变压器培训
变压器培训资料
变压器培训资料变压器是一种常见的电气设备,广泛应用于电力系统中,是实现电能输送和电压变换的关键组件之一。
由于其重要性,变压器的培训资料也备受关注。
本文将从变压器的基本原理、结构和工作方式等方面进行介绍,希望能对读者有所帮助。
一、变压器的基本原理变压器的基本原理是基于电磁感应定律,即当一个导体在磁场中移动或发生变化时,将会在导体上产生感应电动势。
利用这一原理,变压器可以通过电磁感应将输入端的电能转换为输出端的电能,实现电压的升降。
二、变压器的结构变压器主要由两个主要部分组成:铁芯和线圈。
铁芯一般采用硅钢片制成,能够有效地集中和导磁。
线圈分为输入线圈(也称为初级线圈)和输出线圈(也称为次级线圈),它们分别通过与铁芯紧密连接,形成一个闭合的磁路。
三、变压器的工作方式变压器的工作方式可以分为两种:工频变压器和高频变压器。
1. 工频变压器:工频变压器是指在工频下(通常为50Hz或60Hz)工作的变压器。
它通常采用铁芯,通过变压器的磁耦合作用,实现电能的传输和变换。
工频变压器广泛应用于电力系统中,用于电压升降和输电。
2. 高频变压器:高频变压器是指在高频(通常为几千Hz至几百kHz)条件下工作的变压器。
它通常采用气芯或磁性粉末芯,通过磁场的非饱和状态实现电能的变换。
高频变压器主要应用于电子设备中,如电视机、电脑等。
四、变压器的应用领域变压器在电力系统中具有重要的应用价值,主要体现在以下几个方面:1. 输电:变压器能够将发电厂产生的高电压电能通过变压器升高后进行远距离输送,然后再通过变压器降压供给用户,通过变压器的电能输送,将电力从发电厂传送到用户。
2. 电压变换:变压器能够将输入端的电压升高或降低到需要的电压水平,满足不同设备和系统的电压需求。
3. 隔离:变压器能够将输入端与输出端隔离,有效地防止电气设备之间的相互影响,提高电气系统的安全性和稳定性。
4. 良好的调压性能:变压器能够平稳地进行电压调整,保证供电质量,提高系统的稳定性。
变压器培训资料
变压器培训资料一、变压器的基本概念和原理变压器是一种将电能从一种电压等级转换到另一种电压等级的电气装置。
它由主磁路和两个或多个线圈组成。
主磁路由铁芯和定子线圈构成,而副线圈则通过磁感线的作用产生感应电动势。
变压器工作基于电磁感应的原理,根据法拉第电磁感应定律,当主磁路通过交流电流时,副线圈中也会产生电压。
二、变压器的类型及应用领域1. 根据结构分类变压器可以分为干式变压器和油浸变压器两种。
干式变压器采用无油绝缘材料,适用于一些特殊环境,如防爆场所、高海拔地区等。
而油浸变压器则通过油浸冷却和绝缘,广泛应用于配电系统、发电厂等场所。
2. 根据用途分类变压器的用途很广泛,可以分为配电变压器、电源变压器、电焊机变压器等。
配电变压器主要用于将高压输电网的电能转换为适用于城市和居民的低压电能。
电源变压器则用于将电源的电能转换为各种电子设备所需的适宜电压。
而电焊机变压器则用于提供适宜电压和电流以供电焊使用。
三、变压器的工作原理1. 变压器的磁化过程当交流电源施加在主线圈上时,主线圈中会形成一个交变磁场。
这个交变磁场通过铁芯传导到副线圈中,副线圈中也会形成一个交变磁场。
这个磁场的强弱决定了感应电动势的大小。
2. 变压器的变比关系根据变压器的原理,主副线圈匝数之比等于两个线圈的电压之比。
即N1/N2 = U1/U2,其中N1和N2分别为主副线圈的匝数,U1和U2为主副线圈的电压。
3. 变压器的效率和损耗变压器的效率可以通过功率输入与输出的比值来计算。
常见的损耗包括铜损和铁损。
铜损是指通过线圈中电流通行而产生的损耗,铁损则是指通过铁芯中的磁感线而产生的损耗。
四、变压器的维护和保养为了确保变压器的正常工作和延长使用寿命,需要进行定期的维护和保养。
常见的维护措施包括清洗变压器表面,检查和紧固连接螺钉,维护冷却系统,及时更换磨损的零件等。
此外,还需要定期对变压器进行检测和测试,确保其电气性能符合要求。
五、结语变压器作为电力系统的重要组成部分,在现代工业生产和日常生活中扮演着不可或缺的角色。
变压器培训资料课件
02
优化结构设计
改进变压器线圈结构、铁芯结构和散热结构等,降低能耗和提高散热效果。
将老旧的高能耗变压器更换为新型节能变压器,提高能效和降低能耗。
老旧变压器更换
变压器运行优化
节能监测和维护
通过优化变压器的运行方式和负载分配,实现更高效的能源利用和节能效果。
节能环保
01
随着环保意识的不断提高,变压器技术的革新将更加注重节能环保。通过优化设计、采用新型材料等方式,降低变压器的能耗和排放,提高能效和环保性能。
智能化
02
智能化是变压器技术革新的重要方向之一。通过引入传感器、通信和控制技术,实现变压器的远程监控、智能诊断和自动调节等功能,提高变压器的运行效率和可靠性。
技术创新
随着科技的不断进步,变压器技术也在不断创新和发展。未来,变压器企业需要不断加大技术创新力度,推出更加高效、环保、智能的变压器产品,满足市场的需求。
竞争格局
目前,变压器市场竞争格局较为激烈,国内外的变压器企业都在努力提高自身的技术水平和产品质量,以提高竞争优势。未来,随着市场的不断扩大和技术创新的不断涌现,竞争格局将进一步加剧。
额定电压
额定电流
效率
额定容量
02
变压器安装与维护
变压器安装前的准备
安装位置的选择
安装过程
验收与测试
按照安装说明书的步骤,正确连接变压器的输入和输出线路,固定变压器,确保安全牢固。
完成安装后进行验收和测试,检查变压器是否正常工作,确保无安全隐患。
检查变压器的规格、型号是否符合要求,检查变压器运输过程中是否有损坏,准备安装所需的工具和材料。
事故发生时应保持冷静
变压器专业培训(特变电工)
发电厂自用变压器:简称厂用变,是电厂内作为动力和照明等电 源用的变压器,一般阻抗较高,多直接用于 发电机母线。 分 裂 变 压 器:这种变压器有两个或两个以上低压绕组, 可单独或并联运行。发电厂自用变压器多 采用这种形式的变压器。 升(降)压变压器:是指将一种电压等级升(降)到另一种电 压等级的变压器。
同一线圈 各引线间 的绝缘
距接地部 分及其他 线圈的绝缘
分接开关绝缘
主绝缘
纵绝缘
1、变压器的内部绝缘
变压器的内部绝缘可分为主绝缘和纵绝缘。 主绝缘:每一线圈对接地部分及其他线圈间的绝缘。例如:成 型绝缘筒、围板等。 纵绝缘:线圈的匝绝缘(导线的纸包绝缘)、层间绝缘(圆筒 式线圈)、饼式线圈线饼间的绝缘(油隙垫块)等。
3、对耐热性能方面的要求
变压器运行中的线圈导线,由于产生的基本损耗和附
加损耗,铁心中的磁滞损耗和涡流损耗,以及漏磁通在钢 结构件中的杂散损耗而发热。在高温下,无论是长期运行 还是短期释放,都将加速绝缘材料老化,缩短变压器寿命。
4、 化学性能及其他要求 油浸式变压器最基本的绝缘材料是绝缘纸板及
变压器油,因此要求变压器油在产品运行时具备不
电能、改变电压、但不改变频率的一种静止的电器。
1、变压器工作原理 它有一个共用的铁芯和 与其交链的几个绕组,且它 们之间的空间位置不变。当 某一个绕组从电源接受交流 电能时,通过电感生磁、磁 感生电的电磁感应原理改变 电压(电流),在其余绕组上 以同一频率、不同电压传输 出交流电能。因此,变压器 的主要结构就是铁心和绕组。
将绝缘分为主绝缘和纵绝缘的方法也适用与干式变压器。
2、油浸式变压器的常用绝缘材料 1)变压器油:变压器油的成分是环烷烃、烷烃和芳香烃,以及 其他一些成分。它是油浸式变压器的最基本的绝缘材料,充 满整个变压器油箱中,起着绝缘、散热和消弧的作用。 2)油纸绝缘:油浸式变压器绝缘结构中所用的主要绝缘材料是 变压器油和绝缘纸,即油纸绝缘结构。变压器油与绝缘纸相 结合具有很高的耐电强度。比两者分开单独的油和纸任何一 种材料都高得多。 3)电缆纸:一般是由未漂白硫酸盐纸浆抄纸而制成。在变压器 中采用型号为DLZ-08和DLZ-12的电缆纸,主要作用是做导线 绝缘和线圈层间绝缘,引线包扎绝缘等。
变压器培训教材
变压器培训教材目录一、培训内容3.1变压器基本知识3.2变压器主要生产流程简述及各工序重点控制项目3.3变压器基本构造及材料认识3.4制程控制规范3.5制程中不良项目总汇3.6不良项目发生的原因分析及对策四、变压器种类略述五、安全认证基本知识六、ISO9000基本知识第一节变压器基本知识1.定义变压器就是一个闭合的磁(铁)芯上绕制两组或两组以上的线圈,其中在一组线圈(初级)加上交流电压,使磁(铁)芯产生磁场,通过电磁感应而在其它线圈上感应产生另一个频率相同的交流电压的静电磁装置,称为变压器。
其功用有:升压、降压、整流、滤波、阻抗匹配。
2.基本构成:变压器主要由骨架、磁芯、线圈三部分构成,其次为了增加绕组之间的绝缘程度增加的胶带、漆油等。
3.变压器特征:只能应用于交流电的装置,若加上直流电压则失去功能。
4.变压器电压与圈数之间的关系(在不计变压器自身损耗的情况下)式中:Np——初级线圈匝数Ns——次级线圈匝数Uin——初级输入电压Uout——次级输出电压以上为圈比测试的原理依据。
第二节变压器主要生产流程及各工序重点注意项目1.生产前技术资料、工具、夹具、仪器、设备的状态确认。
2.原材料上线——数量及规格的确认。
3.备料1)备铜线及引线长度:注意事项:铜线不可打结、扭曲,长度依据指示要求,数量依据订单数量及单个用量去剪,不可多备以防浪费。
2)备屏蔽铜片:注意事项:铜片剪口平整,不可起毛边或剪斜,长度依据指示要求。
铜片焊点要光滑、平整,焊点需盖住引线端部,尺寸依据指示要求。
3)焊端子注意事项:端子扣内必须充满线头,以避免松脱。
焊锡时,锡流不可长于5mm以上。
其余流程参考3.4《制程控制规范》。
第三节变压器基本结构和材料认识及使用1.变压器基本结构变压器主要由骨架(BOBBIN),铜线(WIRE)、磁芯(CORE)构成,线圈内绝缘阻隔用胶带。
2.变压器所使用的材料:1)骨架(BOBBIN):A.材质:电木骨架:耐热性好,较脆。
变压器培训资料
选型建议及案例分析
根据负载特性选择
对于负载波动较大的场合,应选择调压范围宽、抗短路能力强的变 压器;对于负载稳定的场合,可选择损耗更低的变压器。
根据运行环境选择
对于高温、潮湿等恶劣环境,应选择防护等级高、耐候性强的变压 器;对于海拔较高的地区,应选择绝缘性能更好的变压器。
案例分析
以某工业园区为例,通过采用高效能变压器和智能化技术,实现了园 区电网的节能降耗和智能化管理。
原因分析
过负荷运行、内部故障、 冷却系统故障、密封不良 导致油位异常等。
处理措施
减轻负荷、检查并修复内 部故障、恢复冷却系统运 行、处理密封问题等。
预防性试验和周期性检修计划
预防性试验
包括绝缘电阻测试、直流电阻测试、 油中溶解气体分析、局部放电测试等, 用于评估变压器的绝缘状况和发现潜 在故障。
周期性检修计划
变压器在电力系统中具有变换电压、电流和阻抗的作用, 以满足不同用电设备的需求。
变压器还可实现电气隔离,提高电力系统的安全性和稳 定性。
工作原理与结构类型
变压器的工作原理基于法拉第电磁感应定律,通过交变磁通实现电压和电流的变换。
变压器的结构类型主要包括铁芯式、铁壳式和干式等,其中铁芯式变压器应用最为 广泛。
根据变压器的运行情况和预防性试验结 果,制定周期性检修计划,包括小修、 中修和大修等,确保变压器的正常运行 和延长使用寿命。
05
变压器保护配置与整定计算
Chapter
保护配置原则和要求
保护配置应能够区分变压器内部 故障和外部故障,实现故障的选 择性切除,减小停电范围。
保护配置应在满足可靠性、选择 性和灵敏性的前提下,尽量简化 配置,降低成本。
动作行为记录
变压器基础知识培训
变压器基础知识培训变压器是电力系统中常见且重要的电气设备,承担着改变电压、输配电、节能减排等重要任务。
为了更好地了解和应用变压器,下面将对变压器的基础知识进行培训。
一、什么是变压器变压器是一种通过电磁感应原理,将交流电能从一个电路传输到另一个电路的静态电气设备。
它由两个或多个线圈(一般为铜线绕制)和铁芯组成,其中一个线圈为输入侧,另一个线圈为输出侧。
通过变压器,可以实现电压的升高或降低。
二、变压器的工作原理变压器的工作原理基于电磁感应现象。
当输入端通入交流电流时,通过线圈产生的磁场会在铁芯中形成磁通。
磁通的变化又会诱导出输出线圈中的电动势,进而产生输出电流。
变压器工作时,输入和输出的电能通过铁芯以电磁能量的形式进行传递。
三、变压器的结构变压器的主要组成部分包括铁芯、线圈和外壳。
铁芯通常由层叠的硅钢片组成,其目的是增加磁阻,从而减小铁芯的功率损耗。
线圈则是由导线绕制而成,一般采用铜线,以减小线圈的电阻和电能损耗。
外壳则是保护变压器内部零部件,并使其具有结构完整性和耐腐蚀性。
四、变压器的类型根据使用场合和用途的不同,变压器可以分为多种类型,包括配电变压器、电力变压器、自耦变压器、隔离变压器等。
配电变压器主要用于城市或工业区的低压电网中,将高压电能转换为低压供给用户;电力变压器通常用于电力系统中的发电厂、变电站等,起到输电、分配和传输电能的作用。
五、变压器的额定容量和参数变压器的额定容量和参数是指变压器设计和制造时的设计工作条件和技术规格。
额定容量表示变压器设计能够正常运行的最大容量,一般以千伏安(KVA)为单位。
额定电压则是指输入侧和输出侧的额定电压值。
此外,变压器还具有负载损耗、空载损耗、短路阻抗等参数,这些参数直接影响着变压器的运行效率和质量。
六、变压器的保护和维护为了保障变压器的正常运行和延长使用寿命,必须进行相应的保护和维护措施。
主要的保护装置包括过流保护、过压保护、温度保护等,这些装置可以监测变压器的工作状态,并在故障发生时采取相应的措施。
变压器培训资料
变压器的维护与保养
1
维护措施
2
了解保持变压器性能的维护措施,如绝
缘油维护和维护记录。
3
定期检查
学习变压器的定期检查步骤,包括外观 检查和电性能测试。
故障排除
学习常见问题的排除方法,如短路、过 载和绝缘击穿。
常见问题与故障排除方法
热点问题
了解变压器中的热点问题,包括过热、冷却不良和负载不均衡。
绝缘问题
变压器的种类及应用领域
探索不同类型的变压器,如电力变压器、配电变压器和特殊应用变压器,并了解它们在各个行业的应用。
变压器的结构与组成
1 主要部件
了解变压器的主要组成部 件,如铁芯、绕组和冷却 装置。
2 绝缘材料
探索变压器中使用的各种 绝缘材料,以确保安全和 可靠性。
3 附属设备
了解配套变压器的常见附 属设备,如冷却风机和监 测系统。
变Байду номын сангаас器培训资料
欢迎来到变压器培训资料!本资料将带您深入了解变压器的基本原理、工作 原理、种类及应用领域、结构与组成、维护与保养、常见问题与故障排除方 法,以及变压器培训的重要性及益处。
变压器的基本原理
了解变压器如何利用电磁感应原理改变电压。
变压器的工作原理
深入了解变压器的工作原理,包括输入输出电压的关系和功率的变化。
探索绝缘问题的常见原因,如污染、老化和机械应力。
故障排除
学习分析和解决变压器故障的方法,以确保设备的可靠性和安全性。
变压器培训的重要性及益处
增加知识
通过变压器培训,提升您的专业 知识和技能。
职业发展
获得变压器培训证书,为您的职 业发展增添亮点。
提高安全意识
学习有关变压器的安全操作和维 护,确保工作场所的安全。
3变压器操作培训
3变压器操作培训第一章:变压器的基本概念和工作原理1.1变压器的定义和分类变压器是一种将交流电能从一个电压等级转换为另一个电压等级的电气设备。
根据工作原理和应用场合的不同,变压器可以分为功率变压器、电源变压器、配电变压器等多种类型。
1.2变压器的组成变压器主要由铁芯和线圈两部分组成。
铁芯是由铁器制成的,用于集中磁场;线圈则由导线绕制而成,用于传输电能。
1.3变压器的工作原理变压器的工作原理是基于电磁感应定律,即当通过一个线圈的电流发生变化时,会在另一个线圈中诱发出电动势。
通过调整线圈的匝数比例,可以实现输入电压和输出电压的升降。
第二章:变压器的基本参数和安全注意事项2.1变压器的基本参数变压器的基本参数包括额定容量、额定电压、短路阻抗、绝缘电阻等。
了解这些参数对于正确操作变压器至关重要。
2.2变压器的安全操作注意事项在操作变压器时,需要注意以下安全事项:-严禁超负荷运行,以免引发过热、短路等故障;-禁止频繁启停,要保持稳定运行状态;-定期检查和清洁变压器,避免积尘和杂质影响散热效果;-注意绝缘性能,防止电气泄漏等问题;-禁止非专业人员擅自操作变压器,避免造成意外伤害。
第三章:变压器的日常操作和维护3.1变压器的日常操作变压器的日常操作包括检查运行参数、启停控制、负荷调整等。
操作人员需要熟悉相关设备的使用方法和操作流程,遵循正确的操作规程。
3.2变压器的定期检查和维护定期检查和维护对于保持变压器的正常运行和延长使用寿命至关重要。
常见的维护工作包括清洁散热器、检查电气接线、测量绝缘电阻等。
3.3变压器的故障诊断和处理变压器在运行过程中可能会出现故障,如短路、过载、绝缘击穿等。
操作人员需要了解常见故障的诊断方法和处理流程,及时采取正确的措施。
第四章:应急处理和安全预防措施4.1变压器故障应急处理在发生变压器故障时,为了保障人身安全和设备正常运行,操作人员需要迅速采取应急处理措施,并及时报告相关部门进行维修。
变压器培训ppt课件完整版
合理分配负载,避免变压器长时间过载运行。
加强通风散热
定期检查紧固件
确保变压器周围通风良好,防止因散热不良 导致温度升高。
定期检查变压器紧固件是否松动,及时紧固。
故障诊断方法分享
电气试验法 通过测量变压器的绝缘电阻、介质损耗 等电气参数,判断变压器是否存在故障。
红外诊断法 利用红外测温仪对变压器进行测温, 根据温度分布情况判断变压器是否存
变压器培训ppt课件完整版
contents
目录
• 变压器基本概念与原理 • 变压器绕组与铁芯设计 • 变压器油浸式与干式类型对比 • 变压器安装调试与验收流程 • 变压器运行维护与故障处理 • 变压器保护配置及自动化改造
01
变压器基本概念与原理
变压器定义及作用
变压器定义
变压器是一种利用电磁感应原理改 变交流电压大小的电气设备。
ABCD
案例二
变压器绕组绝缘损坏导致故障。分析原因及处理 方法,并总结预防措施。
案例四
变压器内部放电导致故障。分析原因及处理方法, 并介绍超声波检测在故障诊断中的应用。
06
变压器保护配置及自动化改造
保护装置类型和功能描述
差动保护
反映变压器绕组和引出线的相 间短路故障,是变压器的主保 护。
过电流保护
性能指标
包括效率、电压调整率、绝缘电阻、温升等,这些指标用于评估变压器的运行性能 和安全性。
02
变压器绕组与铁芯设计
绕组类型选择及布局规划
01
02
03
绕组类型
根据变压器容量、电压等 级和绝缘要求选择合适的 绕组类型,如层式绕组、 饼式绕组等。
绕组布局
合理规划绕组布局,确保 电气间隙和爬电距离满足 要求,同时优化绕组结构 以降低损耗和温升。
变压器知识培训资料全
变压器知识培训资料全xx年xx月xx日CATALOGUE 目录•变压器的基本概念•变压器的组成与结构•变压器的工作运行与维护•变压器的性能指标与测试•变压器的设计制造与选型•变压器的发展趋势与新技术应用01变压器的基本概念变压器是一种利用电磁感应原理改变交流电压的设备,主要由初级线圈、铁芯和次级线圈组成。
变压器的定义当一个交流电通过初级线圈时,会产生变化的磁场,这个磁场会在次级线圈中产生感应电动势,从而改变电压大小。
工作原理变压器的定义与工作原理变压器的种类根据不同的用途和性能参数,变压器可分为电力变压器、特种变压器、干式变压器、油浸式变压器等。
变压器的用途变压器在电力、工业、通信、建筑等领域有着广泛的应用,如电力系统中的升压器和降压器,工业中的加热和生产机械的驱动等。
变压器的种类与用途优点变压器具有效率高、维护方便、可靠性高、过载能力强等优点。
缺点变压器也有一定的局限性,如体积大、成本高、对温度和湿度敏感等。
此外,由于其工作原理的限制,变压器的电压和电流调节范围有限。
变压器的优缺点分析02变压器的组成与结构1变压器的组成与结构23变压器主要由初级线圈、次级线圈和铁芯构成。
初级线圈指输入电流的线圈,次级线圈指输出电流的线圈,铁芯是磁力线的通路。
初级和次级线圈的匝数比决定了变压器的变比。
03变压器的工作运行与维护变压器的运行方式变压器的主要组成部分包括初级线圈、次级线圈和铁芯。
变压器的工作原理利用电磁感应原理,当加电时,初级线圈产生磁场,次级线圈产生电动势。
变压器的额定电压和电流根据变压器的额定容量和负载情况,输出电压和电流也不同。
03变压器的维护定期检查变压器的运行状况,清扫灰尘,检查电缆和接线端子等部位,保持变压器的良好状态。
变压器的操作与维护01变压器的安装应选择干燥、通风、无尘的场所,并按照规定的方法和步骤进行安装。
02变压器的使用在操作前应了解变压器的使用范围和使用方法,并按照规定操作。
变压器知识培训
)
N1
d dt
主磁通为正弦时,励磁电流为尖顶波。 不可以用相量表示,在工程上,通常用 等效正弦波来代替实际空载电流,其等 效条件为:频率相等、有效值相等。
U E1
I0 I
E2 E1
2、考虑空载损耗时的空载电流
空载电流不仅要建立空载磁场,还要给磁滞和涡流等空载损耗 提供能量。所以考虑空载损耗时的空载电流应超前于主磁通。
考虑漏磁通和原边绕组的电阻时,变压器空载运行时相 量形式表示的电压平衡方程式:
U1 I0R1 (E1 ) (E1) I0R1 jI0 x1 (E1)
I0 (R1 jx1 ) (E1) I0Z1 (E1)
U20 E2
R1:原边绕组电阻;
Z1=R1+jX1σ为原边绕组漏阻抗
五、空载运行的等效电路和相量图
d
e1 N1 dt
e2
N2
d
dt
e1
N1
d1
dt
e1:主磁通在原边绕组内感应电动势的 瞬时值 e2:主磁通在副边绕组内感应电动势的 瞬时值; e1:漏磁通 1在原边绕组内感应电动势 的瞬时值
二、空载电流
1、忽略空载损耗时的空载电流
如果原边接到正弦电压上,则主磁通为正弦,对不对?
u1
N1
d ( 1 dt
相量表示:
E2 j4.44 f1N2m
.
m
.
. E2 E1
变压器中,原、副绕组电动势E1和E2之比称为变压器 的变比k.
k E1 4.44 N1 f1 m N1 E2 4.44 N2 f1 m N2
由于.
U1 E1 U2 E2
k E1 U1N N1 E2 U 2N N2
对于三相变压器,变比指相电势之比。
变压器知识培训资料全
预防性试验
按照规程要求对变压器进行预防 性试验,如绝缘电阻测量、直流 电阻测量、变比测量等,以发现 潜在故障,确保变压器安全可靠
运行。
油品维护
定期检查变压器油品质量,及时 更换劣化油品,保持油品清洁干 燥,防止油品老化影响变压器绝
缘性能。
变压器的故障诊断与排除
常见故障类型
变压器常见故障包括绕组故障、铁芯故障、油质劣化等。这些故障可能导致变压器温升异 常、噪音增大、油品变黑等现象。
电压等级
根据电网的电压等级选择相应的变压器,确保变压器的额 定电压与电网电压相匹配。
效率和损耗
选择高效率、低损耗的变压器,以降低运行成本和节约能 源。
变压器的设计方法
磁芯选择
线圈设计
根据变压器的工作频率、磁通密度和温升 要求,选择合适的磁芯材料和形状。
绝缘设计
确定原边和副边线圈的匝数、线径和绕制 方式,以满足变压器的电压比、电流和阻 抗要求。
并列运行方式
两台或多台变压器并列运行,以提高供电可靠性和容量的方式。并列运 行要求变压器的额定电压、额定频率和阻抗等参数相同,以确保负荷均 匀分配。
变压器的日常维护
定期检查
定期对变压器进行外观检查、油 位检查、油温检查等,确保变压 器处于正常工作状态。同时,检 查变压器周围环境,确保通风良
好,无杂物堆积。
变压器的温升与效率评估
温升测试:在额定负载下,测量变压器 的温升,可以判断变压器的散热性能是
否良好,以及是否存在过热现象。
效率评估:通过比较变压器的输入功率 与输出功率,可以计算出变压器的效率 。高效率的变压器能够降低能源损耗,
提高能源利用效率。
以上是关于变压器性能测试与评估的一 些主要内容。通过这些测试与评估,可 以全面了解变压器的性能状况,确保变 压器在正常运行时具有良好的电气性能
变压器理论知识培训课件精选全文
18
41、
变压器基础知识
画册内页
变压器发展趋势
1.高电压大容量变压器 2.高电压直流换流变压器 3.解体变压器 4.过负荷能力强 5.抗短路能力强 6.联络变压器向全自冷方向发展 7.线圈热点温度的检测 8.智能变压器方向发展 9.户内变压器
19
41、
变压器基础知识
画册内页
变压器选用标准
我国电力变压器的标准为GB1094,等同或等效IEC60076标准、美国 标准ANSI.IEEE; 通常选用标准有:
画册内页
电力变压器主要性能参数
8. 额定性能参数
8.1 空载损耗:从电压较低的绕组施加额定电压和额定频率的正弦 波,其他绕组开路时测量的损耗;
8.2 负载损耗:在变压器一侧绕组中通过额定频率和正弦波的额定 电流,另一侧绕组短路时的损耗;
8.3 空载电流:该绕组流过的稳态电流称之为空载电流;
8.4短路阻抗:由漏磁引起的变压器内部电压降,一侧绕组短路, 另一侧施加电压,当加压侧电流达到额定电流时,所施加电压占该 侧额定电压的百分数称为短路阻抗用“%”表示。
14
41、
变压器基础知识
画册内页
电力变压器主要性能参数
1.额定容量: 是指某一个绕组的视在功率的规定值(kVA或MVA)和该绕组的
额定电压,一起决定其额定电流。
2. 额定电压: 是指当施加在其中一个绕组上的电压为额定值时,在空载情况下,
所有绕组同感应出各自的额定值。
3. 额定电流: 由变压器的额定容量和额定电压计算出的流经绕组或线路端的电
20
4二、
变压器品控培训内容简介
画册内页
1、变压器基础知识 2、变压器各部件结构设计、工艺流程和关键品控点
变压器培训PPT课件(2024)
结构类型
根据用途、容量、电压等级等不同, 变压器可分为油浸式、干式、组合式 等多种类型,其中铁芯和线圈是主要 的组成部分。
2024/1/29
5
额定电压、电流及功率参数
01
02
03
额定电压
指变压器设计时所确定的 原边和副边的电压值,是 选用变压器的重要依据。
2024/1/29
额定电流
指变压器在额定电压下所 能承载的最大电流值,与 变压器的容量和电压等级 有关。
设计图纸及技术资料准备
确保施工图纸、技术文件齐全,符合现场实 际要求。
施工队伍组织
组建专业施工队伍,进行技术交底,明确施 工任务和质量要求。
2024/1/29
设备及材料检查
核对变压器型号、规格,检查附件、备件是 否齐全,质量是否符合要求。
安全防护措施
制定现场安全制度,配备安全设施,确保施 工过程安全。
27
验收标准以及文件资料整理
验收标准
根据国家标准、行业规范及合 同要求,制定详细的验收标准
。
2024/1/29
文件资料整理
整理施工过程中产生的各类文 件资料,包括施工图纸、技术 文件、调试记录、验收报告等 。
验收流程
组织专家进行现场验收,按照 验收标准逐项检查,确保变压 器各项指标符合要求。
问题处理
15
日常维护项目清单和周期安排
外观检查
检查变压器外观是否完好,有无破损、渗漏等现象。
油位检查
检查变压器油位是否正常,有无过高或过低现象。
2024/1/29
16
日常维护项目清单和周期安排
温度检查
检查变压器温度是否正常,有无过热现象。
声响检查
变压器培训文档
十五、管式油位计
X 现一般厂家都生产全密封配电变压器,故 尔不需要储油柜。它通过波纹片的热胀冷 缩来呼吸。现一般用的油位计也包含了压 力释放阀。
变压器全体员 工培训
第三部份:变压器试验
变压器试验
X 1、例行试验 2、型式试验 3、特殊试验 X 例行试验包括: X 绕组电阻测量 X 电压比测量和联结组标号检定 X 短路阻抗和负载损耗测量 X 空载电流和空载损耗测量 X 绕组对地绝缘电阻 X 变压器油试验 X 吸收比 X 感应耐压试验 X 工频耐压试验
3m/S2,垂直方向低于1.5m/S2。
变压器全体员 工培训
第二部份:变压器结构
油浸式变压器在电力系统使用最为广 泛,三相油浸式电力变压器的外形如图 。 其基本结构可分成以下几个部分:铁心、 绕组、绝缘套管、油箱及其他附件等。
铁心和绕组是变压器的主要部件,称为 器身,如图 ,器身放在油箱内部。
一、铁心(磁路部分)
五、变压器额定数据
1.额定容量PN用千伏安(kVA)来表示。 2.额定电压U1N/U2N用千伏表示,对于三相变压器,额定电压是指
线电压,我国变压器额定电压等级分为:0.4、3.15、6.3、 10.5、15.75、38.5、69、121、242、363、550、750、 1000KV。
3. 额定电流I1N/I2N用安(A)来表示,对于三相变压器,额定电 流是指线电流。
除此之外 ,还有多 种分类方 法如:按 调压方式 分为有载 调压和无 励磁调压 ;按中性 点绝缘水 平分为全 绝缘变压 器和半绝 缘变压器 ;按铁心 形式分为 心式变压 器和壳式 变压器等 。
四、变压器的型号一般用字母来表示
XH:消弧线圈 CK:串联电抗器 D:单相 Y:实验变压器 K:电抗器
变压器详细的培训计划
变压器详细的培训计划一、培训概述变压器是电气工程中常见的一种设备,用来将交流电能转换成特定电压的设备。
在电力系统中,变压器起着非常重要的作用。
为了提高变压器的工作效率和安全性,进行变压器操作与维护的培训是十分必要的。
本培训计划将从变压器的基本原理、操作维护、故障排除等方面进行详细的介绍,帮助学员全面了解变压器,提高操作和维护水平。
二、培训目标(一)理解变压器的基本原理和结构(二)掌握变压器的操作安全技术(三)掌握变压器的维护方法和周期(四)能够进行变压器故障排除三、培训内容(一)变压器基础知识1. 变压器的定义和分类2. 变压器的基本原理3. 变压器的结构和工作原理4. 变压器的运行参数(二)变压器的操作安全技术1. 变压器的安全操作规程2. 变压器的操作流程和注意事项3. 变压器的安全事故案例分析4. 变压器的安全防护措施(三)变压器的维护方法和周期1. 变压器的日常维护2. 变压器的定期维护3. 变压器的保养与检修4. 变压器的维修与更换(四)变压器的故障排除1. 变压器常见故障及其原因2. 变压器故障的检测与诊断3. 变压器故障的应急处理4. 变压器故障的预防和处理经验四、培训形式本培训分为理论培训和实践培训两个部分,每部分占比各50%。
理论培训主要通过课堂讲解和案例分析,实践培训主要通过模拟操作和实际操作设备进行。
五、培训时间和地点培训时间为5天,每天8小时。
培训地点为公司内部训练中心或者租赁的外部培训场地。
六、培训师资培训讲师应具备丰富的变压器操作和维护经验,具备一定的教学经验和培训意愿。
可以邀请公司内部专家或者外部专业培训机构的讲师来进行培训。
七、培训效果评估培训结束后,将进行培训效果评估。
评估内容包括学员的学习成绩、实际操作表现、培训反馈等,以此来评估培训的有效性。
八、培训后的跟踪服务在培训结束后,应建立学员档案,对学员进行跟踪服务。
定期了解学员的变压器操作和维护情况,及时帮助解决操作和维护中遇到的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力变压器试验1.0.1 电力变压器的试验项目,应包括下列内容:1 绝缘油试验或SF6气体试验;2 测量绕组连同套管的直流电阻;3 检查所有分接头的电压比;4 检查变压器的三相接线组别和单相变压器引出线的极性;5 测量与铁心绝缘的各紧固件(连接片可拆开者)及铁心(有外引接地线的)绝缘电阻;6 非纯瓷套管的试验;7 有载调压切换装置的检查和试验;8 测量绕组连同套管的绝缘电阻、吸收比或极化指数;9 测量绕组连同套管的介质损耗角正切值tanδ;10测量绕组连同套管的直流泄漏电流;11 变压器绕组变形试验;12绕组连同套管的交流耐压试验;13 绕组连同套管的长时感应电压试验带局部放电试验;14 额定电压下的冲击合闸试验;15 检查相位;16 测量噪音。
注:除条文内规定的原因外,各类变压器试验项目应按下列规定进行:1 容量为1600kVA 及以下油浸式电力变压器的试验,可按本条的第1、2、3、4、5、6、7、8、12、14、15款的规定进行;2 干式变压器的试验,可按本条的第2、3、4、5、7、8、12、14、15款的规定进行;3 变流、整流变压器的试验,可按本条的第1、2、3、4、5、7、8、12、14、15款的规定进行;4 电炉变压器的试验,可按本条的第1、2、3、4、5、6、7、8、12、14、15款的规定进行;5 穿芯式电流互感器、电容型套管应分别按本标准第9章互感器、第16章的试验项目进行试验。
6 分体运输、现场组装的变压器应由订货方见证所有出厂试验项目,现场试验按本标准执行。
1.0.2 油浸式变压器中绝缘油及SF6气体绝缘变压器中SF6气体的试验,应符合下列规定:1 绝缘油的试验类别应符合本标准中表20.0.2 的规定;试验项目及标准应符合本标准中表20.0.1 的规定。
2 油中溶解气体的色谱分析,应符合下述规定:电压等级在66kV 及以上的变压器,应在注油静置后、耐压和局部放电试验24h后、冲击合闸及额定电压下运行24h后,各进行一次变压器器身内绝缘油的油中溶解气体的色谱分析。
试验应按《变压器油中溶解气体分析和判断导则》GB/T 7252进行。
各次测得的氢、乙炔、总烃含量,应无明显差别。
新装变压器油中H2 与烃类气体含量(μL/L)任一项不宜超过下列数值:总烃:20,H2:10,C2H2:0,3 油中微量水分的测量,应符合下述规定:变压器油中的微量水分含量,对电压等级为110kV 的,不应大于20mg/L;220kV 的,不应大于15mg/L ;330~500kV 的,不应大于10mg/L 。
4 油中含气量的测量,应符合下述规定:电压等级为330 ~500kV 的变压器,按照规定时间静置后取样测量油中的含气量,其值不应大于1%(体积分数)。
5 对SF6气体绝缘的变压器应进行SF6气体含水量检验及检漏:SF6气体含水量(20℃的体积分数)一般不大于250μL/L。
变压器应无明显泄漏点。
1.0.3 测量绕组连同套管的直流电阻,应符合下列规定:1 测量应在各分接头的所有位置上进行;2 1600kVA 及以下电压等级三相变压器,各相测得值的相互差值应小于平均值的4%,线间测得值的相互差值应小于平均值的2%;1600kVA 以上三相变压器,各相测得值的相互差值应小于平均值的2%;线间测得值的相互差值应小于平均值的1%;3 变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于2%;不同温度下电阻值按照式7.0.3换算:R2=R1(T+t2)/( T+t1) (7.0.3)式中R1、R2——分别为温度在t1、t2时的电阻值;T——计算用常数,铜导线取235,铝导线取225。
4 由于变压器结构等原因,差值超过本条第2款时,可只按本条第3款进行比较。
但应说明原因。
1.0.4 检查所有分接头的电压比,与制造厂铭牌数据相比应无明显差别,且应符合电压比的规律;电压等级在220kV 及以上的电力变压器,其电压比的允许误差在额定分接头位置时为±0.5%。
注:“无明显差别”可按如下考虑:1 电压等级在35kV以下,电压比小于3的变压器电压比允许偏差不超过±1%;2 其他所有变压器额定分接下电压比允许偏差不超过±0.5%;3其它分接的电压比应在变压器阻抗电压值(%)的1/10以内,但不得超过±1%。
1.0.5 检查变压器的三相接线组别和单相变压器引出线的极性,必须与设计要求及铭牌上的标记和外壳上的符号相符。
1.0.6 测量与铁心绝缘的各紧固件(连接片可拆开者)及铁心(有外引接地线的)绝缘电阻应符合下列规定:1 进行器身检查的变压器,应测量可接触到的穿心螺栓、轭铁夹件及绑扎钢带对铁轭、铁心、油箱及绕组压环的绝缘电阻。
当轭铁梁及穿心螺栓一端与铁心连接时,应将连接片断开后进行试验;2 不进行器身检查的变压器或进行器身检查的变压器,所有安装工作结束后应进行铁心和夹件(有外引接地线的)的绝缘电阻测量;3 铁心必须为一点接地;对变压器上有专用的铁心接地线引出套管时,应在注油前测量其对外壳的绝缘电阻;4 采用2500V 兆欧表测量,持续时间为1min,应无闪络及击穿现象。
1.0.7 非纯瓷套管的试验,应按本标准第16章的规定进行。
1.0.8 有载调压切换装置的检查和试验,应符合下列规定:1 变压器带电前应进行有载调压切换装置切换过程试验,检查切换开关切换触头的全部动作顺序,测量过渡电阻阻值和切换时间。
测得的过渡电阻阻值、三相同步偏差、切换时间的数值、正反向切换时间偏差均符合制造厂技术要求。
由于变压器结构及接线原因无法测量的,不进行该项试验;2 在变压器无电压下,手动操作不少于2个循环、电动操作不少于5 个循环。
其中电动操作时电源电压为额定电压的85%及以上。
操作无卡涩、连动程序,电气和机械限位正常;3 循环操作后进行绕组连同套管在所有分接下直流电阻和电压比测量,试验结果应符合本标准第7.0.3条、7.0.4 条的要求。
4 在变压器带电条件下进行有载调压开关电动操作,动作应正常。
操作过程中,各侧电压应在系统电压允许范围内。
5 绝缘油注入切换开关油箱前,其击穿电压应符合本标准表20.0.1 的规定。
1.0.9 测量绕组连同套管的绝缘电阻、吸收比或极化指数,应符合下列规定:1 绝缘电阻值不低于产品出厂试验值的70%。
2 当测量温度与产品出厂试验时的温度不符合时,可按表1.0.9换算到同一温度时的数值进行比较;表1.0.9油浸式电力变压器绝缘电阻的温度换算系数注:1表中K为实测温度减去20℃的绝对值。
2 测量温度以上层油温为准。
当测量绝缘电阻的温度差不是表中所列数值时,其换算系数A 可用线性插入法确定,也可按下述公式计算:A=1.5K/10(7.0.9-1)校正到20℃时的绝缘电阻值可用下述公式计算:当实测温度为20℃以上时:R20=ARt(7.0.9-2)当实测温度为20℃以下时:R20=Rt/A(1.0.9-3)式中R20——校正到20℃时的绝缘电阻值(MΩ);Rt ——在测量温度下的绝缘电阻值(MΩ)。
3 变压器电压等级为35kV 及以上,且容量在4000kVA 及以上时,应测量吸收比。
吸收比与产品出厂值相比应无明显差别,在常温下应不小于1.3;当R60s大于3000MΩ时,吸收比可不做考核要求。
4 变压器电压等级为220kV 及以上且容量为120MVA 及以上时,宜用5000V兆欧表测量极化指数。
测得值与产品出厂值相比应无明显差别,在常温下不小于1.3;当R60s大于10000MΩ时,极化指数可不做考核要求。
1.0.10 测量绕组连同套管的介质损耗角正切值tanδ,应符合下列规定:1 当变压器电压等级为35kV 及以上且容量在8000kVA及以上时,应测量介质损耗角正切值tanδ;2 被测绕组的tanδ值不应大于产品出厂试验值的130%;3 当测量时的温度与产品出厂试验温度不符合时,可按表1.0.10 换算到同一温度时的数值进行比较。
表1.0.10介质损耗角正切值tgδ(%)温度换算系数注:1 表中K为实测温度减去20℃的绝对值;2测量温度以上层油温为准;3 进行较大的温度换算且试验结果超过第二款规定时,应进行综合分析判断。
当测量时的温度差不是表中所列数值时,其换算系数A可用线性插入法确定,也可按下述公式计算:A=1.3K/10(1.0.10-1)校正到20℃时的介质损耗角正切值可用下述公式计算:当测量温度在20℃以上时,tanδ20= tanδt/A (1.0.10-2) 当测量温度在20℃以下时:tanδ20=A tanδt(1.0.10-3)式中tanδ20——校正到20 ℃时的介质损耗角正切值;tanδt——在测量温度下的介质损耗角正切值。
1.0.11测量绕组连同套管的直流泄漏电流,应符合下列规定:1当变压器电压等级为35kV 及以上,且容量在8000kVA 及以上时,应测量直流泄漏电流;2 试验电压标准应符合表7.0.11 的规定。
当施加试验电压达1min 时,在高压端读取泄漏电流。
泄漏电流值不宜超过本标准附录D的规定。
表1.0.11油浸式电力变压器直流泄漏试验电压标准注:1绕组额定电压为13.8kV及15.75kV时,按10kV级标准;18kV时,按20kV级标准;2分级绝缘变压器仍按被试绕组电压等级的标准。
1.0.12 变压器绕组变形试验,应符合下列规定:1 对于35kV及以下电压等级变压器,宜采用低电压短路阻抗法;2 对于66kV及以上电压等级变压器,宜采用频率响应法测量绕组特征图谱。
1.0.13 绕组连同套管的交流耐压试验,应符合下列规定:1 容量为8000kVA以下、绕组额定电压在110kV 以下的变压器,线端试验应按表7.0.13-1进行交流耐压试验;2 容量为8000kVA及以上、绕组额定电压在110kV 以下的变压器,在有试验设备时,可按表1.0.13-1 试验电压标准,进行线端交流耐压试验;3 绕组额定电压为110kV及以上的变压器,其中性点应进行交流耐压试验,试验耐受电压标准为出厂试验电压值的80%(见表7.0.13-2)。
表1.0.13-1 电力变压器和电抗器交流耐压试验电压标准kV注:1上表中,变压器试验电压是根据现行国家标准《电力变压器第3部分:绝缘水平和绝缘试验和外绝缘空气间隙》GB 1094.3规定的出厂试验电压乘以0.8制定的。
2干式变压器出厂试验电压是根据现行国家标准《干式电力变压器》GB 6450规定的出厂试验电压乘以0.8制定的。
表1.0.13-2额定电压110kV 及以上的电力变压器中性点交流耐压试验电压标准kV4 交流耐压试验可以采用外施工频电压试验的方法,也可采用感应电压试验的方法。