<x1<x2<4)时,对应的函数值是y1,y2,且y1=y2,设该函数图象的对称轴是x=m,则m的取值范围是()A.0<m<1B.1<m≤2C.2<m<4D.0<m<43.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540B.(32﹣x)(20﹣x)=540C.32x+20x=540D.(32﹣x)(20﹣x)+x2=5404.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为()A.25°B.30°C.50°D.55°5.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.59B.49C.56D.136.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .1127.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .88.若20a ab -=(b ≠0),则a ab +=( ) A .0 B .12 C .0或12 D .1或 29.关于y=2(x ﹣3)2+2的图象,下列叙述正确的是( )A .顶点坐标为(﹣3,2)B .对称轴为直线y=3C .当x≥3时,y 随x 增大而增大D .当x≥3时,y 随x 增大而减小 10.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( )A .2017B .2018C .2019D .2020 11.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根12.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( )A .y=1+12x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 2二、填空题13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.14.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.15.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.16.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是_____.17.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.18.如图,AB是⊙O的直径,∠AOE=78°,点C、D是弧BE的三等分点,则∠COE=_____.19.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.20.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____. 三、解答题21.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.22.如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a 的值和图象的顶点坐标。
九年级数学(上)期末模拟测试(含答案)

九年级数学(上)期末模拟测试(含答案)一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2022·全国·九年级专题练习)一个由球和长方体组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.【答案】B【分析】结合题意,根据视图的性质分析,即可得到答案.【详解】根据题意,从正面看,底层是一个矩形,上层是一个圆,故选:B.【点睛】本题考查了视图的知识;解题的关键是熟练掌握主视图的性质,从而完成求解. 2.(2022·广东佛山·九年级阶段练习)粤绣凝聚着历代艺人的天才与智慧,从艺术风格到创作思维都充满了岭南特色,在“针尖上的画意—广绣精品与岭南绘画展”中,师傅要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等【答案】B【分析】按照有一个角是直角是平行四边形是矩形,有三个角是直角是四边形是矩形,两条对角线相等的平行四边形是矩形,逐一分析判定.【详解】A. 测量四边形画框的两个角是否为90︒,∵有三个角是直角的四边形是矩形,∵此测量方法不可行,不合题意;B. 测量四边形画框的对角线是否相等且互相平分,∵对角线相等且互相平分的四边形是矩形,∵此测量方法可行,符合题意;C. 测量四边形画框的一组对边是否平行且相等,∵一组对边平行且相等的四边形是平行四边形,不一定是矩形, ∵此测量方法不可行,不合题意; D. 测量四边形画框的的四边是否相等, ∵四边相等的四边形可能是菱形,不是矩形, ∵此测量方法不可行,不合题意. 故选:B .【点睛】本题主要考查了矩形的判定,解决问题的关键是熟练掌握矩形的定义和判定定理. 3.(2022·上海市进才实验中学八年级阶段练习)下列说法正确的是( ) A .方程220x a -=没有实数根B .方程2440x x --=有两个相等的实数根C .在方程20ax bx c ++=中,如果240b ac ->,那么这个方程有两个不相等的实数根D .无论a 取何值,方程2410x ax +-=总有两个不相等的实数根 【答案】D【分析】利用一元二次方程根的判别式和方程的解法对选项逐一判断即可. 【详解】解:A 、方程220x a -=的实数根为1x a =,2x a =-,故错误,不合题意; B 、方程2440x x --=中,()()24414320∆=--⨯⨯-=>,则有两个不相等的实数根,故错误,不合题意;C 、在方程20ax bx c ++=中,如果240b ac ->且0a ≠,那么这个方程有两个不相等的实数根,故错误,不合题意;D 、由于()()2244111640a a -⨯⨯-=+>,则无论a 取何值,方程2410x ax +-=总有两个不相等的实数根,故正确,符合题意; 故选:D .【点睛】本题考查的是根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac∆=-有如下关系:①当0∆>时,方程有两个不相等的实数根;②当0∆=时,方程有两个相等的实数根;③当∆<0时,方程无实数根.上面的结论反过来也成立.4.(2022·山东烟台·七年级期末)如图的四个转盘中,A ,B 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )A .B .C .D .【答案】D【分析】利用指针落在阴影区域内的概率是:阴影面积比总面积,分别求出概率比较即可 【详解】A 、指针落在阴影区域内的概率是4182= B 、指针落在阴影区域内的概率是4182= C 、指针落在阴影区域内的概率是36012023603︒-︒=︒D 、指针落在阴影区域内的概率是3606053606︒-︒=︒ 521632>> ∵指针落在阴影区域内的概率最大的转盘是D 故选:D【点睛】本题考查了几何概率,计算阴影区域面积占总面积的比例是解题关键.5.(2022·山东·东明县刘楼镇初级中学九年级阶段练习)已知菱形ABCD 的对角线AC 、BD 的长度分别为8cm 和6cm ,则菱形ABCD 的周长是( ) A .10cm B .16cmC .20cmD .40cm【答案】C【分析】根据菱形的性质:对角线互相平分且垂直,得出两条对角线的一半为3cm 与4cm .再利用勾股定理可求出菱形边长,从而得解.【详解】解:四边形ABCD 是菱形,设对角线相交于点O ,12AO AC ∴=,12BO BD =,AC BD ⊥, =8AC cm ,=6BD cm ,=4AO cm ∴,=3BO cm ,=5AB cm ∴,∴菱形ABCD 的周长为:()4?5=20cm .故选:C .【点睛】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形四边相等,对角线互相垂直平分.6.(2022·山西·太原市鲁艺中学校九年级阶段练习)某社区居民在一幅长90cm ,宽40cm 的矩形状的宣传西的四周加上宽度相同的边框,制成一幅挂图(如图),如果宣传画的面积占这个挂图面积的72%,所加边框的宽度为cm x ,则根据题意列出的方程是( )A .(90+)(40+)=90?40?72%x xB .(902)(402)904072%x x --=⨯⨯C .(902)(402)72%9040x x ++⨯=⨯D .(90)(40)72%9040x x ++⨯=⨯【答案】C【分析】设所加边框的宽度为cm x ,根据宣传画的面积占这个挂图面积的72%,列出方程即可求解.【详解】解:设所加边框的宽度为cm x ,根据题意得,(902)(402)72%9040x x ++⨯=⨯.故选C .【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键. 7.(2022·陕西·西工大附中分校九年级阶段练习)如图,若点C ,D 都是线段AB 的黄金分割点,8AB =,则AD 的长度是( )A .2B .454C .25D .45【答案】B【分析】根据黄金分割的定义计算.【详解】解:∵点D 是线段AB 的黄金分割点,8AB =,AD BD >, ∵5154AD AB -==, 故选:B ;【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC AC BC (>),且使AC 是AB和BC 的比例中项(即AB AC AC BC =::),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.8.(2022·辽宁·灯塔市第一初级中学九年级期中)如图,ABC △中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(1-,0).以点C 为位似中心,在x 轴的下方作ABC △的位似图形A B C ''△,并把ABC △放大到原来的2倍.设点B 的对应点B '的横坐标是a ,则点B 的横坐标是( )A .()112a - B .()112a --C .()132a +D .()132a -+【答案】D【分析】以点C 为坐标原点建立新的坐标系,表示出点B '的横坐标,根据位似变换的性质计算,得到答案.【详解】解:以点C 为坐标原点建立新的坐标系,∵点C 的坐标是(1-,0), ∵点B '的横坐标为:a +1,以点C 为位似中心,在x 轴的下方作ABC △的位似图形A B C ''△, 则点B 在以C 为坐标原点的坐标系中的横坐标为:()1+12a -, ∵点B 在原坐标系中的横坐标为:()()1111322a a -+-=-+, 故选:D .【点睛】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.9.(2022·全国·九年级专题练习)某超市销售一种饮料,每瓶进价为6元.当每瓶售价为10元时,日均销售量为160瓶,经市场调查表明,每瓶售价每增加1元,日均销售量减少20瓶.若超市计划该饮料日均总利润为700元,且尽快减少库存,则每瓶该饮料售价为( ) A .11 B .12C .13D .14【答案】A【分析】根据“总利润=每瓶利润⨯日均销售量”列方程求解可得.【详解】解:设每瓶售价x 元时,所得日均总利润为700元,根据题意的,()() 61602010700x x --⨯-=⎡⎤⎣⎦ ,解得x 1=11, x 2=13,当x 1=11时,()()1602010160201110140x -⨯-=-⨯-= ,当x 2=13时,()()1602010160201310100x -⨯-=-⨯-= ,且140>100,尽快减少库存,∴每瓶该饮料售价为11元.故选:A .【点睛】本题主要考查一元二次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程.10.(2022·河南南阳·九年级期中)如图所示,矩形ABCD的长AD为20cm,宽AB为12cm,在它的内部有一个矩形EFGH(EH>EF),设AD与EH之间的距离、BC与FG之间的距离都为a cm,AB与EF之间的距离、DC与HG之间的距离都为b cm.当a,b满足()时,矩形ABCD∽矩形EFGH.A.a=b B.a12=b C.a3=D.a35=b【答案】D【分析】根据相似图形的性质对应边成比例进行求解即可.【详解】解:∵矩形ABCD∵矩形EFGH,∵AD AB EH EF=即2012 202122b a=--化简得:35a b =,故选:D.【点睛】题目主要考查相似图形的性质,理解相似图形的性质是解题关键.11.(2022·辽宁·辽阳市第二十六中学九年级阶段练习)如图1,点F从菱形ABCD的顶点A 出发,沿A−D−B以1cm/s的速度匀速运动到点B.如图2是,点F运动时,FBC∆的面积(2cm)随时间x(s)变化的关系图像,则a的值为()A .5B .4C 2521D .256【答案】D【分析】过点D 作DE BC ⊥于点E ,通过分析图象,点F 从点A 到D 用s a ,此时,FBC ∆的面积为a ,依此可求菱形的高DE ,再由图象可知,BD =5,应用两次勾股定理分别求BE 和a 即可.【详解】解:过点D 作DE BC ⊥于点E ,由图象可知,点F 由点A 到点D 用时为s a ,FBC ∆的面积为22cm a . ∵AD a =, ∵菱形ABCD , ∵cm BC AD a ==,21112cm 222ABDBCDSSBC DE AD DE a DE a ==⋅=⋅=⋅=, ∵4cm DE =,由图象可知,当点F 从D 到B 时,用5s , ∵5cm BD =,在Rt DBE 中,由勾股定理,得()2222543cm BE BD DE =-=-=,∵菱形ABCD ,∵()3cm EC a =-,cm DC a =, 在Rt DEC △中,由勾股定理,得()22243a a =+-,解得256=a , 故选:D .【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.12.(2022·广东顺德德胜学校九年级阶段练习)如图,在矩形ABCD 中,1AB =,3AD =O 是对角线的交点,过C 作CE BD ⊥于点E ,EC 的延长线与BAD ∠的平分线相交于点H ,AH与BC 交于点F .给出下列四个结论,①AF FH =;②BF BO =;③AC CH =;④3BE DE =.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】C【分析】求出OA OC OD BD ===,求出30ADB ∠=︒,求出60ABO ∠=︒,得出等边三角形AOB ,求出AB BO AO OD OC DC =====,推出BF AB =,求出15H CAH ∠=∠=︒,求出DE EO =,根据以上结论推出即可. 【详解】解:∵四边形ABCD 是矩形, ∵90ABC ∠=︒,∵AF 是BAD ∠的平分线, ∵45FAB ∠=︒, ∵45AFB ∠=︒,∵135AFC ∠=︒,CF 与AH 不垂直,∵点F 不是AH 的中点,即AF FH ≠,∵①错误; ∵四边形ABCD 是矩形, ∵90BAD ∠=︒, ∵31AD AB ==,, ∵22(3)12BD =+, ∵1AO BO AB ===, ∵ABO ∆是等边三角形, ∵AF 是BAD ∠的平分线, ∵45BAF DAF ∠=∠=︒, ∵1AB BF ==,∵1BF BO ==,∵②正确; ∵6045BAO BAF ∠=︒∠=︒,, ∵15CAH ∠=︒, ∵CE BD ⊥, ∵90CEO ∠=︒, ∵60EOC ∠=︒,∵30ECO ∠=︒,∵301515H ECO CAH CAH ∠=∠-∠=︒-︒=︒=∠, ∵AC CH =,∵③正确; ∵AOB ∆是等边三角形, ∵AO OB AB ==, ∵四边形ABCD 是矩形,∵OA OC OB OD AB CD ===,,, ∵DC OC OD ==, ∵CE BD ⊥, ∵1124DE EO DO BD ===, 即3BE ED =,∵④正确;所以其中正确结论有②③④,3个. 故选:C .【点睛】本题考查了矩形的性质,平行线的性质,角平分线定义,三角形的性质和判定,等边三角形的性质和判定等知识点的综合运用.13.(2022·河北·新乐市实验学校模拟预测)如图,正方形1ABCB 中,1AB AB =,与直线l 的夹角为30︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点A ,作正方形3334A B C B ⋯,,依此规律,则20162017A A =( )A .210083⨯B .310083⨯C .210093⨯D .210073⨯【答案】A【分析】由四边形1ABCB 是正方形,得到1AB AB AB =,1CB ∥,于是得到AB 1AC ∥,根据平行线的性质得到130CA A ∠=︒,解直角三角形得到11132A B AA ==,,同理:2323342323A A A A ==(),(),找出规律123nn n A A +=(),答案即可求出.【详解】解:四边形1ABCB 是正方形, 1AB AB AB ∴=,1CB ∥,AB ∴1AC ∥, 130CA A ∠∴=︒,11132A B AA ∴=,,12113A B A B ∴=1223A A ∴=同理:22323A A =(), 33423A A =(), ⋯123nn n A A +∴=(), 20161008201620172323A A ∴==⨯().故选:A .【点睛】本题考查了正方形的性质,含30︒直角三角形的性质,平行线的性质的综合应用,314.(2022·山东·济南阳光100中学九年级阶段练习)在平面直角坐标系中,横、纵坐标都是整数的点叫做整点,已知函数y =k x (x >0)的图象G 经过点A (4,1),直线l :y =13x +b与图象G 交于点B ,与y 轴交于点C .记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W ,若区域W 内恰有4个整点,则b 的取值范围是( ) A .﹣53<b ≤﹣43B .53<b ≤83C .﹣53≤b <﹣43或53<b ≤83D .﹣53<b ≤﹣43或53≤b <83【答案】B【分析】可知直线l 与13y x =平行;分两种情况:直线l 在OA 的下方和上方,画图根据区域W 内恰有4个整点,确定b 的取值范围.【详解】如图1,直线l 在OA 的下方时,当直线1:=+3l y x b 过(4,0)时,4=3b -,且经过4(0,)3-点,区域W 内有三点整点, 当直线1:=+3l y x b 过(5,0)时,5=3b -,且经过5(0,)3-,区域W 内有5点整点, ∴区域W 内没有4个整点的情况,如图2,直线l 在OA 的上方时,点(2,2)在函数=(>0)k y x x的图象G , 当直线1:=+3l y x b 过(1,2)时,53b =, 当直线1:=+3l y x b 过(1,3)时,83b =, ∴区域W 内恰有4个整点,b 的取值范围是58<33b . 综上所述,区域W 内恰有4个整点,b 的取值范围是58<33b . 故选:B .【点睛】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2022·辽宁·辽阳市第二十六中学九年级阶段练习)木箱里装有仅颜色不同的8张红色和若干张蓝色卡片,随机从木箱里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有___________张.【答案】12【分析】行和频率估计 出概率,然后设木箱中蓝色卡片x 个,根据概率公式列出算式,再进行计算即可得出答案.【详解】解:设木箱中蓝色卡片有x 个,根据题意得:0.68x x =+, 解得:=12x ,经检验=12x 是原方程的解,则估计木箱中蓝色卡片有12张.故答案为:12.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率,概率公式,关键是根据蓝色卡片的频率得到相应的等量关系.16.(2022·全国·九年级专题练习)如图,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为______.【答案】8m 【分析】根据题意,画出示意图,易得:Rt Rt ,EDCCDF ∆∆,进而可得ED DC DC FD=;即2DC ED FD =⋅,代入数据可得答案. 【详解】解:如图:过点C 作CD EF ⊥,由题意得:∵EFC 是直角三角形,=90ECF ∠︒,∵90EDC CDF ∠=∠=,∵90E ECD ECD DCF ∠+∠=∠+∠=,∵E DCF ∠=∠, ∵Rt Rt ,EDC CDF ∆∆, ∵ED DC DC FD=;即2DC ED FD =⋅, 由题意得:416ED FD ==,,∵264DC =,8DC =(负值舍去),故答案为:8m .【点睛】本题考查了平行投影,相似三角形应用,通过投影的知识结合三角形的相似,求解高的大小是平行投影性质在实际生活中的应用.17.(2022·湖南·长沙市华益中学三模)如图,在ABC △中,B C ∠=∠,AD BC ⊥于点D ,E 为AC 的中点,=6AB ,那么DE 的长是________.【答案】3【分析】利用等角对等边证明6AB AC ==,再证明ADC △为直角三角形,利用直角三角形斜边上的中线等于斜边的一半即可求出DE .【详解】解:∵B C ∠=∠,∵6AB AC ==∵AD BC ⊥,∵ADC △为直角三角形,∵E 为AC 的中点,∵1==32DE AC . 故答案为:3【点睛】本题考查等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,解题的关键是理解题意,掌握等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半.18.(2022·江苏南京·九年级期末)若方程x 2-4084441=0的两根为±2021,则方程x 2-2x-4084440=0的两根为____.【答案】x 1=2022,x 2=-2020【分析】利用配方法求解即可.【详解】解:x 2﹣2x ﹣4084440=0,x 2﹣2x =4084440,x 2﹣2x +1=4084441,即(x ﹣1)2=4084441,∵方程x 2﹣4084441=0的两根为±2021,∴x ﹣1=±2021,∴x 1=2022,x 2=﹣2020.故答案为:x 1=2022,x 2=﹣2020.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,解一元二次方程的方法有直接开平方法、因式分解法、配方法、公式法等.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分) 19.(2022·江苏盐城·八年级阶段练习)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压()kPa p 是气体体积()3m V 的反比例函数,其图像如图所示.(1)求这一函数的解析式;(2)当气体体积为31m 时,气压是多少?(3)当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到30.01m )【答案】(1)96p V=(2)96(3)不少于30.69m【分析】(1)设出反比例函数解析式,把A 坐标代入可得函数解析式;(2)把V =1代入(1)得到的函数解析式,可得P ;(3)把p =140代入得到V 即可.(1)解:设k p V=, 由题意知1200.8=k ,所以96k =,故96p V =; (2) 解:当1V =m 3时,()9696kPa 1p ==; (3) 解:当140kPa p =时,960.69140V =≈(m 3). 所以为了安全起见,气体的体积应不少于0.69 m 3.【点睛】本题考查了反比例函数的应用,应熟练掌握符合反比例函数解析式的数值的意义是解题的关键.20.(2022·湖南·双牌县第一中学九年级阶段练习)如图,=AB AC ,AD BC ⊥于点D ,M 是AD 的中点,MC 交AB 于点P ,DN CP ∥.若AB =6cm ,求AP 的长.【答案】2cm【分析】根据等腰三角形的性质:等腰三角形的三线合一,知=BD CD ,再根据三角形一边的平行线性质:对应边成比例,得BN NP =,同理得DM AM =,于是13AP PN BN AB ===,即可求解.【详解】解:=AB AC ,AD BC ⊥于点D ,BD CD ∴=,DN CP ∥, 1BN BD NP CD∴==, BN NP ∴=,M 是AD 的中点,DM AM ∴=,PM DN ∥,1AP AM NP DM ∴==,AP NP ∴=, AP NP BN ∴==,13AP AB ∴=, AB =6cm ,1623AP ∴=⨯=cm . 【点睛】此题考查了三角形一边平行线的性质,等腰三角形的性质.熟练掌握“三角形一边平行线截另两边,所得的对应线段成比例”、“等腰三角形的三线合一”两条性质是解此题的关键.21.(2022·江西萍乡·七年级阶段练习)一个几何体是由若干个棱长为3cm 的小正方体搭成的,从左面、上面看到的几何体的形状图如图所示:(1)该几何体最少由 个小立方体组成,最多由 个小立方体组成.(2)将该几何体的形状固定好,①求该几何体体积的最大值;②若要给体积最小时的几何体表面涂上油漆,求所涂油漆的面积.【答案】(1)9,14(2)①3378cm ;②2324cm 或2342cm【分析】(1)根据左视图,俯视图,分别在俯视图上写出最少,最多两种情形的小正方体的个数即可解决问题.(2)①根据立方体的体积公式计算即可;②分上下,左右,前后三个方向判断出正方形的个数解决问题即可.(1)解:观察图像可知:最少的情形有2311119+++++=个小正方体,最多的情形有22333114+++++=个小正方体.故答案为9,14;(2)①该几何体体积的最大值为()33314378cm ⨯=.②有两种情形:如图摆放:露在外面的面积为:()()()22=25661=36cm ⨯++⨯+++⎡⎤⎣⎦前俯侧, 故涂漆面的面积为:()2369324cm S =⨯=; 如图摆放:露在外面的面积为:()()()22=26661=38cm ⨯++⨯+++⎡⎤⎣⎦前俯侧, 故涂漆面的面积为:()2=38?9=342cm S , 综上,所涂油漆的面积为2324cm 或2342cm .【点睛】本题考查了组合体的三视图和求表面积,发挥空间想象能力是解决本题的关键. 22.(2022·全国·九年级单元测试)点A 是反比例函数1(0)y x x =>的图像1C 上一点,直线AB x ∥轴,交反比例函数3y x=(0x >)的图像2C 于点B ,直线AC y ∥轴,交2C 于点C ,直线CD x ∥轴,交1C 于点D .(1)若点A (1,1),分别求线段AB 和CD 的长度;(2)对于任意的点A (a ,b ),试探究线段AB 和CD 的数量关系,并说明理由.【答案】(1)2AB =,23CD =(2)3AB CD =,理由见解析 【分析】(1)根据题意求得B (3,1),C (1,3),D (13,3),即可求得AB 和CD 的长度; (2)根据题意得到A (a ,1a ),B (3a ,1a ).C (a ,3a ),D (3a ,3a),进一步求得AB =2a ,CD =23a .即可求得AB >CD .(1)解:如图,∵//AB x 轴,A (1,1),B 在反比例函数3(0)y x x=>的图象上, ∵B (3,1).同理可求:C (1,3),D (13,3). ∵2AB =,23CD = (2)解:3AB CD =.证明:如图,∵A (a ,b ),A 在反比例函数1(0)y x x=>的图象上, ∵A (a ,1a ). ∵//AB x 轴,B 在反比例函数3(0)y x x =>的图象上, ∵B (3a ,1a ).同理可求:C (a ,3a ),D (3a ,3a ). ∵2AB a =,23CD a =. ∵32CD a =∵3AB CD =. 【点睛】本题考查了反比例函数图象上点的坐标特征,表示出A 、B 、C 、D 的坐标是解题的关键.23.(2022·河北·石家庄市第四十四中学三模)张老师为了了解学生训练前后定点投篮情况(规则为在罚球线投篮10次,统计进球个数),对本班男、女生的投中个数进行了统计,并绘制成如图频数分布折线图.(1)小红根据图①列出表格:人数 平均数 众数 中位数 男生20 a b 4 女生 20 4.65 c =a ,b =______,c =______;(2)通过张老师对投篮要点的讲解和示范,一周后学生的投中个数比训练前明显增加,全班投中个数变化的人数的扇形统计图如图②所示,求训练后投篮个数增加3次的学生人数和全班增加的投篮总个数;(3)从训练前投篮数是7个的5名同学中随机抽取2名同学,作为投篮师范生,求抽取2人恰好都是女生的概率.【答案】(1)4,3,5(2)4人,52个(3)310【分析】(1)结合折线统计图,根据平均数的计算公式、众数和中位数的定义即可得出答案; (2)由扇形统计图,可求得投篮个数增加3次的学生人数所占的百分比,则可求得训练后投篮个数增加3次的学生人数,从而得出全班增加的投篮总个数;(3)通过画树状图展示所有20种等可能的结果,再找出抽取2人恰好都是女生的结果数,然后根据概率公式求解.(1)男生投中个数为1,2,3,4,5,6,7的人数分别为:2,1,6,4,2,3,2, 女生投中个数为1,2,3,4,5,6,7的人数分别为:1,2,3,2,5,4,3, 男生的平均数420a ==(个), ∵3出现了6次,出现的次数最多,∵众数3b =;∵女人共有20人,且第10人与第11人投中的个数分别为:5个,5个,∵女生投中个数的中位数为:5c =;故答案为:4,3,5;(2)40120%30%40%4⨯---=()(人) 即训练后投中个数增加3次的学生为4人;14040%24030%34010%16241252⨯⨯+⨯⨯+⨯⨯=++=(个),即全班增加的投中总个数为52个,故答案为:4人,52个;(3)由折线图可知,有2名男生和3名女生,共计5人,均是投中7个球,根据题意画树状图如下:共有20种等可能的结果,其中抽取2人恰好都是女生的结果数为6,即抽取2人恰好都是女生的概率是632010=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.24.(2022·黑龙江·哈尔滨市风华中学校八年级期中)如图,DE 是平行四边形ABCD 中ADC ∠的角平分线,EF AD ∥交DC 于F .(1)如图1,求证:四边形AEFD 是菱形;(2)如图2,连接FB ,FB AB ⊥,若60DAB ∠=︒,2FC =,请直接写出所有长度为4的线段.【答案】(1)见解析;(2)BC EF AD DF AE DE 、、、、、.【分析】(1)先证明四边形AEFD 为平行四边形,先后再证明一组邻边相等即可;(2)由题意得60C DAB ∠=∠=︒,可求=4BC ,然后根据平行四边形的性质和菱形的性质可得答案.(1)证明:∵DE 是ADC ∠的角平分线,∵ADE FDE ∠=∠,∵平行四边形ABCD ,∵AB CD ∥,AD BC ∥,∵EF AD ∥,∵四边形AEFD 为平行四边形,∵FDE AED ∠=∠,∵ADE AED =∠∠,∵AD AE =,又∵平行四边形AEFD ,∵四边形AEFD 为菱形.(2)解:,FB AB AB CD ⊥∥,90BFC ∴∠=︒,平行四边形ABCD ,60C DAB ∴∠=∠=︒,30FBC ∴∠=︒,24BC CF ==, ==4AD BC ∴,又菱形AEFDAD AE EF DF ∴===,60,DAE AD AE ∠=︒=,ADE ∴∆是等边三角形,AD DE AE ∴==,AD AE EF DF BC DE ∴=====故所有长度为4的线段是:BC EF AD DF AE DE 、、、、、.【点睛】此题考查了菱形的性质和判定、平行四边形的判定与性质,熟练运用这些性质解决问题是解决此题的关键.25.(2022·河南·商水县希望初级中学九年级阶段练习)综合与实践在数学课上,老师让同学们以“折一个长方体盒子”为主题开展实践活动.如图1,这是一张长为30cm ,宽为12cm 的矩形硬纸板.(1)如图2,奋进小组把矩形硬纸板的四角剪去四个相同的小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个长方体无盖纸盒.若该无盖纸盒的底面积为2144cm ,求剪去的小正方形的边长.(2)创新小组计划制作一个有盖的长方体盒子,为了合理使用材料,设计了如图3所示的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,右侧两个空白部分为矩形,问能否折出底面积为2104cm 的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请求出盒子的体积;如果不能,请说明理由.【答案】(1)剪去的小正方形的边长为3cm(2)能,盒子的体积208cm【分析】(1)设剪去的小正方形的边长为x cm ,根据题意表示出底面的长和底面的宽,利用举行面积公式表示面积列出方程即可;(2)设切去的正方形的边长为y cm ,则折成的长方体盒子的底面是长为(15)cm y -,宽为(122)cm y -的矩形,列出方程求解即可.(1)解:设剪去的小正方形的边长为x cm ,则底面的长为:(302)cm x -,底面的宽为:(122)cm x -,则根据题意得(302)(122)144x x --=,解得13x =,218x =(不符合题意,舍去),答:剪去的小正方形的边长为3cm ;(2)能;理由如下:设切去的正方形的边长为y cm ,则折成的长方体盒子的底面是长为(15)cm y -,宽为(122)cm y -的矩形,依题意得(15)(122)104y y --=,解得12y =,219y =(不符合题意,舍去),∵盒子的体积()31042208cm =⨯=. 【点睛】本题考查了一元二次方程的应用,读懂题意,列出方程是解本题的关键. 26.(2022·浙江嘉兴·一模)如图1,已知正方形ABCD 和正方形CEFG ,点B 、C 、E 在同一直线上,(1)BC m m =>,1CE =.连接AF BG 、.(1)求图1中AF 、BG 的长(用含m 的代数式表示).(2)如图2,正方形ABCD 固定不动,将图1中的正方形CEFG 绕点C 逆时针旋转α度(090α︒<≤︒),试探究AF 、BG 之间的数量关系,并说明理由.(3)如图3,在(2)条件下,当点A ,F ,E 在同一直线上时,连接CF 并延长交AD 于点H ,若2FH =m 的值. 【答案】(1)BG 21m +,AF 222m +AF 2(3)13【分析】(1)延长FG 交AB 于H ,在Rt △BCG 中,由勾股定理,求BG 的长,在Rt △AHG 中,由勾股定理,求AF 的长;(2)连接AC 、CF ,在等腰Rt △ABC 中,由勾股定理,得AC 2BC ,在等腰Rt △FGC 中,由勾股定理,得CF 2,则2AC FC BC CG ==从而可证△ACF ∵△BCG ,得2AF AC BG BC=即可得出结论;(3)连接AC ,证明△AHF ∵△CHA ,得AH HF CH AH=,又由正方形CEFG ,EF =CE =1, 可求得CF 222CE EF +即从而求得CH =CF +FH 222222即可求得AH =2, DH =AD -AG =m -2,然后在Rt △CDH 中,由勾股定理,得 222CD DH CH +=,即()(222222m m +-= 求解即可. (1)解:延长FG 交AB 于H ,如图1,∵正方形ABCD 和正方形CEFG ,点B 、C 、E 在同一直线上,∵∵ABC =∵BCD =∵CGD =∵CGH =90°,AB =BC =m ,CG =GF =CE =1,在Rt △BCG 中,由勾股定理,得2222211BG BC CG m m ++=+∵∵BHG =90°,∵四边形BCGH 是矩形,∵AHG =90°,∵GH =BC =m ,BH =CG =1,∵AH =m -1,在Rt △AHG 中,由勾股定理,得 ()()222221122AF AH HF m m m =+-+++(2)解:连接AC 、CF ,如图2,∵正方形ABCD 和正方形CEFG ,∵∵ACB =∵FCG =45°,∵∵ACB +∵ACG =∵FCG +∵ACG ,∵∵BCG =∵ACF ,在等腰Rt △ABC 中,由勾股定理,得AC 2,在等腰Rt △FGC 中,由勾股定理,得CF 2,∵2ACFCBC CG =∵△ACF ∵△BCG ,∵2AFACBG BC =即AF 2;(3)解:连接AC ,如图3,∵正方形ABCD 和正方形CEFG ,∵∵CAD =∵CFE =45°,CD =AD =BC =m ,∵∵CFE =∵CAF +∵ACF ,∵CAD =∵CAF +∵F AH ,∵∵F AH =∵ACF ,∵∵AHF =∵CHA ,∵△AHF ∵△CHA ,∵AHHFCH AH =,∵正方形CEFG ,EF =CE =1,∵CF 222CE EF +=∵CH =CF +FH 222 222AH =,∵AH =2,∵DH =AD -AG =m -2,在Rt △CDH 中,由勾股定理,得222CD DH CH +=,即()(22222m m +-=解得:113m=213m=不符合题意,舍去).∵m的值为13【点睛】本题考查正方形的性质,勾股定理,相似三角形的判定和性质,熟练掌握正方形的性质,勾股定理,相似三角形的判定和性质并能灵活运用是解题的关键.。
【典型题】初三数学上期末模拟试题(及答案)

【典型题】初三数学上期末模拟试题(及答案)一、选择题1.下列图形中,可以看作是中心对称图形的是()A.B.C.D.2.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣14.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图中∠BOD的度数是()A.150°B.125°C.110°D.55°6.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定7.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件8.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④9.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .4510.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )A .AC BCAB AC= B .2·BC AB BC = C .512AC AB -=D .0.618≈BCAC11.“射击运动员射击一次,命中靶心”这个事件是( ) A .确定事件 B .必然事件 C .不可能事件 D .不确定事件12.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( ) A .14B .12C .23D .34二、填空题13.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.14.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是__.15.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.16.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.17.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.18.已知在同一坐标系中,抛物线y 1=ax 2的开口向上,且它的开口比抛物线y 2=3x 2+2的开口小,请你写出一个满足条件的a 值:_____.19.若1x 、2x 是方程22x 2mx m m 10-+--=的两个实数根,且x 1+x 2=1-x 1⋅x 2,则 m 的值为________.20.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是s =60t ﹣1.5t 2,飞机着陆后滑行_____米才能停下来.三、解答题21.小明在解方程2210x x --=时出现了错误,其解答过程如下: 解:221x x -=-(第一步)22111x x -+=-+(第二步)2(1)0x -=(第三步) 121x x ==(第四步)(1)小明解答过程是从第几步开始出错的,写出错误原因. (2)请写出此题正确的解答过程.22.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.24.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m n(结果保留小数点后两位)0.680.740.680.690.680.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.25.某商场今年“十一”期间举行购物摸奖活动,摸奖箱里有四个标号分别为1,2,3,4的质地,大小都相同的小球,任意摸出一个小球,记下小球标号后,放回箱里并摇匀,再摸出一个小球,再记下小球标号.商场规定:两次摸出的小球之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.C解析:C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、图形既不是轴对称图形是中心对称图形,B、图形是轴对称图形,C、图形是轴对称图形,也是中心对称轴图形,D、图形是轴对称图形.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.4.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.C解析:C【解析】试题分析:如图,连接OC.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.【考点】圆周角定理.6.C解析:C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内判断出即可. 【详解】解:∵⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm , ∴d <r ,∴点A 与⊙O 的位置关系是:点A 在圆内, 故选C .7.D解析:D 【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误; B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确. 故选D.8.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1, 即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1,∴抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以③正确; ∵m >n >0, ∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.9.C解析:C 【解析】 【分析】 【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷= 故选C10.B解析:B 【解析】 【详解】 ∵AC >BC , ∴AC 是较长的线段,根据黄金分割的定义可知:AC BC AB AC ==12≈0.618, 故A 、C 、D 正确,不符合题意; AC 2=AB •BC ,故B 错误,符合题意; 故选B .11.D解析:D 【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件, 故选D . 考点:随机事件.12.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是612=12,故选:B.【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离14.1+【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形所以猜想到要求BM可能需要构造直角三角形由旋转的性质可知AC=AM∠CAM=60°故△ACM是等边三角形可证明△ABM与△CB解析:3【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形,所以猜想到要求BM,可能需要构造直角三角形.由旋转的性质可知,AC=AM,∠CAM=60°,故△ACM是等边三角形,可证明△ABM与△CBM全等,可得到∠ABM=45°,∠AMB=30°,再证△AFB和△AFM是直角三角形,然后在根据勾股定理求解【详解】解:连结CM,设BM与AC相交于点F,如下图所示,∵Rt△ABC中,AB=BC,∠ABC=90°∴∠BCA=∠BAC=45°∵Rt△ABC绕点A逆时针旋转60°与Rt△ANM重合,∴∠BAC=∠NAM=45°,AC=AM 又∵旋转角为60°∴∠BAN=∠CAM=60°,∴△ACM是等边三角形∴AC=CM=AM=4在△ABM与△CBM中,BA BC AM CM BM BM=⎧⎪=⎨⎪=⎩∴△ABM≌△CBM (SSS)∴∠ABM=∠CBM=45°,∠CMB=∠AMB=30°∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°∴∠AFB=∠AFM=90°在Rt△ABF中,由勾股定理得,BF=AF=2212AB BC+=又在Rt△AFM中,∠AMF=30°,∠AFM=90°FM=3AF=3∴BM=BF+FM=1+3故本题的答案是:1+3点评:此题是旋转性质题,解决此题,关键是思路要明确:“构造”直角三角形.在熟练掌握旋转的性质的基础上,还要应用全等的判定及性质,直角三角形的判定及勾股定理的应用15.-3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这解析:-3或4【解析】【分析】利用新定义得到22[(2)(3)][(2)(3)]24m m m m++--+--=,整理得到2(21)490m--=,然后利用因式分解法解方程.【详解】根据题意得,22[(2)(3)][(2)(3)]24m m m m ++--+--=, 2(21)490m --=,(2 m-1+7)(2 m-1-7)=0,2 m-1+7=0或2 m-1-7=0,所以123,4m m =-=. 故答案为:3-或4.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法. 16.π﹣2【解析】【分析】连接CD 作DM⊥BCDN⊥AC 证明△DMG≌△DNH 则S 四边形DGCH=S 四边形DMCN 求得扇形FDE 的面积则阴影部分的面积即可求得【详解】连接CD 作DM⊥BCDN⊥AC∵CA解析:π﹣2.【解析】【分析】连接CD ,作DM ⊥BC ,DN ⊥AC ,证明△DMG ≌△DNH ,则S 四边形DGCH =S 四边形DMCN ,求得扇形FDE 的面积,则阴影部分的面积即可求得.【详解】连接CD ,作DM ⊥BC ,DN ⊥AC .∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴DC =12AB =2,四边形DMCN 是正方形,DM. 则扇形FDE 的面积是:2902360π⨯=π. ∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴CD 平分∠BCA .又∵DM ⊥BC ,DN ⊥AC ,∴DM =DN .∵∠GDH =∠MDN =90°,∴∠GDM =∠HDN .在△DMG 和△DNH 中,∵DMG DNH GDM HDN DM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≌△DNH (AAS ),∴S 四边形DGCH =S 四边形DMCN =2. 则阴影部分的面积是:π﹣2.故答案为π﹣2.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.17.20【解析】【分析】一般用增长后的量=增长前的量×(1+增长率)再根据题意列出方程5(1+x)2=72即可解答【详解】设这两年中投入资金的平均年增长率是x由题意得:5(1+x)2=72解得:x1=0解析:20%.【解析】【分析】一般用增长后的量=增长前的量×(1+增长率),再根据题意列出方程5(1+x)2=7.2,即可解答.【详解】设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.18.4【解析】【分析】由抛物线开口向上可知a>0再由开口的大小由a的绝对值决定可求得a的取值范围【详解】解:∵抛物线y1=ax2的开口向上∴a>0又∵它的开口比抛物线y2=3x2+2的开口小∴|a|>3解析:4【解析】【分析】由抛物线开口向上可知a>0,再由开口的大小由a的绝对值决定,可求得a的取值范围.【详解】解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a >3,取a =4即符合题意【点睛】本题主要考查二次函数的性质,掌握二次函数的开口大小由a 的绝对值决定是解题的关键,即|a|越大,抛物线开口越小.19.1【解析】【分析】【详解】若x1x2是方程x2-2mx+m2-m-1=0的两个实数根;∴x1+x2=2m;x1·x2=m2−m −1∵x1+x2=1-x1x2∴2m=1-(m2−m −1)解得:m1=- 解析:1【解析】【分析】【详解】若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个实数根;∴x 1+x 2=2m ;x 1·x 2= m 2−m−1, ∵x 1+x 2=1-x 1x 2,∴2m=1-(m 2−m−1),解得:m 1=-2,m 2=1.又∵一元二次方程有实数根时,△ 0≥,∴22(2)4(1)0m m m ----≥,解得m≥-1,∴m=1.故答案为1.【点睛】(1)若方程()20?0ax bx c a ++=≠的两根是12x x 、,则1212bc x x x x a a+=-⋅=,,这一关系叫做一元二次方程根与系数的关系;(2)使用一元二次方程根与系数关系解题的前提条件是方程要有实数根,即各项系数的取值必须满足根的判别式△=24b ac -0≥. 20.600【解析】【分析】将函数解析式配方成顶点式求出s 的最大值即可得【详解】∵s =60t ﹣15t2=﹣t2+60t =﹣(t ﹣20)2+600∴当t =20时s 取得最大值600即飞机着陆后滑行600米才能解析:600【解析】【分析】将函数解析式配方成顶点式求出s 的最大值即可得.【详解】∵s =60t ﹣1.5t 2, =﹣32t 2+60t ,=﹣32(t ﹣20)2+600, ∴当t =20时,s 取得最大值600,即飞机着陆后滑行600米才能停下来,故答案为:600.【点睛】此题考查二次函数解析式的配方法,利用配方法将函数解析式化为顶点式由此得到函数的最值是一种很重要的解题方法.三、解答题21.(1)一,移项没变号(或移项错误或等式性质用错均给分);(2)11x =21x =-【解析】【分析】(1)第一步即发生错误,移项未变号;(2)可将采用配方法解方程即可.【详解】(1)一,移项没变号(或移项错误或等式性质用错)(2)解:221x x -=22111x x -+=+()212x -=即,11x =,21x =【点睛】本题考查了解一元二次方程,熟悉各种解法的特点并灵活选择解法是解题关键. 22.(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元; (3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x ≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x ≤58,∴50≤x ≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒. 考点:二次函数的应用.23.(1)证明见解析;(2)3324π-.【解析】【分析】(1)求出∠ADB 的度数,求出∠ABD+∠DBC=90︒,根据切线判定推出即可;(2)连接OD ,分别求出三角形DOB 面积和扇形DOB 面积,即可求出答案.【详解】(1)AB Q 是O e 的直径,90ADB ∴∠=︒,90A ABD ∴∠+∠=︒,A DEB ∠=∠Q ,DEB DBC ∠=∠,A DBC ∴∠=∠,90DBC ABD ∠+∠=︒Q ,BC ∴是O e 的切线;(2)连接OD ,2BF BC ==Q ,且90ADB ∠=︒,CBD FBD ∴∠=∠,//OE BD Q ,FBD OEB ∴∠=∠,OE OB Q =,OEB OBE ∴∠=∠,11903033CBD OEB OBE ADB ∴∠=∠=∠=∠=⨯︒=︒,60C ∴∠=︒,AB ∴==,O ∴e ,∴阴影部分的面积=扇形DOB 的面积-三角形DOB 的面积13362ππ=⨯= 【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.24.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【解析】【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n )=3000,然后解方程即可. 【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1﹣360n )=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.25.“树状图法”或“列表法”见解析,14【解析】【分析】列举出所有情况,让两次摸出的小球的标号之和为“8”或“6”的情况数除以总情况数即为所求的概率.【详解】解:解法一:列树状图得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164=.解法二:列表得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164=.【点睛】此题考查的是用列表法或用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.。
人教版九年级上册数学期末考试及答案【必考题】

人教版九年级上册数学期末考试及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100993.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°6.若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .17.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A.6 B.5 C.4 D.339.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.610.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.6二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:33a b ab-=___________.3.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.4.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为__________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A 处,则小明的影子AM 长为__________米.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .4.如图,点A ,B ,C 都在抛物线y=ax 2﹣2amx+am 2+2m ﹣5(其中﹣14<a <0)上,AB ∥x 轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为 (用含m 的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、B6、D7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、ab (a+b )(a ﹣b ).3、24、25、56、2.5×10-6三、解答题(本大题共6小题,共72分)1、2x =2、(1)12,32-;(2)证明见解析. 3、详略.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或. 5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)5500y x =-+;(2)当降价10元时,每月获得最大利润为4500元;(3)当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.。
【好题】初三数学上期末第一次模拟试题(带答案)

【好题】初三数学上期末第一次模拟试题(带答案)一、选择题1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒ 2.下列图形中既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .正六边形3.下列四个图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .4.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .100°B .130°C .50°D .65°5.抛物线2y x 2=-+的对称轴为 A .x 2=B .x 0=C .y 2=D .y 0=6.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位7.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .3B .3C .3D .88.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )A .310B .925C .920D .359.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3 B .1、﹣3 C .﹣1、﹣3 D .1、3 10.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 11.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( ) A .2017B .2018C .2019D .202012.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .24二、填空题13.已知:如图,在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D =__________cm .14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).15.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.16.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.17.一个等边三角形边长的数值是方程x 2﹣3x ﹣10=0的根,那么这个三角形的周长为_____.18.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.19.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.20.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.三、解答题21.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式y=﹣x+26. (1)求这种产品第一年的利润W 1(万元)与售价x (元/件)满足的函数关系式; (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W 2至少为多少万元.22.关于x 的一元二次方程230x x k -+=有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.23.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.24.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y (吨)与销售价x (万元)之间的函数关系为y =-x +2.6 (1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少? 25.已知抛物线2y x bx c =++经过()()1,0,3,0A B -两点.(1)求抛物线的解析式和顶点坐标;(2)设点P 为抛物线上一点,若6PAB S ∆=,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可. 【详解】解:∵AC 是⊙O 的切线 ∴∠CAB=90︒, 又∵50C ∠=︒ ∴∠ABC=90︒-50︒=40︒ 又∵OD=OB∴∠BDO=∠ABC=40︒又∵∠AOD=∠OBD+∠OBD∴∠AOD=40︒+40︒=80︒故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.2.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形,轴对称图形,解题的关键是熟练的掌握中心对称图形,轴对称图形.3.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.B解析:B【解析】【分析】根据三角形的内切圆得出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=12∠ABC,∠OCB=12∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.5.B解析:B【解析】【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x2+2是顶点式,∴对称轴是直线x=0,即为y轴.故选:B.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.6.A解析:A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴33,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.8.A解析:A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)红(红,红)﹣﹣﹣(红,红)(绿,红)(绿,红)∴63P2010==两次红,故选A.9.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.10.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11.D解析:D【解析】 【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a 是方程2320170x x +-=的实数根,可得2320170a a +-=,据此求出232017a a +=,利用根与系数关系得:+a b =-3,22a a b +- 变形为(2a 3a +)-(+a b ),代入即可得到答案. 【详解】解:∵a 、b 是方程2320170x x +-=的两个实数根, ∴+a b =-3;又∵2320170a a +-=, ∴232017a a +=, ∴22a a b +-=(2a 3a +)-(+a b ) =2017-(-3) =2020即22a a b +-的值为2020. 故选:D . 【点睛】本题考查了根与系数的关系与一元二次方程的解,把22a a b +-化成(2a 3a +)-(+a b )是解题的关键.12.C解析:C 【解析】 【分析】连结AC ,先由△AGH ≌△ADH 得到∠GHA =∠AHD ,进而得到∠AHD =∠HAP ,所以△AHP 是等腰三角形,所以PH =PA =PC ,所以∠HAC 是直角,再在Rt △ABC 中由勾股定理求出AC 的长,然后由△HAC ∽△ADC ,根据=求出AH 的长,再根据△HAC ∽△HDA 求出DH 的长,进而求得HP 和AP 的长,最后得到△APH 的周长. 【详解】∵P 是CH 的中点,PH =PC ,∵AH =AH ,AG =AD ,且AGH 与ADH 都是直角,∴△AGH ≌△ADH ,∴∠GHA =∠AHD ,又∵GHA =HAP ,∴∠AHD =∠HAP ,∴△AHP 是等腰三角形,∴PH =PA =PC ,∴∠HAC 是直角,在Rt △ABC 中,AC ==10,∵△HAC ∽△ADC ,∴=,∴AH ===7.5,又∵△HAC ∽△HAD ,=,∴DH =4.5,∴HP ==6.25,AP =HP =6.25,∴△APH 的周长=AP +PH +AH =6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.二、填空题13.5【解析】试题解析:∵在△AOB中∠AOB=90°AO=3cmBO=4cm∴AB==5cm ∵点D为AB的中点∴OD=AB=25cm∵将△AOB绕顶点O按顺时针方向旋转到△A1O B1处∴OB1=OB=解析:5【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB22OA OBcm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.14.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.15.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 16.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键. 17.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x ﹣10=0(x ﹣5)(x+2)=0即x ﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x 2﹣3x ﹣10=0,(x ﹣5)(x +2)=0,即x ﹣5=0或x +2=0,∴x 1=5,x 2=﹣2.因为方程x 2﹣3x ﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.18.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.19.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.20.13【解析】【分析】【详解】试题分析:有6种等可能的结果符合条件的只有2种则完成的图案为轴对称图案的概率是考点:轴对称图形的定义求某个事件的概率解析:.【解析】【分析】【详解】试题分析:有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是..考点:轴对称图形的定义,求某个事件的概率 .三、解答题21.(1)W1=﹣x2+32x﹣236;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W 1=(x ﹣6)(﹣x+26)﹣80=﹣x 2+32x ﹣236.(2)由题意:20=﹣x 2+32x ﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W 2=(x ﹣5)(﹣x+26)﹣20=﹣x 2+31x ﹣150,∵7≤x≤16,∴x=7时,W 2有最小值,最小值=18(万元),答:该公司第二年的利润W 2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.22.(1)94k ≤;(2)m 的值为32. 【解析】【分析】(1)利用判别式的意义得到()2340k ∆=--≥,然后解不等式即可;(2)利用(1)中的结论得到k 的最大整数为2,解方程2320x x -+=解得121,2x x ==,把1x =和2x =分别代入一元二次方程()2130m x x m -++-=求出对应的m ,同时满足10m -≠.【详解】解:(1)根据题意得()2340k ∆=--≥, 解得94k ≤; (2)k 的最大整数为2,方程230x x k -+=变形为2320x x -+=,解得121,2x x ==,∵一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根, ∴当1x =时,1130m m -++-=,解得32m =; 当2x =时,()41230m m -++-=,解得1m =,而10m -≠,∴m 的值为32. 【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.23.(1)25;(2)35. 【解析】【分析】 (1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25. 故答案为25; (2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123205=. 【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y (x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.25.(1)抛物线的解析式为y=x2-2x-3,顶点坐标为(1,-4);(2)P点坐标为(13)或(1,3)或(0,-3)或(2,-3).【解析】【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点坐标;(2)设P(x,y),根据三角形的面积公式以及S△P AB=6,即可算出y的值,代入抛物线解析式即可得出点P的坐标.【详解】解:(1)把A(-1,0)、B(3,0)分别代入y=x2+bx+c中,得:10 930b cb c-+⎧⎨++⎩==,解得:23 bc=-⎧⎨=-⎩,∴抛物线的解析式为y=x2-2x-3.∵y= x2-2x-3=(x-1)2-4,∴顶点坐标为(1,-4).(2)∵A(-1,0)、B(3,0),∴AB=4.设P(x,y),则S△P AB=12AB•|y|=2|y|=6,∴|y|=3,∴y=±3.①当y=3时,x2-2x-3=3,解得:x1=1,x2=1,此时P点坐标为(13)或(1,3);②当y=-3时,x2-2x-3=-3,解得:x1=0,x2=2,此时P点坐标为(0,-3)或(2,-3).综上所述,P点坐标为(1,3)或(13)或(0,-3)或(2,-3).【点睛】本题考查了待定系数法求函数解析式、三角形的面积公式以及二次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出函数解析式;(2)设出点P的坐标,找出关于y的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【必考题】初三数学上期末模拟试题(带答案) 一、选择题 1.关于x的方程(m﹣3)x2﹣4x﹣2=0有两个不相等的实数根,则实数m的取值花围是( ) A.m≥1 B.m>1 C.m≥1且m≠3 D.m>1且
m≠3
2.一元二次方程的根是( ) A.3x B.1203xx, C.1203xx, D.
12
03xx,
3.如图,已知二次函数2yaxbxca0的图象如图所示,有下列5个结论 abc0①;bac②;4a2bc0③;3ac④;
abmamb(m1⑤的实数).其中正确结论的有( )
A.①②③ B.②③⑤ C.②③④ D.
③④⑤
4.设12,Ay,21,By,32,Cy是抛物线2(1)yxk上的三点,则1y,
2y,3y的大小关系为( )
A.123yyy B.132yyy C.231yyy D.
312
yyy
5.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为( )
A.6 B.8 C.10 D.
12
6.若将抛物线y=x2平移,得到新抛物线2(3)yx,则下列平移方法中,正确的是( ) A.向左平移3个单位 B.向右平移3个单位
C.向上平移3个单位 D.向下平移3个单位
7.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A.12 B.14 C.16 D.
1
12 8.关于下列二次函数图象之间的变换,叙述错误的是( ) A.将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象
B.将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象
C.将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象
D.将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2﹣1的图象
9.下列图标中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
10.用配方法解方程x2+2x﹣5=0时,原方程应变形为( ) A.(x﹣1)2=6 B.(x+1)2=6 C.(x+2)2=9 D.(x﹣2)2=9
11.以3942cx为根的一元二次方程可能是( ) A.230xxc B.230xxc C.230xxc D.2
30xxc
12.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )
A.14 B.12 C.23 D.
3
4 二、填空题 13.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了__人.
14.如图,将二次函数y=12 (x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.
15.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____. 16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是__.
17.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是_____cm2. 18.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.
19.一元二次方程250xxc有两个不相等的实数根且两根之积为正数,若c是整数,则c=_____.(只需填一个). 20.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.
三、解答题 21.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:
转动转盘的次数n 100 150 200 500 800 1000
落在“铅笔”的次数m 68 111 136 345 546 701
落在“铅笔”的频率mn (结果保留小数点后两位) 0.68 0.74 0.68 0.69 0.68 0.70
(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位) (2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用; (3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度. 22.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程
度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题: (1)接受问卷调查的学生共有______人,条形统计图中m的值为______; (2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______; (3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人; (4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率. 23.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用1A、2A、3A表示);田赛项目:跳远,跳高(分别用1B、2B表示).
1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求
恰好是一个田赛项目和一个径赛项目的概率. 24.如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m. (1)a= ,c= ; (2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少? (3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为
28m,他能否将球直接射入球门?
25.解方程:2(x-3)2=x2-9. 【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】 根据二次项系数非零及根的判别式列出关于m的一元一次不等式组,然后方程组即可. 【详解】 解:∵(m-3)x2-4x-2=0是关于x的方程有两个不相等的实数根,
∴2
30(4)4(3)(2)0mm
解得:m>1且m≠3. 故答案为D. 【点睛】 本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键. 2.D 解析:D 【解析】 x2−3x=0
,
x(x−3)=0,
∴x1=0,x2=3. 故选:D. 3.B 解析:B 【解析】 【分析】 由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所给结论进行判断即可. 【详解】 Q①对称轴在y轴的右侧,
ab0,
由图象可知:c0, abc0,故①不正确;
②当x1时,yabc0,
bac,故②正确;
③由对称知,当x2时,函数值大于0,即y4a2bc0,故③正确;
bx12aQ④,